1// SPDX-License-Identifier: GPL-2.0
2#include <linux/pagewalk.h>
3#include <linux/mm_inline.h>
4#include <linux/hugetlb.h>
5#include <linux/huge_mm.h>
6#include <linux/mount.h>
7#include <linux/ksm.h>
8#include <linux/seq_file.h>
9#include <linux/highmem.h>
10#include <linux/ptrace.h>
11#include <linux/slab.h>
12#include <linux/pagemap.h>
13#include <linux/mempolicy.h>
14#include <linux/rmap.h>
15#include <linux/swap.h>
16#include <linux/sched/mm.h>
17#include <linux/swapops.h>
18#include <linux/mmu_notifier.h>
19#include <linux/page_idle.h>
20#include <linux/shmem_fs.h>
21#include <linux/uaccess.h>
22#include <linux/pkeys.h>
23#include <linux/minmax.h>
24#include <linux/overflow.h>
25
26#include <asm/elf.h>
27#include <asm/tlb.h>
28#include <asm/tlbflush.h>
29#include "internal.h"
30
31#define SEQ_PUT_DEC(str, val) \
32		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
33void task_mem(struct seq_file *m, struct mm_struct *mm)
34{
35	unsigned long text, lib, swap, anon, file, shmem;
36	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
37
38	anon = get_mm_counter(mm, MM_ANONPAGES);
39	file = get_mm_counter(mm, MM_FILEPAGES);
40	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
41
42	/*
43	 * Note: to minimize their overhead, mm maintains hiwater_vm and
44	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
45	 * collector of these hiwater stats must therefore get total_vm
46	 * and rss too, which will usually be the higher.  Barriers? not
47	 * worth the effort, such snapshots can always be inconsistent.
48	 */
49	hiwater_vm = total_vm = mm->total_vm;
50	if (hiwater_vm < mm->hiwater_vm)
51		hiwater_vm = mm->hiwater_vm;
52	hiwater_rss = total_rss = anon + file + shmem;
53	if (hiwater_rss < mm->hiwater_rss)
54		hiwater_rss = mm->hiwater_rss;
55
56	/* split executable areas between text and lib */
57	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
58	text = min(text, mm->exec_vm << PAGE_SHIFT);
59	lib = (mm->exec_vm << PAGE_SHIFT) - text;
60
61	swap = get_mm_counter(mm, MM_SWAPENTS);
62	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
63	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
64	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
65	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
66	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
67	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
68	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
69	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
70	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
71	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
72	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
73	seq_put_decimal_ull_width(m,
74		    " kB\nVmExe:\t", text >> 10, 8);
75	seq_put_decimal_ull_width(m,
76		    " kB\nVmLib:\t", lib >> 10, 8);
77	seq_put_decimal_ull_width(m,
78		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
79	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
80	seq_puts(m, " kB\n");
81	hugetlb_report_usage(m, mm);
82}
83#undef SEQ_PUT_DEC
84
85unsigned long task_vsize(struct mm_struct *mm)
86{
87	return PAGE_SIZE * mm->total_vm;
88}
89
90unsigned long task_statm(struct mm_struct *mm,
91			 unsigned long *shared, unsigned long *text,
92			 unsigned long *data, unsigned long *resident)
93{
94	*shared = get_mm_counter(mm, MM_FILEPAGES) +
95			get_mm_counter(mm, MM_SHMEMPAGES);
96	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
97								>> PAGE_SHIFT;
98	*data = mm->data_vm + mm->stack_vm;
99	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
100	return mm->total_vm;
101}
102
103#ifdef CONFIG_NUMA
104/*
105 * Save get_task_policy() for show_numa_map().
106 */
107static void hold_task_mempolicy(struct proc_maps_private *priv)
108{
109	struct task_struct *task = priv->task;
110
111	task_lock(task);
112	priv->task_mempolicy = get_task_policy(task);
113	mpol_get(priv->task_mempolicy);
114	task_unlock(task);
115}
116static void release_task_mempolicy(struct proc_maps_private *priv)
117{
118	mpol_put(priv->task_mempolicy);
119}
120#else
121static void hold_task_mempolicy(struct proc_maps_private *priv)
122{
123}
124static void release_task_mempolicy(struct proc_maps_private *priv)
125{
126}
127#endif
128
129static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
130						loff_t *ppos)
131{
132	struct vm_area_struct *vma = vma_next(&priv->iter);
133
134	if (vma) {
135		*ppos = vma->vm_start;
136	} else {
137		*ppos = -2UL;
138		vma = get_gate_vma(priv->mm);
139	}
140
141	return vma;
142}
143
144static void *m_start(struct seq_file *m, loff_t *ppos)
145{
146	struct proc_maps_private *priv = m->private;
147	unsigned long last_addr = *ppos;
148	struct mm_struct *mm;
149
150	/* See m_next(). Zero at the start or after lseek. */
151	if (last_addr == -1UL)
152		return NULL;
153
154	priv->task = get_proc_task(priv->inode);
155	if (!priv->task)
156		return ERR_PTR(-ESRCH);
157
158	mm = priv->mm;
159	if (!mm || !mmget_not_zero(mm)) {
160		put_task_struct(priv->task);
161		priv->task = NULL;
162		return NULL;
163	}
164
165	if (mmap_read_lock_killable(mm)) {
166		mmput(mm);
167		put_task_struct(priv->task);
168		priv->task = NULL;
169		return ERR_PTR(-EINTR);
170	}
171
172	vma_iter_init(&priv->iter, mm, last_addr);
173	hold_task_mempolicy(priv);
174	if (last_addr == -2UL)
175		return get_gate_vma(mm);
176
177	return proc_get_vma(priv, ppos);
178}
179
180static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
181{
182	if (*ppos == -2UL) {
183		*ppos = -1UL;
184		return NULL;
185	}
186	return proc_get_vma(m->private, ppos);
187}
188
189static void m_stop(struct seq_file *m, void *v)
190{
191	struct proc_maps_private *priv = m->private;
192	struct mm_struct *mm = priv->mm;
193
194	if (!priv->task)
195		return;
196
197	release_task_mempolicy(priv);
198	mmap_read_unlock(mm);
199	mmput(mm);
200	put_task_struct(priv->task);
201	priv->task = NULL;
202}
203
204static int proc_maps_open(struct inode *inode, struct file *file,
205			const struct seq_operations *ops, int psize)
206{
207	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
208
209	if (!priv)
210		return -ENOMEM;
211
212	priv->inode = inode;
213	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
214	if (IS_ERR(priv->mm)) {
215		int err = PTR_ERR(priv->mm);
216
217		seq_release_private(inode, file);
218		return err;
219	}
220
221	return 0;
222}
223
224static int proc_map_release(struct inode *inode, struct file *file)
225{
226	struct seq_file *seq = file->private_data;
227	struct proc_maps_private *priv = seq->private;
228
229	if (priv->mm)
230		mmdrop(priv->mm);
231
232	return seq_release_private(inode, file);
233}
234
235static int do_maps_open(struct inode *inode, struct file *file,
236			const struct seq_operations *ops)
237{
238	return proc_maps_open(inode, file, ops,
239				sizeof(struct proc_maps_private));
240}
241
242static void show_vma_header_prefix(struct seq_file *m,
243				   unsigned long start, unsigned long end,
244				   vm_flags_t flags, unsigned long long pgoff,
245				   dev_t dev, unsigned long ino)
246{
247	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
248	seq_put_hex_ll(m, NULL, start, 8);
249	seq_put_hex_ll(m, "-", end, 8);
250	seq_putc(m, ' ');
251	seq_putc(m, flags & VM_READ ? 'r' : '-');
252	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
253	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
254	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
255	seq_put_hex_ll(m, " ", pgoff, 8);
256	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
257	seq_put_hex_ll(m, ":", MINOR(dev), 2);
258	seq_put_decimal_ull(m, " ", ino);
259	seq_putc(m, ' ');
260}
261
262static void
263show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
264{
265	struct anon_vma_name *anon_name = NULL;
266	struct mm_struct *mm = vma->vm_mm;
267	struct file *file = vma->vm_file;
268	vm_flags_t flags = vma->vm_flags;
269	unsigned long ino = 0;
270	unsigned long long pgoff = 0;
271	unsigned long start, end;
272	dev_t dev = 0;
273	const char *name = NULL;
274
275	if (file) {
276		const struct inode *inode = file_user_inode(vma->vm_file);
277
278		dev = inode->i_sb->s_dev;
279		ino = inode->i_ino;
280		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
281	}
282
283	start = vma->vm_start;
284	end = vma->vm_end;
285	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
286	if (mm)
287		anon_name = anon_vma_name(vma);
288
289	/*
290	 * Print the dentry name for named mappings, and a
291	 * special [heap] marker for the heap:
292	 */
293	if (file) {
294		seq_pad(m, ' ');
295		/*
296		 * If user named this anon shared memory via
297		 * prctl(PR_SET_VMA ..., use the provided name.
298		 */
299		if (anon_name)
300			seq_printf(m, "[anon_shmem:%s]", anon_name->name);
301		else
302			seq_path(m, file_user_path(file), "\n");
303		goto done;
304	}
305
306	if (vma->vm_ops && vma->vm_ops->name) {
307		name = vma->vm_ops->name(vma);
308		if (name)
309			goto done;
310	}
311
312	name = arch_vma_name(vma);
313	if (!name) {
314		if (!mm) {
315			name = "[vdso]";
316			goto done;
317		}
318
319		if (vma_is_initial_heap(vma)) {
320			name = "[heap]";
321			goto done;
322		}
323
324		if (vma_is_initial_stack(vma)) {
325			name = "[stack]";
326			goto done;
327		}
328
329		if (anon_name) {
330			seq_pad(m, ' ');
331			seq_printf(m, "[anon:%s]", anon_name->name);
332		}
333	}
334
335done:
336	if (name) {
337		seq_pad(m, ' ');
338		seq_puts(m, name);
339	}
340	seq_putc(m, '\n');
341}
342
343static int show_map(struct seq_file *m, void *v)
344{
345	show_map_vma(m, v);
346	return 0;
347}
348
349static const struct seq_operations proc_pid_maps_op = {
350	.start	= m_start,
351	.next	= m_next,
352	.stop	= m_stop,
353	.show	= show_map
354};
355
356static int pid_maps_open(struct inode *inode, struct file *file)
357{
358	return do_maps_open(inode, file, &proc_pid_maps_op);
359}
360
361const struct file_operations proc_pid_maps_operations = {
362	.open		= pid_maps_open,
363	.read		= seq_read,
364	.llseek		= seq_lseek,
365	.release	= proc_map_release,
366};
367
368/*
369 * Proportional Set Size(PSS): my share of RSS.
370 *
371 * PSS of a process is the count of pages it has in memory, where each
372 * page is divided by the number of processes sharing it.  So if a
373 * process has 1000 pages all to itself, and 1000 shared with one other
374 * process, its PSS will be 1500.
375 *
376 * To keep (accumulated) division errors low, we adopt a 64bit
377 * fixed-point pss counter to minimize division errors. So (pss >>
378 * PSS_SHIFT) would be the real byte count.
379 *
380 * A shift of 12 before division means (assuming 4K page size):
381 * 	- 1M 3-user-pages add up to 8KB errors;
382 * 	- supports mapcount up to 2^24, or 16M;
383 * 	- supports PSS up to 2^52 bytes, or 4PB.
384 */
385#define PSS_SHIFT 12
386
387#ifdef CONFIG_PROC_PAGE_MONITOR
388struct mem_size_stats {
389	unsigned long resident;
390	unsigned long shared_clean;
391	unsigned long shared_dirty;
392	unsigned long private_clean;
393	unsigned long private_dirty;
394	unsigned long referenced;
395	unsigned long anonymous;
396	unsigned long lazyfree;
397	unsigned long anonymous_thp;
398	unsigned long shmem_thp;
399	unsigned long file_thp;
400	unsigned long swap;
401	unsigned long shared_hugetlb;
402	unsigned long private_hugetlb;
403	unsigned long ksm;
404	u64 pss;
405	u64 pss_anon;
406	u64 pss_file;
407	u64 pss_shmem;
408	u64 pss_dirty;
409	u64 pss_locked;
410	u64 swap_pss;
411};
412
413static void smaps_page_accumulate(struct mem_size_stats *mss,
414		struct page *page, unsigned long size, unsigned long pss,
415		bool dirty, bool locked, bool private)
416{
417	mss->pss += pss;
418
419	if (PageAnon(page))
420		mss->pss_anon += pss;
421	else if (PageSwapBacked(page))
422		mss->pss_shmem += pss;
423	else
424		mss->pss_file += pss;
425
426	if (locked)
427		mss->pss_locked += pss;
428
429	if (dirty || PageDirty(page)) {
430		mss->pss_dirty += pss;
431		if (private)
432			mss->private_dirty += size;
433		else
434			mss->shared_dirty += size;
435	} else {
436		if (private)
437			mss->private_clean += size;
438		else
439			mss->shared_clean += size;
440	}
441}
442
443static void smaps_account(struct mem_size_stats *mss, struct page *page,
444		bool compound, bool young, bool dirty, bool locked,
445		bool migration)
446{
447	int i, nr = compound ? compound_nr(page) : 1;
448	unsigned long size = nr * PAGE_SIZE;
449
450	/*
451	 * First accumulate quantities that depend only on |size| and the type
452	 * of the compound page.
453	 */
454	if (PageAnon(page)) {
455		mss->anonymous += size;
456		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
457			mss->lazyfree += size;
458	}
459
460	if (PageKsm(page))
461		mss->ksm += size;
462
463	mss->resident += size;
464	/* Accumulate the size in pages that have been accessed. */
465	if (young || page_is_young(page) || PageReferenced(page))
466		mss->referenced += size;
467
468	/*
469	 * Then accumulate quantities that may depend on sharing, or that may
470	 * differ page-by-page.
471	 *
472	 * page_count(page) == 1 guarantees the page is mapped exactly once.
473	 * If any subpage of the compound page mapped with PTE it would elevate
474	 * page_count().
475	 *
476	 * The page_mapcount() is called to get a snapshot of the mapcount.
477	 * Without holding the page lock this snapshot can be slightly wrong as
478	 * we cannot always read the mapcount atomically.  It is not safe to
479	 * call page_mapcount() even with PTL held if the page is not mapped,
480	 * especially for migration entries.  Treat regular migration entries
481	 * as mapcount == 1.
482	 */
483	if ((page_count(page) == 1) || migration) {
484		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
485			locked, true);
486		return;
487	}
488	for (i = 0; i < nr; i++, page++) {
489		int mapcount = page_mapcount(page);
490		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
491		if (mapcount >= 2)
492			pss /= mapcount;
493		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
494				      mapcount < 2);
495	}
496}
497
498#ifdef CONFIG_SHMEM
499static int smaps_pte_hole(unsigned long addr, unsigned long end,
500			  __always_unused int depth, struct mm_walk *walk)
501{
502	struct mem_size_stats *mss = walk->private;
503	struct vm_area_struct *vma = walk->vma;
504
505	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
506					      linear_page_index(vma, addr),
507					      linear_page_index(vma, end));
508
509	return 0;
510}
511#else
512#define smaps_pte_hole		NULL
513#endif /* CONFIG_SHMEM */
514
515static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
516{
517#ifdef CONFIG_SHMEM
518	if (walk->ops->pte_hole) {
519		/* depth is not used */
520		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
521	}
522#endif
523}
524
525static void smaps_pte_entry(pte_t *pte, unsigned long addr,
526		struct mm_walk *walk)
527{
528	struct mem_size_stats *mss = walk->private;
529	struct vm_area_struct *vma = walk->vma;
530	bool locked = !!(vma->vm_flags & VM_LOCKED);
531	struct page *page = NULL;
532	bool migration = false, young = false, dirty = false;
533	pte_t ptent = ptep_get(pte);
534
535	if (pte_present(ptent)) {
536		page = vm_normal_page(vma, addr, ptent);
537		young = pte_young(ptent);
538		dirty = pte_dirty(ptent);
539	} else if (is_swap_pte(ptent)) {
540		swp_entry_t swpent = pte_to_swp_entry(ptent);
541
542		if (!non_swap_entry(swpent)) {
543			int mapcount;
544
545			mss->swap += PAGE_SIZE;
546			mapcount = swp_swapcount(swpent);
547			if (mapcount >= 2) {
548				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
549
550				do_div(pss_delta, mapcount);
551				mss->swap_pss += pss_delta;
552			} else {
553				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
554			}
555		} else if (is_pfn_swap_entry(swpent)) {
556			if (is_migration_entry(swpent))
557				migration = true;
558			page = pfn_swap_entry_to_page(swpent);
559		}
560	} else {
561		smaps_pte_hole_lookup(addr, walk);
562		return;
563	}
564
565	if (!page)
566		return;
567
568	smaps_account(mss, page, false, young, dirty, locked, migration);
569}
570
571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
572static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
573		struct mm_walk *walk)
574{
575	struct mem_size_stats *mss = walk->private;
576	struct vm_area_struct *vma = walk->vma;
577	bool locked = !!(vma->vm_flags & VM_LOCKED);
578	struct page *page = NULL;
579	bool migration = false;
580
581	if (pmd_present(*pmd)) {
582		page = vm_normal_page_pmd(vma, addr, *pmd);
583	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
584		swp_entry_t entry = pmd_to_swp_entry(*pmd);
585
586		if (is_migration_entry(entry)) {
587			migration = true;
588			page = pfn_swap_entry_to_page(entry);
589		}
590	}
591	if (IS_ERR_OR_NULL(page))
592		return;
593	if (PageAnon(page))
594		mss->anonymous_thp += HPAGE_PMD_SIZE;
595	else if (PageSwapBacked(page))
596		mss->shmem_thp += HPAGE_PMD_SIZE;
597	else if (is_zone_device_page(page))
598		/* pass */;
599	else
600		mss->file_thp += HPAGE_PMD_SIZE;
601
602	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
603		      locked, migration);
604}
605#else
606static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
607		struct mm_walk *walk)
608{
609}
610#endif
611
612static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
613			   struct mm_walk *walk)
614{
615	struct vm_area_struct *vma = walk->vma;
616	pte_t *pte;
617	spinlock_t *ptl;
618
619	ptl = pmd_trans_huge_lock(pmd, vma);
620	if (ptl) {
621		smaps_pmd_entry(pmd, addr, walk);
622		spin_unlock(ptl);
623		goto out;
624	}
625
626	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
627	if (!pte) {
628		walk->action = ACTION_AGAIN;
629		return 0;
630	}
631	for (; addr != end; pte++, addr += PAGE_SIZE)
632		smaps_pte_entry(pte, addr, walk);
633	pte_unmap_unlock(pte - 1, ptl);
634out:
635	cond_resched();
636	return 0;
637}
638
639static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
640{
641	/*
642	 * Don't forget to update Documentation/ on changes.
643	 */
644	static const char mnemonics[BITS_PER_LONG][2] = {
645		/*
646		 * In case if we meet a flag we don't know about.
647		 */
648		[0 ... (BITS_PER_LONG-1)] = "??",
649
650		[ilog2(VM_READ)]	= "rd",
651		[ilog2(VM_WRITE)]	= "wr",
652		[ilog2(VM_EXEC)]	= "ex",
653		[ilog2(VM_SHARED)]	= "sh",
654		[ilog2(VM_MAYREAD)]	= "mr",
655		[ilog2(VM_MAYWRITE)]	= "mw",
656		[ilog2(VM_MAYEXEC)]	= "me",
657		[ilog2(VM_MAYSHARE)]	= "ms",
658		[ilog2(VM_GROWSDOWN)]	= "gd",
659		[ilog2(VM_PFNMAP)]	= "pf",
660		[ilog2(VM_LOCKED)]	= "lo",
661		[ilog2(VM_IO)]		= "io",
662		[ilog2(VM_SEQ_READ)]	= "sr",
663		[ilog2(VM_RAND_READ)]	= "rr",
664		[ilog2(VM_DONTCOPY)]	= "dc",
665		[ilog2(VM_DONTEXPAND)]	= "de",
666		[ilog2(VM_LOCKONFAULT)]	= "lf",
667		[ilog2(VM_ACCOUNT)]	= "ac",
668		[ilog2(VM_NORESERVE)]	= "nr",
669		[ilog2(VM_HUGETLB)]	= "ht",
670		[ilog2(VM_SYNC)]	= "sf",
671		[ilog2(VM_ARCH_1)]	= "ar",
672		[ilog2(VM_WIPEONFORK)]	= "wf",
673		[ilog2(VM_DONTDUMP)]	= "dd",
674#ifdef CONFIG_ARM64_BTI
675		[ilog2(VM_ARM64_BTI)]	= "bt",
676#endif
677#ifdef CONFIG_MEM_SOFT_DIRTY
678		[ilog2(VM_SOFTDIRTY)]	= "sd",
679#endif
680		[ilog2(VM_MIXEDMAP)]	= "mm",
681		[ilog2(VM_HUGEPAGE)]	= "hg",
682		[ilog2(VM_NOHUGEPAGE)]	= "nh",
683		[ilog2(VM_MERGEABLE)]	= "mg",
684		[ilog2(VM_UFFD_MISSING)]= "um",
685		[ilog2(VM_UFFD_WP)]	= "uw",
686#ifdef CONFIG_ARM64_MTE
687		[ilog2(VM_MTE)]		= "mt",
688		[ilog2(VM_MTE_ALLOWED)]	= "",
689#endif
690#ifdef CONFIG_ARCH_HAS_PKEYS
691		/* These come out via ProtectionKey: */
692		[ilog2(VM_PKEY_BIT0)]	= "",
693		[ilog2(VM_PKEY_BIT1)]	= "",
694		[ilog2(VM_PKEY_BIT2)]	= "",
695		[ilog2(VM_PKEY_BIT3)]	= "",
696#if VM_PKEY_BIT4
697		[ilog2(VM_PKEY_BIT4)]	= "",
698#endif
699#endif /* CONFIG_ARCH_HAS_PKEYS */
700#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
701		[ilog2(VM_UFFD_MINOR)]	= "ui",
702#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
703#ifdef CONFIG_X86_USER_SHADOW_STACK
704		[ilog2(VM_SHADOW_STACK)] = "ss",
705#endif
706	};
707	size_t i;
708
709	seq_puts(m, "VmFlags: ");
710	for (i = 0; i < BITS_PER_LONG; i++) {
711		if (!mnemonics[i][0])
712			continue;
713		if (vma->vm_flags & (1UL << i)) {
714			seq_putc(m, mnemonics[i][0]);
715			seq_putc(m, mnemonics[i][1]);
716			seq_putc(m, ' ');
717		}
718	}
719	seq_putc(m, '\n');
720}
721
722#ifdef CONFIG_HUGETLB_PAGE
723static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
724				 unsigned long addr, unsigned long end,
725				 struct mm_walk *walk)
726{
727	struct mem_size_stats *mss = walk->private;
728	struct vm_area_struct *vma = walk->vma;
729	struct page *page = NULL;
730	pte_t ptent = ptep_get(pte);
731
732	if (pte_present(ptent)) {
733		page = vm_normal_page(vma, addr, ptent);
734	} else if (is_swap_pte(ptent)) {
735		swp_entry_t swpent = pte_to_swp_entry(ptent);
736
737		if (is_pfn_swap_entry(swpent))
738			page = pfn_swap_entry_to_page(swpent);
739	}
740	if (page) {
741		if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
742			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
743		else
744			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
745	}
746	return 0;
747}
748#else
749#define smaps_hugetlb_range	NULL
750#endif /* HUGETLB_PAGE */
751
752static const struct mm_walk_ops smaps_walk_ops = {
753	.pmd_entry		= smaps_pte_range,
754	.hugetlb_entry		= smaps_hugetlb_range,
755	.walk_lock		= PGWALK_RDLOCK,
756};
757
758static const struct mm_walk_ops smaps_shmem_walk_ops = {
759	.pmd_entry		= smaps_pte_range,
760	.hugetlb_entry		= smaps_hugetlb_range,
761	.pte_hole		= smaps_pte_hole,
762	.walk_lock		= PGWALK_RDLOCK,
763};
764
765/*
766 * Gather mem stats from @vma with the indicated beginning
767 * address @start, and keep them in @mss.
768 *
769 * Use vm_start of @vma as the beginning address if @start is 0.
770 */
771static void smap_gather_stats(struct vm_area_struct *vma,
772		struct mem_size_stats *mss, unsigned long start)
773{
774	const struct mm_walk_ops *ops = &smaps_walk_ops;
775
776	/* Invalid start */
777	if (start >= vma->vm_end)
778		return;
779
780	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
781		/*
782		 * For shared or readonly shmem mappings we know that all
783		 * swapped out pages belong to the shmem object, and we can
784		 * obtain the swap value much more efficiently. For private
785		 * writable mappings, we might have COW pages that are
786		 * not affected by the parent swapped out pages of the shmem
787		 * object, so we have to distinguish them during the page walk.
788		 * Unless we know that the shmem object (or the part mapped by
789		 * our VMA) has no swapped out pages at all.
790		 */
791		unsigned long shmem_swapped = shmem_swap_usage(vma);
792
793		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
794					!(vma->vm_flags & VM_WRITE))) {
795			mss->swap += shmem_swapped;
796		} else {
797			ops = &smaps_shmem_walk_ops;
798		}
799	}
800
801	/* mmap_lock is held in m_start */
802	if (!start)
803		walk_page_vma(vma, ops, mss);
804	else
805		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
806}
807
808#define SEQ_PUT_DEC(str, val) \
809		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
810
811/* Show the contents common for smaps and smaps_rollup */
812static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
813	bool rollup_mode)
814{
815	SEQ_PUT_DEC("Rss:            ", mss->resident);
816	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
817	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
818	if (rollup_mode) {
819		/*
820		 * These are meaningful only for smaps_rollup, otherwise two of
821		 * them are zero, and the other one is the same as Pss.
822		 */
823		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
824			mss->pss_anon >> PSS_SHIFT);
825		SEQ_PUT_DEC(" kB\nPss_File:       ",
826			mss->pss_file >> PSS_SHIFT);
827		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
828			mss->pss_shmem >> PSS_SHIFT);
829	}
830	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
831	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
832	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
833	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
834	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
835	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
836	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
837	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
838	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
839	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
840	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
841	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
842	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
843				  mss->private_hugetlb >> 10, 7);
844	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
845	SEQ_PUT_DEC(" kB\nSwapPss:        ",
846					mss->swap_pss >> PSS_SHIFT);
847	SEQ_PUT_DEC(" kB\nLocked:         ",
848					mss->pss_locked >> PSS_SHIFT);
849	seq_puts(m, " kB\n");
850}
851
852static int show_smap(struct seq_file *m, void *v)
853{
854	struct vm_area_struct *vma = v;
855	struct mem_size_stats mss = {};
856
857	smap_gather_stats(vma, &mss, 0);
858
859	show_map_vma(m, vma);
860
861	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
862	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
863	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
864	seq_puts(m, " kB\n");
865
866	__show_smap(m, &mss, false);
867
868	seq_printf(m, "THPeligible:    %8u\n",
869		   !!thp_vma_allowable_orders(vma, vma->vm_flags, true, false,
870					      true, THP_ORDERS_ALL));
871
872	if (arch_pkeys_enabled())
873		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
874	show_smap_vma_flags(m, vma);
875
876	return 0;
877}
878
879static int show_smaps_rollup(struct seq_file *m, void *v)
880{
881	struct proc_maps_private *priv = m->private;
882	struct mem_size_stats mss = {};
883	struct mm_struct *mm = priv->mm;
884	struct vm_area_struct *vma;
885	unsigned long vma_start = 0, last_vma_end = 0;
886	int ret = 0;
887	VMA_ITERATOR(vmi, mm, 0);
888
889	priv->task = get_proc_task(priv->inode);
890	if (!priv->task)
891		return -ESRCH;
892
893	if (!mm || !mmget_not_zero(mm)) {
894		ret = -ESRCH;
895		goto out_put_task;
896	}
897
898	ret = mmap_read_lock_killable(mm);
899	if (ret)
900		goto out_put_mm;
901
902	hold_task_mempolicy(priv);
903	vma = vma_next(&vmi);
904
905	if (unlikely(!vma))
906		goto empty_set;
907
908	vma_start = vma->vm_start;
909	do {
910		smap_gather_stats(vma, &mss, 0);
911		last_vma_end = vma->vm_end;
912
913		/*
914		 * Release mmap_lock temporarily if someone wants to
915		 * access it for write request.
916		 */
917		if (mmap_lock_is_contended(mm)) {
918			vma_iter_invalidate(&vmi);
919			mmap_read_unlock(mm);
920			ret = mmap_read_lock_killable(mm);
921			if (ret) {
922				release_task_mempolicy(priv);
923				goto out_put_mm;
924			}
925
926			/*
927			 * After dropping the lock, there are four cases to
928			 * consider. See the following example for explanation.
929			 *
930			 *   +------+------+-----------+
931			 *   | VMA1 | VMA2 | VMA3      |
932			 *   +------+------+-----------+
933			 *   |      |      |           |
934			 *  4k     8k     16k         400k
935			 *
936			 * Suppose we drop the lock after reading VMA2 due to
937			 * contention, then we get:
938			 *
939			 *	last_vma_end = 16k
940			 *
941			 * 1) VMA2 is freed, but VMA3 exists:
942			 *
943			 *    vma_next(vmi) will return VMA3.
944			 *    In this case, just continue from VMA3.
945			 *
946			 * 2) VMA2 still exists:
947			 *
948			 *    vma_next(vmi) will return VMA3.
949			 *    In this case, just continue from VMA3.
950			 *
951			 * 3) No more VMAs can be found:
952			 *
953			 *    vma_next(vmi) will return NULL.
954			 *    No more things to do, just break.
955			 *
956			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
957			 *
958			 *    vma_next(vmi) will return VMA' whose range
959			 *    contains last_vma_end.
960			 *    Iterate VMA' from last_vma_end.
961			 */
962			vma = vma_next(&vmi);
963			/* Case 3 above */
964			if (!vma)
965				break;
966
967			/* Case 1 and 2 above */
968			if (vma->vm_start >= last_vma_end)
969				continue;
970
971			/* Case 4 above */
972			if (vma->vm_end > last_vma_end)
973				smap_gather_stats(vma, &mss, last_vma_end);
974		}
975	} for_each_vma(vmi, vma);
976
977empty_set:
978	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
979	seq_pad(m, ' ');
980	seq_puts(m, "[rollup]\n");
981
982	__show_smap(m, &mss, true);
983
984	release_task_mempolicy(priv);
985	mmap_read_unlock(mm);
986
987out_put_mm:
988	mmput(mm);
989out_put_task:
990	put_task_struct(priv->task);
991	priv->task = NULL;
992
993	return ret;
994}
995#undef SEQ_PUT_DEC
996
997static const struct seq_operations proc_pid_smaps_op = {
998	.start	= m_start,
999	.next	= m_next,
1000	.stop	= m_stop,
1001	.show	= show_smap
1002};
1003
1004static int pid_smaps_open(struct inode *inode, struct file *file)
1005{
1006	return do_maps_open(inode, file, &proc_pid_smaps_op);
1007}
1008
1009static int smaps_rollup_open(struct inode *inode, struct file *file)
1010{
1011	int ret;
1012	struct proc_maps_private *priv;
1013
1014	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1015	if (!priv)
1016		return -ENOMEM;
1017
1018	ret = single_open(file, show_smaps_rollup, priv);
1019	if (ret)
1020		goto out_free;
1021
1022	priv->inode = inode;
1023	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1024	if (IS_ERR(priv->mm)) {
1025		ret = PTR_ERR(priv->mm);
1026
1027		single_release(inode, file);
1028		goto out_free;
1029	}
1030
1031	return 0;
1032
1033out_free:
1034	kfree(priv);
1035	return ret;
1036}
1037
1038static int smaps_rollup_release(struct inode *inode, struct file *file)
1039{
1040	struct seq_file *seq = file->private_data;
1041	struct proc_maps_private *priv = seq->private;
1042
1043	if (priv->mm)
1044		mmdrop(priv->mm);
1045
1046	kfree(priv);
1047	return single_release(inode, file);
1048}
1049
1050const struct file_operations proc_pid_smaps_operations = {
1051	.open		= pid_smaps_open,
1052	.read		= seq_read,
1053	.llseek		= seq_lseek,
1054	.release	= proc_map_release,
1055};
1056
1057const struct file_operations proc_pid_smaps_rollup_operations = {
1058	.open		= smaps_rollup_open,
1059	.read		= seq_read,
1060	.llseek		= seq_lseek,
1061	.release	= smaps_rollup_release,
1062};
1063
1064enum clear_refs_types {
1065	CLEAR_REFS_ALL = 1,
1066	CLEAR_REFS_ANON,
1067	CLEAR_REFS_MAPPED,
1068	CLEAR_REFS_SOFT_DIRTY,
1069	CLEAR_REFS_MM_HIWATER_RSS,
1070	CLEAR_REFS_LAST,
1071};
1072
1073struct clear_refs_private {
1074	enum clear_refs_types type;
1075};
1076
1077#ifdef CONFIG_MEM_SOFT_DIRTY
1078
1079static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1080{
1081	struct page *page;
1082
1083	if (!pte_write(pte))
1084		return false;
1085	if (!is_cow_mapping(vma->vm_flags))
1086		return false;
1087	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1088		return false;
1089	page = vm_normal_page(vma, addr, pte);
1090	if (!page)
1091		return false;
1092	return page_maybe_dma_pinned(page);
1093}
1094
1095static inline void clear_soft_dirty(struct vm_area_struct *vma,
1096		unsigned long addr, pte_t *pte)
1097{
1098	/*
1099	 * The soft-dirty tracker uses #PF-s to catch writes
1100	 * to pages, so write-protect the pte as well. See the
1101	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1102	 * of how soft-dirty works.
1103	 */
1104	pte_t ptent = ptep_get(pte);
1105
1106	if (pte_present(ptent)) {
1107		pte_t old_pte;
1108
1109		if (pte_is_pinned(vma, addr, ptent))
1110			return;
1111		old_pte = ptep_modify_prot_start(vma, addr, pte);
1112		ptent = pte_wrprotect(old_pte);
1113		ptent = pte_clear_soft_dirty(ptent);
1114		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1115	} else if (is_swap_pte(ptent)) {
1116		ptent = pte_swp_clear_soft_dirty(ptent);
1117		set_pte_at(vma->vm_mm, addr, pte, ptent);
1118	}
1119}
1120#else
1121static inline void clear_soft_dirty(struct vm_area_struct *vma,
1122		unsigned long addr, pte_t *pte)
1123{
1124}
1125#endif
1126
1127#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1128static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1129		unsigned long addr, pmd_t *pmdp)
1130{
1131	pmd_t old, pmd = *pmdp;
1132
1133	if (pmd_present(pmd)) {
1134		/* See comment in change_huge_pmd() */
1135		old = pmdp_invalidate(vma, addr, pmdp);
1136		if (pmd_dirty(old))
1137			pmd = pmd_mkdirty(pmd);
1138		if (pmd_young(old))
1139			pmd = pmd_mkyoung(pmd);
1140
1141		pmd = pmd_wrprotect(pmd);
1142		pmd = pmd_clear_soft_dirty(pmd);
1143
1144		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1145	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1146		pmd = pmd_swp_clear_soft_dirty(pmd);
1147		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1148	}
1149}
1150#else
1151static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1152		unsigned long addr, pmd_t *pmdp)
1153{
1154}
1155#endif
1156
1157static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1158				unsigned long end, struct mm_walk *walk)
1159{
1160	struct clear_refs_private *cp = walk->private;
1161	struct vm_area_struct *vma = walk->vma;
1162	pte_t *pte, ptent;
1163	spinlock_t *ptl;
1164	struct page *page;
1165
1166	ptl = pmd_trans_huge_lock(pmd, vma);
1167	if (ptl) {
1168		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1169			clear_soft_dirty_pmd(vma, addr, pmd);
1170			goto out;
1171		}
1172
1173		if (!pmd_present(*pmd))
1174			goto out;
1175
1176		page = pmd_page(*pmd);
1177
1178		/* Clear accessed and referenced bits. */
1179		pmdp_test_and_clear_young(vma, addr, pmd);
1180		test_and_clear_page_young(page);
1181		ClearPageReferenced(page);
1182out:
1183		spin_unlock(ptl);
1184		return 0;
1185	}
1186
1187	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1188	if (!pte) {
1189		walk->action = ACTION_AGAIN;
1190		return 0;
1191	}
1192	for (; addr != end; pte++, addr += PAGE_SIZE) {
1193		ptent = ptep_get(pte);
1194
1195		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1196			clear_soft_dirty(vma, addr, pte);
1197			continue;
1198		}
1199
1200		if (!pte_present(ptent))
1201			continue;
1202
1203		page = vm_normal_page(vma, addr, ptent);
1204		if (!page)
1205			continue;
1206
1207		/* Clear accessed and referenced bits. */
1208		ptep_test_and_clear_young(vma, addr, pte);
1209		test_and_clear_page_young(page);
1210		ClearPageReferenced(page);
1211	}
1212	pte_unmap_unlock(pte - 1, ptl);
1213	cond_resched();
1214	return 0;
1215}
1216
1217static int clear_refs_test_walk(unsigned long start, unsigned long end,
1218				struct mm_walk *walk)
1219{
1220	struct clear_refs_private *cp = walk->private;
1221	struct vm_area_struct *vma = walk->vma;
1222
1223	if (vma->vm_flags & VM_PFNMAP)
1224		return 1;
1225
1226	/*
1227	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1228	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1229	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1230	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1231	 */
1232	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1233		return 1;
1234	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1235		return 1;
1236	return 0;
1237}
1238
1239static const struct mm_walk_ops clear_refs_walk_ops = {
1240	.pmd_entry		= clear_refs_pte_range,
1241	.test_walk		= clear_refs_test_walk,
1242	.walk_lock		= PGWALK_WRLOCK,
1243};
1244
1245static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1246				size_t count, loff_t *ppos)
1247{
1248	struct task_struct *task;
1249	char buffer[PROC_NUMBUF] = {};
1250	struct mm_struct *mm;
1251	struct vm_area_struct *vma;
1252	enum clear_refs_types type;
1253	int itype;
1254	int rv;
1255
1256	if (count > sizeof(buffer) - 1)
1257		count = sizeof(buffer) - 1;
1258	if (copy_from_user(buffer, buf, count))
1259		return -EFAULT;
1260	rv = kstrtoint(strstrip(buffer), 10, &itype);
1261	if (rv < 0)
1262		return rv;
1263	type = (enum clear_refs_types)itype;
1264	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1265		return -EINVAL;
1266
1267	task = get_proc_task(file_inode(file));
1268	if (!task)
1269		return -ESRCH;
1270	mm = get_task_mm(task);
1271	if (mm) {
1272		VMA_ITERATOR(vmi, mm, 0);
1273		struct mmu_notifier_range range;
1274		struct clear_refs_private cp = {
1275			.type = type,
1276		};
1277
1278		if (mmap_write_lock_killable(mm)) {
1279			count = -EINTR;
1280			goto out_mm;
1281		}
1282		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1283			/*
1284			 * Writing 5 to /proc/pid/clear_refs resets the peak
1285			 * resident set size to this mm's current rss value.
1286			 */
1287			reset_mm_hiwater_rss(mm);
1288			goto out_unlock;
1289		}
1290
1291		if (type == CLEAR_REFS_SOFT_DIRTY) {
1292			for_each_vma(vmi, vma) {
1293				if (!(vma->vm_flags & VM_SOFTDIRTY))
1294					continue;
1295				vm_flags_clear(vma, VM_SOFTDIRTY);
1296				vma_set_page_prot(vma);
1297			}
1298
1299			inc_tlb_flush_pending(mm);
1300			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1301						0, mm, 0, -1UL);
1302			mmu_notifier_invalidate_range_start(&range);
1303		}
1304		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1305		if (type == CLEAR_REFS_SOFT_DIRTY) {
1306			mmu_notifier_invalidate_range_end(&range);
1307			flush_tlb_mm(mm);
1308			dec_tlb_flush_pending(mm);
1309		}
1310out_unlock:
1311		mmap_write_unlock(mm);
1312out_mm:
1313		mmput(mm);
1314	}
1315	put_task_struct(task);
1316
1317	return count;
1318}
1319
1320const struct file_operations proc_clear_refs_operations = {
1321	.write		= clear_refs_write,
1322	.llseek		= noop_llseek,
1323};
1324
1325typedef struct {
1326	u64 pme;
1327} pagemap_entry_t;
1328
1329struct pagemapread {
1330	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1331	pagemap_entry_t *buffer;
1332	bool show_pfn;
1333};
1334
1335#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1336#define PAGEMAP_WALK_MASK	(PMD_MASK)
1337
1338#define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1339#define PM_PFRAME_BITS		55
1340#define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1341#define PM_SOFT_DIRTY		BIT_ULL(55)
1342#define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1343#define PM_UFFD_WP		BIT_ULL(57)
1344#define PM_FILE			BIT_ULL(61)
1345#define PM_SWAP			BIT_ULL(62)
1346#define PM_PRESENT		BIT_ULL(63)
1347
1348#define PM_END_OF_BUFFER    1
1349
1350static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1351{
1352	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1353}
1354
1355static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1356{
1357	pm->buffer[pm->pos++] = *pme;
1358	if (pm->pos >= pm->len)
1359		return PM_END_OF_BUFFER;
1360	return 0;
1361}
1362
1363static int pagemap_pte_hole(unsigned long start, unsigned long end,
1364			    __always_unused int depth, struct mm_walk *walk)
1365{
1366	struct pagemapread *pm = walk->private;
1367	unsigned long addr = start;
1368	int err = 0;
1369
1370	while (addr < end) {
1371		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1372		pagemap_entry_t pme = make_pme(0, 0);
1373		/* End of address space hole, which we mark as non-present. */
1374		unsigned long hole_end;
1375
1376		if (vma)
1377			hole_end = min(end, vma->vm_start);
1378		else
1379			hole_end = end;
1380
1381		for (; addr < hole_end; addr += PAGE_SIZE) {
1382			err = add_to_pagemap(&pme, pm);
1383			if (err)
1384				goto out;
1385		}
1386
1387		if (!vma)
1388			break;
1389
1390		/* Addresses in the VMA. */
1391		if (vma->vm_flags & VM_SOFTDIRTY)
1392			pme = make_pme(0, PM_SOFT_DIRTY);
1393		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1394			err = add_to_pagemap(&pme, pm);
1395			if (err)
1396				goto out;
1397		}
1398	}
1399out:
1400	return err;
1401}
1402
1403static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1404		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1405{
1406	u64 frame = 0, flags = 0;
1407	struct page *page = NULL;
1408	bool migration = false;
1409
1410	if (pte_present(pte)) {
1411		if (pm->show_pfn)
1412			frame = pte_pfn(pte);
1413		flags |= PM_PRESENT;
1414		page = vm_normal_page(vma, addr, pte);
1415		if (pte_soft_dirty(pte))
1416			flags |= PM_SOFT_DIRTY;
1417		if (pte_uffd_wp(pte))
1418			flags |= PM_UFFD_WP;
1419	} else if (is_swap_pte(pte)) {
1420		swp_entry_t entry;
1421		if (pte_swp_soft_dirty(pte))
1422			flags |= PM_SOFT_DIRTY;
1423		if (pte_swp_uffd_wp(pte))
1424			flags |= PM_UFFD_WP;
1425		entry = pte_to_swp_entry(pte);
1426		if (pm->show_pfn) {
1427			pgoff_t offset;
1428			/*
1429			 * For PFN swap offsets, keeping the offset field
1430			 * to be PFN only to be compatible with old smaps.
1431			 */
1432			if (is_pfn_swap_entry(entry))
1433				offset = swp_offset_pfn(entry);
1434			else
1435				offset = swp_offset(entry);
1436			frame = swp_type(entry) |
1437			    (offset << MAX_SWAPFILES_SHIFT);
1438		}
1439		flags |= PM_SWAP;
1440		migration = is_migration_entry(entry);
1441		if (is_pfn_swap_entry(entry))
1442			page = pfn_swap_entry_to_page(entry);
1443		if (pte_marker_entry_uffd_wp(entry))
1444			flags |= PM_UFFD_WP;
1445	}
1446
1447	if (page && !PageAnon(page))
1448		flags |= PM_FILE;
1449	if (page && !migration && page_mapcount(page) == 1)
1450		flags |= PM_MMAP_EXCLUSIVE;
1451	if (vma->vm_flags & VM_SOFTDIRTY)
1452		flags |= PM_SOFT_DIRTY;
1453
1454	return make_pme(frame, flags);
1455}
1456
1457static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1458			     struct mm_walk *walk)
1459{
1460	struct vm_area_struct *vma = walk->vma;
1461	struct pagemapread *pm = walk->private;
1462	spinlock_t *ptl;
1463	pte_t *pte, *orig_pte;
1464	int err = 0;
1465#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1466	bool migration = false;
1467
1468	ptl = pmd_trans_huge_lock(pmdp, vma);
1469	if (ptl) {
1470		u64 flags = 0, frame = 0;
1471		pmd_t pmd = *pmdp;
1472		struct page *page = NULL;
1473
1474		if (vma->vm_flags & VM_SOFTDIRTY)
1475			flags |= PM_SOFT_DIRTY;
1476
1477		if (pmd_present(pmd)) {
1478			page = pmd_page(pmd);
1479
1480			flags |= PM_PRESENT;
1481			if (pmd_soft_dirty(pmd))
1482				flags |= PM_SOFT_DIRTY;
1483			if (pmd_uffd_wp(pmd))
1484				flags |= PM_UFFD_WP;
1485			if (pm->show_pfn)
1486				frame = pmd_pfn(pmd) +
1487					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1488		}
1489#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1490		else if (is_swap_pmd(pmd)) {
1491			swp_entry_t entry = pmd_to_swp_entry(pmd);
1492			unsigned long offset;
1493
1494			if (pm->show_pfn) {
1495				if (is_pfn_swap_entry(entry))
1496					offset = swp_offset_pfn(entry);
1497				else
1498					offset = swp_offset(entry);
1499				offset = offset +
1500					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1501				frame = swp_type(entry) |
1502					(offset << MAX_SWAPFILES_SHIFT);
1503			}
1504			flags |= PM_SWAP;
1505			if (pmd_swp_soft_dirty(pmd))
1506				flags |= PM_SOFT_DIRTY;
1507			if (pmd_swp_uffd_wp(pmd))
1508				flags |= PM_UFFD_WP;
1509			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1510			migration = is_migration_entry(entry);
1511			page = pfn_swap_entry_to_page(entry);
1512		}
1513#endif
1514
1515		if (page && !migration && page_mapcount(page) == 1)
1516			flags |= PM_MMAP_EXCLUSIVE;
1517
1518		for (; addr != end; addr += PAGE_SIZE) {
1519			pagemap_entry_t pme = make_pme(frame, flags);
1520
1521			err = add_to_pagemap(&pme, pm);
1522			if (err)
1523				break;
1524			if (pm->show_pfn) {
1525				if (flags & PM_PRESENT)
1526					frame++;
1527				else if (flags & PM_SWAP)
1528					frame += (1 << MAX_SWAPFILES_SHIFT);
1529			}
1530		}
1531		spin_unlock(ptl);
1532		return err;
1533	}
1534#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1535
1536	/*
1537	 * We can assume that @vma always points to a valid one and @end never
1538	 * goes beyond vma->vm_end.
1539	 */
1540	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1541	if (!pte) {
1542		walk->action = ACTION_AGAIN;
1543		return err;
1544	}
1545	for (; addr < end; pte++, addr += PAGE_SIZE) {
1546		pagemap_entry_t pme;
1547
1548		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1549		err = add_to_pagemap(&pme, pm);
1550		if (err)
1551			break;
1552	}
1553	pte_unmap_unlock(orig_pte, ptl);
1554
1555	cond_resched();
1556
1557	return err;
1558}
1559
1560#ifdef CONFIG_HUGETLB_PAGE
1561/* This function walks within one hugetlb entry in the single call */
1562static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1563				 unsigned long addr, unsigned long end,
1564				 struct mm_walk *walk)
1565{
1566	struct pagemapread *pm = walk->private;
1567	struct vm_area_struct *vma = walk->vma;
1568	u64 flags = 0, frame = 0;
1569	int err = 0;
1570	pte_t pte;
1571
1572	if (vma->vm_flags & VM_SOFTDIRTY)
1573		flags |= PM_SOFT_DIRTY;
1574
1575	pte = huge_ptep_get(ptep);
1576	if (pte_present(pte)) {
1577		struct page *page = pte_page(pte);
1578
1579		if (!PageAnon(page))
1580			flags |= PM_FILE;
1581
1582		if (page_mapcount(page) == 1)
1583			flags |= PM_MMAP_EXCLUSIVE;
1584
1585		if (huge_pte_uffd_wp(pte))
1586			flags |= PM_UFFD_WP;
1587
1588		flags |= PM_PRESENT;
1589		if (pm->show_pfn)
1590			frame = pte_pfn(pte) +
1591				((addr & ~hmask) >> PAGE_SHIFT);
1592	} else if (pte_swp_uffd_wp_any(pte)) {
1593		flags |= PM_UFFD_WP;
1594	}
1595
1596	for (; addr != end; addr += PAGE_SIZE) {
1597		pagemap_entry_t pme = make_pme(frame, flags);
1598
1599		err = add_to_pagemap(&pme, pm);
1600		if (err)
1601			return err;
1602		if (pm->show_pfn && (flags & PM_PRESENT))
1603			frame++;
1604	}
1605
1606	cond_resched();
1607
1608	return err;
1609}
1610#else
1611#define pagemap_hugetlb_range	NULL
1612#endif /* HUGETLB_PAGE */
1613
1614static const struct mm_walk_ops pagemap_ops = {
1615	.pmd_entry	= pagemap_pmd_range,
1616	.pte_hole	= pagemap_pte_hole,
1617	.hugetlb_entry	= pagemap_hugetlb_range,
1618	.walk_lock	= PGWALK_RDLOCK,
1619};
1620
1621/*
1622 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1623 *
1624 * For each page in the address space, this file contains one 64-bit entry
1625 * consisting of the following:
1626 *
1627 * Bits 0-54  page frame number (PFN) if present
1628 * Bits 0-4   swap type if swapped
1629 * Bits 5-54  swap offset if swapped
1630 * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1631 * Bit  56    page exclusively mapped
1632 * Bit  57    pte is uffd-wp write-protected
1633 * Bits 58-60 zero
1634 * Bit  61    page is file-page or shared-anon
1635 * Bit  62    page swapped
1636 * Bit  63    page present
1637 *
1638 * If the page is not present but in swap, then the PFN contains an
1639 * encoding of the swap file number and the page's offset into the
1640 * swap. Unmapped pages return a null PFN. This allows determining
1641 * precisely which pages are mapped (or in swap) and comparing mapped
1642 * pages between processes.
1643 *
1644 * Efficient users of this interface will use /proc/pid/maps to
1645 * determine which areas of memory are actually mapped and llseek to
1646 * skip over unmapped regions.
1647 */
1648static ssize_t pagemap_read(struct file *file, char __user *buf,
1649			    size_t count, loff_t *ppos)
1650{
1651	struct mm_struct *mm = file->private_data;
1652	struct pagemapread pm;
1653	unsigned long src;
1654	unsigned long svpfn;
1655	unsigned long start_vaddr;
1656	unsigned long end_vaddr;
1657	int ret = 0, copied = 0;
1658
1659	if (!mm || !mmget_not_zero(mm))
1660		goto out;
1661
1662	ret = -EINVAL;
1663	/* file position must be aligned */
1664	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1665		goto out_mm;
1666
1667	ret = 0;
1668	if (!count)
1669		goto out_mm;
1670
1671	/* do not disclose physical addresses: attack vector */
1672	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1673
1674	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1675	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1676	ret = -ENOMEM;
1677	if (!pm.buffer)
1678		goto out_mm;
1679
1680	src = *ppos;
1681	svpfn = src / PM_ENTRY_BYTES;
1682	end_vaddr = mm->task_size;
1683
1684	/* watch out for wraparound */
1685	start_vaddr = end_vaddr;
1686	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1687		unsigned long end;
1688
1689		ret = mmap_read_lock_killable(mm);
1690		if (ret)
1691			goto out_free;
1692		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1693		mmap_read_unlock(mm);
1694
1695		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1696		if (end >= start_vaddr && end < mm->task_size)
1697			end_vaddr = end;
1698	}
1699
1700	/* Ensure the address is inside the task */
1701	if (start_vaddr > mm->task_size)
1702		start_vaddr = end_vaddr;
1703
1704	ret = 0;
1705	while (count && (start_vaddr < end_vaddr)) {
1706		int len;
1707		unsigned long end;
1708
1709		pm.pos = 0;
1710		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1711		/* overflow ? */
1712		if (end < start_vaddr || end > end_vaddr)
1713			end = end_vaddr;
1714		ret = mmap_read_lock_killable(mm);
1715		if (ret)
1716			goto out_free;
1717		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1718		mmap_read_unlock(mm);
1719		start_vaddr = end;
1720
1721		len = min(count, PM_ENTRY_BYTES * pm.pos);
1722		if (copy_to_user(buf, pm.buffer, len)) {
1723			ret = -EFAULT;
1724			goto out_free;
1725		}
1726		copied += len;
1727		buf += len;
1728		count -= len;
1729	}
1730	*ppos += copied;
1731	if (!ret || ret == PM_END_OF_BUFFER)
1732		ret = copied;
1733
1734out_free:
1735	kfree(pm.buffer);
1736out_mm:
1737	mmput(mm);
1738out:
1739	return ret;
1740}
1741
1742static int pagemap_open(struct inode *inode, struct file *file)
1743{
1744	struct mm_struct *mm;
1745
1746	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1747	if (IS_ERR(mm))
1748		return PTR_ERR(mm);
1749	file->private_data = mm;
1750	return 0;
1751}
1752
1753static int pagemap_release(struct inode *inode, struct file *file)
1754{
1755	struct mm_struct *mm = file->private_data;
1756
1757	if (mm)
1758		mmdrop(mm);
1759	return 0;
1760}
1761
1762#define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
1763				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
1764				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
1765				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
1766#define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
1767
1768struct pagemap_scan_private {
1769	struct pm_scan_arg arg;
1770	unsigned long masks_of_interest, cur_vma_category;
1771	struct page_region *vec_buf;
1772	unsigned long vec_buf_len, vec_buf_index, found_pages;
1773	struct page_region __user *vec_out;
1774};
1775
1776static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
1777					   struct vm_area_struct *vma,
1778					   unsigned long addr, pte_t pte)
1779{
1780	unsigned long categories = 0;
1781
1782	if (pte_present(pte)) {
1783		struct page *page;
1784
1785		categories |= PAGE_IS_PRESENT;
1786		if (!pte_uffd_wp(pte))
1787			categories |= PAGE_IS_WRITTEN;
1788
1789		if (p->masks_of_interest & PAGE_IS_FILE) {
1790			page = vm_normal_page(vma, addr, pte);
1791			if (page && !PageAnon(page))
1792				categories |= PAGE_IS_FILE;
1793		}
1794
1795		if (is_zero_pfn(pte_pfn(pte)))
1796			categories |= PAGE_IS_PFNZERO;
1797		if (pte_soft_dirty(pte))
1798			categories |= PAGE_IS_SOFT_DIRTY;
1799	} else if (is_swap_pte(pte)) {
1800		swp_entry_t swp;
1801
1802		categories |= PAGE_IS_SWAPPED;
1803		if (!pte_swp_uffd_wp_any(pte))
1804			categories |= PAGE_IS_WRITTEN;
1805
1806		if (p->masks_of_interest & PAGE_IS_FILE) {
1807			swp = pte_to_swp_entry(pte);
1808			if (is_pfn_swap_entry(swp) &&
1809			    !folio_test_anon(pfn_swap_entry_folio(swp)))
1810				categories |= PAGE_IS_FILE;
1811		}
1812		if (pte_swp_soft_dirty(pte))
1813			categories |= PAGE_IS_SOFT_DIRTY;
1814	}
1815
1816	return categories;
1817}
1818
1819static void make_uffd_wp_pte(struct vm_area_struct *vma,
1820			     unsigned long addr, pte_t *pte)
1821{
1822	pte_t ptent = ptep_get(pte);
1823
1824	if (pte_present(ptent)) {
1825		pte_t old_pte;
1826
1827		old_pte = ptep_modify_prot_start(vma, addr, pte);
1828		ptent = pte_mkuffd_wp(ptent);
1829		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1830	} else if (is_swap_pte(ptent)) {
1831		ptent = pte_swp_mkuffd_wp(ptent);
1832		set_pte_at(vma->vm_mm, addr, pte, ptent);
1833	} else {
1834		set_pte_at(vma->vm_mm, addr, pte,
1835			   make_pte_marker(PTE_MARKER_UFFD_WP));
1836	}
1837}
1838
1839#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1840static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
1841					  struct vm_area_struct *vma,
1842					  unsigned long addr, pmd_t pmd)
1843{
1844	unsigned long categories = PAGE_IS_HUGE;
1845
1846	if (pmd_present(pmd)) {
1847		struct page *page;
1848
1849		categories |= PAGE_IS_PRESENT;
1850		if (!pmd_uffd_wp(pmd))
1851			categories |= PAGE_IS_WRITTEN;
1852
1853		if (p->masks_of_interest & PAGE_IS_FILE) {
1854			page = vm_normal_page_pmd(vma, addr, pmd);
1855			if (page && !PageAnon(page))
1856				categories |= PAGE_IS_FILE;
1857		}
1858
1859		if (is_zero_pfn(pmd_pfn(pmd)))
1860			categories |= PAGE_IS_PFNZERO;
1861		if (pmd_soft_dirty(pmd))
1862			categories |= PAGE_IS_SOFT_DIRTY;
1863	} else if (is_swap_pmd(pmd)) {
1864		swp_entry_t swp;
1865
1866		categories |= PAGE_IS_SWAPPED;
1867		if (!pmd_swp_uffd_wp(pmd))
1868			categories |= PAGE_IS_WRITTEN;
1869		if (pmd_swp_soft_dirty(pmd))
1870			categories |= PAGE_IS_SOFT_DIRTY;
1871
1872		if (p->masks_of_interest & PAGE_IS_FILE) {
1873			swp = pmd_to_swp_entry(pmd);
1874			if (is_pfn_swap_entry(swp) &&
1875			    !folio_test_anon(pfn_swap_entry_folio(swp)))
1876				categories |= PAGE_IS_FILE;
1877		}
1878	}
1879
1880	return categories;
1881}
1882
1883static void make_uffd_wp_pmd(struct vm_area_struct *vma,
1884			     unsigned long addr, pmd_t *pmdp)
1885{
1886	pmd_t old, pmd = *pmdp;
1887
1888	if (pmd_present(pmd)) {
1889		old = pmdp_invalidate_ad(vma, addr, pmdp);
1890		pmd = pmd_mkuffd_wp(old);
1891		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1892	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1893		pmd = pmd_swp_mkuffd_wp(pmd);
1894		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1895	}
1896}
1897#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1898
1899#ifdef CONFIG_HUGETLB_PAGE
1900static unsigned long pagemap_hugetlb_category(pte_t pte)
1901{
1902	unsigned long categories = PAGE_IS_HUGE;
1903
1904	/*
1905	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
1906	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
1907	 * swapped pages.
1908	 */
1909	if (pte_present(pte)) {
1910		categories |= PAGE_IS_PRESENT;
1911		if (!huge_pte_uffd_wp(pte))
1912			categories |= PAGE_IS_WRITTEN;
1913		if (!PageAnon(pte_page(pte)))
1914			categories |= PAGE_IS_FILE;
1915		if (is_zero_pfn(pte_pfn(pte)))
1916			categories |= PAGE_IS_PFNZERO;
1917		if (pte_soft_dirty(pte))
1918			categories |= PAGE_IS_SOFT_DIRTY;
1919	} else if (is_swap_pte(pte)) {
1920		categories |= PAGE_IS_SWAPPED;
1921		if (!pte_swp_uffd_wp_any(pte))
1922			categories |= PAGE_IS_WRITTEN;
1923		if (pte_swp_soft_dirty(pte))
1924			categories |= PAGE_IS_SOFT_DIRTY;
1925	}
1926
1927	return categories;
1928}
1929
1930static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
1931				  unsigned long addr, pte_t *ptep,
1932				  pte_t ptent)
1933{
1934	unsigned long psize;
1935
1936	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
1937		return;
1938
1939	psize = huge_page_size(hstate_vma(vma));
1940
1941	if (is_hugetlb_entry_migration(ptent))
1942		set_huge_pte_at(vma->vm_mm, addr, ptep,
1943				pte_swp_mkuffd_wp(ptent), psize);
1944	else if (!huge_pte_none(ptent))
1945		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
1946					     huge_pte_mkuffd_wp(ptent));
1947	else
1948		set_huge_pte_at(vma->vm_mm, addr, ptep,
1949				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
1950}
1951#endif /* CONFIG_HUGETLB_PAGE */
1952
1953#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1954static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
1955				       unsigned long addr, unsigned long end)
1956{
1957	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
1958
1959	if (cur_buf->start != addr)
1960		cur_buf->end = addr;
1961	else
1962		cur_buf->start = cur_buf->end = 0;
1963
1964	p->found_pages -= (end - addr) / PAGE_SIZE;
1965}
1966#endif
1967
1968static bool pagemap_scan_is_interesting_page(unsigned long categories,
1969					     const struct pagemap_scan_private *p)
1970{
1971	categories ^= p->arg.category_inverted;
1972	if ((categories & p->arg.category_mask) != p->arg.category_mask)
1973		return false;
1974	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
1975		return false;
1976
1977	return true;
1978}
1979
1980static bool pagemap_scan_is_interesting_vma(unsigned long categories,
1981					    const struct pagemap_scan_private *p)
1982{
1983	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
1984
1985	categories ^= p->arg.category_inverted;
1986	if ((categories & required) != required)
1987		return false;
1988
1989	return true;
1990}
1991
1992static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
1993				  struct mm_walk *walk)
1994{
1995	struct pagemap_scan_private *p = walk->private;
1996	struct vm_area_struct *vma = walk->vma;
1997	unsigned long vma_category = 0;
1998	bool wp_allowed = userfaultfd_wp_async(vma) &&
1999	    userfaultfd_wp_use_markers(vma);
2000
2001	if (!wp_allowed) {
2002		/* User requested explicit failure over wp-async capability */
2003		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2004			return -EPERM;
2005		/*
2006		 * User requires wr-protect, and allows silently skipping
2007		 * unsupported vmas.
2008		 */
2009		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2010			return 1;
2011		/*
2012		 * Then the request doesn't involve wr-protects at all,
2013		 * fall through to the rest checks, and allow vma walk.
2014		 */
2015	}
2016
2017	if (vma->vm_flags & VM_PFNMAP)
2018		return 1;
2019
2020	if (wp_allowed)
2021		vma_category |= PAGE_IS_WPALLOWED;
2022
2023	if (vma->vm_flags & VM_SOFTDIRTY)
2024		vma_category |= PAGE_IS_SOFT_DIRTY;
2025
2026	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2027		return 1;
2028
2029	p->cur_vma_category = vma_category;
2030
2031	return 0;
2032}
2033
2034static bool pagemap_scan_push_range(unsigned long categories,
2035				    struct pagemap_scan_private *p,
2036				    unsigned long addr, unsigned long end)
2037{
2038	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2039
2040	/*
2041	 * When there is no output buffer provided at all, the sentinel values
2042	 * won't match here. There is no other way for `cur_buf->end` to be
2043	 * non-zero other than it being non-empty.
2044	 */
2045	if (addr == cur_buf->end && categories == cur_buf->categories) {
2046		cur_buf->end = end;
2047		return true;
2048	}
2049
2050	if (cur_buf->end) {
2051		if (p->vec_buf_index >= p->vec_buf_len - 1)
2052			return false;
2053
2054		cur_buf = &p->vec_buf[++p->vec_buf_index];
2055	}
2056
2057	cur_buf->start = addr;
2058	cur_buf->end = end;
2059	cur_buf->categories = categories;
2060
2061	return true;
2062}
2063
2064static int pagemap_scan_output(unsigned long categories,
2065			       struct pagemap_scan_private *p,
2066			       unsigned long addr, unsigned long *end)
2067{
2068	unsigned long n_pages, total_pages;
2069	int ret = 0;
2070
2071	if (!p->vec_buf)
2072		return 0;
2073
2074	categories &= p->arg.return_mask;
2075
2076	n_pages = (*end - addr) / PAGE_SIZE;
2077	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2078	    total_pages > p->arg.max_pages) {
2079		size_t n_too_much = total_pages - p->arg.max_pages;
2080		*end -= n_too_much * PAGE_SIZE;
2081		n_pages -= n_too_much;
2082		ret = -ENOSPC;
2083	}
2084
2085	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2086		*end = addr;
2087		n_pages = 0;
2088		ret = -ENOSPC;
2089	}
2090
2091	p->found_pages += n_pages;
2092	if (ret)
2093		p->arg.walk_end = *end;
2094
2095	return ret;
2096}
2097
2098static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2099				  unsigned long end, struct mm_walk *walk)
2100{
2101#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2102	struct pagemap_scan_private *p = walk->private;
2103	struct vm_area_struct *vma = walk->vma;
2104	unsigned long categories;
2105	spinlock_t *ptl;
2106	int ret = 0;
2107
2108	ptl = pmd_trans_huge_lock(pmd, vma);
2109	if (!ptl)
2110		return -ENOENT;
2111
2112	categories = p->cur_vma_category |
2113		     pagemap_thp_category(p, vma, start, *pmd);
2114
2115	if (!pagemap_scan_is_interesting_page(categories, p))
2116		goto out_unlock;
2117
2118	ret = pagemap_scan_output(categories, p, start, &end);
2119	if (start == end)
2120		goto out_unlock;
2121
2122	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2123		goto out_unlock;
2124	if (~categories & PAGE_IS_WRITTEN)
2125		goto out_unlock;
2126
2127	/*
2128	 * Break huge page into small pages if the WP operation
2129	 * needs to be performed on a portion of the huge page.
2130	 */
2131	if (end != start + HPAGE_SIZE) {
2132		spin_unlock(ptl);
2133		split_huge_pmd(vma, pmd, start);
2134		pagemap_scan_backout_range(p, start, end);
2135		/* Report as if there was no THP */
2136		return -ENOENT;
2137	}
2138
2139	make_uffd_wp_pmd(vma, start, pmd);
2140	flush_tlb_range(vma, start, end);
2141out_unlock:
2142	spin_unlock(ptl);
2143	return ret;
2144#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2145	return -ENOENT;
2146#endif
2147}
2148
2149static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2150				  unsigned long end, struct mm_walk *walk)
2151{
2152	struct pagemap_scan_private *p = walk->private;
2153	struct vm_area_struct *vma = walk->vma;
2154	unsigned long addr, flush_end = 0;
2155	pte_t *pte, *start_pte;
2156	spinlock_t *ptl;
2157	int ret;
2158
2159	arch_enter_lazy_mmu_mode();
2160
2161	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2162	if (ret != -ENOENT) {
2163		arch_leave_lazy_mmu_mode();
2164		return ret;
2165	}
2166
2167	ret = 0;
2168	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2169	if (!pte) {
2170		arch_leave_lazy_mmu_mode();
2171		walk->action = ACTION_AGAIN;
2172		return 0;
2173	}
2174
2175	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2176		/* Fast path for performing exclusive WP */
2177		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2178			if (pte_uffd_wp(ptep_get(pte)))
2179				continue;
2180			make_uffd_wp_pte(vma, addr, pte);
2181			if (!flush_end)
2182				start = addr;
2183			flush_end = addr + PAGE_SIZE;
2184		}
2185		goto flush_and_return;
2186	}
2187
2188	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2189	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2190	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2191		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2192			unsigned long next = addr + PAGE_SIZE;
2193
2194			if (pte_uffd_wp(ptep_get(pte)))
2195				continue;
2196			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2197						  p, addr, &next);
2198			if (next == addr)
2199				break;
2200			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2201				continue;
2202			make_uffd_wp_pte(vma, addr, pte);
2203			if (!flush_end)
2204				start = addr;
2205			flush_end = next;
2206		}
2207		goto flush_and_return;
2208	}
2209
2210	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2211		unsigned long categories = p->cur_vma_category |
2212					   pagemap_page_category(p, vma, addr, ptep_get(pte));
2213		unsigned long next = addr + PAGE_SIZE;
2214
2215		if (!pagemap_scan_is_interesting_page(categories, p))
2216			continue;
2217
2218		ret = pagemap_scan_output(categories, p, addr, &next);
2219		if (next == addr)
2220			break;
2221
2222		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2223			continue;
2224		if (~categories & PAGE_IS_WRITTEN)
2225			continue;
2226
2227		make_uffd_wp_pte(vma, addr, pte);
2228		if (!flush_end)
2229			start = addr;
2230		flush_end = next;
2231	}
2232
2233flush_and_return:
2234	if (flush_end)
2235		flush_tlb_range(vma, start, addr);
2236
2237	pte_unmap_unlock(start_pte, ptl);
2238	arch_leave_lazy_mmu_mode();
2239
2240	cond_resched();
2241	return ret;
2242}
2243
2244#ifdef CONFIG_HUGETLB_PAGE
2245static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2246				      unsigned long start, unsigned long end,
2247				      struct mm_walk *walk)
2248{
2249	struct pagemap_scan_private *p = walk->private;
2250	struct vm_area_struct *vma = walk->vma;
2251	unsigned long categories;
2252	spinlock_t *ptl;
2253	int ret = 0;
2254	pte_t pte;
2255
2256	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2257		/* Go the short route when not write-protecting pages. */
2258
2259		pte = huge_ptep_get(ptep);
2260		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2261
2262		if (!pagemap_scan_is_interesting_page(categories, p))
2263			return 0;
2264
2265		return pagemap_scan_output(categories, p, start, &end);
2266	}
2267
2268	i_mmap_lock_write(vma->vm_file->f_mapping);
2269	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2270
2271	pte = huge_ptep_get(ptep);
2272	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2273
2274	if (!pagemap_scan_is_interesting_page(categories, p))
2275		goto out_unlock;
2276
2277	ret = pagemap_scan_output(categories, p, start, &end);
2278	if (start == end)
2279		goto out_unlock;
2280
2281	if (~categories & PAGE_IS_WRITTEN)
2282		goto out_unlock;
2283
2284	if (end != start + HPAGE_SIZE) {
2285		/* Partial HugeTLB page WP isn't possible. */
2286		pagemap_scan_backout_range(p, start, end);
2287		p->arg.walk_end = start;
2288		ret = 0;
2289		goto out_unlock;
2290	}
2291
2292	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2293	flush_hugetlb_tlb_range(vma, start, end);
2294
2295out_unlock:
2296	spin_unlock(ptl);
2297	i_mmap_unlock_write(vma->vm_file->f_mapping);
2298
2299	return ret;
2300}
2301#else
2302#define pagemap_scan_hugetlb_entry NULL
2303#endif
2304
2305static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2306				 int depth, struct mm_walk *walk)
2307{
2308	struct pagemap_scan_private *p = walk->private;
2309	struct vm_area_struct *vma = walk->vma;
2310	int ret, err;
2311
2312	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2313		return 0;
2314
2315	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2316	if (addr == end)
2317		return ret;
2318
2319	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2320		return ret;
2321
2322	err = uffd_wp_range(vma, addr, end - addr, true);
2323	if (err < 0)
2324		ret = err;
2325
2326	return ret;
2327}
2328
2329static const struct mm_walk_ops pagemap_scan_ops = {
2330	.test_walk = pagemap_scan_test_walk,
2331	.pmd_entry = pagemap_scan_pmd_entry,
2332	.pte_hole = pagemap_scan_pte_hole,
2333	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2334};
2335
2336static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2337				 unsigned long uarg)
2338{
2339	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2340		return -EFAULT;
2341
2342	if (arg->size != sizeof(struct pm_scan_arg))
2343		return -EINVAL;
2344
2345	/* Validate requested features */
2346	if (arg->flags & ~PM_SCAN_FLAGS)
2347		return -EINVAL;
2348	if ((arg->category_inverted | arg->category_mask |
2349	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2350		return -EINVAL;
2351
2352	arg->start = untagged_addr((unsigned long)arg->start);
2353	arg->end = untagged_addr((unsigned long)arg->end);
2354	arg->vec = untagged_addr((unsigned long)arg->vec);
2355
2356	/* Validate memory pointers */
2357	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2358		return -EINVAL;
2359	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2360		return -EFAULT;
2361	if (!arg->vec && arg->vec_len)
2362		return -EINVAL;
2363	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2364			      arg->vec_len * sizeof(struct page_region)))
2365		return -EFAULT;
2366
2367	/* Fixup default values */
2368	arg->end = ALIGN(arg->end, PAGE_SIZE);
2369	arg->walk_end = 0;
2370	if (!arg->max_pages)
2371		arg->max_pages = ULONG_MAX;
2372
2373	return 0;
2374}
2375
2376static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2377				       unsigned long uargl)
2378{
2379	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2380
2381	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2382		return -EFAULT;
2383
2384	return 0;
2385}
2386
2387static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2388{
2389	if (!p->arg.vec_len)
2390		return 0;
2391
2392	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2393			       p->arg.vec_len);
2394	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2395				   GFP_KERNEL);
2396	if (!p->vec_buf)
2397		return -ENOMEM;
2398
2399	p->vec_buf->start = p->vec_buf->end = 0;
2400	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2401
2402	return 0;
2403}
2404
2405static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2406{
2407	const struct page_region *buf = p->vec_buf;
2408	long n = p->vec_buf_index;
2409
2410	if (!p->vec_buf)
2411		return 0;
2412
2413	if (buf[n].end != buf[n].start)
2414		n++;
2415
2416	if (!n)
2417		return 0;
2418
2419	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2420		return -EFAULT;
2421
2422	p->arg.vec_len -= n;
2423	p->vec_out += n;
2424
2425	p->vec_buf_index = 0;
2426	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2427	p->vec_buf->start = p->vec_buf->end = 0;
2428
2429	return n;
2430}
2431
2432static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2433{
2434	struct pagemap_scan_private p = {0};
2435	unsigned long walk_start;
2436	size_t n_ranges_out = 0;
2437	int ret;
2438
2439	ret = pagemap_scan_get_args(&p.arg, uarg);
2440	if (ret)
2441		return ret;
2442
2443	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2444			      p.arg.return_mask;
2445	ret = pagemap_scan_init_bounce_buffer(&p);
2446	if (ret)
2447		return ret;
2448
2449	for (walk_start = p.arg.start; walk_start < p.arg.end;
2450			walk_start = p.arg.walk_end) {
2451		struct mmu_notifier_range range;
2452		long n_out;
2453
2454		if (fatal_signal_pending(current)) {
2455			ret = -EINTR;
2456			break;
2457		}
2458
2459		ret = mmap_read_lock_killable(mm);
2460		if (ret)
2461			break;
2462
2463		/* Protection change for the range is going to happen. */
2464		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2465			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2466						mm, walk_start, p.arg.end);
2467			mmu_notifier_invalidate_range_start(&range);
2468		}
2469
2470		ret = walk_page_range(mm, walk_start, p.arg.end,
2471				      &pagemap_scan_ops, &p);
2472
2473		if (p.arg.flags & PM_SCAN_WP_MATCHING)
2474			mmu_notifier_invalidate_range_end(&range);
2475
2476		mmap_read_unlock(mm);
2477
2478		n_out = pagemap_scan_flush_buffer(&p);
2479		if (n_out < 0)
2480			ret = n_out;
2481		else
2482			n_ranges_out += n_out;
2483
2484		if (ret != -ENOSPC)
2485			break;
2486
2487		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2488			break;
2489	}
2490
2491	/* ENOSPC signifies early stop (buffer full) from the walk. */
2492	if (!ret || ret == -ENOSPC)
2493		ret = n_ranges_out;
2494
2495	/* The walk_end isn't set when ret is zero */
2496	if (!p.arg.walk_end)
2497		p.arg.walk_end = p.arg.end;
2498	if (pagemap_scan_writeback_args(&p.arg, uarg))
2499		ret = -EFAULT;
2500
2501	kfree(p.vec_buf);
2502	return ret;
2503}
2504
2505static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2506			   unsigned long arg)
2507{
2508	struct mm_struct *mm = file->private_data;
2509
2510	switch (cmd) {
2511	case PAGEMAP_SCAN:
2512		return do_pagemap_scan(mm, arg);
2513
2514	default:
2515		return -EINVAL;
2516	}
2517}
2518
2519const struct file_operations proc_pagemap_operations = {
2520	.llseek		= mem_lseek, /* borrow this */
2521	.read		= pagemap_read,
2522	.open		= pagemap_open,
2523	.release	= pagemap_release,
2524	.unlocked_ioctl = do_pagemap_cmd,
2525	.compat_ioctl	= do_pagemap_cmd,
2526};
2527#endif /* CONFIG_PROC_PAGE_MONITOR */
2528
2529#ifdef CONFIG_NUMA
2530
2531struct numa_maps {
2532	unsigned long pages;
2533	unsigned long anon;
2534	unsigned long active;
2535	unsigned long writeback;
2536	unsigned long mapcount_max;
2537	unsigned long dirty;
2538	unsigned long swapcache;
2539	unsigned long node[MAX_NUMNODES];
2540};
2541
2542struct numa_maps_private {
2543	struct proc_maps_private proc_maps;
2544	struct numa_maps md;
2545};
2546
2547static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2548			unsigned long nr_pages)
2549{
2550	int count = page_mapcount(page);
2551
2552	md->pages += nr_pages;
2553	if (pte_dirty || PageDirty(page))
2554		md->dirty += nr_pages;
2555
2556	if (PageSwapCache(page))
2557		md->swapcache += nr_pages;
2558
2559	if (PageActive(page) || PageUnevictable(page))
2560		md->active += nr_pages;
2561
2562	if (PageWriteback(page))
2563		md->writeback += nr_pages;
2564
2565	if (PageAnon(page))
2566		md->anon += nr_pages;
2567
2568	if (count > md->mapcount_max)
2569		md->mapcount_max = count;
2570
2571	md->node[page_to_nid(page)] += nr_pages;
2572}
2573
2574static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2575		unsigned long addr)
2576{
2577	struct page *page;
2578	int nid;
2579
2580	if (!pte_present(pte))
2581		return NULL;
2582
2583	page = vm_normal_page(vma, addr, pte);
2584	if (!page || is_zone_device_page(page))
2585		return NULL;
2586
2587	if (PageReserved(page))
2588		return NULL;
2589
2590	nid = page_to_nid(page);
2591	if (!node_isset(nid, node_states[N_MEMORY]))
2592		return NULL;
2593
2594	return page;
2595}
2596
2597#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2598static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2599					      struct vm_area_struct *vma,
2600					      unsigned long addr)
2601{
2602	struct page *page;
2603	int nid;
2604
2605	if (!pmd_present(pmd))
2606		return NULL;
2607
2608	page = vm_normal_page_pmd(vma, addr, pmd);
2609	if (!page)
2610		return NULL;
2611
2612	if (PageReserved(page))
2613		return NULL;
2614
2615	nid = page_to_nid(page);
2616	if (!node_isset(nid, node_states[N_MEMORY]))
2617		return NULL;
2618
2619	return page;
2620}
2621#endif
2622
2623static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2624		unsigned long end, struct mm_walk *walk)
2625{
2626	struct numa_maps *md = walk->private;
2627	struct vm_area_struct *vma = walk->vma;
2628	spinlock_t *ptl;
2629	pte_t *orig_pte;
2630	pte_t *pte;
2631
2632#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2633	ptl = pmd_trans_huge_lock(pmd, vma);
2634	if (ptl) {
2635		struct page *page;
2636
2637		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2638		if (page)
2639			gather_stats(page, md, pmd_dirty(*pmd),
2640				     HPAGE_PMD_SIZE/PAGE_SIZE);
2641		spin_unlock(ptl);
2642		return 0;
2643	}
2644#endif
2645	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2646	if (!pte) {
2647		walk->action = ACTION_AGAIN;
2648		return 0;
2649	}
2650	do {
2651		pte_t ptent = ptep_get(pte);
2652		struct page *page = can_gather_numa_stats(ptent, vma, addr);
2653		if (!page)
2654			continue;
2655		gather_stats(page, md, pte_dirty(ptent), 1);
2656
2657	} while (pte++, addr += PAGE_SIZE, addr != end);
2658	pte_unmap_unlock(orig_pte, ptl);
2659	cond_resched();
2660	return 0;
2661}
2662#ifdef CONFIG_HUGETLB_PAGE
2663static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2664		unsigned long addr, unsigned long end, struct mm_walk *walk)
2665{
2666	pte_t huge_pte = huge_ptep_get(pte);
2667	struct numa_maps *md;
2668	struct page *page;
2669
2670	if (!pte_present(huge_pte))
2671		return 0;
2672
2673	page = pte_page(huge_pte);
2674
2675	md = walk->private;
2676	gather_stats(page, md, pte_dirty(huge_pte), 1);
2677	return 0;
2678}
2679
2680#else
2681static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2682		unsigned long addr, unsigned long end, struct mm_walk *walk)
2683{
2684	return 0;
2685}
2686#endif
2687
2688static const struct mm_walk_ops show_numa_ops = {
2689	.hugetlb_entry = gather_hugetlb_stats,
2690	.pmd_entry = gather_pte_stats,
2691	.walk_lock = PGWALK_RDLOCK,
2692};
2693
2694/*
2695 * Display pages allocated per node and memory policy via /proc.
2696 */
2697static int show_numa_map(struct seq_file *m, void *v)
2698{
2699	struct numa_maps_private *numa_priv = m->private;
2700	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2701	struct vm_area_struct *vma = v;
2702	struct numa_maps *md = &numa_priv->md;
2703	struct file *file = vma->vm_file;
2704	struct mm_struct *mm = vma->vm_mm;
2705	char buffer[64];
2706	struct mempolicy *pol;
2707	pgoff_t ilx;
2708	int nid;
2709
2710	if (!mm)
2711		return 0;
2712
2713	/* Ensure we start with an empty set of numa_maps statistics. */
2714	memset(md, 0, sizeof(*md));
2715
2716	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
2717	if (pol) {
2718		mpol_to_str(buffer, sizeof(buffer), pol);
2719		mpol_cond_put(pol);
2720	} else {
2721		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
2722	}
2723
2724	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2725
2726	if (file) {
2727		seq_puts(m, " file=");
2728		seq_path(m, file_user_path(file), "\n\t= ");
2729	} else if (vma_is_initial_heap(vma)) {
2730		seq_puts(m, " heap");
2731	} else if (vma_is_initial_stack(vma)) {
2732		seq_puts(m, " stack");
2733	}
2734
2735	if (is_vm_hugetlb_page(vma))
2736		seq_puts(m, " huge");
2737
2738	/* mmap_lock is held by m_start */
2739	walk_page_vma(vma, &show_numa_ops, md);
2740
2741	if (!md->pages)
2742		goto out;
2743
2744	if (md->anon)
2745		seq_printf(m, " anon=%lu", md->anon);
2746
2747	if (md->dirty)
2748		seq_printf(m, " dirty=%lu", md->dirty);
2749
2750	if (md->pages != md->anon && md->pages != md->dirty)
2751		seq_printf(m, " mapped=%lu", md->pages);
2752
2753	if (md->mapcount_max > 1)
2754		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2755
2756	if (md->swapcache)
2757		seq_printf(m, " swapcache=%lu", md->swapcache);
2758
2759	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2760		seq_printf(m, " active=%lu", md->active);
2761
2762	if (md->writeback)
2763		seq_printf(m, " writeback=%lu", md->writeback);
2764
2765	for_each_node_state(nid, N_MEMORY)
2766		if (md->node[nid])
2767			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2768
2769	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2770out:
2771	seq_putc(m, '\n');
2772	return 0;
2773}
2774
2775static const struct seq_operations proc_pid_numa_maps_op = {
2776	.start  = m_start,
2777	.next   = m_next,
2778	.stop   = m_stop,
2779	.show   = show_numa_map,
2780};
2781
2782static int pid_numa_maps_open(struct inode *inode, struct file *file)
2783{
2784	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2785				sizeof(struct numa_maps_private));
2786}
2787
2788const struct file_operations proc_pid_numa_maps_operations = {
2789	.open		= pid_numa_maps_open,
2790	.read		= seq_read,
2791	.llseek		= seq_lseek,
2792	.release	= proc_map_release,
2793};
2794
2795#endif /* CONFIG_NUMA */
2796