1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * alloc.h
4 *
5 * Function prototypes
6 *
7 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
8 */
9
10#ifndef OCFS2_ALLOC_H
11#define OCFS2_ALLOC_H
12
13
14/*
15 * For xattr tree leaf, we limit the leaf byte size to be 64K.
16 */
17#define OCFS2_MAX_XATTR_TREE_LEAF_SIZE 65536
18
19/*
20 * ocfs2_extent_tree and ocfs2_extent_tree_operations are used to abstract
21 * the b-tree operations in ocfs2. Now all the b-tree operations are not
22 * limited to ocfs2_dinode only. Any data which need to allocate clusters
23 * to store can use b-tree. And it only needs to implement its ocfs2_extent_tree
24 * and operation.
25 *
26 * ocfs2_extent_tree becomes the first-class object for extent tree
27 * manipulation.  Callers of the alloc.c code need to fill it via one of
28 * the ocfs2_init_*_extent_tree() operations below.
29 *
30 * ocfs2_extent_tree contains info for the root of the b-tree, it must have a
31 * root ocfs2_extent_list and a root_bh so that they can be used in the b-tree
32 * functions.  It needs the ocfs2_caching_info structure associated with
33 * I/O on the tree.  With metadata ecc, we now call different journal_access
34 * functions for each type of metadata, so it must have the
35 * root_journal_access function.
36 * ocfs2_extent_tree_operations abstract the normal operations we do for
37 * the root of extent b-tree.
38 */
39struct ocfs2_extent_tree_operations;
40struct ocfs2_extent_tree {
41	const struct ocfs2_extent_tree_operations *et_ops;
42	struct buffer_head			*et_root_bh;
43	struct ocfs2_extent_list		*et_root_el;
44	struct ocfs2_caching_info		*et_ci;
45	ocfs2_journal_access_func		et_root_journal_access;
46	void					*et_object;
47	unsigned int				et_max_leaf_clusters;
48	struct ocfs2_cached_dealloc_ctxt	*et_dealloc;
49};
50
51/*
52 * ocfs2_init_*_extent_tree() will fill an ocfs2_extent_tree from the
53 * specified object buffer.
54 */
55void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
56				   struct ocfs2_caching_info *ci,
57				   struct buffer_head *bh);
58void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
59				       struct ocfs2_caching_info *ci,
60				       struct buffer_head *bh);
61struct ocfs2_xattr_value_buf;
62void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
63					struct ocfs2_caching_info *ci,
64					struct ocfs2_xattr_value_buf *vb);
65void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
66				    struct ocfs2_caching_info *ci,
67				    struct buffer_head *bh);
68void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
69				     struct ocfs2_caching_info *ci,
70				     struct buffer_head *bh);
71
72/*
73 * Read an extent block into *bh.  If *bh is NULL, a bh will be
74 * allocated.  This is a cached read.  The extent block will be validated
75 * with ocfs2_validate_extent_block().
76 */
77int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
78			    struct buffer_head **bh);
79
80struct ocfs2_alloc_context;
81int ocfs2_insert_extent(handle_t *handle,
82			struct ocfs2_extent_tree *et,
83			u32 cpos,
84			u64 start_blk,
85			u32 new_clusters,
86			u8 flags,
87			struct ocfs2_alloc_context *meta_ac);
88
89enum ocfs2_alloc_restarted {
90	RESTART_NONE = 0,
91	RESTART_TRANS,
92	RESTART_META
93};
94int ocfs2_add_clusters_in_btree(handle_t *handle,
95				struct ocfs2_extent_tree *et,
96				u32 *logical_offset,
97				u32 clusters_to_add,
98				int mark_unwritten,
99				struct ocfs2_alloc_context *data_ac,
100				struct ocfs2_alloc_context *meta_ac,
101				enum ocfs2_alloc_restarted *reason_ret);
102struct ocfs2_cached_dealloc_ctxt;
103struct ocfs2_path;
104int ocfs2_split_extent(handle_t *handle,
105		       struct ocfs2_extent_tree *et,
106		       struct ocfs2_path *path,
107		       int split_index,
108		       struct ocfs2_extent_rec *split_rec,
109		       struct ocfs2_alloc_context *meta_ac,
110		       struct ocfs2_cached_dealloc_ctxt *dealloc);
111int ocfs2_mark_extent_written(struct inode *inode,
112			      struct ocfs2_extent_tree *et,
113			      handle_t *handle, u32 cpos, u32 len, u32 phys,
114			      struct ocfs2_alloc_context *meta_ac,
115			      struct ocfs2_cached_dealloc_ctxt *dealloc);
116int ocfs2_change_extent_flag(handle_t *handle,
117			     struct ocfs2_extent_tree *et,
118			     u32 cpos, u32 len, u32 phys,
119			     struct ocfs2_alloc_context *meta_ac,
120			     struct ocfs2_cached_dealloc_ctxt *dealloc,
121			     int new_flags, int clear_flags);
122int ocfs2_remove_extent(handle_t *handle, struct ocfs2_extent_tree *et,
123			u32 cpos, u32 len,
124			struct ocfs2_alloc_context *meta_ac,
125			struct ocfs2_cached_dealloc_ctxt *dealloc);
126int ocfs2_remove_btree_range(struct inode *inode,
127			     struct ocfs2_extent_tree *et,
128			     u32 cpos, u32 phys_cpos, u32 len, int flags,
129			     struct ocfs2_cached_dealloc_ctxt *dealloc,
130			     u64 refcount_loc, bool refcount_tree_locked);
131
132int ocfs2_num_free_extents(struct ocfs2_extent_tree *et);
133
134/*
135 * how many new metadata chunks would an allocation need at maximum?
136 *
137 * Please note that the caller must make sure that root_el is the root
138 * of extent tree. So for an inode, it should be &fe->id2.i_list. Otherwise
139 * the result may be wrong.
140 */
141static inline int ocfs2_extend_meta_needed(struct ocfs2_extent_list *root_el)
142{
143	/*
144	 * Rather than do all the work of determining how much we need
145	 * (involves a ton of reads and locks), just ask for the
146	 * maximal limit.  That's a tree depth shift.  So, one block for
147	 * level of the tree (current l_tree_depth), one block for the
148	 * new tree_depth==0 extent_block, and one block at the new
149	 * top-of-the tree.
150	 */
151	return le16_to_cpu(root_el->l_tree_depth) + 2;
152}
153
154void ocfs2_dinode_new_extent_list(struct inode *inode, struct ocfs2_dinode *di);
155void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di);
156int ocfs2_convert_inline_data_to_extents(struct inode *inode,
157					 struct buffer_head *di_bh);
158
159int ocfs2_truncate_log_init(struct ocfs2_super *osb);
160void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb);
161void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
162				       int cancel);
163int ocfs2_flush_truncate_log(struct ocfs2_super *osb);
164int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
165				      int slot_num,
166				      struct ocfs2_dinode **tl_copy);
167int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
168					 struct ocfs2_dinode *tl_copy);
169int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb);
170int ocfs2_truncate_log_append(struct ocfs2_super *osb,
171			      handle_t *handle,
172			      u64 start_blk,
173			      unsigned int num_clusters);
174int __ocfs2_flush_truncate_log(struct ocfs2_super *osb);
175int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
176				   unsigned int needed);
177
178/*
179 * Process local structure which describes the block unlinks done
180 * during an operation. This is populated via
181 * ocfs2_cache_block_dealloc().
182 *
183 * ocfs2_run_deallocs() should be called after the potentially
184 * de-allocating routines. No journal handles should be open, and most
185 * locks should have been dropped.
186 */
187struct ocfs2_cached_dealloc_ctxt {
188	struct ocfs2_per_slot_free_list		*c_first_suballocator;
189	struct ocfs2_cached_block_free 		*c_global_allocator;
190};
191static inline void ocfs2_init_dealloc_ctxt(struct ocfs2_cached_dealloc_ctxt *c)
192{
193	c->c_first_suballocator = NULL;
194	c->c_global_allocator = NULL;
195}
196int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
197				u64 blkno, unsigned int bit);
198int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
199			      int type, int slot, u64 suballoc, u64 blkno,
200			      unsigned int bit);
201static inline int ocfs2_dealloc_has_cluster(struct ocfs2_cached_dealloc_ctxt *c)
202{
203	return c->c_global_allocator != NULL;
204}
205int ocfs2_run_deallocs(struct ocfs2_super *osb,
206		       struct ocfs2_cached_dealloc_ctxt *ctxt);
207
208struct ocfs2_truncate_context {
209	struct ocfs2_cached_dealloc_ctxt tc_dealloc;
210	int tc_ext_alloc_locked; /* is it cluster locked? */
211	/* these get destroyed once it's passed to ocfs2_commit_truncate. */
212	struct buffer_head *tc_last_eb_bh;
213};
214
215int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
216				  u64 range_start, u64 range_end);
217int ocfs2_commit_truncate(struct ocfs2_super *osb,
218			  struct inode *inode,
219			  struct buffer_head *di_bh);
220int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
221			  unsigned int start, unsigned int end, int trunc);
222
223int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
224		    struct ocfs2_extent_list *root_el, u32 cpos,
225		    struct buffer_head **leaf_bh);
226int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster);
227
228int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range);
229/*
230 * Helper function to look at the # of clusters in an extent record.
231 */
232static inline unsigned int ocfs2_rec_clusters(struct ocfs2_extent_list *el,
233					      struct ocfs2_extent_rec *rec)
234{
235	/*
236	 * Cluster count in extent records is slightly different
237	 * between interior nodes and leaf nodes. This is to support
238	 * unwritten extents which need a flags field in leaf node
239	 * records, thus shrinking the available space for a clusters
240	 * field.
241	 */
242	if (el->l_tree_depth)
243		return le32_to_cpu(rec->e_int_clusters);
244	else
245		return le16_to_cpu(rec->e_leaf_clusters);
246}
247
248/*
249 * This is only valid for leaf nodes, which are the only ones that can
250 * have empty extents anyway.
251 */
252static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
253{
254	return !rec->e_leaf_clusters;
255}
256
257int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
258		     struct page **pages, int *num);
259void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
260			      unsigned int from, unsigned int to,
261			      struct page *page, int zero, u64 *phys);
262/*
263 * Structures which describe a path through a btree, and functions to
264 * manipulate them.
265 *
266 * The idea here is to be as generic as possible with the tree
267 * manipulation code.
268 */
269struct ocfs2_path_item {
270	struct buffer_head		*bh;
271	struct ocfs2_extent_list	*el;
272};
273
274#define OCFS2_MAX_PATH_DEPTH	5
275
276struct ocfs2_path {
277	int				p_tree_depth;
278	ocfs2_journal_access_func	p_root_access;
279	struct ocfs2_path_item		p_node[OCFS2_MAX_PATH_DEPTH];
280};
281
282#define path_root_bh(_path) ((_path)->p_node[0].bh)
283#define path_root_el(_path) ((_path)->p_node[0].el)
284#define path_root_access(_path)((_path)->p_root_access)
285#define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
286#define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
287#define path_num_items(_path) ((_path)->p_tree_depth + 1)
288
289void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root);
290void ocfs2_free_path(struct ocfs2_path *path);
291int ocfs2_find_path(struct ocfs2_caching_info *ci,
292		    struct ocfs2_path *path,
293		    u32 cpos);
294struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path);
295struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et);
296int ocfs2_path_bh_journal_access(handle_t *handle,
297				 struct ocfs2_caching_info *ci,
298				 struct ocfs2_path *path,
299				 int idx);
300int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
301			      handle_t *handle,
302			      struct ocfs2_path *path);
303int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
304				   struct ocfs2_path *path, u32 *cpos);
305int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
306				  struct ocfs2_path *path, u32 *cpos);
307int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
308			    struct ocfs2_path *left,
309			    struct ocfs2_path *right);
310#endif /* OCFS2_ALLOC_H */
311