1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * blockcheck.c
4 *
5 * Checksum and ECC codes for the OCFS2 userspace library.
6 *
7 * Copyright (C) 2006, 2008 Oracle.  All rights reserved.
8 */
9
10#include <linux/kernel.h>
11#include <linux/types.h>
12#include <linux/crc32.h>
13#include <linux/buffer_head.h>
14#include <linux/bitops.h>
15#include <linux/debugfs.h>
16#include <linux/module.h>
17#include <linux/fs.h>
18#include <asm/byteorder.h>
19
20#include <cluster/masklog.h>
21
22#include "ocfs2.h"
23
24#include "blockcheck.h"
25
26
27/*
28 * We use the following conventions:
29 *
30 * d = # data bits
31 * p = # parity bits
32 * c = # total code bits (d + p)
33 */
34
35
36/*
37 * Calculate the bit offset in the hamming code buffer based on the bit's
38 * offset in the data buffer.  Since the hamming code reserves all
39 * power-of-two bits for parity, the data bit number and the code bit
40 * number are offset by all the parity bits beforehand.
41 *
42 * Recall that bit numbers in hamming code are 1-based.  This function
43 * takes the 0-based data bit from the caller.
44 *
45 * An example.  Take bit 1 of the data buffer.  1 is a power of two (2^0),
46 * so it's a parity bit.  2 is a power of two (2^1), so it's a parity bit.
47 * 3 is not a power of two.  So bit 1 of the data buffer ends up as bit 3
48 * in the code buffer.
49 *
50 * The caller can pass in *p if it wants to keep track of the most recent
51 * number of parity bits added.  This allows the function to start the
52 * calculation at the last place.
53 */
54static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache)
55{
56	unsigned int b, p = 0;
57
58	/*
59	 * Data bits are 0-based, but we're talking code bits, which
60	 * are 1-based.
61	 */
62	b = i + 1;
63
64	/* Use the cache if it is there */
65	if (p_cache)
66		p = *p_cache;
67        b += p;
68
69	/*
70	 * For every power of two below our bit number, bump our bit.
71	 *
72	 * We compare with (b + 1) because we have to compare with what b
73	 * would be _if_ it were bumped up by the parity bit.  Capice?
74	 *
75	 * p is set above.
76	 */
77	for (; (1 << p) < (b + 1); p++)
78		b++;
79
80	if (p_cache)
81		*p_cache = p;
82
83	return b;
84}
85
86/*
87 * This is the low level encoder function.  It can be called across
88 * multiple hunks just like the crc32 code.  'd' is the number of bits
89 * _in_this_hunk_.  nr is the bit offset of this hunk.  So, if you had
90 * two 512B buffers, you would do it like so:
91 *
92 * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
93 * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
94 *
95 * If you just have one buffer, use ocfs2_hamming_encode_block().
96 */
97u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
98{
99	unsigned int i, b, p = 0;
100
101	BUG_ON(!d);
102
103	/*
104	 * b is the hamming code bit number.  Hamming code specifies a
105	 * 1-based array, but C uses 0-based.  So 'i' is for C, and 'b' is
106	 * for the algorithm.
107	 *
108	 * The i++ in the for loop is so that the start offset passed
109	 * to ocfs2_find_next_bit_set() is one greater than the previously
110	 * found bit.
111	 */
112	for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
113	{
114		/*
115		 * i is the offset in this hunk, nr + i is the total bit
116		 * offset.
117		 */
118		b = calc_code_bit(nr + i, &p);
119
120		/*
121		 * Data bits in the resultant code are checked by
122		 * parity bits that are part of the bit number
123		 * representation.  Huh?
124		 *
125		 * <wikipedia href="https://en.wikipedia.org/wiki/Hamming_code">
126		 * In other words, the parity bit at position 2^k
127		 * checks bits in positions having bit k set in
128		 * their binary representation.  Conversely, for
129		 * instance, bit 13, i.e. 1101(2), is checked by
130		 * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
131		 * </wikipedia>
132		 *
133		 * Note that 'k' is the _code_ bit number.  'b' in
134		 * our loop.
135		 */
136		parity ^= b;
137	}
138
139	/* While the data buffer was treated as little endian, the
140	 * return value is in host endian. */
141	return parity;
142}
143
144u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
145{
146	return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
147}
148
149/*
150 * Like ocfs2_hamming_encode(), this can handle hunks.  nr is the bit
151 * offset of the current hunk.  If bit to be fixed is not part of the
152 * current hunk, this does nothing.
153 *
154 * If you only have one hunk, use ocfs2_hamming_fix_block().
155 */
156void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
157		       unsigned int fix)
158{
159	unsigned int i, b;
160
161	BUG_ON(!d);
162
163	/*
164	 * If the bit to fix has an hweight of 1, it's a parity bit.  One
165	 * busted parity bit is its own error.  Nothing to do here.
166	 */
167	if (hweight32(fix) == 1)
168		return;
169
170	/*
171	 * nr + d is the bit right past the data hunk we're looking at.
172	 * If fix after that, nothing to do
173	 */
174	if (fix >= calc_code_bit(nr + d, NULL))
175		return;
176
177	/*
178	 * nr is the offset in the data hunk we're starting at.  Let's
179	 * start b at the offset in the code buffer.  See hamming_encode()
180	 * for a more detailed description of 'b'.
181	 */
182	b = calc_code_bit(nr, NULL);
183	/* If the fix is before this hunk, nothing to do */
184	if (fix < b)
185		return;
186
187	for (i = 0; i < d; i++, b++)
188	{
189		/* Skip past parity bits */
190		while (hweight32(b) == 1)
191			b++;
192
193		/*
194		 * i is the offset in this data hunk.
195		 * nr + i is the offset in the total data buffer.
196		 * b is the offset in the total code buffer.
197		 *
198		 * Thus, when b == fix, bit i in the current hunk needs
199		 * fixing.
200		 */
201		if (b == fix)
202		{
203			if (ocfs2_test_bit(i, data))
204				ocfs2_clear_bit(i, data);
205			else
206				ocfs2_set_bit(i, data);
207			break;
208		}
209	}
210}
211
212void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
213			     unsigned int fix)
214{
215	ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
216}
217
218
219/*
220 * Debugfs handling.
221 */
222
223#ifdef CONFIG_DEBUG_FS
224
225static int blockcheck_u64_get(void *data, u64 *val)
226{
227	*val = *(u64 *)data;
228	return 0;
229}
230DEFINE_DEBUGFS_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n");
231
232static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
233{
234	if (stats) {
235		debugfs_remove_recursive(stats->b_debug_dir);
236		stats->b_debug_dir = NULL;
237	}
238}
239
240static void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
241					   struct dentry *parent)
242{
243	struct dentry *dir;
244
245	dir = debugfs_create_dir("blockcheck", parent);
246	stats->b_debug_dir = dir;
247
248	debugfs_create_file("blocks_checked", S_IFREG | S_IRUSR, dir,
249			    &stats->b_check_count, &blockcheck_fops);
250
251	debugfs_create_file("checksums_failed", S_IFREG | S_IRUSR, dir,
252			    &stats->b_failure_count, &blockcheck_fops);
253
254	debugfs_create_file("ecc_recoveries", S_IFREG | S_IRUSR, dir,
255			    &stats->b_recover_count, &blockcheck_fops);
256
257}
258#else
259static inline void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
260						  struct dentry *parent)
261{
262}
263
264static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
265{
266}
267#endif  /* CONFIG_DEBUG_FS */
268
269/* Always-called wrappers for starting and stopping the debugfs files */
270void ocfs2_blockcheck_stats_debugfs_install(struct ocfs2_blockcheck_stats *stats,
271					    struct dentry *parent)
272{
273	ocfs2_blockcheck_debug_install(stats, parent);
274}
275
276void ocfs2_blockcheck_stats_debugfs_remove(struct ocfs2_blockcheck_stats *stats)
277{
278	ocfs2_blockcheck_debug_remove(stats);
279}
280
281static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats)
282{
283	u64 new_count;
284
285	if (!stats)
286		return;
287
288	spin_lock(&stats->b_lock);
289	stats->b_check_count++;
290	new_count = stats->b_check_count;
291	spin_unlock(&stats->b_lock);
292
293	if (!new_count)
294		mlog(ML_NOTICE, "Block check count has wrapped\n");
295}
296
297static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats)
298{
299	u64 new_count;
300
301	if (!stats)
302		return;
303
304	spin_lock(&stats->b_lock);
305	stats->b_failure_count++;
306	new_count = stats->b_failure_count;
307	spin_unlock(&stats->b_lock);
308
309	if (!new_count)
310		mlog(ML_NOTICE, "Checksum failure count has wrapped\n");
311}
312
313static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats)
314{
315	u64 new_count;
316
317	if (!stats)
318		return;
319
320	spin_lock(&stats->b_lock);
321	stats->b_recover_count++;
322	new_count = stats->b_recover_count;
323	spin_unlock(&stats->b_lock);
324
325	if (!new_count)
326		mlog(ML_NOTICE, "ECC recovery count has wrapped\n");
327}
328
329
330
331/*
332 * These are the low-level APIs for using the ocfs2_block_check structure.
333 */
334
335/*
336 * This function generates check information for a block.
337 * data is the block to be checked.  bc is a pointer to the
338 * ocfs2_block_check structure describing the crc32 and the ecc.
339 *
340 * bc should be a pointer inside data, as the function will
341 * take care of zeroing it before calculating the check information.  If
342 * bc does not point inside data, the caller must make sure any inline
343 * ocfs2_block_check structures are zeroed.
344 *
345 * The data buffer must be in on-disk endian (little endian for ocfs2).
346 * bc will be filled with little-endian values and will be ready to go to
347 * disk.
348 */
349void ocfs2_block_check_compute(void *data, size_t blocksize,
350			       struct ocfs2_block_check *bc)
351{
352	u32 crc;
353	u32 ecc;
354
355	memset(bc, 0, sizeof(struct ocfs2_block_check));
356
357	crc = crc32_le(~0, data, blocksize);
358	ecc = ocfs2_hamming_encode_block(data, blocksize);
359
360	/*
361	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
362	 * larger than 16 bits.
363	 */
364	BUG_ON(ecc > USHRT_MAX);
365
366	bc->bc_crc32e = cpu_to_le32(crc);
367	bc->bc_ecc = cpu_to_le16((u16)ecc);
368}
369
370/*
371 * This function validates existing check information.  Like _compute,
372 * the function will take care of zeroing bc before calculating check codes.
373 * If bc is not a pointer inside data, the caller must have zeroed any
374 * inline ocfs2_block_check structures.
375 *
376 * Again, the data passed in should be the on-disk endian.
377 */
378int ocfs2_block_check_validate(void *data, size_t blocksize,
379			       struct ocfs2_block_check *bc,
380			       struct ocfs2_blockcheck_stats *stats)
381{
382	int rc = 0;
383	u32 bc_crc32e;
384	u16 bc_ecc;
385	u32 crc, ecc;
386
387	ocfs2_blockcheck_inc_check(stats);
388
389	bc_crc32e = le32_to_cpu(bc->bc_crc32e);
390	bc_ecc = le16_to_cpu(bc->bc_ecc);
391
392	memset(bc, 0, sizeof(struct ocfs2_block_check));
393
394	/* Fast path - if the crc32 validates, we're good to go */
395	crc = crc32_le(~0, data, blocksize);
396	if (crc == bc_crc32e)
397		goto out;
398
399	ocfs2_blockcheck_inc_failure(stats);
400	mlog(ML_ERROR,
401	     "CRC32 failed: stored: 0x%x, computed 0x%x. Applying ECC.\n",
402	     (unsigned int)bc_crc32e, (unsigned int)crc);
403
404	/* Ok, try ECC fixups */
405	ecc = ocfs2_hamming_encode_block(data, blocksize);
406	ocfs2_hamming_fix_block(data, blocksize, ecc ^ bc_ecc);
407
408	/* And check the crc32 again */
409	crc = crc32_le(~0, data, blocksize);
410	if (crc == bc_crc32e) {
411		ocfs2_blockcheck_inc_recover(stats);
412		goto out;
413	}
414
415	mlog(ML_ERROR, "Fixed CRC32 failed: stored: 0x%x, computed 0x%x\n",
416	     (unsigned int)bc_crc32e, (unsigned int)crc);
417
418	rc = -EIO;
419
420out:
421	bc->bc_crc32e = cpu_to_le32(bc_crc32e);
422	bc->bc_ecc = cpu_to_le16(bc_ecc);
423
424	return rc;
425}
426
427/*
428 * This function generates check information for a list of buffer_heads.
429 * bhs is the blocks to be checked.  bc is a pointer to the
430 * ocfs2_block_check structure describing the crc32 and the ecc.
431 *
432 * bc should be a pointer inside data, as the function will
433 * take care of zeroing it before calculating the check information.  If
434 * bc does not point inside data, the caller must make sure any inline
435 * ocfs2_block_check structures are zeroed.
436 *
437 * The data buffer must be in on-disk endian (little endian for ocfs2).
438 * bc will be filled with little-endian values and will be ready to go to
439 * disk.
440 */
441void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
442				   struct ocfs2_block_check *bc)
443{
444	int i;
445	u32 crc, ecc;
446
447	BUG_ON(nr < 0);
448
449	if (!nr)
450		return;
451
452	memset(bc, 0, sizeof(struct ocfs2_block_check));
453
454	for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
455		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
456		/*
457		 * The number of bits in a buffer is obviously b_size*8.
458		 * The offset of this buffer is b_size*i, so the bit offset
459		 * of this buffer is b_size*8*i.
460		 */
461		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
462						bhs[i]->b_size * 8,
463						bhs[i]->b_size * 8 * i);
464	}
465
466	/*
467	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
468	 * larger than 16 bits.
469	 */
470	BUG_ON(ecc > USHRT_MAX);
471
472	bc->bc_crc32e = cpu_to_le32(crc);
473	bc->bc_ecc = cpu_to_le16((u16)ecc);
474}
475
476/*
477 * This function validates existing check information on a list of
478 * buffer_heads.  Like _compute_bhs, the function will take care of
479 * zeroing bc before calculating check codes.  If bc is not a pointer
480 * inside data, the caller must have zeroed any inline
481 * ocfs2_block_check structures.
482 *
483 * Again, the data passed in should be the on-disk endian.
484 */
485int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
486				   struct ocfs2_block_check *bc,
487				   struct ocfs2_blockcheck_stats *stats)
488{
489	int i, rc = 0;
490	u32 bc_crc32e;
491	u16 bc_ecc;
492	u32 crc, ecc, fix;
493
494	BUG_ON(nr < 0);
495
496	if (!nr)
497		return 0;
498
499	ocfs2_blockcheck_inc_check(stats);
500
501	bc_crc32e = le32_to_cpu(bc->bc_crc32e);
502	bc_ecc = le16_to_cpu(bc->bc_ecc);
503
504	memset(bc, 0, sizeof(struct ocfs2_block_check));
505
506	/* Fast path - if the crc32 validates, we're good to go */
507	for (i = 0, crc = ~0; i < nr; i++)
508		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
509	if (crc == bc_crc32e)
510		goto out;
511
512	ocfs2_blockcheck_inc_failure(stats);
513	mlog(ML_ERROR,
514	     "CRC32 failed: stored: %u, computed %u.  Applying ECC.\n",
515	     (unsigned int)bc_crc32e, (unsigned int)crc);
516
517	/* Ok, try ECC fixups */
518	for (i = 0, ecc = 0; i < nr; i++) {
519		/*
520		 * The number of bits in a buffer is obviously b_size*8.
521		 * The offset of this buffer is b_size*i, so the bit offset
522		 * of this buffer is b_size*8*i.
523		 */
524		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
525						bhs[i]->b_size * 8,
526						bhs[i]->b_size * 8 * i);
527	}
528	fix = ecc ^ bc_ecc;
529	for (i = 0; i < nr; i++) {
530		/*
531		 * Try the fix against each buffer.  It will only affect
532		 * one of them.
533		 */
534		ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
535				  bhs[i]->b_size * 8 * i, fix);
536	}
537
538	/* And check the crc32 again */
539	for (i = 0, crc = ~0; i < nr; i++)
540		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
541	if (crc == bc_crc32e) {
542		ocfs2_blockcheck_inc_recover(stats);
543		goto out;
544	}
545
546	mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
547	     (unsigned int)bc_crc32e, (unsigned int)crc);
548
549	rc = -EIO;
550
551out:
552	bc->bc_crc32e = cpu_to_le32(bc_crc32e);
553	bc->bc_ecc = cpu_to_le16(bc_ecc);
554
555	return rc;
556}
557
558/*
559 * These are the main API.  They check the superblock flag before
560 * calling the underlying operations.
561 *
562 * They expect the buffer(s) to be in disk format.
563 */
564void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
565			    struct ocfs2_block_check *bc)
566{
567	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
568		ocfs2_block_check_compute(data, sb->s_blocksize, bc);
569}
570
571int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
572			    struct ocfs2_block_check *bc)
573{
574	int rc = 0;
575	struct ocfs2_super *osb = OCFS2_SB(sb);
576
577	if (ocfs2_meta_ecc(osb))
578		rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc,
579						&osb->osb_ecc_stats);
580
581	return rc;
582}
583
584void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
585				struct buffer_head **bhs, int nr,
586				struct ocfs2_block_check *bc)
587{
588	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
589		ocfs2_block_check_compute_bhs(bhs, nr, bc);
590}
591
592int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
593				struct buffer_head **bhs, int nr,
594				struct ocfs2_block_check *bc)
595{
596	int rc = 0;
597	struct ocfs2_super *osb = OCFS2_SB(sb);
598
599	if (ocfs2_meta_ecc(osb))
600		rc = ocfs2_block_check_validate_bhs(bhs, nr, bc,
601						    &osb->osb_ecc_stats);
602
603	return rc;
604}
605
606