1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * journal.c
4 *
5 * Defines functions of journalling api
6 *
7 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8 */
9
10#include <linux/fs.h>
11#include <linux/types.h>
12#include <linux/slab.h>
13#include <linux/highmem.h>
14#include <linux/kthread.h>
15#include <linux/time.h>
16#include <linux/random.h>
17#include <linux/delay.h>
18#include <linux/writeback.h>
19
20#include <cluster/masklog.h>
21
22#include "ocfs2.h"
23
24#include "alloc.h"
25#include "blockcheck.h"
26#include "dir.h"
27#include "dlmglue.h"
28#include "extent_map.h"
29#include "heartbeat.h"
30#include "inode.h"
31#include "journal.h"
32#include "localalloc.h"
33#include "slot_map.h"
34#include "super.h"
35#include "sysfile.h"
36#include "uptodate.h"
37#include "quota.h"
38#include "file.h"
39#include "namei.h"
40
41#include "buffer_head_io.h"
42#include "ocfs2_trace.h"
43
44DEFINE_SPINLOCK(trans_inc_lock);
45
46#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47
48static int ocfs2_force_read_journal(struct inode *inode);
49static int ocfs2_recover_node(struct ocfs2_super *osb,
50			      int node_num, int slot_num);
51static int __ocfs2_recovery_thread(void *arg);
52static int ocfs2_commit_cache(struct ocfs2_super *osb);
53static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55				      int dirty, int replayed);
56static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57				 int slot_num);
58static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59				 int slot,
60				 enum ocfs2_orphan_reco_type orphan_reco_type);
61static int ocfs2_commit_thread(void *arg);
62static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63					    int slot_num,
64					    struct ocfs2_dinode *la_dinode,
65					    struct ocfs2_dinode *tl_dinode,
66					    struct ocfs2_quota_recovery *qrec,
67					    enum ocfs2_orphan_reco_type orphan_reco_type);
68
69static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70{
71	return __ocfs2_wait_on_mount(osb, 0);
72}
73
74static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75{
76	return __ocfs2_wait_on_mount(osb, 1);
77}
78
79/*
80 * This replay_map is to track online/offline slots, so we could recover
81 * offline slots during recovery and mount
82 */
83
84enum ocfs2_replay_state {
85	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
86	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
87	REPLAY_DONE 		/* Replay was already queued */
88};
89
90struct ocfs2_replay_map {
91	unsigned int rm_slots;
92	enum ocfs2_replay_state rm_state;
93	unsigned char rm_replay_slots[] __counted_by(rm_slots);
94};
95
96static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97{
98	if (!osb->replay_map)
99		return;
100
101	/* If we've already queued the replay, we don't have any more to do */
102	if (osb->replay_map->rm_state == REPLAY_DONE)
103		return;
104
105	osb->replay_map->rm_state = state;
106}
107
108int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109{
110	struct ocfs2_replay_map *replay_map;
111	int i, node_num;
112
113	/* If replay map is already set, we don't do it again */
114	if (osb->replay_map)
115		return 0;
116
117	replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118					 osb->max_slots),
119			     GFP_KERNEL);
120	if (!replay_map) {
121		mlog_errno(-ENOMEM);
122		return -ENOMEM;
123	}
124
125	spin_lock(&osb->osb_lock);
126
127	replay_map->rm_slots = osb->max_slots;
128	replay_map->rm_state = REPLAY_UNNEEDED;
129
130	/* set rm_replay_slots for offline slot(s) */
131	for (i = 0; i < replay_map->rm_slots; i++) {
132		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133			replay_map->rm_replay_slots[i] = 1;
134	}
135
136	osb->replay_map = replay_map;
137	spin_unlock(&osb->osb_lock);
138	return 0;
139}
140
141static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142		enum ocfs2_orphan_reco_type orphan_reco_type)
143{
144	struct ocfs2_replay_map *replay_map = osb->replay_map;
145	int i;
146
147	if (!replay_map)
148		return;
149
150	if (replay_map->rm_state != REPLAY_NEEDED)
151		return;
152
153	for (i = 0; i < replay_map->rm_slots; i++)
154		if (replay_map->rm_replay_slots[i])
155			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156							NULL, NULL,
157							orphan_reco_type);
158	replay_map->rm_state = REPLAY_DONE;
159}
160
161void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162{
163	struct ocfs2_replay_map *replay_map = osb->replay_map;
164
165	if (!osb->replay_map)
166		return;
167
168	kfree(replay_map);
169	osb->replay_map = NULL;
170}
171
172int ocfs2_recovery_init(struct ocfs2_super *osb)
173{
174	struct ocfs2_recovery_map *rm;
175
176	mutex_init(&osb->recovery_lock);
177	osb->disable_recovery = 0;
178	osb->recovery_thread_task = NULL;
179	init_waitqueue_head(&osb->recovery_event);
180
181	rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182		     GFP_KERNEL);
183	if (!rm) {
184		mlog_errno(-ENOMEM);
185		return -ENOMEM;
186	}
187
188	osb->recovery_map = rm;
189
190	return 0;
191}
192
193/* we can't grab the goofy sem lock from inside wait_event, so we use
194 * memory barriers to make sure that we'll see the null task before
195 * being woken up */
196static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
197{
198	mb();
199	return osb->recovery_thread_task != NULL;
200}
201
202void ocfs2_recovery_exit(struct ocfs2_super *osb)
203{
204	struct ocfs2_recovery_map *rm;
205
206	/* disable any new recovery threads and wait for any currently
207	 * running ones to exit. Do this before setting the vol_state. */
208	mutex_lock(&osb->recovery_lock);
209	osb->disable_recovery = 1;
210	mutex_unlock(&osb->recovery_lock);
211	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
212
213	/* At this point, we know that no more recovery threads can be
214	 * launched, so wait for any recovery completion work to
215	 * complete. */
216	if (osb->ocfs2_wq)
217		flush_workqueue(osb->ocfs2_wq);
218
219	/*
220	 * Now that recovery is shut down, and the osb is about to be
221	 * freed,  the osb_lock is not taken here.
222	 */
223	rm = osb->recovery_map;
224	/* XXX: Should we bug if there are dirty entries? */
225
226	kfree(rm);
227}
228
229static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
230				     unsigned int node_num)
231{
232	int i;
233	struct ocfs2_recovery_map *rm = osb->recovery_map;
234
235	assert_spin_locked(&osb->osb_lock);
236
237	for (i = 0; i < rm->rm_used; i++) {
238		if (rm->rm_entries[i] == node_num)
239			return 1;
240	}
241
242	return 0;
243}
244
245/* Behaves like test-and-set.  Returns the previous value */
246static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
247				  unsigned int node_num)
248{
249	struct ocfs2_recovery_map *rm = osb->recovery_map;
250
251	spin_lock(&osb->osb_lock);
252	if (__ocfs2_recovery_map_test(osb, node_num)) {
253		spin_unlock(&osb->osb_lock);
254		return 1;
255	}
256
257	/* XXX: Can this be exploited? Not from o2dlm... */
258	BUG_ON(rm->rm_used >= osb->max_slots);
259
260	rm->rm_entries[rm->rm_used] = node_num;
261	rm->rm_used++;
262	spin_unlock(&osb->osb_lock);
263
264	return 0;
265}
266
267static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
268				     unsigned int node_num)
269{
270	int i;
271	struct ocfs2_recovery_map *rm = osb->recovery_map;
272
273	spin_lock(&osb->osb_lock);
274
275	for (i = 0; i < rm->rm_used; i++) {
276		if (rm->rm_entries[i] == node_num)
277			break;
278	}
279
280	if (i < rm->rm_used) {
281		/* XXX: be careful with the pointer math */
282		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
283			(rm->rm_used - i - 1) * sizeof(unsigned int));
284		rm->rm_used--;
285	}
286
287	spin_unlock(&osb->osb_lock);
288}
289
290static int ocfs2_commit_cache(struct ocfs2_super *osb)
291{
292	int status = 0;
293	unsigned int flushed;
294	struct ocfs2_journal *journal = NULL;
295
296	journal = osb->journal;
297
298	/* Flush all pending commits and checkpoint the journal. */
299	down_write(&journal->j_trans_barrier);
300
301	flushed = atomic_read(&journal->j_num_trans);
302	trace_ocfs2_commit_cache_begin(flushed);
303	if (flushed == 0) {
304		up_write(&journal->j_trans_barrier);
305		goto finally;
306	}
307
308	jbd2_journal_lock_updates(journal->j_journal);
309	status = jbd2_journal_flush(journal->j_journal, 0);
310	jbd2_journal_unlock_updates(journal->j_journal);
311	if (status < 0) {
312		up_write(&journal->j_trans_barrier);
313		mlog_errno(status);
314		goto finally;
315	}
316
317	ocfs2_inc_trans_id(journal);
318
319	flushed = atomic_read(&journal->j_num_trans);
320	atomic_set(&journal->j_num_trans, 0);
321	up_write(&journal->j_trans_barrier);
322
323	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
324
325	ocfs2_wake_downconvert_thread(osb);
326	wake_up(&journal->j_checkpointed);
327finally:
328	return status;
329}
330
331handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
332{
333	journal_t *journal = osb->journal->j_journal;
334	handle_t *handle;
335
336	BUG_ON(!osb || !osb->journal->j_journal);
337
338	if (ocfs2_is_hard_readonly(osb))
339		return ERR_PTR(-EROFS);
340
341	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
342	BUG_ON(max_buffs <= 0);
343
344	/* Nested transaction? Just return the handle... */
345	if (journal_current_handle())
346		return jbd2_journal_start(journal, max_buffs);
347
348	sb_start_intwrite(osb->sb);
349
350	down_read(&osb->journal->j_trans_barrier);
351
352	handle = jbd2_journal_start(journal, max_buffs);
353	if (IS_ERR(handle)) {
354		up_read(&osb->journal->j_trans_barrier);
355		sb_end_intwrite(osb->sb);
356
357		mlog_errno(PTR_ERR(handle));
358
359		if (is_journal_aborted(journal)) {
360			ocfs2_abort(osb->sb, "Detected aborted journal\n");
361			handle = ERR_PTR(-EROFS);
362		}
363	} else {
364		if (!ocfs2_mount_local(osb))
365			atomic_inc(&(osb->journal->j_num_trans));
366	}
367
368	return handle;
369}
370
371int ocfs2_commit_trans(struct ocfs2_super *osb,
372		       handle_t *handle)
373{
374	int ret, nested;
375	struct ocfs2_journal *journal = osb->journal;
376
377	BUG_ON(!handle);
378
379	nested = handle->h_ref > 1;
380	ret = jbd2_journal_stop(handle);
381	if (ret < 0)
382		mlog_errno(ret);
383
384	if (!nested) {
385		up_read(&journal->j_trans_barrier);
386		sb_end_intwrite(osb->sb);
387	}
388
389	return ret;
390}
391
392/*
393 * 'nblocks' is what you want to add to the current transaction.
394 *
395 * This might call jbd2_journal_restart() which will commit dirty buffers
396 * and then restart the transaction. Before calling
397 * ocfs2_extend_trans(), any changed blocks should have been
398 * dirtied. After calling it, all blocks which need to be changed must
399 * go through another set of journal_access/journal_dirty calls.
400 *
401 * WARNING: This will not release any semaphores or disk locks taken
402 * during the transaction, so make sure they were taken *before*
403 * start_trans or we'll have ordering deadlocks.
404 *
405 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
406 * good because transaction ids haven't yet been recorded on the
407 * cluster locks associated with this handle.
408 */
409int ocfs2_extend_trans(handle_t *handle, int nblocks)
410{
411	int status, old_nblocks;
412
413	BUG_ON(!handle);
414	BUG_ON(nblocks < 0);
415
416	if (!nblocks)
417		return 0;
418
419	old_nblocks = jbd2_handle_buffer_credits(handle);
420
421	trace_ocfs2_extend_trans(old_nblocks, nblocks);
422
423#ifdef CONFIG_OCFS2_DEBUG_FS
424	status = 1;
425#else
426	status = jbd2_journal_extend(handle, nblocks, 0);
427	if (status < 0) {
428		mlog_errno(status);
429		goto bail;
430	}
431#endif
432
433	if (status > 0) {
434		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
435		status = jbd2_journal_restart(handle,
436					      old_nblocks + nblocks);
437		if (status < 0) {
438			mlog_errno(status);
439			goto bail;
440		}
441	}
442
443	status = 0;
444bail:
445	return status;
446}
447
448/*
449 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
450 * If that fails, restart the transaction & regain write access for the
451 * buffer head which is used for metadata modifications.
452 * Taken from Ext4: extend_or_restart_transaction()
453 */
454int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
455{
456	int status, old_nblks;
457
458	BUG_ON(!handle);
459
460	old_nblks = jbd2_handle_buffer_credits(handle);
461	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
462
463	if (old_nblks < thresh)
464		return 0;
465
466	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
467	if (status < 0) {
468		mlog_errno(status);
469		goto bail;
470	}
471
472	if (status > 0) {
473		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
474		if (status < 0)
475			mlog_errno(status);
476	}
477
478bail:
479	return status;
480}
481
482
483struct ocfs2_triggers {
484	struct jbd2_buffer_trigger_type	ot_triggers;
485	int				ot_offset;
486};
487
488static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
489{
490	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
491}
492
493static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
494				 struct buffer_head *bh,
495				 void *data, size_t size)
496{
497	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
498
499	/*
500	 * We aren't guaranteed to have the superblock here, so we
501	 * must unconditionally compute the ecc data.
502	 * __ocfs2_journal_access() will only set the triggers if
503	 * metaecc is enabled.
504	 */
505	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
506}
507
508/*
509 * Quota blocks have their own trigger because the struct ocfs2_block_check
510 * offset depends on the blocksize.
511 */
512static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
513				 struct buffer_head *bh,
514				 void *data, size_t size)
515{
516	struct ocfs2_disk_dqtrailer *dqt =
517		ocfs2_block_dqtrailer(size, data);
518
519	/*
520	 * We aren't guaranteed to have the superblock here, so we
521	 * must unconditionally compute the ecc data.
522	 * __ocfs2_journal_access() will only set the triggers if
523	 * metaecc is enabled.
524	 */
525	ocfs2_block_check_compute(data, size, &dqt->dq_check);
526}
527
528/*
529 * Directory blocks also have their own trigger because the
530 * struct ocfs2_block_check offset depends on the blocksize.
531 */
532static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
533				 struct buffer_head *bh,
534				 void *data, size_t size)
535{
536	struct ocfs2_dir_block_trailer *trailer =
537		ocfs2_dir_trailer_from_size(size, data);
538
539	/*
540	 * We aren't guaranteed to have the superblock here, so we
541	 * must unconditionally compute the ecc data.
542	 * __ocfs2_journal_access() will only set the triggers if
543	 * metaecc is enabled.
544	 */
545	ocfs2_block_check_compute(data, size, &trailer->db_check);
546}
547
548static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
549				struct buffer_head *bh)
550{
551	mlog(ML_ERROR,
552	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
553	     "bh->b_blocknr = %llu\n",
554	     (unsigned long)bh,
555	     (unsigned long long)bh->b_blocknr);
556
557	ocfs2_error(bh->b_assoc_map->host->i_sb,
558		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
559}
560
561static struct ocfs2_triggers di_triggers = {
562	.ot_triggers = {
563		.t_frozen = ocfs2_frozen_trigger,
564		.t_abort = ocfs2_abort_trigger,
565	},
566	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
567};
568
569static struct ocfs2_triggers eb_triggers = {
570	.ot_triggers = {
571		.t_frozen = ocfs2_frozen_trigger,
572		.t_abort = ocfs2_abort_trigger,
573	},
574	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
575};
576
577static struct ocfs2_triggers rb_triggers = {
578	.ot_triggers = {
579		.t_frozen = ocfs2_frozen_trigger,
580		.t_abort = ocfs2_abort_trigger,
581	},
582	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
583};
584
585static struct ocfs2_triggers gd_triggers = {
586	.ot_triggers = {
587		.t_frozen = ocfs2_frozen_trigger,
588		.t_abort = ocfs2_abort_trigger,
589	},
590	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
591};
592
593static struct ocfs2_triggers db_triggers = {
594	.ot_triggers = {
595		.t_frozen = ocfs2_db_frozen_trigger,
596		.t_abort = ocfs2_abort_trigger,
597	},
598};
599
600static struct ocfs2_triggers xb_triggers = {
601	.ot_triggers = {
602		.t_frozen = ocfs2_frozen_trigger,
603		.t_abort = ocfs2_abort_trigger,
604	},
605	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
606};
607
608static struct ocfs2_triggers dq_triggers = {
609	.ot_triggers = {
610		.t_frozen = ocfs2_dq_frozen_trigger,
611		.t_abort = ocfs2_abort_trigger,
612	},
613};
614
615static struct ocfs2_triggers dr_triggers = {
616	.ot_triggers = {
617		.t_frozen = ocfs2_frozen_trigger,
618		.t_abort = ocfs2_abort_trigger,
619	},
620	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
621};
622
623static struct ocfs2_triggers dl_triggers = {
624	.ot_triggers = {
625		.t_frozen = ocfs2_frozen_trigger,
626		.t_abort = ocfs2_abort_trigger,
627	},
628	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
629};
630
631static int __ocfs2_journal_access(handle_t *handle,
632				  struct ocfs2_caching_info *ci,
633				  struct buffer_head *bh,
634				  struct ocfs2_triggers *triggers,
635				  int type)
636{
637	int status;
638	struct ocfs2_super *osb =
639		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
640
641	BUG_ON(!ci || !ci->ci_ops);
642	BUG_ON(!handle);
643	BUG_ON(!bh);
644
645	trace_ocfs2_journal_access(
646		(unsigned long long)ocfs2_metadata_cache_owner(ci),
647		(unsigned long long)bh->b_blocknr, type, bh->b_size);
648
649	/* we can safely remove this assertion after testing. */
650	if (!buffer_uptodate(bh)) {
651		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
652		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
653		     (unsigned long long)bh->b_blocknr, bh->b_state);
654
655		lock_buffer(bh);
656		/*
657		 * A previous transaction with a couple of buffer heads fail
658		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
659		 * For current transaction, the bh is just among those error
660		 * bhs which previous transaction handle. We can't just clear
661		 * its BH_Write_EIO and reuse directly, since other bhs are
662		 * not written to disk yet and that will cause metadata
663		 * inconsistency. So we should set fs read-only to avoid
664		 * further damage.
665		 */
666		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
667			unlock_buffer(bh);
668			return ocfs2_error(osb->sb, "A previous attempt to "
669					"write this buffer head failed\n");
670		}
671		unlock_buffer(bh);
672	}
673
674	/* Set the current transaction information on the ci so
675	 * that the locking code knows whether it can drop it's locks
676	 * on this ci or not. We're protected from the commit
677	 * thread updating the current transaction id until
678	 * ocfs2_commit_trans() because ocfs2_start_trans() took
679	 * j_trans_barrier for us. */
680	ocfs2_set_ci_lock_trans(osb->journal, ci);
681
682	ocfs2_metadata_cache_io_lock(ci);
683	switch (type) {
684	case OCFS2_JOURNAL_ACCESS_CREATE:
685	case OCFS2_JOURNAL_ACCESS_WRITE:
686		status = jbd2_journal_get_write_access(handle, bh);
687		break;
688
689	case OCFS2_JOURNAL_ACCESS_UNDO:
690		status = jbd2_journal_get_undo_access(handle, bh);
691		break;
692
693	default:
694		status = -EINVAL;
695		mlog(ML_ERROR, "Unknown access type!\n");
696	}
697	if (!status && ocfs2_meta_ecc(osb) && triggers)
698		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
699	ocfs2_metadata_cache_io_unlock(ci);
700
701	if (status < 0)
702		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
703		     status, type);
704
705	return status;
706}
707
708int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
709			    struct buffer_head *bh, int type)
710{
711	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
712}
713
714int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
715			    struct buffer_head *bh, int type)
716{
717	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
718}
719
720int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
721			    struct buffer_head *bh, int type)
722{
723	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
724				      type);
725}
726
727int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
728			    struct buffer_head *bh, int type)
729{
730	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
731}
732
733int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
734			    struct buffer_head *bh, int type)
735{
736	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
737}
738
739int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
740			    struct buffer_head *bh, int type)
741{
742	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
743}
744
745int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
746			    struct buffer_head *bh, int type)
747{
748	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
749}
750
751int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
752			    struct buffer_head *bh, int type)
753{
754	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
755}
756
757int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
758			    struct buffer_head *bh, int type)
759{
760	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
761}
762
763int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
764			 struct buffer_head *bh, int type)
765{
766	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
767}
768
769void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
770{
771	int status;
772
773	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
774
775	status = jbd2_journal_dirty_metadata(handle, bh);
776	if (status) {
777		mlog_errno(status);
778		if (!is_handle_aborted(handle)) {
779			journal_t *journal = handle->h_transaction->t_journal;
780
781			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
782					"Aborting transaction and journal.\n");
783			handle->h_err = status;
784			jbd2_journal_abort_handle(handle);
785			jbd2_journal_abort(journal, status);
786			ocfs2_abort(bh->b_assoc_map->host->i_sb,
787				    "Journal already aborted.\n");
788		}
789	}
790}
791
792#define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
793
794void ocfs2_set_journal_params(struct ocfs2_super *osb)
795{
796	journal_t *journal = osb->journal->j_journal;
797	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
798
799	if (osb->osb_commit_interval)
800		commit_interval = osb->osb_commit_interval;
801
802	write_lock(&journal->j_state_lock);
803	journal->j_commit_interval = commit_interval;
804	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
805		journal->j_flags |= JBD2_BARRIER;
806	else
807		journal->j_flags &= ~JBD2_BARRIER;
808	write_unlock(&journal->j_state_lock);
809}
810
811/*
812 * alloc & initialize skeleton for journal structure.
813 * ocfs2_journal_init() will make fs have journal ability.
814 */
815int ocfs2_journal_alloc(struct ocfs2_super *osb)
816{
817	int status = 0;
818	struct ocfs2_journal *journal;
819
820	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
821	if (!journal) {
822		mlog(ML_ERROR, "unable to alloc journal\n");
823		status = -ENOMEM;
824		goto bail;
825	}
826	osb->journal = journal;
827	journal->j_osb = osb;
828
829	atomic_set(&journal->j_num_trans, 0);
830	init_rwsem(&journal->j_trans_barrier);
831	init_waitqueue_head(&journal->j_checkpointed);
832	spin_lock_init(&journal->j_lock);
833	journal->j_trans_id = 1UL;
834	INIT_LIST_HEAD(&journal->j_la_cleanups);
835	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
836	journal->j_state = OCFS2_JOURNAL_FREE;
837
838bail:
839	return status;
840}
841
842static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
843{
844	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
845	struct writeback_control wbc = {
846		.sync_mode =  WB_SYNC_ALL,
847		.nr_to_write = mapping->nrpages * 2,
848		.range_start = jinode->i_dirty_start,
849		.range_end = jinode->i_dirty_end,
850	};
851
852	return filemap_fdatawrite_wbc(mapping, &wbc);
853}
854
855int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
856{
857	int status = -1;
858	struct inode *inode = NULL; /* the journal inode */
859	journal_t *j_journal = NULL;
860	struct ocfs2_journal *journal = osb->journal;
861	struct ocfs2_dinode *di = NULL;
862	struct buffer_head *bh = NULL;
863	int inode_lock = 0;
864
865	BUG_ON(!journal);
866	/* already have the inode for our journal */
867	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
868					    osb->slot_num);
869	if (inode == NULL) {
870		status = -EACCES;
871		mlog_errno(status);
872		goto done;
873	}
874	if (is_bad_inode(inode)) {
875		mlog(ML_ERROR, "access error (bad inode)\n");
876		iput(inode);
877		inode = NULL;
878		status = -EACCES;
879		goto done;
880	}
881
882	SET_INODE_JOURNAL(inode);
883	OCFS2_I(inode)->ip_open_count++;
884
885	/* Skip recovery waits here - journal inode metadata never
886	 * changes in a live cluster so it can be considered an
887	 * exception to the rule. */
888	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
889	if (status < 0) {
890		if (status != -ERESTARTSYS)
891			mlog(ML_ERROR, "Could not get lock on journal!\n");
892		goto done;
893	}
894
895	inode_lock = 1;
896	di = (struct ocfs2_dinode *)bh->b_data;
897
898	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
899		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
900		     i_size_read(inode));
901		status = -EINVAL;
902		goto done;
903	}
904
905	trace_ocfs2_journal_init(i_size_read(inode),
906				 (unsigned long long)inode->i_blocks,
907				 OCFS2_I(inode)->ip_clusters);
908
909	/* call the kernels journal init function now */
910	j_journal = jbd2_journal_init_inode(inode);
911	if (IS_ERR(j_journal)) {
912		mlog(ML_ERROR, "Linux journal layer error\n");
913		status = PTR_ERR(j_journal);
914		goto done;
915	}
916
917	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
918
919	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
920		  OCFS2_JOURNAL_DIRTY_FL);
921
922	journal->j_journal = j_journal;
923	journal->j_journal->j_submit_inode_data_buffers =
924		ocfs2_journal_submit_inode_data_buffers;
925	journal->j_journal->j_finish_inode_data_buffers =
926		jbd2_journal_finish_inode_data_buffers;
927	journal->j_inode = inode;
928	journal->j_bh = bh;
929
930	ocfs2_set_journal_params(osb);
931
932	journal->j_state = OCFS2_JOURNAL_LOADED;
933
934	status = 0;
935done:
936	if (status < 0) {
937		if (inode_lock)
938			ocfs2_inode_unlock(inode, 1);
939		brelse(bh);
940		if (inode) {
941			OCFS2_I(inode)->ip_open_count--;
942			iput(inode);
943		}
944	}
945
946	return status;
947}
948
949static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
950{
951	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
952}
953
954static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
955{
956	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
957}
958
959static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
960				      int dirty, int replayed)
961{
962	int status;
963	unsigned int flags;
964	struct ocfs2_journal *journal = osb->journal;
965	struct buffer_head *bh = journal->j_bh;
966	struct ocfs2_dinode *fe;
967
968	fe = (struct ocfs2_dinode *)bh->b_data;
969
970	/* The journal bh on the osb always comes from ocfs2_journal_init()
971	 * and was validated there inside ocfs2_inode_lock_full().  It's a
972	 * code bug if we mess it up. */
973	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
974
975	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
976	if (dirty)
977		flags |= OCFS2_JOURNAL_DIRTY_FL;
978	else
979		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
980	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
981
982	if (replayed)
983		ocfs2_bump_recovery_generation(fe);
984
985	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
986	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
987	if (status < 0)
988		mlog_errno(status);
989
990	return status;
991}
992
993/*
994 * If the journal has been kmalloc'd it needs to be freed after this
995 * call.
996 */
997void ocfs2_journal_shutdown(struct ocfs2_super *osb)
998{
999	struct ocfs2_journal *journal = NULL;
1000	int status = 0;
1001	struct inode *inode = NULL;
1002	int num_running_trans = 0;
1003
1004	BUG_ON(!osb);
1005
1006	journal = osb->journal;
1007	if (!journal)
1008		goto done;
1009
1010	inode = journal->j_inode;
1011
1012	if (journal->j_state != OCFS2_JOURNAL_LOADED)
1013		goto done;
1014
1015	/* need to inc inode use count - jbd2_journal_destroy will iput. */
1016	if (!igrab(inode))
1017		BUG();
1018
1019	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
1020	trace_ocfs2_journal_shutdown(num_running_trans);
1021
1022	/* Do a commit_cache here. It will flush our journal, *and*
1023	 * release any locks that are still held.
1024	 * set the SHUTDOWN flag and release the trans lock.
1025	 * the commit thread will take the trans lock for us below. */
1026	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1027
1028	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1029	 * drop the trans_lock (which we want to hold until we
1030	 * completely destroy the journal. */
1031	if (osb->commit_task) {
1032		/* Wait for the commit thread */
1033		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1034		kthread_stop(osb->commit_task);
1035		osb->commit_task = NULL;
1036	}
1037
1038	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1039
1040	if (ocfs2_mount_local(osb)) {
1041		jbd2_journal_lock_updates(journal->j_journal);
1042		status = jbd2_journal_flush(journal->j_journal, 0);
1043		jbd2_journal_unlock_updates(journal->j_journal);
1044		if (status < 0)
1045			mlog_errno(status);
1046	}
1047
1048	/* Shutdown the kernel journal system */
1049	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1050		/*
1051		 * Do not toggle if flush was unsuccessful otherwise
1052		 * will leave dirty metadata in a "clean" journal
1053		 */
1054		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1055		if (status < 0)
1056			mlog_errno(status);
1057	}
1058	journal->j_journal = NULL;
1059
1060	OCFS2_I(inode)->ip_open_count--;
1061
1062	/* unlock our journal */
1063	ocfs2_inode_unlock(inode, 1);
1064
1065	brelse(journal->j_bh);
1066	journal->j_bh = NULL;
1067
1068	journal->j_state = OCFS2_JOURNAL_FREE;
1069
1070done:
1071	iput(inode);
1072	kfree(journal);
1073	osb->journal = NULL;
1074}
1075
1076static void ocfs2_clear_journal_error(struct super_block *sb,
1077				      journal_t *journal,
1078				      int slot)
1079{
1080	int olderr;
1081
1082	olderr = jbd2_journal_errno(journal);
1083	if (olderr) {
1084		mlog(ML_ERROR, "File system error %d recorded in "
1085		     "journal %u.\n", olderr, slot);
1086		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1087		     sb->s_id);
1088
1089		jbd2_journal_ack_err(journal);
1090		jbd2_journal_clear_err(journal);
1091	}
1092}
1093
1094int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1095{
1096	int status = 0;
1097	struct ocfs2_super *osb;
1098
1099	BUG_ON(!journal);
1100
1101	osb = journal->j_osb;
1102
1103	status = jbd2_journal_load(journal->j_journal);
1104	if (status < 0) {
1105		mlog(ML_ERROR, "Failed to load journal!\n");
1106		goto done;
1107	}
1108
1109	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1110
1111	if (replayed) {
1112		jbd2_journal_lock_updates(journal->j_journal);
1113		status = jbd2_journal_flush(journal->j_journal, 0);
1114		jbd2_journal_unlock_updates(journal->j_journal);
1115		if (status < 0)
1116			mlog_errno(status);
1117	}
1118
1119	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1120	if (status < 0) {
1121		mlog_errno(status);
1122		goto done;
1123	}
1124
1125	/* Launch the commit thread */
1126	if (!local) {
1127		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1128				"ocfs2cmt-%s", osb->uuid_str);
1129		if (IS_ERR(osb->commit_task)) {
1130			status = PTR_ERR(osb->commit_task);
1131			osb->commit_task = NULL;
1132			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1133			     "error=%d", status);
1134			goto done;
1135		}
1136	} else
1137		osb->commit_task = NULL;
1138
1139done:
1140	return status;
1141}
1142
1143
1144/* 'full' flag tells us whether we clear out all blocks or if we just
1145 * mark the journal clean */
1146int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1147{
1148	int status;
1149
1150	BUG_ON(!journal);
1151
1152	status = jbd2_journal_wipe(journal->j_journal, full);
1153	if (status < 0) {
1154		mlog_errno(status);
1155		goto bail;
1156	}
1157
1158	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1159	if (status < 0)
1160		mlog_errno(status);
1161
1162bail:
1163	return status;
1164}
1165
1166static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1167{
1168	int empty;
1169	struct ocfs2_recovery_map *rm = osb->recovery_map;
1170
1171	spin_lock(&osb->osb_lock);
1172	empty = (rm->rm_used == 0);
1173	spin_unlock(&osb->osb_lock);
1174
1175	return empty;
1176}
1177
1178void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1179{
1180	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1181}
1182
1183/*
1184 * JBD Might read a cached version of another nodes journal file. We
1185 * don't want this as this file changes often and we get no
1186 * notification on those changes. The only way to be sure that we've
1187 * got the most up to date version of those blocks then is to force
1188 * read them off disk. Just searching through the buffer cache won't
1189 * work as there may be pages backing this file which are still marked
1190 * up to date. We know things can't change on this file underneath us
1191 * as we have the lock by now :)
1192 */
1193static int ocfs2_force_read_journal(struct inode *inode)
1194{
1195	int status = 0;
1196	int i;
1197	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1198	struct buffer_head *bh = NULL;
1199	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1200
1201	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1202	v_blkno = 0;
1203	while (v_blkno < num_blocks) {
1204		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1205						     &p_blkno, &p_blocks, NULL);
1206		if (status < 0) {
1207			mlog_errno(status);
1208			goto bail;
1209		}
1210
1211		for (i = 0; i < p_blocks; i++, p_blkno++) {
1212			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1213					osb->sb->s_blocksize);
1214			/* block not cached. */
1215			if (!bh)
1216				continue;
1217
1218			brelse(bh);
1219			bh = NULL;
1220			/* We are reading journal data which should not
1221			 * be put in the uptodate cache.
1222			 */
1223			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1224			if (status < 0) {
1225				mlog_errno(status);
1226				goto bail;
1227			}
1228
1229			brelse(bh);
1230			bh = NULL;
1231		}
1232
1233		v_blkno += p_blocks;
1234	}
1235
1236bail:
1237	return status;
1238}
1239
1240struct ocfs2_la_recovery_item {
1241	struct list_head	lri_list;
1242	int			lri_slot;
1243	struct ocfs2_dinode	*lri_la_dinode;
1244	struct ocfs2_dinode	*lri_tl_dinode;
1245	struct ocfs2_quota_recovery *lri_qrec;
1246	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1247};
1248
1249/* Does the second half of the recovery process. By this point, the
1250 * node is marked clean and can actually be considered recovered,
1251 * hence it's no longer in the recovery map, but there's still some
1252 * cleanup we can do which shouldn't happen within the recovery thread
1253 * as locking in that context becomes very difficult if we are to take
1254 * recovering nodes into account.
1255 *
1256 * NOTE: This function can and will sleep on recovery of other nodes
1257 * during cluster locking, just like any other ocfs2 process.
1258 */
1259void ocfs2_complete_recovery(struct work_struct *work)
1260{
1261	int ret = 0;
1262	struct ocfs2_journal *journal =
1263		container_of(work, struct ocfs2_journal, j_recovery_work);
1264	struct ocfs2_super *osb = journal->j_osb;
1265	struct ocfs2_dinode *la_dinode, *tl_dinode;
1266	struct ocfs2_la_recovery_item *item, *n;
1267	struct ocfs2_quota_recovery *qrec;
1268	enum ocfs2_orphan_reco_type orphan_reco_type;
1269	LIST_HEAD(tmp_la_list);
1270
1271	trace_ocfs2_complete_recovery(
1272		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1273
1274	spin_lock(&journal->j_lock);
1275	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1276	spin_unlock(&journal->j_lock);
1277
1278	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1279		list_del_init(&item->lri_list);
1280
1281		ocfs2_wait_on_quotas(osb);
1282
1283		la_dinode = item->lri_la_dinode;
1284		tl_dinode = item->lri_tl_dinode;
1285		qrec = item->lri_qrec;
1286		orphan_reco_type = item->lri_orphan_reco_type;
1287
1288		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1289			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1290			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1291			qrec);
1292
1293		if (la_dinode) {
1294			ret = ocfs2_complete_local_alloc_recovery(osb,
1295								  la_dinode);
1296			if (ret < 0)
1297				mlog_errno(ret);
1298
1299			kfree(la_dinode);
1300		}
1301
1302		if (tl_dinode) {
1303			ret = ocfs2_complete_truncate_log_recovery(osb,
1304								   tl_dinode);
1305			if (ret < 0)
1306				mlog_errno(ret);
1307
1308			kfree(tl_dinode);
1309		}
1310
1311		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1312				orphan_reco_type);
1313		if (ret < 0)
1314			mlog_errno(ret);
1315
1316		if (qrec) {
1317			ret = ocfs2_finish_quota_recovery(osb, qrec,
1318							  item->lri_slot);
1319			if (ret < 0)
1320				mlog_errno(ret);
1321			/* Recovery info is already freed now */
1322		}
1323
1324		kfree(item);
1325	}
1326
1327	trace_ocfs2_complete_recovery_end(ret);
1328}
1329
1330/* NOTE: This function always eats your references to la_dinode and
1331 * tl_dinode, either manually on error, or by passing them to
1332 * ocfs2_complete_recovery */
1333static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1334					    int slot_num,
1335					    struct ocfs2_dinode *la_dinode,
1336					    struct ocfs2_dinode *tl_dinode,
1337					    struct ocfs2_quota_recovery *qrec,
1338					    enum ocfs2_orphan_reco_type orphan_reco_type)
1339{
1340	struct ocfs2_la_recovery_item *item;
1341
1342	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1343	if (!item) {
1344		/* Though we wish to avoid it, we are in fact safe in
1345		 * skipping local alloc cleanup as fsck.ocfs2 is more
1346		 * than capable of reclaiming unused space. */
1347		kfree(la_dinode);
1348		kfree(tl_dinode);
1349
1350		if (qrec)
1351			ocfs2_free_quota_recovery(qrec);
1352
1353		mlog_errno(-ENOMEM);
1354		return;
1355	}
1356
1357	INIT_LIST_HEAD(&item->lri_list);
1358	item->lri_la_dinode = la_dinode;
1359	item->lri_slot = slot_num;
1360	item->lri_tl_dinode = tl_dinode;
1361	item->lri_qrec = qrec;
1362	item->lri_orphan_reco_type = orphan_reco_type;
1363
1364	spin_lock(&journal->j_lock);
1365	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1366	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1367	spin_unlock(&journal->j_lock);
1368}
1369
1370/* Called by the mount code to queue recovery the last part of
1371 * recovery for it's own and offline slot(s). */
1372void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1373{
1374	struct ocfs2_journal *journal = osb->journal;
1375
1376	if (ocfs2_is_hard_readonly(osb))
1377		return;
1378
1379	/* No need to queue up our truncate_log as regular cleanup will catch
1380	 * that */
1381	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1382					osb->local_alloc_copy, NULL, NULL,
1383					ORPHAN_NEED_TRUNCATE);
1384	ocfs2_schedule_truncate_log_flush(osb, 0);
1385
1386	osb->local_alloc_copy = NULL;
1387
1388	/* queue to recover orphan slots for all offline slots */
1389	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1390	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1391	ocfs2_free_replay_slots(osb);
1392}
1393
1394void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1395{
1396	if (osb->quota_rec) {
1397		ocfs2_queue_recovery_completion(osb->journal,
1398						osb->slot_num,
1399						NULL,
1400						NULL,
1401						osb->quota_rec,
1402						ORPHAN_NEED_TRUNCATE);
1403		osb->quota_rec = NULL;
1404	}
1405}
1406
1407static int __ocfs2_recovery_thread(void *arg)
1408{
1409	int status, node_num, slot_num;
1410	struct ocfs2_super *osb = arg;
1411	struct ocfs2_recovery_map *rm = osb->recovery_map;
1412	int *rm_quota = NULL;
1413	int rm_quota_used = 0, i;
1414	struct ocfs2_quota_recovery *qrec;
1415
1416	/* Whether the quota supported. */
1417	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1418			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1419		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1420			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1421
1422	status = ocfs2_wait_on_mount(osb);
1423	if (status < 0) {
1424		goto bail;
1425	}
1426
1427	if (quota_enabled) {
1428		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1429		if (!rm_quota) {
1430			status = -ENOMEM;
1431			goto bail;
1432		}
1433	}
1434restart:
1435	status = ocfs2_super_lock(osb, 1);
1436	if (status < 0) {
1437		mlog_errno(status);
1438		goto bail;
1439	}
1440
1441	status = ocfs2_compute_replay_slots(osb);
1442	if (status < 0)
1443		mlog_errno(status);
1444
1445	/* queue recovery for our own slot */
1446	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1447					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1448
1449	spin_lock(&osb->osb_lock);
1450	while (rm->rm_used) {
1451		/* It's always safe to remove entry zero, as we won't
1452		 * clear it until ocfs2_recover_node() has succeeded. */
1453		node_num = rm->rm_entries[0];
1454		spin_unlock(&osb->osb_lock);
1455		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1456		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1457		if (slot_num == -ENOENT) {
1458			status = 0;
1459			goto skip_recovery;
1460		}
1461
1462		/* It is a bit subtle with quota recovery. We cannot do it
1463		 * immediately because we have to obtain cluster locks from
1464		 * quota files and we also don't want to just skip it because
1465		 * then quota usage would be out of sync until some node takes
1466		 * the slot. So we remember which nodes need quota recovery
1467		 * and when everything else is done, we recover quotas. */
1468		if (quota_enabled) {
1469			for (i = 0; i < rm_quota_used
1470					&& rm_quota[i] != slot_num; i++)
1471				;
1472
1473			if (i == rm_quota_used)
1474				rm_quota[rm_quota_used++] = slot_num;
1475		}
1476
1477		status = ocfs2_recover_node(osb, node_num, slot_num);
1478skip_recovery:
1479		if (!status) {
1480			ocfs2_recovery_map_clear(osb, node_num);
1481		} else {
1482			mlog(ML_ERROR,
1483			     "Error %d recovering node %d on device (%u,%u)!\n",
1484			     status, node_num,
1485			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1486			mlog(ML_ERROR, "Volume requires unmount.\n");
1487		}
1488
1489		spin_lock(&osb->osb_lock);
1490	}
1491	spin_unlock(&osb->osb_lock);
1492	trace_ocfs2_recovery_thread_end(status);
1493
1494	/* Refresh all journal recovery generations from disk */
1495	status = ocfs2_check_journals_nolocks(osb);
1496	status = (status == -EROFS) ? 0 : status;
1497	if (status < 0)
1498		mlog_errno(status);
1499
1500	/* Now it is right time to recover quotas... We have to do this under
1501	 * superblock lock so that no one can start using the slot (and crash)
1502	 * before we recover it */
1503	if (quota_enabled) {
1504		for (i = 0; i < rm_quota_used; i++) {
1505			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1506			if (IS_ERR(qrec)) {
1507				status = PTR_ERR(qrec);
1508				mlog_errno(status);
1509				continue;
1510			}
1511			ocfs2_queue_recovery_completion(osb->journal,
1512					rm_quota[i],
1513					NULL, NULL, qrec,
1514					ORPHAN_NEED_TRUNCATE);
1515		}
1516	}
1517
1518	ocfs2_super_unlock(osb, 1);
1519
1520	/* queue recovery for offline slots */
1521	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1522
1523bail:
1524	mutex_lock(&osb->recovery_lock);
1525	if (!status && !ocfs2_recovery_completed(osb)) {
1526		mutex_unlock(&osb->recovery_lock);
1527		goto restart;
1528	}
1529
1530	ocfs2_free_replay_slots(osb);
1531	osb->recovery_thread_task = NULL;
1532	mb(); /* sync with ocfs2_recovery_thread_running */
1533	wake_up(&osb->recovery_event);
1534
1535	mutex_unlock(&osb->recovery_lock);
1536
1537	if (quota_enabled)
1538		kfree(rm_quota);
1539
1540	return status;
1541}
1542
1543void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1544{
1545	mutex_lock(&osb->recovery_lock);
1546
1547	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1548		osb->disable_recovery, osb->recovery_thread_task,
1549		osb->disable_recovery ?
1550		-1 : ocfs2_recovery_map_set(osb, node_num));
1551
1552	if (osb->disable_recovery)
1553		goto out;
1554
1555	if (osb->recovery_thread_task)
1556		goto out;
1557
1558	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1559			"ocfs2rec-%s", osb->uuid_str);
1560	if (IS_ERR(osb->recovery_thread_task)) {
1561		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1562		osb->recovery_thread_task = NULL;
1563	}
1564
1565out:
1566	mutex_unlock(&osb->recovery_lock);
1567	wake_up(&osb->recovery_event);
1568}
1569
1570static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1571				    int slot_num,
1572				    struct buffer_head **bh,
1573				    struct inode **ret_inode)
1574{
1575	int status = -EACCES;
1576	struct inode *inode = NULL;
1577
1578	BUG_ON(slot_num >= osb->max_slots);
1579
1580	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1581					    slot_num);
1582	if (!inode || is_bad_inode(inode)) {
1583		mlog_errno(status);
1584		goto bail;
1585	}
1586	SET_INODE_JOURNAL(inode);
1587
1588	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1589	if (status < 0) {
1590		mlog_errno(status);
1591		goto bail;
1592	}
1593
1594	status = 0;
1595
1596bail:
1597	if (inode) {
1598		if (status || !ret_inode)
1599			iput(inode);
1600		else
1601			*ret_inode = inode;
1602	}
1603	return status;
1604}
1605
1606/* Does the actual journal replay and marks the journal inode as
1607 * clean. Will only replay if the journal inode is marked dirty. */
1608static int ocfs2_replay_journal(struct ocfs2_super *osb,
1609				int node_num,
1610				int slot_num)
1611{
1612	int status;
1613	int got_lock = 0;
1614	unsigned int flags;
1615	struct inode *inode = NULL;
1616	struct ocfs2_dinode *fe;
1617	journal_t *journal = NULL;
1618	struct buffer_head *bh = NULL;
1619	u32 slot_reco_gen;
1620
1621	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1622	if (status) {
1623		mlog_errno(status);
1624		goto done;
1625	}
1626
1627	fe = (struct ocfs2_dinode *)bh->b_data;
1628	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1629	brelse(bh);
1630	bh = NULL;
1631
1632	/*
1633	 * As the fs recovery is asynchronous, there is a small chance that
1634	 * another node mounted (and recovered) the slot before the recovery
1635	 * thread could get the lock. To handle that, we dirty read the journal
1636	 * inode for that slot to get the recovery generation. If it is
1637	 * different than what we expected, the slot has been recovered.
1638	 * If not, it needs recovery.
1639	 */
1640	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1641		trace_ocfs2_replay_journal_recovered(slot_num,
1642		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1643		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1644		status = -EBUSY;
1645		goto done;
1646	}
1647
1648	/* Continue with recovery as the journal has not yet been recovered */
1649
1650	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1651	if (status < 0) {
1652		trace_ocfs2_replay_journal_lock_err(status);
1653		if (status != -ERESTARTSYS)
1654			mlog(ML_ERROR, "Could not lock journal!\n");
1655		goto done;
1656	}
1657	got_lock = 1;
1658
1659	fe = (struct ocfs2_dinode *) bh->b_data;
1660
1661	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1662	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1663
1664	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1665		trace_ocfs2_replay_journal_skip(node_num);
1666		/* Refresh recovery generation for the slot */
1667		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1668		goto done;
1669	}
1670
1671	/* we need to run complete recovery for offline orphan slots */
1672	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1673
1674	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1675	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1676	       MINOR(osb->sb->s_dev));
1677
1678	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1679
1680	status = ocfs2_force_read_journal(inode);
1681	if (status < 0) {
1682		mlog_errno(status);
1683		goto done;
1684	}
1685
1686	journal = jbd2_journal_init_inode(inode);
1687	if (IS_ERR(journal)) {
1688		mlog(ML_ERROR, "Linux journal layer error\n");
1689		status = PTR_ERR(journal);
1690		goto done;
1691	}
1692
1693	status = jbd2_journal_load(journal);
1694	if (status < 0) {
1695		mlog_errno(status);
1696		BUG_ON(!igrab(inode));
1697		jbd2_journal_destroy(journal);
1698		goto done;
1699	}
1700
1701	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1702
1703	/* wipe the journal */
1704	jbd2_journal_lock_updates(journal);
1705	status = jbd2_journal_flush(journal, 0);
1706	jbd2_journal_unlock_updates(journal);
1707	if (status < 0)
1708		mlog_errno(status);
1709
1710	/* This will mark the node clean */
1711	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1712	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1713	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1714
1715	/* Increment recovery generation to indicate successful recovery */
1716	ocfs2_bump_recovery_generation(fe);
1717	osb->slot_recovery_generations[slot_num] =
1718					ocfs2_get_recovery_generation(fe);
1719
1720	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1721	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1722	if (status < 0)
1723		mlog_errno(status);
1724
1725	BUG_ON(!igrab(inode));
1726
1727	jbd2_journal_destroy(journal);
1728
1729	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1730	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1731	       MINOR(osb->sb->s_dev));
1732done:
1733	/* drop the lock on this nodes journal */
1734	if (got_lock)
1735		ocfs2_inode_unlock(inode, 1);
1736
1737	iput(inode);
1738	brelse(bh);
1739
1740	return status;
1741}
1742
1743/*
1744 * Do the most important parts of node recovery:
1745 *  - Replay it's journal
1746 *  - Stamp a clean local allocator file
1747 *  - Stamp a clean truncate log
1748 *  - Mark the node clean
1749 *
1750 * If this function completes without error, a node in OCFS2 can be
1751 * said to have been safely recovered. As a result, failure during the
1752 * second part of a nodes recovery process (local alloc recovery) is
1753 * far less concerning.
1754 */
1755static int ocfs2_recover_node(struct ocfs2_super *osb,
1756			      int node_num, int slot_num)
1757{
1758	int status = 0;
1759	struct ocfs2_dinode *la_copy = NULL;
1760	struct ocfs2_dinode *tl_copy = NULL;
1761
1762	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1763
1764	/* Should not ever be called to recover ourselves -- in that
1765	 * case we should've called ocfs2_journal_load instead. */
1766	BUG_ON(osb->node_num == node_num);
1767
1768	status = ocfs2_replay_journal(osb, node_num, slot_num);
1769	if (status < 0) {
1770		if (status == -EBUSY) {
1771			trace_ocfs2_recover_node_skip(slot_num, node_num);
1772			status = 0;
1773			goto done;
1774		}
1775		mlog_errno(status);
1776		goto done;
1777	}
1778
1779	/* Stamp a clean local alloc file AFTER recovering the journal... */
1780	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1781	if (status < 0) {
1782		mlog_errno(status);
1783		goto done;
1784	}
1785
1786	/* An error from begin_truncate_log_recovery is not
1787	 * serious enough to warrant halting the rest of
1788	 * recovery. */
1789	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1790	if (status < 0)
1791		mlog_errno(status);
1792
1793	/* Likewise, this would be a strange but ultimately not so
1794	 * harmful place to get an error... */
1795	status = ocfs2_clear_slot(osb, slot_num);
1796	if (status < 0)
1797		mlog_errno(status);
1798
1799	/* This will kfree the memory pointed to by la_copy and tl_copy */
1800	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1801					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1802
1803	status = 0;
1804done:
1805
1806	return status;
1807}
1808
1809/* Test node liveness by trylocking his journal. If we get the lock,
1810 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1811 * still alive (we couldn't get the lock) and < 0 on error. */
1812static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1813				 int slot_num)
1814{
1815	int status, flags;
1816	struct inode *inode = NULL;
1817
1818	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1819					    slot_num);
1820	if (inode == NULL) {
1821		mlog(ML_ERROR, "access error\n");
1822		status = -EACCES;
1823		goto bail;
1824	}
1825	if (is_bad_inode(inode)) {
1826		mlog(ML_ERROR, "access error (bad inode)\n");
1827		iput(inode);
1828		inode = NULL;
1829		status = -EACCES;
1830		goto bail;
1831	}
1832	SET_INODE_JOURNAL(inode);
1833
1834	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1835	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1836	if (status < 0) {
1837		if (status != -EAGAIN)
1838			mlog_errno(status);
1839		goto bail;
1840	}
1841
1842	ocfs2_inode_unlock(inode, 1);
1843bail:
1844	iput(inode);
1845
1846	return status;
1847}
1848
1849/* Call this underneath ocfs2_super_lock. It also assumes that the
1850 * slot info struct has been updated from disk. */
1851int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1852{
1853	unsigned int node_num;
1854	int status, i;
1855	u32 gen;
1856	struct buffer_head *bh = NULL;
1857	struct ocfs2_dinode *di;
1858
1859	/* This is called with the super block cluster lock, so we
1860	 * know that the slot map can't change underneath us. */
1861
1862	for (i = 0; i < osb->max_slots; i++) {
1863		/* Read journal inode to get the recovery generation */
1864		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1865		if (status) {
1866			mlog_errno(status);
1867			goto bail;
1868		}
1869		di = (struct ocfs2_dinode *)bh->b_data;
1870		gen = ocfs2_get_recovery_generation(di);
1871		brelse(bh);
1872		bh = NULL;
1873
1874		spin_lock(&osb->osb_lock);
1875		osb->slot_recovery_generations[i] = gen;
1876
1877		trace_ocfs2_mark_dead_nodes(i,
1878					    osb->slot_recovery_generations[i]);
1879
1880		if (i == osb->slot_num) {
1881			spin_unlock(&osb->osb_lock);
1882			continue;
1883		}
1884
1885		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1886		if (status == -ENOENT) {
1887			spin_unlock(&osb->osb_lock);
1888			continue;
1889		}
1890
1891		if (__ocfs2_recovery_map_test(osb, node_num)) {
1892			spin_unlock(&osb->osb_lock);
1893			continue;
1894		}
1895		spin_unlock(&osb->osb_lock);
1896
1897		/* Ok, we have a slot occupied by another node which
1898		 * is not in the recovery map. We trylock his journal
1899		 * file here to test if he's alive. */
1900		status = ocfs2_trylock_journal(osb, i);
1901		if (!status) {
1902			/* Since we're called from mount, we know that
1903			 * the recovery thread can't race us on
1904			 * setting / checking the recovery bits. */
1905			ocfs2_recovery_thread(osb, node_num);
1906		} else if ((status < 0) && (status != -EAGAIN)) {
1907			mlog_errno(status);
1908			goto bail;
1909		}
1910	}
1911
1912	status = 0;
1913bail:
1914	return status;
1915}
1916
1917/*
1918 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1919 * randomness to the timeout to minimize multple nodes firing the timer at the
1920 * same time.
1921 */
1922static inline unsigned long ocfs2_orphan_scan_timeout(void)
1923{
1924	unsigned long time;
1925
1926	get_random_bytes(&time, sizeof(time));
1927	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1928	return msecs_to_jiffies(time);
1929}
1930
1931/*
1932 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1933 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1934 * is done to catch any orphans that are left over in orphan directories.
1935 *
1936 * It scans all slots, even ones that are in use. It does so to handle the
1937 * case described below:
1938 *
1939 *   Node 1 has an inode it was using. The dentry went away due to memory
1940 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1941 *   has the open lock.
1942 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1943 *   but node 1 has no dentry and doesn't get the message. It trylocks the
1944 *   open lock, sees that another node has a PR, and does nothing.
1945 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1946 *   open lock, sees the PR still, and does nothing.
1947 *   Basically, we have to trigger an orphan iput on node 1. The only way
1948 *   for this to happen is if node 1 runs node 2's orphan dir.
1949 *
1950 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1951 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1952 * stored in LVB. If the sequence number has changed, it means some other
1953 * node has done the scan.  This node skips the scan and tracks the
1954 * sequence number.  If the sequence number didn't change, it means a scan
1955 * hasn't happened.  The node queues a scan and increments the
1956 * sequence number in the LVB.
1957 */
1958static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1959{
1960	struct ocfs2_orphan_scan *os;
1961	int status, i;
1962	u32 seqno = 0;
1963
1964	os = &osb->osb_orphan_scan;
1965
1966	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1967		goto out;
1968
1969	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1970					    atomic_read(&os->os_state));
1971
1972	status = ocfs2_orphan_scan_lock(osb, &seqno);
1973	if (status < 0) {
1974		if (status != -EAGAIN)
1975			mlog_errno(status);
1976		goto out;
1977	}
1978
1979	/* Do no queue the tasks if the volume is being umounted */
1980	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1981		goto unlock;
1982
1983	if (os->os_seqno != seqno) {
1984		os->os_seqno = seqno;
1985		goto unlock;
1986	}
1987
1988	for (i = 0; i < osb->max_slots; i++)
1989		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1990						NULL, ORPHAN_NO_NEED_TRUNCATE);
1991	/*
1992	 * We queued a recovery on orphan slots, increment the sequence
1993	 * number and update LVB so other node will skip the scan for a while
1994	 */
1995	seqno++;
1996	os->os_count++;
1997	os->os_scantime = ktime_get_seconds();
1998unlock:
1999	ocfs2_orphan_scan_unlock(osb, seqno);
2000out:
2001	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2002					  atomic_read(&os->os_state));
2003	return;
2004}
2005
2006/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2007static void ocfs2_orphan_scan_work(struct work_struct *work)
2008{
2009	struct ocfs2_orphan_scan *os;
2010	struct ocfs2_super *osb;
2011
2012	os = container_of(work, struct ocfs2_orphan_scan,
2013			  os_orphan_scan_work.work);
2014	osb = os->os_osb;
2015
2016	mutex_lock(&os->os_lock);
2017	ocfs2_queue_orphan_scan(osb);
2018	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2019		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2020				      ocfs2_orphan_scan_timeout());
2021	mutex_unlock(&os->os_lock);
2022}
2023
2024void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2025{
2026	struct ocfs2_orphan_scan *os;
2027
2028	os = &osb->osb_orphan_scan;
2029	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2030		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2031		mutex_lock(&os->os_lock);
2032		cancel_delayed_work(&os->os_orphan_scan_work);
2033		mutex_unlock(&os->os_lock);
2034	}
2035}
2036
2037void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2038{
2039	struct ocfs2_orphan_scan *os;
2040
2041	os = &osb->osb_orphan_scan;
2042	os->os_osb = osb;
2043	os->os_count = 0;
2044	os->os_seqno = 0;
2045	mutex_init(&os->os_lock);
2046	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2047}
2048
2049void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2050{
2051	struct ocfs2_orphan_scan *os;
2052
2053	os = &osb->osb_orphan_scan;
2054	os->os_scantime = ktime_get_seconds();
2055	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2056		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2057	else {
2058		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2059		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2060				   ocfs2_orphan_scan_timeout());
2061	}
2062}
2063
2064struct ocfs2_orphan_filldir_priv {
2065	struct dir_context	ctx;
2066	struct inode		*head;
2067	struct ocfs2_super	*osb;
2068	enum ocfs2_orphan_reco_type orphan_reco_type;
2069};
2070
2071static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2072				int name_len, loff_t pos, u64 ino,
2073				unsigned type)
2074{
2075	struct ocfs2_orphan_filldir_priv *p =
2076		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2077	struct inode *iter;
2078
2079	if (name_len == 1 && !strncmp(".", name, 1))
2080		return true;
2081	if (name_len == 2 && !strncmp("..", name, 2))
2082		return true;
2083
2084	/* do not include dio entry in case of orphan scan */
2085	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2086			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2087			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2088		return true;
2089
2090	/* Skip bad inodes so that recovery can continue */
2091	iter = ocfs2_iget(p->osb, ino,
2092			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2093	if (IS_ERR(iter))
2094		return true;
2095
2096	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2097			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2098		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2099
2100	/* Skip inodes which are already added to recover list, since dio may
2101	 * happen concurrently with unlink/rename */
2102	if (OCFS2_I(iter)->ip_next_orphan) {
2103		iput(iter);
2104		return true;
2105	}
2106
2107	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2108	/* No locking is required for the next_orphan queue as there
2109	 * is only ever a single process doing orphan recovery. */
2110	OCFS2_I(iter)->ip_next_orphan = p->head;
2111	p->head = iter;
2112
2113	return true;
2114}
2115
2116static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2117			       int slot,
2118			       struct inode **head,
2119			       enum ocfs2_orphan_reco_type orphan_reco_type)
2120{
2121	int status;
2122	struct inode *orphan_dir_inode = NULL;
2123	struct ocfs2_orphan_filldir_priv priv = {
2124		.ctx.actor = ocfs2_orphan_filldir,
2125		.osb = osb,
2126		.head = *head,
2127		.orphan_reco_type = orphan_reco_type
2128	};
2129
2130	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2131						       ORPHAN_DIR_SYSTEM_INODE,
2132						       slot);
2133	if  (!orphan_dir_inode) {
2134		status = -ENOENT;
2135		mlog_errno(status);
2136		return status;
2137	}
2138
2139	inode_lock(orphan_dir_inode);
2140	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2141	if (status < 0) {
2142		mlog_errno(status);
2143		goto out;
2144	}
2145
2146	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2147	if (status) {
2148		mlog_errno(status);
2149		goto out_cluster;
2150	}
2151
2152	*head = priv.head;
2153
2154out_cluster:
2155	ocfs2_inode_unlock(orphan_dir_inode, 0);
2156out:
2157	inode_unlock(orphan_dir_inode);
2158	iput(orphan_dir_inode);
2159	return status;
2160}
2161
2162static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2163					      int slot)
2164{
2165	int ret;
2166
2167	spin_lock(&osb->osb_lock);
2168	ret = !osb->osb_orphan_wipes[slot];
2169	spin_unlock(&osb->osb_lock);
2170	return ret;
2171}
2172
2173static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2174					     int slot)
2175{
2176	spin_lock(&osb->osb_lock);
2177	/* Mark ourselves such that new processes in delete_inode()
2178	 * know to quit early. */
2179	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2180	while (osb->osb_orphan_wipes[slot]) {
2181		/* If any processes are already in the middle of an
2182		 * orphan wipe on this dir, then we need to wait for
2183		 * them. */
2184		spin_unlock(&osb->osb_lock);
2185		wait_event_interruptible(osb->osb_wipe_event,
2186					 ocfs2_orphan_recovery_can_continue(osb, slot));
2187		spin_lock(&osb->osb_lock);
2188	}
2189	spin_unlock(&osb->osb_lock);
2190}
2191
2192static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2193					      int slot)
2194{
2195	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2196}
2197
2198/*
2199 * Orphan recovery. Each mounted node has it's own orphan dir which we
2200 * must run during recovery. Our strategy here is to build a list of
2201 * the inodes in the orphan dir and iget/iput them. The VFS does
2202 * (most) of the rest of the work.
2203 *
2204 * Orphan recovery can happen at any time, not just mount so we have a
2205 * couple of extra considerations.
2206 *
2207 * - We grab as many inodes as we can under the orphan dir lock -
2208 *   doing iget() outside the orphan dir risks getting a reference on
2209 *   an invalid inode.
2210 * - We must be sure not to deadlock with other processes on the
2211 *   system wanting to run delete_inode(). This can happen when they go
2212 *   to lock the orphan dir and the orphan recovery process attempts to
2213 *   iget() inside the orphan dir lock. This can be avoided by
2214 *   advertising our state to ocfs2_delete_inode().
2215 */
2216static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2217				 int slot,
2218				 enum ocfs2_orphan_reco_type orphan_reco_type)
2219{
2220	int ret = 0;
2221	struct inode *inode = NULL;
2222	struct inode *iter;
2223	struct ocfs2_inode_info *oi;
2224	struct buffer_head *di_bh = NULL;
2225	struct ocfs2_dinode *di = NULL;
2226
2227	trace_ocfs2_recover_orphans(slot);
2228
2229	ocfs2_mark_recovering_orphan_dir(osb, slot);
2230	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2231	ocfs2_clear_recovering_orphan_dir(osb, slot);
2232
2233	/* Error here should be noted, but we want to continue with as
2234	 * many queued inodes as we've got. */
2235	if (ret)
2236		mlog_errno(ret);
2237
2238	while (inode) {
2239		oi = OCFS2_I(inode);
2240		trace_ocfs2_recover_orphans_iput(
2241					(unsigned long long)oi->ip_blkno);
2242
2243		iter = oi->ip_next_orphan;
2244		oi->ip_next_orphan = NULL;
2245
2246		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2247			inode_lock(inode);
2248			ret = ocfs2_rw_lock(inode, 1);
2249			if (ret < 0) {
2250				mlog_errno(ret);
2251				goto unlock_mutex;
2252			}
2253			/*
2254			 * We need to take and drop the inode lock to
2255			 * force read inode from disk.
2256			 */
2257			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2258			if (ret) {
2259				mlog_errno(ret);
2260				goto unlock_rw;
2261			}
2262
2263			di = (struct ocfs2_dinode *)di_bh->b_data;
2264
2265			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2266				ret = ocfs2_truncate_file(inode, di_bh,
2267						i_size_read(inode));
2268				if (ret < 0) {
2269					if (ret != -ENOSPC)
2270						mlog_errno(ret);
2271					goto unlock_inode;
2272				}
2273
2274				ret = ocfs2_del_inode_from_orphan(osb, inode,
2275						di_bh, 0, 0);
2276				if (ret)
2277					mlog_errno(ret);
2278			}
2279unlock_inode:
2280			ocfs2_inode_unlock(inode, 1);
2281			brelse(di_bh);
2282			di_bh = NULL;
2283unlock_rw:
2284			ocfs2_rw_unlock(inode, 1);
2285unlock_mutex:
2286			inode_unlock(inode);
2287
2288			/* clear dio flag in ocfs2_inode_info */
2289			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2290		} else {
2291			spin_lock(&oi->ip_lock);
2292			/* Set the proper information to get us going into
2293			 * ocfs2_delete_inode. */
2294			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2295			spin_unlock(&oi->ip_lock);
2296		}
2297
2298		iput(inode);
2299		inode = iter;
2300	}
2301
2302	return ret;
2303}
2304
2305static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2306{
2307	/* This check is good because ocfs2 will wait on our recovery
2308	 * thread before changing it to something other than MOUNTED
2309	 * or DISABLED. */
2310	wait_event(osb->osb_mount_event,
2311		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2312		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2313		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2314
2315	/* If there's an error on mount, then we may never get to the
2316	 * MOUNTED flag, but this is set right before
2317	 * dismount_volume() so we can trust it. */
2318	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2319		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2320		mlog(0, "mount error, exiting!\n");
2321		return -EBUSY;
2322	}
2323
2324	return 0;
2325}
2326
2327static int ocfs2_commit_thread(void *arg)
2328{
2329	int status;
2330	struct ocfs2_super *osb = arg;
2331	struct ocfs2_journal *journal = osb->journal;
2332
2333	/* we can trust j_num_trans here because _should_stop() is only set in
2334	 * shutdown and nobody other than ourselves should be able to start
2335	 * transactions.  committing on shutdown might take a few iterations
2336	 * as final transactions put deleted inodes on the list */
2337	while (!(kthread_should_stop() &&
2338		 atomic_read(&journal->j_num_trans) == 0)) {
2339
2340		wait_event_interruptible(osb->checkpoint_event,
2341					 atomic_read(&journal->j_num_trans)
2342					 || kthread_should_stop());
2343
2344		status = ocfs2_commit_cache(osb);
2345		if (status < 0) {
2346			static unsigned long abort_warn_time;
2347
2348			/* Warn about this once per minute */
2349			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2350				mlog(ML_ERROR, "status = %d, journal is "
2351						"already aborted.\n", status);
2352			/*
2353			 * After ocfs2_commit_cache() fails, j_num_trans has a
2354			 * non-zero value.  Sleep here to avoid a busy-wait
2355			 * loop.
2356			 */
2357			msleep_interruptible(1000);
2358		}
2359
2360		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2361			mlog(ML_KTHREAD,
2362			     "commit_thread: %u transactions pending on "
2363			     "shutdown\n",
2364			     atomic_read(&journal->j_num_trans));
2365		}
2366	}
2367
2368	return 0;
2369}
2370
2371/* Reads all the journal inodes without taking any cluster locks. Used
2372 * for hard readonly access to determine whether any journal requires
2373 * recovery. Also used to refresh the recovery generation numbers after
2374 * a journal has been recovered by another node.
2375 */
2376int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2377{
2378	int ret = 0;
2379	unsigned int slot;
2380	struct buffer_head *di_bh = NULL;
2381	struct ocfs2_dinode *di;
2382	int journal_dirty = 0;
2383
2384	for(slot = 0; slot < osb->max_slots; slot++) {
2385		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2386		if (ret) {
2387			mlog_errno(ret);
2388			goto out;
2389		}
2390
2391		di = (struct ocfs2_dinode *) di_bh->b_data;
2392
2393		osb->slot_recovery_generations[slot] =
2394					ocfs2_get_recovery_generation(di);
2395
2396		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2397		    OCFS2_JOURNAL_DIRTY_FL)
2398			journal_dirty = 1;
2399
2400		brelse(di_bh);
2401		di_bh = NULL;
2402	}
2403
2404out:
2405	if (journal_dirty)
2406		ret = -EROFS;
2407	return ret;
2408}
2409