1// SPDX-License-Identifier: GPL-2.0
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8#include <linux/blkdev.h>
9#include <linux/buffer_head.h>
10#include <linux/fs.h>
11#include <linux/kernel.h>
12
13#include "debug.h"
14#include "ntfs.h"
15#include "ntfs_fs.h"
16
17static const struct INDEX_NAMES {
18	const __le16 *name;
19	u8 name_len;
20} s_index_names[INDEX_MUTEX_TOTAL] = {
21	{ I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22	{ SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23	{ SQ_NAME, ARRAY_SIZE(SQ_NAME) },   { SR_NAME, ARRAY_SIZE(SR_NAME) },
24};
25
26/*
27 * cmp_fnames - Compare two names in index.
28 *
29 * if l1 != 0
30 *   Both names are little endian on-disk ATTR_FILE_NAME structs.
31 * else
32 *   key1 - cpu_str, key2 - ATTR_FILE_NAME
33 */
34static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35		      const void *data)
36{
37	const struct ATTR_FILE_NAME *f2 = key2;
38	const struct ntfs_sb_info *sbi = data;
39	const struct ATTR_FILE_NAME *f1;
40	u16 fsize2;
41	bool both_case;
42
43	if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44		return -1;
45
46	fsize2 = fname_full_size(f2);
47	if (l2 < fsize2)
48		return -1;
49
50	both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase;
51	if (!l1) {
52		const struct le_str *s2 = (struct le_str *)&f2->name_len;
53
54		/*
55		 * If names are equal (case insensitive)
56		 * try to compare it case sensitive.
57		 */
58		return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59	}
60
61	f1 = key1;
62	return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63			      sbi->upcase, both_case);
64}
65
66/*
67 * cmp_uint - $SII of $Secure and $Q of Quota
68 */
69static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70		    const void *data)
71{
72	const u32 *k1 = key1;
73	const u32 *k2 = key2;
74
75	if (l2 < sizeof(u32))
76		return -1;
77
78	if (*k1 < *k2)
79		return -1;
80	if (*k1 > *k2)
81		return 1;
82	return 0;
83}
84
85/*
86 * cmp_sdh - $SDH of $Secure
87 */
88static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89		   const void *data)
90{
91	const struct SECURITY_KEY *k1 = key1;
92	const struct SECURITY_KEY *k2 = key2;
93	u32 t1, t2;
94
95	if (l2 < sizeof(struct SECURITY_KEY))
96		return -1;
97
98	t1 = le32_to_cpu(k1->hash);
99	t2 = le32_to_cpu(k2->hash);
100
101	/* First value is a hash value itself. */
102	if (t1 < t2)
103		return -1;
104	if (t1 > t2)
105		return 1;
106
107	/* Second value is security Id. */
108	if (data) {
109		t1 = le32_to_cpu(k1->sec_id);
110		t2 = le32_to_cpu(k2->sec_id);
111		if (t1 < t2)
112			return -1;
113		if (t1 > t2)
114			return 1;
115	}
116
117	return 0;
118}
119
120/*
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
122 */
123static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124		     const void *data)
125{
126	const __le32 *k1 = key1;
127	const __le32 *k2 = key2;
128	size_t count;
129
130	if ((size_t)data == 1) {
131		/*
132		 * ni_delete_all -> ntfs_remove_reparse ->
133		 * delete all with this reference.
134		 * k1, k2 - pointers to REPARSE_KEY
135		 */
136
137		k1 += 1; // Skip REPARSE_KEY.ReparseTag
138		k2 += 1; // Skip REPARSE_KEY.ReparseTag
139		if (l2 <= sizeof(int))
140			return -1;
141		l2 -= sizeof(int);
142		if (l1 <= sizeof(int))
143			return 1;
144		l1 -= sizeof(int);
145	}
146
147	if (l2 < sizeof(int))
148		return -1;
149
150	for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151		u32 t1 = le32_to_cpu(*k1);
152		u32 t2 = le32_to_cpu(*k2);
153
154		if (t1 > t2)
155			return 1;
156		if (t1 < t2)
157			return -1;
158	}
159
160	if (l1 > l2)
161		return 1;
162	if (l1 < l2)
163		return -1;
164
165	return 0;
166}
167
168static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169{
170	switch (root->type) {
171	case ATTR_NAME:
172		if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173			return &cmp_fnames;
174		break;
175	case ATTR_ZERO:
176		switch (root->rule) {
177		case NTFS_COLLATION_TYPE_UINT:
178			return &cmp_uint;
179		case NTFS_COLLATION_TYPE_SECURITY_HASH:
180			return &cmp_sdh;
181		case NTFS_COLLATION_TYPE_UINTS:
182			return &cmp_uints;
183		default:
184			break;
185		}
186		break;
187	default:
188		break;
189	}
190
191	return NULL;
192}
193
194struct bmp_buf {
195	struct ATTRIB *b;
196	struct mft_inode *mi;
197	struct buffer_head *bh;
198	ulong *buf;
199	size_t bit;
200	u32 nbits;
201	u64 new_valid;
202};
203
204static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205		       size_t bit, struct bmp_buf *bbuf)
206{
207	struct ATTRIB *b;
208	size_t data_size, valid_size, vbo, off = bit >> 3;
209	struct ntfs_sb_info *sbi = ni->mi.sbi;
210	CLST vcn = off >> sbi->cluster_bits;
211	struct ATTR_LIST_ENTRY *le = NULL;
212	struct buffer_head *bh;
213	struct super_block *sb;
214	u32 blocksize;
215	const struct INDEX_NAMES *in = &s_index_names[indx->type];
216
217	bbuf->bh = NULL;
218
219	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220			 &vcn, &bbuf->mi);
221	bbuf->b = b;
222	if (!b)
223		return -EINVAL;
224
225	if (!b->non_res) {
226		data_size = le32_to_cpu(b->res.data_size);
227
228		if (off >= data_size)
229			return -EINVAL;
230
231		bbuf->buf = (ulong *)resident_data(b);
232		bbuf->bit = 0;
233		bbuf->nbits = data_size * 8;
234
235		return 0;
236	}
237
238	data_size = le64_to_cpu(b->nres.data_size);
239	if (WARN_ON(off >= data_size)) {
240		/* Looks like filesystem error. */
241		return -EINVAL;
242	}
243
244	valid_size = le64_to_cpu(b->nres.valid_size);
245
246	bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247	if (!bh)
248		return -EIO;
249
250	if (IS_ERR(bh))
251		return PTR_ERR(bh);
252
253	bbuf->bh = bh;
254
255	if (buffer_locked(bh))
256		__wait_on_buffer(bh);
257
258	lock_buffer(bh);
259
260	sb = sbi->sb;
261	blocksize = sb->s_blocksize;
262
263	vbo = off & ~(size_t)sbi->block_mask;
264
265	bbuf->new_valid = vbo + blocksize;
266	if (bbuf->new_valid <= valid_size)
267		bbuf->new_valid = 0;
268	else if (bbuf->new_valid > data_size)
269		bbuf->new_valid = data_size;
270
271	if (vbo >= valid_size) {
272		memset(bh->b_data, 0, blocksize);
273	} else if (vbo + blocksize > valid_size) {
274		u32 voff = valid_size & sbi->block_mask;
275
276		memset(bh->b_data + voff, 0, blocksize - voff);
277	}
278
279	bbuf->buf = (ulong *)bh->b_data;
280	bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281	bbuf->nbits = 8 * blocksize;
282
283	return 0;
284}
285
286static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287{
288	struct buffer_head *bh = bbuf->bh;
289	struct ATTRIB *b = bbuf->b;
290
291	if (!bh) {
292		if (b && !b->non_res && dirty)
293			bbuf->mi->dirty = true;
294		return;
295	}
296
297	if (!dirty)
298		goto out;
299
300	if (bbuf->new_valid) {
301		b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302		bbuf->mi->dirty = true;
303	}
304
305	set_buffer_uptodate(bh);
306	mark_buffer_dirty(bh);
307
308out:
309	unlock_buffer(bh);
310	put_bh(bh);
311}
312
313/*
314 * indx_mark_used - Mark the bit @bit as used.
315 */
316static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317			  size_t bit)
318{
319	int err;
320	struct bmp_buf bbuf;
321
322	err = bmp_buf_get(indx, ni, bit, &bbuf);
323	if (err)
324		return err;
325
326	__set_bit_le(bit - bbuf.bit, bbuf.buf);
327
328	bmp_buf_put(&bbuf, true);
329
330	return 0;
331}
332
333/*
334 * indx_mark_free - Mark the bit @bit as free.
335 */
336static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337			  size_t bit)
338{
339	int err;
340	struct bmp_buf bbuf;
341
342	err = bmp_buf_get(indx, ni, bit, &bbuf);
343	if (err)
344		return err;
345
346	__clear_bit_le(bit - bbuf.bit, bbuf.buf);
347
348	bmp_buf_put(&bbuf, true);
349
350	return 0;
351}
352
353/*
354 * scan_nres_bitmap
355 *
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
359 */
360static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361			    struct ntfs_index *indx, size_t from,
362			    bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363				       size_t *ret),
364			    size_t *ret)
365{
366	struct ntfs_sb_info *sbi = ni->mi.sbi;
367	struct super_block *sb = sbi->sb;
368	struct runs_tree *run = &indx->bitmap_run;
369	struct rw_semaphore *lock = &indx->run_lock;
370	u32 nbits = sb->s_blocksize * 8;
371	u32 blocksize = sb->s_blocksize;
372	u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373	u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374	sector_t eblock = bytes_to_block(sb, data_size);
375	size_t vbo = from >> 3;
376	sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377	sector_t vblock = vbo >> sb->s_blocksize_bits;
378	sector_t blen, block;
379	CLST lcn, clen, vcn, vcn_next;
380	size_t idx;
381	struct buffer_head *bh;
382	bool ok;
383
384	*ret = MINUS_ONE_T;
385
386	if (vblock >= eblock)
387		return 0;
388
389	from &= nbits - 1;
390	vcn = vbo >> sbi->cluster_bits;
391
392	down_read(lock);
393	ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394	up_read(lock);
395
396next_run:
397	if (!ok) {
398		int err;
399		const struct INDEX_NAMES *name = &s_index_names[indx->type];
400
401		down_write(lock);
402		err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403					 name->name_len, run, vcn);
404		up_write(lock);
405		if (err)
406			return err;
407		down_read(lock);
408		ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409		up_read(lock);
410		if (!ok)
411			return -EINVAL;
412	}
413
414	blen = (sector_t)clen * sbi->blocks_per_cluster;
415	block = (sector_t)lcn * sbi->blocks_per_cluster;
416
417	for (; blk < blen; blk++, from = 0) {
418		bh = ntfs_bread(sb, block + blk);
419		if (!bh)
420			return -EIO;
421
422		vbo = (u64)vblock << sb->s_blocksize_bits;
423		if (vbo >= valid_size) {
424			memset(bh->b_data, 0, blocksize);
425		} else if (vbo + blocksize > valid_size) {
426			u32 voff = valid_size & sbi->block_mask;
427
428			memset(bh->b_data + voff, 0, blocksize - voff);
429		}
430
431		if (vbo + blocksize > data_size)
432			nbits = 8 * (data_size - vbo);
433
434		ok = nbits > from ?
435			     (*fn)((ulong *)bh->b_data, from, nbits, ret) :
436			     false;
437		put_bh(bh);
438
439		if (ok) {
440			*ret += 8 * vbo;
441			return 0;
442		}
443
444		if (++vblock >= eblock) {
445			*ret = MINUS_ONE_T;
446			return 0;
447		}
448	}
449	blk = 0;
450	vcn_next = vcn + clen;
451	down_read(lock);
452	ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
453	if (!ok)
454		vcn = vcn_next;
455	up_read(lock);
456	goto next_run;
457}
458
459static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
460{
461	size_t pos = find_next_zero_bit_le(buf, bits, bit);
462
463	if (pos >= bits)
464		return false;
465	*ret = pos;
466	return true;
467}
468
469/*
470 * indx_find_free - Look for free bit.
471 *
472 * Return: -1 if no free bits.
473 */
474static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
475			  size_t *bit, struct ATTRIB **bitmap)
476{
477	struct ATTRIB *b;
478	struct ATTR_LIST_ENTRY *le = NULL;
479	const struct INDEX_NAMES *in = &s_index_names[indx->type];
480	int err;
481
482	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
483			 NULL, NULL);
484
485	if (!b)
486		return -ENOENT;
487
488	*bitmap = b;
489	*bit = MINUS_ONE_T;
490
491	if (!b->non_res) {
492		u32 nbits = 8 * le32_to_cpu(b->res.data_size);
493		size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0);
494
495		if (pos < nbits)
496			*bit = pos;
497	} else {
498		err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
499
500		if (err)
501			return err;
502	}
503
504	return 0;
505}
506
507static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
508{
509	size_t pos = find_next_bit_le(buf, bits, bit);
510
511	if (pos >= bits)
512		return false;
513	*ret = pos;
514	return true;
515}
516
517/*
518 * indx_used_bit - Look for used bit.
519 *
520 * Return: MINUS_ONE_T if no used bits.
521 */
522int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
523{
524	struct ATTRIB *b;
525	struct ATTR_LIST_ENTRY *le = NULL;
526	size_t from = *bit;
527	const struct INDEX_NAMES *in = &s_index_names[indx->type];
528	int err;
529
530	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
531			 NULL, NULL);
532
533	if (!b)
534		return -ENOENT;
535
536	*bit = MINUS_ONE_T;
537
538	if (!b->non_res) {
539		u32 nbits = le32_to_cpu(b->res.data_size) * 8;
540		size_t pos = find_next_bit_le(resident_data(b), nbits, from);
541
542		if (pos < nbits)
543			*bit = pos;
544	} else {
545		err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
546		if (err)
547			return err;
548	}
549
550	return 0;
551}
552
553/*
554 * hdr_find_split
555 *
556 * Find a point at which the index allocation buffer would like to be split.
557 * NOTE: This function should never return 'END' entry NULL returns on error.
558 */
559static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
560{
561	size_t o;
562	const struct NTFS_DE *e = hdr_first_de(hdr);
563	u32 used_2 = le32_to_cpu(hdr->used) >> 1;
564	u16 esize;
565
566	if (!e || de_is_last(e))
567		return NULL;
568
569	esize = le16_to_cpu(e->size);
570	for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
571		const struct NTFS_DE *p = e;
572
573		e = Add2Ptr(hdr, o);
574
575		/* We must not return END entry. */
576		if (de_is_last(e))
577			return p;
578
579		esize = le16_to_cpu(e->size);
580	}
581
582	return e;
583}
584
585/*
586 * hdr_insert_head - Insert some entries at the beginning of the buffer.
587 *
588 * It is used to insert entries into a newly-created buffer.
589 */
590static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
591					     const void *ins, u32 ins_bytes)
592{
593	u32 to_move;
594	struct NTFS_DE *e = hdr_first_de(hdr);
595	u32 used = le32_to_cpu(hdr->used);
596
597	if (!e)
598		return NULL;
599
600	/* Now we just make room for the inserted entries and jam it in. */
601	to_move = used - le32_to_cpu(hdr->de_off);
602	memmove(Add2Ptr(e, ins_bytes), e, to_move);
603	memcpy(e, ins, ins_bytes);
604	hdr->used = cpu_to_le32(used + ins_bytes);
605
606	return e;
607}
608
609/*
610 * index_hdr_check
611 *
612 * return true if INDEX_HDR is valid
613 */
614static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
615{
616	u32 end = le32_to_cpu(hdr->used);
617	u32 tot = le32_to_cpu(hdr->total);
618	u32 off = le32_to_cpu(hdr->de_off);
619
620	if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
621	    off + sizeof(struct NTFS_DE) > end) {
622		/* incorrect index buffer. */
623		return false;
624	}
625
626	return true;
627}
628
629/*
630 * index_buf_check
631 *
632 * return true if INDEX_BUFFER seems is valid
633 */
634static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
635			    const CLST *vbn)
636{
637	const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
638	u16 fo = le16_to_cpu(rhdr->fix_off);
639	u16 fn = le16_to_cpu(rhdr->fix_num);
640
641	if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
642	    rhdr->sign != NTFS_INDX_SIGNATURE ||
643	    fo < sizeof(struct INDEX_BUFFER)
644	    /* Check index buffer vbn. */
645	    || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
646	    fo + fn * sizeof(short) >= bytes ||
647	    fn != ((bytes >> SECTOR_SHIFT) + 1)) {
648		/* incorrect index buffer. */
649		return false;
650	}
651
652	return index_hdr_check(&ib->ihdr,
653			       bytes - offsetof(struct INDEX_BUFFER, ihdr));
654}
655
656void fnd_clear(struct ntfs_fnd *fnd)
657{
658	int i;
659
660	for (i = fnd->level - 1; i >= 0; i--) {
661		struct indx_node *n = fnd->nodes[i];
662
663		if (!n)
664			continue;
665
666		put_indx_node(n);
667		fnd->nodes[i] = NULL;
668	}
669	fnd->level = 0;
670	fnd->root_de = NULL;
671}
672
673static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
674		    struct NTFS_DE *e)
675{
676	int i = fnd->level;
677
678	if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
679		return -EINVAL;
680	fnd->nodes[i] = n;
681	fnd->de[i] = e;
682	fnd->level += 1;
683	return 0;
684}
685
686static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
687{
688	struct indx_node *n;
689	int i = fnd->level;
690
691	i -= 1;
692	n = fnd->nodes[i];
693	fnd->nodes[i] = NULL;
694	fnd->level = i;
695
696	return n;
697}
698
699static bool fnd_is_empty(struct ntfs_fnd *fnd)
700{
701	if (!fnd->level)
702		return !fnd->root_de;
703
704	return !fnd->de[fnd->level - 1];
705}
706
707/*
708 * hdr_find_e - Locate an entry the index buffer.
709 *
710 * If no matching entry is found, it returns the first entry which is greater
711 * than the desired entry If the search key is greater than all the entries the
712 * buffer, it returns the 'end' entry. This function does a binary search of the
713 * current index buffer, for the first entry that is <= to the search value.
714 *
715 * Return: NULL if error.
716 */
717static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718				  const struct INDEX_HDR *hdr, const void *key,
719				  size_t key_len, const void *ctx, int *diff)
720{
721	struct NTFS_DE *e, *found = NULL;
722	NTFS_CMP_FUNC cmp = indx->cmp;
723	int min_idx = 0, mid_idx, max_idx = 0;
724	int diff2;
725	int table_size = 8;
726	u32 e_size, e_key_len;
727	u32 end = le32_to_cpu(hdr->used);
728	u32 off = le32_to_cpu(hdr->de_off);
729	u32 total = le32_to_cpu(hdr->total);
730	u16 offs[128];
731
732	if (unlikely(!cmp))
733		return NULL;
734
735fill_table:
736	if (end > total)
737		return NULL;
738
739	if (off + sizeof(struct NTFS_DE) > end)
740		return NULL;
741
742	e = Add2Ptr(hdr, off);
743	e_size = le16_to_cpu(e->size);
744
745	if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
746		return NULL;
747
748	if (!de_is_last(e)) {
749		offs[max_idx] = off;
750		off += e_size;
751
752		max_idx++;
753		if (max_idx < table_size)
754			goto fill_table;
755
756		max_idx--;
757	}
758
759binary_search:
760	e_key_len = le16_to_cpu(e->key_size);
761
762	diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
763	if (diff2 > 0) {
764		if (found) {
765			min_idx = mid_idx + 1;
766		} else {
767			if (de_is_last(e))
768				return NULL;
769
770			max_idx = 0;
771			table_size = min(table_size * 2, (int)ARRAY_SIZE(offs));
772			goto fill_table;
773		}
774	} else if (diff2 < 0) {
775		if (found)
776			max_idx = mid_idx - 1;
777		else
778			max_idx--;
779
780		found = e;
781	} else {
782		*diff = 0;
783		return e;
784	}
785
786	if (min_idx > max_idx) {
787		*diff = -1;
788		return found;
789	}
790
791	mid_idx = (min_idx + max_idx) >> 1;
792	e = Add2Ptr(hdr, offs[mid_idx]);
793
794	goto binary_search;
795}
796
797/*
798 * hdr_insert_de - Insert an index entry into the buffer.
799 *
800 * 'before' should be a pointer previously returned from hdr_find_e.
801 */
802static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
803				     struct INDEX_HDR *hdr,
804				     const struct NTFS_DE *de,
805				     struct NTFS_DE *before, const void *ctx)
806{
807	int diff;
808	size_t off = PtrOffset(hdr, before);
809	u32 used = le32_to_cpu(hdr->used);
810	u32 total = le32_to_cpu(hdr->total);
811	u16 de_size = le16_to_cpu(de->size);
812
813	/* First, check to see if there's enough room. */
814	if (used + de_size > total)
815		return NULL;
816
817	/* We know there's enough space, so we know we'll succeed. */
818	if (before) {
819		/* Check that before is inside Index. */
820		if (off >= used || off < le32_to_cpu(hdr->de_off) ||
821		    off + le16_to_cpu(before->size) > total) {
822			return NULL;
823		}
824		goto ok;
825	}
826	/* No insert point is applied. Get it manually. */
827	before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
828			    &diff);
829	if (!before)
830		return NULL;
831	off = PtrOffset(hdr, before);
832
833ok:
834	/* Now we just make room for the entry and jam it in. */
835	memmove(Add2Ptr(before, de_size), before, used - off);
836
837	hdr->used = cpu_to_le32(used + de_size);
838	memcpy(before, de, de_size);
839
840	return before;
841}
842
843/*
844 * hdr_delete_de - Remove an entry from the index buffer.
845 */
846static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
847					    struct NTFS_DE *re)
848{
849	u32 used = le32_to_cpu(hdr->used);
850	u16 esize = le16_to_cpu(re->size);
851	u32 off = PtrOffset(hdr, re);
852	int bytes = used - (off + esize);
853
854	/* check INDEX_HDR valid before using INDEX_HDR */
855	if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
856		return NULL;
857
858	if (off >= used || esize < sizeof(struct NTFS_DE) ||
859	    bytes < sizeof(struct NTFS_DE))
860		return NULL;
861
862	hdr->used = cpu_to_le32(used - esize);
863	memmove(re, Add2Ptr(re, esize), bytes);
864
865	return re;
866}
867
868void indx_clear(struct ntfs_index *indx)
869{
870	run_close(&indx->alloc_run);
871	run_close(&indx->bitmap_run);
872}
873
874int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
875	      const struct ATTRIB *attr, enum index_mutex_classed type)
876{
877	u32 t32;
878	const struct INDEX_ROOT *root = resident_data(attr);
879
880	t32 = le32_to_cpu(attr->res.data_size);
881	if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
882	    !index_hdr_check(&root->ihdr,
883			     t32 - offsetof(struct INDEX_ROOT, ihdr))) {
884		goto out;
885	}
886
887	/* Check root fields. */
888	if (!root->index_block_clst)
889		goto out;
890
891	indx->type = type;
892	indx->idx2vbn_bits = __ffs(root->index_block_clst);
893
894	t32 = le32_to_cpu(root->index_block_size);
895	indx->index_bits = blksize_bits(t32);
896
897	/* Check index record size. */
898	if (t32 < sbi->cluster_size) {
899		/* Index record is smaller than a cluster, use 512 blocks. */
900		if (t32 != root->index_block_clst * SECTOR_SIZE)
901			goto out;
902
903		/* Check alignment to a cluster. */
904		if ((sbi->cluster_size >> SECTOR_SHIFT) &
905		    (root->index_block_clst - 1)) {
906			goto out;
907		}
908
909		indx->vbn2vbo_bits = SECTOR_SHIFT;
910	} else {
911		/* Index record must be a multiple of cluster size. */
912		if (t32 != root->index_block_clst << sbi->cluster_bits)
913			goto out;
914
915		indx->vbn2vbo_bits = sbi->cluster_bits;
916	}
917
918	init_rwsem(&indx->run_lock);
919
920	indx->cmp = get_cmp_func(root);
921	if (!indx->cmp)
922		goto out;
923
924	return 0;
925
926out:
927	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
928	return -EINVAL;
929}
930
931static struct indx_node *indx_new(struct ntfs_index *indx,
932				  struct ntfs_inode *ni, CLST vbn,
933				  const __le64 *sub_vbn)
934{
935	int err;
936	struct NTFS_DE *e;
937	struct indx_node *r;
938	struct INDEX_HDR *hdr;
939	struct INDEX_BUFFER *index;
940	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
941	u32 bytes = 1u << indx->index_bits;
942	u16 fn;
943	u32 eo;
944
945	r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
946	if (!r)
947		return ERR_PTR(-ENOMEM);
948
949	index = kzalloc(bytes, GFP_NOFS);
950	if (!index) {
951		kfree(r);
952		return ERR_PTR(-ENOMEM);
953	}
954
955	err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
956
957	if (err) {
958		kfree(index);
959		kfree(r);
960		return ERR_PTR(err);
961	}
962
963	/* Create header. */
964	index->rhdr.sign = NTFS_INDX_SIGNATURE;
965	index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
966	fn = (bytes >> SECTOR_SHIFT) + 1; // 9
967	index->rhdr.fix_num = cpu_to_le16(fn);
968	index->vbn = cpu_to_le64(vbn);
969	hdr = &index->ihdr;
970	eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
971	hdr->de_off = cpu_to_le32(eo);
972
973	e = Add2Ptr(hdr, eo);
974
975	if (sub_vbn) {
976		e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
977		e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
978		hdr->used =
979			cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
980		de_set_vbn_le(e, *sub_vbn);
981		hdr->flags = 1;
982	} else {
983		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
984		hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
985		e->flags = NTFS_IE_LAST;
986	}
987
988	hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
989
990	r->index = index;
991	return r;
992}
993
994struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
995				 struct ATTRIB **attr, struct mft_inode **mi)
996{
997	struct ATTR_LIST_ENTRY *le = NULL;
998	struct ATTRIB *a;
999	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1000	struct INDEX_ROOT *root;
1001
1002	a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
1003			 mi);
1004	if (!a)
1005		return NULL;
1006
1007	if (attr)
1008		*attr = a;
1009
1010	root = resident_data_ex(a, sizeof(struct INDEX_ROOT));
1011
1012	/* length check */
1013	if (root &&
1014	    offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) >
1015		    le32_to_cpu(a->res.data_size)) {
1016		return NULL;
1017	}
1018
1019	return root;
1020}
1021
1022static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1023		      struct indx_node *node, int sync)
1024{
1025	struct INDEX_BUFFER *ib = node->index;
1026
1027	return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1028}
1029
1030/*
1031 * indx_read
1032 *
1033 * If ntfs_readdir calls this function
1034 * inode is shared locked and no ni_lock.
1035 * Use rw_semaphore for read/write access to alloc_run.
1036 */
1037int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1038	      struct indx_node **node)
1039{
1040	int err;
1041	struct INDEX_BUFFER *ib;
1042	struct runs_tree *run = &indx->alloc_run;
1043	struct rw_semaphore *lock = &indx->run_lock;
1044	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1045	u32 bytes = 1u << indx->index_bits;
1046	struct indx_node *in = *node;
1047	const struct INDEX_NAMES *name;
1048
1049	if (!in) {
1050		in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1051		if (!in)
1052			return -ENOMEM;
1053	} else {
1054		nb_put(&in->nb);
1055	}
1056
1057	ib = in->index;
1058	if (!ib) {
1059		ib = kmalloc(bytes, GFP_NOFS);
1060		if (!ib) {
1061			err = -ENOMEM;
1062			goto out;
1063		}
1064	}
1065
1066	down_read(lock);
1067	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1068	up_read(lock);
1069	if (!err)
1070		goto ok;
1071
1072	if (err == -E_NTFS_FIXUP)
1073		goto ok;
1074
1075	if (err != -ENOENT)
1076		goto out;
1077
1078	name = &s_index_names[indx->type];
1079	down_write(lock);
1080	err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1081				   run, vbo, vbo + bytes);
1082	up_write(lock);
1083	if (err)
1084		goto out;
1085
1086	down_read(lock);
1087	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1088	up_read(lock);
1089	if (err == -E_NTFS_FIXUP)
1090		goto ok;
1091
1092	if (err)
1093		goto out;
1094
1095ok:
1096	if (!index_buf_check(ib, bytes, &vbn)) {
1097		ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1098		ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1099		err = -EINVAL;
1100		goto out;
1101	}
1102
1103	if (err == -E_NTFS_FIXUP) {
1104		ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1105		err = 0;
1106	}
1107
1108	/* check for index header length */
1109	if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1110	    bytes) {
1111		err = -EINVAL;
1112		goto out;
1113	}
1114
1115	in->index = ib;
1116	*node = in;
1117
1118out:
1119	if (err == -E_NTFS_CORRUPT) {
1120		ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1121		ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1122		err = -EINVAL;
1123	}
1124
1125	if (ib != in->index)
1126		kfree(ib);
1127
1128	if (*node != in) {
1129		nb_put(&in->nb);
1130		kfree(in);
1131	}
1132
1133	return err;
1134}
1135
1136/*
1137 * indx_find - Scan NTFS directory for given entry.
1138 */
1139int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1140	      const struct INDEX_ROOT *root, const void *key, size_t key_len,
1141	      const void *ctx, int *diff, struct NTFS_DE **entry,
1142	      struct ntfs_fnd *fnd)
1143{
1144	int err;
1145	struct NTFS_DE *e;
1146	struct indx_node *node;
1147
1148	if (!root)
1149		root = indx_get_root(&ni->dir, ni, NULL, NULL);
1150
1151	if (!root) {
1152		/* Should not happen. */
1153		return -EINVAL;
1154	}
1155
1156	/* Check cache. */
1157	e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1158	if (e && !de_is_last(e) &&
1159	    !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1160		*entry = e;
1161		*diff = 0;
1162		return 0;
1163	}
1164
1165	/* Soft finder reset. */
1166	fnd_clear(fnd);
1167
1168	/* Lookup entry that is <= to the search value. */
1169	e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1170	if (!e)
1171		return -EINVAL;
1172
1173	fnd->root_de = e;
1174
1175	for (;;) {
1176		node = NULL;
1177		if (*diff >= 0 || !de_has_vcn_ex(e))
1178			break;
1179
1180		/* Read next level. */
1181		err = indx_read(indx, ni, de_get_vbn(e), &node);
1182		if (err) {
1183			/* io error? */
1184			return err;
1185		}
1186
1187		/* Lookup entry that is <= to the search value. */
1188		e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1189			       diff);
1190		if (!e) {
1191			put_indx_node(node);
1192			return -EINVAL;
1193		}
1194
1195		fnd_push(fnd, node, e);
1196	}
1197
1198	*entry = e;
1199	return 0;
1200}
1201
1202int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1203		   const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1204		   struct ntfs_fnd *fnd)
1205{
1206	int err;
1207	struct indx_node *n = NULL;
1208	struct NTFS_DE *e;
1209	size_t iter = 0;
1210	int level = fnd->level;
1211
1212	if (!*entry) {
1213		/* Start find. */
1214		e = hdr_first_de(&root->ihdr);
1215		if (!e)
1216			return 0;
1217		fnd_clear(fnd);
1218		fnd->root_de = e;
1219	} else if (!level) {
1220		if (de_is_last(fnd->root_de)) {
1221			*entry = NULL;
1222			return 0;
1223		}
1224
1225		e = hdr_next_de(&root->ihdr, fnd->root_de);
1226		if (!e)
1227			return -EINVAL;
1228		fnd->root_de = e;
1229	} else {
1230		n = fnd->nodes[level - 1];
1231		e = fnd->de[level - 1];
1232
1233		if (de_is_last(e))
1234			goto pop_level;
1235
1236		e = hdr_next_de(&n->index->ihdr, e);
1237		if (!e)
1238			return -EINVAL;
1239
1240		fnd->de[level - 1] = e;
1241	}
1242
1243	/* Just to avoid tree cycle. */
1244next_iter:
1245	if (iter++ >= 1000)
1246		return -EINVAL;
1247
1248	while (de_has_vcn_ex(e)) {
1249		if (le16_to_cpu(e->size) <
1250		    sizeof(struct NTFS_DE) + sizeof(u64)) {
1251			if (n) {
1252				fnd_pop(fnd);
1253				kfree(n);
1254			}
1255			return -EINVAL;
1256		}
1257
1258		/* Read next level. */
1259		err = indx_read(indx, ni, de_get_vbn(e), &n);
1260		if (err)
1261			return err;
1262
1263		/* Try next level. */
1264		e = hdr_first_de(&n->index->ihdr);
1265		if (!e) {
1266			kfree(n);
1267			return -EINVAL;
1268		}
1269
1270		fnd_push(fnd, n, e);
1271	}
1272
1273	if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1274		*entry = e;
1275		return 0;
1276	}
1277
1278pop_level:
1279	for (;;) {
1280		if (!de_is_last(e))
1281			goto next_iter;
1282
1283		/* Pop one level. */
1284		if (n) {
1285			fnd_pop(fnd);
1286			kfree(n);
1287		}
1288
1289		level = fnd->level;
1290
1291		if (level) {
1292			n = fnd->nodes[level - 1];
1293			e = fnd->de[level - 1];
1294		} else if (fnd->root_de) {
1295			n = NULL;
1296			e = fnd->root_de;
1297			fnd->root_de = NULL;
1298		} else {
1299			*entry = NULL;
1300			return 0;
1301		}
1302
1303		if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1304			*entry = e;
1305			if (!fnd->root_de)
1306				fnd->root_de = e;
1307			return 0;
1308		}
1309	}
1310}
1311
1312int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1313		  const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1314		  size_t *off, struct ntfs_fnd *fnd)
1315{
1316	int err;
1317	struct indx_node *n = NULL;
1318	struct NTFS_DE *e = NULL;
1319	struct NTFS_DE *e2;
1320	size_t bit;
1321	CLST next_used_vbn;
1322	CLST next_vbn;
1323	u32 record_size = ni->mi.sbi->record_size;
1324
1325	/* Use non sorted algorithm. */
1326	if (!*entry) {
1327		/* This is the first call. */
1328		e = hdr_first_de(&root->ihdr);
1329		if (!e)
1330			return 0;
1331		fnd_clear(fnd);
1332		fnd->root_de = e;
1333
1334		/* The first call with setup of initial element. */
1335		if (*off >= record_size) {
1336			next_vbn = (((*off - record_size) >> indx->index_bits))
1337				   << indx->idx2vbn_bits;
1338			/* Jump inside cycle 'for'. */
1339			goto next;
1340		}
1341
1342		/* Start enumeration from root. */
1343		*off = 0;
1344	} else if (!fnd->root_de)
1345		return -EINVAL;
1346
1347	for (;;) {
1348		/* Check if current entry can be used. */
1349		if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1350			goto ok;
1351
1352		if (!fnd->level) {
1353			/* Continue to enumerate root. */
1354			if (!de_is_last(fnd->root_de)) {
1355				e = hdr_next_de(&root->ihdr, fnd->root_de);
1356				if (!e)
1357					return -EINVAL;
1358				fnd->root_de = e;
1359				continue;
1360			}
1361
1362			/* Start to enumerate indexes from 0. */
1363			next_vbn = 0;
1364		} else {
1365			/* Continue to enumerate indexes. */
1366			e2 = fnd->de[fnd->level - 1];
1367
1368			n = fnd->nodes[fnd->level - 1];
1369
1370			if (!de_is_last(e2)) {
1371				e = hdr_next_de(&n->index->ihdr, e2);
1372				if (!e)
1373					return -EINVAL;
1374				fnd->de[fnd->level - 1] = e;
1375				continue;
1376			}
1377
1378			/* Continue with next index. */
1379			next_vbn = le64_to_cpu(n->index->vbn) +
1380				   root->index_block_clst;
1381		}
1382
1383next:
1384		/* Release current index. */
1385		if (n) {
1386			fnd_pop(fnd);
1387			put_indx_node(n);
1388			n = NULL;
1389		}
1390
1391		/* Skip all free indexes. */
1392		bit = next_vbn >> indx->idx2vbn_bits;
1393		err = indx_used_bit(indx, ni, &bit);
1394		if (err == -ENOENT || bit == MINUS_ONE_T) {
1395			/* No used indexes. */
1396			*entry = NULL;
1397			return 0;
1398		}
1399
1400		next_used_vbn = bit << indx->idx2vbn_bits;
1401
1402		/* Read buffer into memory. */
1403		err = indx_read(indx, ni, next_used_vbn, &n);
1404		if (err)
1405			return err;
1406
1407		e = hdr_first_de(&n->index->ihdr);
1408		fnd_push(fnd, n, e);
1409		if (!e)
1410			return -EINVAL;
1411	}
1412
1413ok:
1414	/* Return offset to restore enumerator if necessary. */
1415	if (!n) {
1416		/* 'e' points in root, */
1417		*off = PtrOffset(&root->ihdr, e);
1418	} else {
1419		/* 'e' points in index, */
1420		*off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1421		       record_size + PtrOffset(&n->index->ihdr, e);
1422	}
1423
1424	*entry = e;
1425	return 0;
1426}
1427
1428/*
1429 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1430 */
1431static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1432				CLST *vbn)
1433{
1434	int err;
1435	struct ntfs_sb_info *sbi = ni->mi.sbi;
1436	struct ATTRIB *bitmap;
1437	struct ATTRIB *alloc;
1438	u32 data_size = 1u << indx->index_bits;
1439	u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1440	CLST len = alloc_size >> sbi->cluster_bits;
1441	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1442	CLST alen;
1443	struct runs_tree run;
1444
1445	run_init(&run);
1446
1447	err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF,
1448				     &alen, 0, NULL, NULL);
1449	if (err)
1450		goto out;
1451
1452	err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1453				    &run, 0, len, 0, &alloc, NULL, NULL);
1454	if (err)
1455		goto out1;
1456
1457	alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1458
1459	err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1460				 in->name_len, &bitmap, NULL, NULL);
1461	if (err)
1462		goto out2;
1463
1464	if (in->name == I30_NAME) {
1465		i_size_write(&ni->vfs_inode, data_size);
1466		inode_set_bytes(&ni->vfs_inode, alloc_size);
1467	}
1468
1469	memcpy(&indx->alloc_run, &run, sizeof(run));
1470
1471	*vbn = 0;
1472
1473	return 0;
1474
1475out2:
1476	mi_remove_attr(NULL, &ni->mi, alloc);
1477
1478out1:
1479	run_deallocate(sbi, &run, false);
1480
1481out:
1482	return err;
1483}
1484
1485/*
1486 * indx_add_allocate - Add clusters to index.
1487 */
1488static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1489			     CLST *vbn)
1490{
1491	int err;
1492	size_t bit;
1493	u64 data_size;
1494	u64 bmp_size, bmp_size_v;
1495	struct ATTRIB *bmp, *alloc;
1496	struct mft_inode *mi;
1497	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1498
1499	err = indx_find_free(indx, ni, &bit, &bmp);
1500	if (err)
1501		goto out1;
1502
1503	if (bit != MINUS_ONE_T) {
1504		bmp = NULL;
1505	} else {
1506		if (bmp->non_res) {
1507			bmp_size = le64_to_cpu(bmp->nres.data_size);
1508			bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1509		} else {
1510			bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1511		}
1512
1513		bit = bmp_size << 3;
1514	}
1515
1516	data_size = (u64)(bit + 1) << indx->index_bits;
1517
1518	if (bmp) {
1519		/* Increase bitmap. */
1520		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1521				    &indx->bitmap_run, bitmap_size(bit + 1),
1522				    NULL, true, NULL);
1523		if (err)
1524			goto out1;
1525	}
1526
1527	alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1528			     NULL, &mi);
1529	if (!alloc) {
1530		err = -EINVAL;
1531		if (bmp)
1532			goto out2;
1533		goto out1;
1534	}
1535
1536	/* Increase allocation. */
1537	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1538			    &indx->alloc_run, data_size, &data_size, true,
1539			    NULL);
1540	if (err) {
1541		if (bmp)
1542			goto out2;
1543		goto out1;
1544	}
1545
1546	if (in->name == I30_NAME)
1547		i_size_write(&ni->vfs_inode, data_size);
1548
1549	*vbn = bit << indx->idx2vbn_bits;
1550
1551	return 0;
1552
1553out2:
1554	/* Ops. No space? */
1555	attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1556		      &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1557
1558out1:
1559	return err;
1560}
1561
1562/*
1563 * indx_insert_into_root - Attempt to insert an entry into the index root.
1564 *
1565 * @undo - True if we undoing previous remove.
1566 * If necessary, it will twiddle the index b-tree.
1567 */
1568static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1569				 const struct NTFS_DE *new_de,
1570				 struct NTFS_DE *root_de, const void *ctx,
1571				 struct ntfs_fnd *fnd, bool undo)
1572{
1573	int err = 0;
1574	struct NTFS_DE *e, *e0, *re;
1575	struct mft_inode *mi;
1576	struct ATTRIB *attr;
1577	struct INDEX_HDR *hdr;
1578	struct indx_node *n;
1579	CLST new_vbn;
1580	__le64 *sub_vbn, t_vbn;
1581	u16 new_de_size;
1582	u32 hdr_used, hdr_total, asize, to_move;
1583	u32 root_size, new_root_size;
1584	struct ntfs_sb_info *sbi;
1585	int ds_root;
1586	struct INDEX_ROOT *root, *a_root;
1587
1588	/* Get the record this root placed in. */
1589	root = indx_get_root(indx, ni, &attr, &mi);
1590	if (!root)
1591		return -EINVAL;
1592
1593	/*
1594	 * Try easy case:
1595	 * hdr_insert_de will succeed if there's
1596	 * room the root for the new entry.
1597	 */
1598	hdr = &root->ihdr;
1599	sbi = ni->mi.sbi;
1600	new_de_size = le16_to_cpu(new_de->size);
1601	hdr_used = le32_to_cpu(hdr->used);
1602	hdr_total = le32_to_cpu(hdr->total);
1603	asize = le32_to_cpu(attr->size);
1604	root_size = le32_to_cpu(attr->res.data_size);
1605
1606	ds_root = new_de_size + hdr_used - hdr_total;
1607
1608	/* If 'undo' is set then reduce requirements. */
1609	if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1610	    mi_resize_attr(mi, attr, ds_root)) {
1611		hdr->total = cpu_to_le32(hdr_total + ds_root);
1612		e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1613		WARN_ON(!e);
1614		fnd_clear(fnd);
1615		fnd->root_de = e;
1616
1617		return 0;
1618	}
1619
1620	/* Make a copy of root attribute to restore if error. */
1621	a_root = kmemdup(attr, asize, GFP_NOFS);
1622	if (!a_root)
1623		return -ENOMEM;
1624
1625	/*
1626	 * Copy all the non-end entries from
1627	 * the index root to the new buffer.
1628	 */
1629	to_move = 0;
1630	e0 = hdr_first_de(hdr);
1631
1632	/* Calculate the size to copy. */
1633	for (e = e0;; e = hdr_next_de(hdr, e)) {
1634		if (!e) {
1635			err = -EINVAL;
1636			goto out_free_root;
1637		}
1638
1639		if (de_is_last(e))
1640			break;
1641		to_move += le16_to_cpu(e->size);
1642	}
1643
1644	if (!to_move) {
1645		re = NULL;
1646	} else {
1647		re = kmemdup(e0, to_move, GFP_NOFS);
1648		if (!re) {
1649			err = -ENOMEM;
1650			goto out_free_root;
1651		}
1652	}
1653
1654	sub_vbn = NULL;
1655	if (de_has_vcn(e)) {
1656		t_vbn = de_get_vbn_le(e);
1657		sub_vbn = &t_vbn;
1658	}
1659
1660	new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1661			sizeof(u64);
1662	ds_root = new_root_size - root_size;
1663
1664	if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1665		/* Make root external. */
1666		err = -EOPNOTSUPP;
1667		goto out_free_re;
1668	}
1669
1670	if (ds_root)
1671		mi_resize_attr(mi, attr, ds_root);
1672
1673	/* Fill first entry (vcn will be set later). */
1674	e = (struct NTFS_DE *)(root + 1);
1675	memset(e, 0, sizeof(struct NTFS_DE));
1676	e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1677	e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1678
1679	hdr->flags = 1;
1680	hdr->used = hdr->total =
1681		cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1682
1683	fnd->root_de = hdr_first_de(hdr);
1684	mi->dirty = true;
1685
1686	/* Create alloc and bitmap attributes (if not). */
1687	err = run_is_empty(&indx->alloc_run) ?
1688		      indx_create_allocate(indx, ni, &new_vbn) :
1689		      indx_add_allocate(indx, ni, &new_vbn);
1690
1691	/* Layout of record may be changed, so rescan root. */
1692	root = indx_get_root(indx, ni, &attr, &mi);
1693	if (!root) {
1694		/* Bug? */
1695		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1696		err = -EINVAL;
1697		goto out_free_re;
1698	}
1699
1700	if (err) {
1701		/* Restore root. */
1702		if (mi_resize_attr(mi, attr, -ds_root)) {
1703			memcpy(attr, a_root, asize);
1704		} else {
1705			/* Bug? */
1706			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1707		}
1708		goto out_free_re;
1709	}
1710
1711	e = (struct NTFS_DE *)(root + 1);
1712	*(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1713	mi->dirty = true;
1714
1715	/* Now we can create/format the new buffer and copy the entries into. */
1716	n = indx_new(indx, ni, new_vbn, sub_vbn);
1717	if (IS_ERR(n)) {
1718		err = PTR_ERR(n);
1719		goto out_free_re;
1720	}
1721
1722	hdr = &n->index->ihdr;
1723	hdr_used = le32_to_cpu(hdr->used);
1724	hdr_total = le32_to_cpu(hdr->total);
1725
1726	/* Copy root entries into new buffer. */
1727	hdr_insert_head(hdr, re, to_move);
1728
1729	/* Update bitmap attribute. */
1730	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1731
1732	/* Check if we can insert new entry new index buffer. */
1733	if (hdr_used + new_de_size > hdr_total) {
1734		/*
1735		 * This occurs if MFT record is the same or bigger than index
1736		 * buffer. Move all root new index and have no space to add
1737		 * new entry classic case when MFT record is 1K and index
1738		 * buffer 4K the problem should not occurs.
1739		 */
1740		kfree(re);
1741		indx_write(indx, ni, n, 0);
1742
1743		put_indx_node(n);
1744		fnd_clear(fnd);
1745		err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1746		goto out_free_root;
1747	}
1748
1749	/*
1750	 * Now root is a parent for new index buffer.
1751	 * Insert NewEntry a new buffer.
1752	 */
1753	e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1754	if (!e) {
1755		err = -EINVAL;
1756		goto out_put_n;
1757	}
1758	fnd_push(fnd, n, e);
1759
1760	/* Just write updates index into disk. */
1761	indx_write(indx, ni, n, 0);
1762
1763	n = NULL;
1764
1765out_put_n:
1766	put_indx_node(n);
1767out_free_re:
1768	kfree(re);
1769out_free_root:
1770	kfree(a_root);
1771	return err;
1772}
1773
1774/*
1775 * indx_insert_into_buffer
1776 *
1777 * Attempt to insert an entry into an Index Allocation Buffer.
1778 * If necessary, it will split the buffer.
1779 */
1780static int
1781indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1782			struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1783			const void *ctx, int level, struct ntfs_fnd *fnd)
1784{
1785	int err;
1786	const struct NTFS_DE *sp;
1787	struct NTFS_DE *e, *de_t, *up_e;
1788	struct indx_node *n2;
1789	struct indx_node *n1 = fnd->nodes[level];
1790	struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1791	struct INDEX_HDR *hdr2;
1792	u32 to_copy, used, used1;
1793	CLST new_vbn;
1794	__le64 t_vbn, *sub_vbn;
1795	u16 sp_size;
1796	void *hdr1_saved = NULL;
1797
1798	/* Try the most easy case. */
1799	e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1800	e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1801	fnd->de[level] = e;
1802	if (e) {
1803		/* Just write updated index into disk. */
1804		indx_write(indx, ni, n1, 0);
1805		return 0;
1806	}
1807
1808	/*
1809	 * No space to insert into buffer. Split it.
1810	 * To split we:
1811	 *  - Save split point ('cause index buffers will be changed)
1812	 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1813	 * - Remove all entries (sp including) from TargetBuffer
1814	 * - Insert NewEntry into left or right buffer (depending on sp <=>
1815	 *     NewEntry)
1816	 * - Insert sp into parent buffer (or root)
1817	 * - Make sp a parent for new buffer
1818	 */
1819	sp = hdr_find_split(hdr1);
1820	if (!sp)
1821		return -EINVAL;
1822
1823	sp_size = le16_to_cpu(sp->size);
1824	up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1825	if (!up_e)
1826		return -ENOMEM;
1827	memcpy(up_e, sp, sp_size);
1828
1829	used1 = le32_to_cpu(hdr1->used);
1830	hdr1_saved = kmemdup(hdr1, used1, GFP_NOFS);
1831	if (!hdr1_saved) {
1832		err = -ENOMEM;
1833		goto out;
1834	}
1835
1836	if (!hdr1->flags) {
1837		up_e->flags |= NTFS_IE_HAS_SUBNODES;
1838		up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1839		sub_vbn = NULL;
1840	} else {
1841		t_vbn = de_get_vbn_le(up_e);
1842		sub_vbn = &t_vbn;
1843	}
1844
1845	/* Allocate on disk a new index allocation buffer. */
1846	err = indx_add_allocate(indx, ni, &new_vbn);
1847	if (err)
1848		goto out;
1849
1850	/* Allocate and format memory a new index buffer. */
1851	n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1852	if (IS_ERR(n2)) {
1853		err = PTR_ERR(n2);
1854		goto out;
1855	}
1856
1857	hdr2 = &n2->index->ihdr;
1858
1859	/* Make sp a parent for new buffer. */
1860	de_set_vbn(up_e, new_vbn);
1861
1862	/* Copy all the entries <= sp into the new buffer. */
1863	de_t = hdr_first_de(hdr1);
1864	to_copy = PtrOffset(de_t, sp);
1865	hdr_insert_head(hdr2, de_t, to_copy);
1866
1867	/* Remove all entries (sp including) from hdr1. */
1868	used = used1 - to_copy - sp_size;
1869	memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1870	hdr1->used = cpu_to_le32(used);
1871
1872	/*
1873	 * Insert new entry into left or right buffer
1874	 * (depending on sp <=> new_de).
1875	 */
1876	hdr_insert_de(indx,
1877		      (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1878				   up_e + 1, le16_to_cpu(up_e->key_size),
1879				   ctx) < 0 ?
1880			      hdr2 :
1881			      hdr1,
1882		      new_de, NULL, ctx);
1883
1884	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1885
1886	indx_write(indx, ni, n1, 0);
1887	indx_write(indx, ni, n2, 0);
1888
1889	put_indx_node(n2);
1890
1891	/*
1892	 * We've finished splitting everybody, so we are ready to
1893	 * insert the promoted entry into the parent.
1894	 */
1895	if (!level) {
1896		/* Insert in root. */
1897		err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1898	} else {
1899		/*
1900		 * The target buffer's parent is another index buffer.
1901		 * TODO: Remove recursion.
1902		 */
1903		err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1904					      level - 1, fnd);
1905	}
1906
1907	if (err) {
1908		/*
1909		 * Undo critical operations.
1910		 */
1911		indx_mark_free(indx, ni, new_vbn >> indx->idx2vbn_bits);
1912		memcpy(hdr1, hdr1_saved, used1);
1913		indx_write(indx, ni, n1, 0);
1914	}
1915
1916out:
1917	kfree(up_e);
1918	kfree(hdr1_saved);
1919
1920	return err;
1921}
1922
1923/*
1924 * indx_insert_entry - Insert new entry into index.
1925 *
1926 * @undo - True if we undoing previous remove.
1927 */
1928int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1929		      const struct NTFS_DE *new_de, const void *ctx,
1930		      struct ntfs_fnd *fnd, bool undo)
1931{
1932	int err;
1933	int diff;
1934	struct NTFS_DE *e;
1935	struct ntfs_fnd *fnd_a = NULL;
1936	struct INDEX_ROOT *root;
1937
1938	if (!fnd) {
1939		fnd_a = fnd_get();
1940		if (!fnd_a) {
1941			err = -ENOMEM;
1942			goto out1;
1943		}
1944		fnd = fnd_a;
1945	}
1946
1947	root = indx_get_root(indx, ni, NULL, NULL);
1948	if (!root) {
1949		err = -EINVAL;
1950		goto out;
1951	}
1952
1953	if (fnd_is_empty(fnd)) {
1954		/*
1955		 * Find the spot the tree where we want to
1956		 * insert the new entry.
1957		 */
1958		err = indx_find(indx, ni, root, new_de + 1,
1959				le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1960				fnd);
1961		if (err)
1962			goto out;
1963
1964		if (!diff) {
1965			err = -EEXIST;
1966			goto out;
1967		}
1968	}
1969
1970	if (!fnd->level) {
1971		/*
1972		 * The root is also a leaf, so we'll insert the
1973		 * new entry into it.
1974		 */
1975		err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1976					    fnd, undo);
1977	} else {
1978		/*
1979		 * Found a leaf buffer, so we'll insert the new entry into it.
1980		 */
1981		err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1982					      fnd->level - 1, fnd);
1983	}
1984
1985out:
1986	fnd_put(fnd_a);
1987out1:
1988	return err;
1989}
1990
1991/*
1992 * indx_find_buffer - Locate a buffer from the tree.
1993 */
1994static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1995					  struct ntfs_inode *ni,
1996					  const struct INDEX_ROOT *root,
1997					  __le64 vbn, struct indx_node *n)
1998{
1999	int err;
2000	const struct NTFS_DE *e;
2001	struct indx_node *r;
2002	const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
2003
2004	/* Step 1: Scan one level. */
2005	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2006		if (!e)
2007			return ERR_PTR(-EINVAL);
2008
2009		if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
2010			return n;
2011
2012		if (de_is_last(e))
2013			break;
2014	}
2015
2016	/* Step2: Do recursion. */
2017	e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
2018	for (;;) {
2019		if (de_has_vcn_ex(e)) {
2020			err = indx_read(indx, ni, de_get_vbn(e), &n);
2021			if (err)
2022				return ERR_PTR(err);
2023
2024			r = indx_find_buffer(indx, ni, root, vbn, n);
2025			if (r)
2026				return r;
2027		}
2028
2029		if (de_is_last(e))
2030			break;
2031
2032		e = Add2Ptr(e, le16_to_cpu(e->size));
2033	}
2034
2035	return NULL;
2036}
2037
2038/*
2039 * indx_shrink - Deallocate unused tail indexes.
2040 */
2041static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2042		       size_t bit)
2043{
2044	int err = 0;
2045	u64 bpb, new_data;
2046	size_t nbits;
2047	struct ATTRIB *b;
2048	struct ATTR_LIST_ENTRY *le = NULL;
2049	const struct INDEX_NAMES *in = &s_index_names[indx->type];
2050
2051	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2052			 NULL, NULL);
2053
2054	if (!b)
2055		return -ENOENT;
2056
2057	if (!b->non_res) {
2058		unsigned long pos;
2059		const unsigned long *bm = resident_data(b);
2060
2061		nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2062
2063		if (bit >= nbits)
2064			return 0;
2065
2066		pos = find_next_bit_le(bm, nbits, bit);
2067		if (pos < nbits)
2068			return 0;
2069	} else {
2070		size_t used = MINUS_ONE_T;
2071
2072		nbits = le64_to_cpu(b->nres.data_size) * 8;
2073
2074		if (bit >= nbits)
2075			return 0;
2076
2077		err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2078		if (err)
2079			return err;
2080
2081		if (used != MINUS_ONE_T)
2082			return 0;
2083	}
2084
2085	new_data = (u64)bit << indx->index_bits;
2086
2087	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2088			    &indx->alloc_run, new_data, &new_data, false, NULL);
2089	if (err)
2090		return err;
2091
2092	if (in->name == I30_NAME)
2093		i_size_write(&ni->vfs_inode, new_data);
2094
2095	bpb = bitmap_size(bit);
2096	if (bpb * 8 == nbits)
2097		return 0;
2098
2099	err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2100			    &indx->bitmap_run, bpb, &bpb, false, NULL);
2101
2102	return err;
2103}
2104
2105static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2106			      const struct NTFS_DE *e, bool trim)
2107{
2108	int err;
2109	struct indx_node *n = NULL;
2110	struct INDEX_HDR *hdr;
2111	CLST vbn = de_get_vbn(e);
2112	size_t i;
2113
2114	err = indx_read(indx, ni, vbn, &n);
2115	if (err)
2116		return err;
2117
2118	hdr = &n->index->ihdr;
2119	/* First, recurse into the children, if any. */
2120	if (hdr_has_subnode(hdr)) {
2121		for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2122			indx_free_children(indx, ni, e, false);
2123			if (de_is_last(e))
2124				break;
2125		}
2126	}
2127
2128	put_indx_node(n);
2129
2130	i = vbn >> indx->idx2vbn_bits;
2131	/*
2132	 * We've gotten rid of the children; add this buffer to the free list.
2133	 */
2134	indx_mark_free(indx, ni, i);
2135
2136	if (!trim)
2137		return 0;
2138
2139	/*
2140	 * If there are no used indexes after current free index
2141	 * then we can truncate allocation and bitmap.
2142	 * Use bitmap to estimate the case.
2143	 */
2144	indx_shrink(indx, ni, i + 1);
2145	return 0;
2146}
2147
2148/*
2149 * indx_get_entry_to_replace
2150 *
2151 * Find a replacement entry for a deleted entry.
2152 * Always returns a node entry:
2153 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2154 */
2155static int indx_get_entry_to_replace(struct ntfs_index *indx,
2156				     struct ntfs_inode *ni,
2157				     const struct NTFS_DE *de_next,
2158				     struct NTFS_DE **de_to_replace,
2159				     struct ntfs_fnd *fnd)
2160{
2161	int err;
2162	int level = -1;
2163	CLST vbn;
2164	struct NTFS_DE *e, *te, *re;
2165	struct indx_node *n;
2166	struct INDEX_BUFFER *ib;
2167
2168	*de_to_replace = NULL;
2169
2170	/* Find first leaf entry down from de_next. */
2171	vbn = de_get_vbn(de_next);
2172	for (;;) {
2173		n = NULL;
2174		err = indx_read(indx, ni, vbn, &n);
2175		if (err)
2176			goto out;
2177
2178		e = hdr_first_de(&n->index->ihdr);
2179		fnd_push(fnd, n, e);
2180
2181		if (!de_is_last(e)) {
2182			/*
2183			 * This buffer is non-empty, so its first entry
2184			 * could be used as the replacement entry.
2185			 */
2186			level = fnd->level - 1;
2187		}
2188
2189		if (!de_has_vcn(e))
2190			break;
2191
2192		/* This buffer is a node. Continue to go down. */
2193		vbn = de_get_vbn(e);
2194	}
2195
2196	if (level == -1)
2197		goto out;
2198
2199	n = fnd->nodes[level];
2200	te = hdr_first_de(&n->index->ihdr);
2201	/* Copy the candidate entry into the replacement entry buffer. */
2202	re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2203	if (!re) {
2204		err = -ENOMEM;
2205		goto out;
2206	}
2207
2208	*de_to_replace = re;
2209	memcpy(re, te, le16_to_cpu(te->size));
2210
2211	if (!de_has_vcn(re)) {
2212		/*
2213		 * The replacement entry we found doesn't have a sub_vcn.
2214		 * increase its size to hold one.
2215		 */
2216		le16_add_cpu(&re->size, sizeof(u64));
2217		re->flags |= NTFS_IE_HAS_SUBNODES;
2218	} else {
2219		/*
2220		 * The replacement entry we found was a node entry, which
2221		 * means that all its child buffers are empty. Return them
2222		 * to the free pool.
2223		 */
2224		indx_free_children(indx, ni, te, true);
2225	}
2226
2227	/*
2228	 * Expunge the replacement entry from its former location,
2229	 * and then write that buffer.
2230	 */
2231	ib = n->index;
2232	e = hdr_delete_de(&ib->ihdr, te);
2233
2234	fnd->de[level] = e;
2235	indx_write(indx, ni, n, 0);
2236
2237	if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2238		/* An empty leaf. */
2239		return 0;
2240	}
2241
2242out:
2243	fnd_clear(fnd);
2244	return err;
2245}
2246
2247/*
2248 * indx_delete_entry - Delete an entry from the index.
2249 */
2250int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2251		      const void *key, u32 key_len, const void *ctx)
2252{
2253	int err, diff;
2254	struct INDEX_ROOT *root;
2255	struct INDEX_HDR *hdr;
2256	struct ntfs_fnd *fnd, *fnd2;
2257	struct INDEX_BUFFER *ib;
2258	struct NTFS_DE *e, *re, *next, *prev, *me;
2259	struct indx_node *n, *n2d = NULL;
2260	__le64 sub_vbn;
2261	int level, level2;
2262	struct ATTRIB *attr;
2263	struct mft_inode *mi;
2264	u32 e_size, root_size, new_root_size;
2265	size_t trim_bit;
2266	const struct INDEX_NAMES *in;
2267
2268	fnd = fnd_get();
2269	if (!fnd) {
2270		err = -ENOMEM;
2271		goto out2;
2272	}
2273
2274	fnd2 = fnd_get();
2275	if (!fnd2) {
2276		err = -ENOMEM;
2277		goto out1;
2278	}
2279
2280	root = indx_get_root(indx, ni, &attr, &mi);
2281	if (!root) {
2282		err = -EINVAL;
2283		goto out;
2284	}
2285
2286	/* Locate the entry to remove. */
2287	err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2288	if (err)
2289		goto out;
2290
2291	if (!e || diff) {
2292		err = -ENOENT;
2293		goto out;
2294	}
2295
2296	level = fnd->level;
2297
2298	if (level) {
2299		n = fnd->nodes[level - 1];
2300		e = fnd->de[level - 1];
2301		ib = n->index;
2302		hdr = &ib->ihdr;
2303	} else {
2304		hdr = &root->ihdr;
2305		e = fnd->root_de;
2306		n = NULL;
2307	}
2308
2309	e_size = le16_to_cpu(e->size);
2310
2311	if (!de_has_vcn_ex(e)) {
2312		/* The entry to delete is a leaf, so we can just rip it out. */
2313		hdr_delete_de(hdr, e);
2314
2315		if (!level) {
2316			hdr->total = hdr->used;
2317
2318			/* Shrink resident root attribute. */
2319			mi_resize_attr(mi, attr, 0 - e_size);
2320			goto out;
2321		}
2322
2323		indx_write(indx, ni, n, 0);
2324
2325		/*
2326		 * Check to see if removing that entry made
2327		 * the leaf empty.
2328		 */
2329		if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2330			fnd_pop(fnd);
2331			fnd_push(fnd2, n, e);
2332		}
2333	} else {
2334		/*
2335		 * The entry we wish to delete is a node buffer, so we
2336		 * have to find a replacement for it.
2337		 */
2338		next = de_get_next(e);
2339
2340		err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2341		if (err)
2342			goto out;
2343
2344		if (re) {
2345			de_set_vbn_le(re, de_get_vbn_le(e));
2346			hdr_delete_de(hdr, e);
2347
2348			err = level ? indx_insert_into_buffer(indx, ni, root,
2349							      re, ctx,
2350							      fnd->level - 1,
2351							      fnd) :
2352				      indx_insert_into_root(indx, ni, re, e,
2353							    ctx, fnd, 0);
2354			kfree(re);
2355
2356			if (err)
2357				goto out;
2358		} else {
2359			/*
2360			 * There is no replacement for the current entry.
2361			 * This means that the subtree rooted at its node
2362			 * is empty, and can be deleted, which turn means
2363			 * that the node can just inherit the deleted
2364			 * entry sub_vcn.
2365			 */
2366			indx_free_children(indx, ni, next, true);
2367
2368			de_set_vbn_le(next, de_get_vbn_le(e));
2369			hdr_delete_de(hdr, e);
2370			if (level) {
2371				indx_write(indx, ni, n, 0);
2372			} else {
2373				hdr->total = hdr->used;
2374
2375				/* Shrink resident root attribute. */
2376				mi_resize_attr(mi, attr, 0 - e_size);
2377			}
2378		}
2379	}
2380
2381	/* Delete a branch of tree. */
2382	if (!fnd2 || !fnd2->level)
2383		goto out;
2384
2385	/* Reinit root 'cause it can be changed. */
2386	root = indx_get_root(indx, ni, &attr, &mi);
2387	if (!root) {
2388		err = -EINVAL;
2389		goto out;
2390	}
2391
2392	n2d = NULL;
2393	sub_vbn = fnd2->nodes[0]->index->vbn;
2394	level2 = 0;
2395	level = fnd->level;
2396
2397	hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2398
2399	/* Scan current level. */
2400	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2401		if (!e) {
2402			err = -EINVAL;
2403			goto out;
2404		}
2405
2406		if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2407			break;
2408
2409		if (de_is_last(e)) {
2410			e = NULL;
2411			break;
2412		}
2413	}
2414
2415	if (!e) {
2416		/* Do slow search from root. */
2417		struct indx_node *in;
2418
2419		fnd_clear(fnd);
2420
2421		in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2422		if (IS_ERR(in)) {
2423			err = PTR_ERR(in);
2424			goto out;
2425		}
2426
2427		if (in)
2428			fnd_push(fnd, in, NULL);
2429	}
2430
2431	/* Merge fnd2 -> fnd. */
2432	for (level = 0; level < fnd2->level; level++) {
2433		fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2434		fnd2->nodes[level] = NULL;
2435	}
2436	fnd2->level = 0;
2437
2438	hdr = NULL;
2439	for (level = fnd->level; level; level--) {
2440		struct indx_node *in = fnd->nodes[level - 1];
2441
2442		ib = in->index;
2443		if (ib_is_empty(ib)) {
2444			sub_vbn = ib->vbn;
2445		} else {
2446			hdr = &ib->ihdr;
2447			n2d = in;
2448			level2 = level;
2449			break;
2450		}
2451	}
2452
2453	if (!hdr)
2454		hdr = &root->ihdr;
2455
2456	e = hdr_first_de(hdr);
2457	if (!e) {
2458		err = -EINVAL;
2459		goto out;
2460	}
2461
2462	if (hdr != &root->ihdr || !de_is_last(e)) {
2463		prev = NULL;
2464		while (!de_is_last(e)) {
2465			if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2466				break;
2467			prev = e;
2468			e = hdr_next_de(hdr, e);
2469			if (!e) {
2470				err = -EINVAL;
2471				goto out;
2472			}
2473		}
2474
2475		if (sub_vbn != de_get_vbn_le(e)) {
2476			/*
2477			 * Didn't find the parent entry, although this buffer
2478			 * is the parent trail. Something is corrupt.
2479			 */
2480			err = -EINVAL;
2481			goto out;
2482		}
2483
2484		if (de_is_last(e)) {
2485			/*
2486			 * Since we can't remove the end entry, we'll remove
2487			 * its predecessor instead. This means we have to
2488			 * transfer the predecessor's sub_vcn to the end entry.
2489			 * Note: This index block is not empty, so the
2490			 * predecessor must exist.
2491			 */
2492			if (!prev) {
2493				err = -EINVAL;
2494				goto out;
2495			}
2496
2497			if (de_has_vcn(prev)) {
2498				de_set_vbn_le(e, de_get_vbn_le(prev));
2499			} else if (de_has_vcn(e)) {
2500				le16_sub_cpu(&e->size, sizeof(u64));
2501				e->flags &= ~NTFS_IE_HAS_SUBNODES;
2502				le32_sub_cpu(&hdr->used, sizeof(u64));
2503			}
2504			e = prev;
2505		}
2506
2507		/*
2508		 * Copy the current entry into a temporary buffer (stripping
2509		 * off its down-pointer, if any) and delete it from the current
2510		 * buffer or root, as appropriate.
2511		 */
2512		e_size = le16_to_cpu(e->size);
2513		me = kmemdup(e, e_size, GFP_NOFS);
2514		if (!me) {
2515			err = -ENOMEM;
2516			goto out;
2517		}
2518
2519		if (de_has_vcn(me)) {
2520			me->flags &= ~NTFS_IE_HAS_SUBNODES;
2521			le16_sub_cpu(&me->size, sizeof(u64));
2522		}
2523
2524		hdr_delete_de(hdr, e);
2525
2526		if (hdr == &root->ihdr) {
2527			level = 0;
2528			hdr->total = hdr->used;
2529
2530			/* Shrink resident root attribute. */
2531			mi_resize_attr(mi, attr, 0 - e_size);
2532		} else {
2533			indx_write(indx, ni, n2d, 0);
2534			level = level2;
2535		}
2536
2537		/* Mark unused buffers as free. */
2538		trim_bit = -1;
2539		for (; level < fnd->level; level++) {
2540			ib = fnd->nodes[level]->index;
2541			if (ib_is_empty(ib)) {
2542				size_t k = le64_to_cpu(ib->vbn) >>
2543					   indx->idx2vbn_bits;
2544
2545				indx_mark_free(indx, ni, k);
2546				if (k < trim_bit)
2547					trim_bit = k;
2548			}
2549		}
2550
2551		fnd_clear(fnd);
2552		/*fnd->root_de = NULL;*/
2553
2554		/*
2555		 * Re-insert the entry into the tree.
2556		 * Find the spot the tree where we want to insert the new entry.
2557		 */
2558		err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2559		kfree(me);
2560		if (err)
2561			goto out;
2562
2563		if (trim_bit != -1)
2564			indx_shrink(indx, ni, trim_bit);
2565	} else {
2566		/*
2567		 * This tree needs to be collapsed down to an empty root.
2568		 * Recreate the index root as an empty leaf and free all
2569		 * the bits the index allocation bitmap.
2570		 */
2571		fnd_clear(fnd);
2572		fnd_clear(fnd2);
2573
2574		in = &s_index_names[indx->type];
2575
2576		err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2577				    &indx->alloc_run, 0, NULL, false, NULL);
2578		if (in->name == I30_NAME)
2579			i_size_write(&ni->vfs_inode, 0);
2580
2581		err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2582				     false, NULL);
2583		run_close(&indx->alloc_run);
2584
2585		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2586				    &indx->bitmap_run, 0, NULL, false, NULL);
2587		err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2588				     false, NULL);
2589		run_close(&indx->bitmap_run);
2590
2591		root = indx_get_root(indx, ni, &attr, &mi);
2592		if (!root) {
2593			err = -EINVAL;
2594			goto out;
2595		}
2596
2597		root_size = le32_to_cpu(attr->res.data_size);
2598		new_root_size =
2599			sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2600
2601		if (new_root_size != root_size &&
2602		    !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2603			err = -EINVAL;
2604			goto out;
2605		}
2606
2607		/* Fill first entry. */
2608		e = (struct NTFS_DE *)(root + 1);
2609		e->ref.low = 0;
2610		e->ref.high = 0;
2611		e->ref.seq = 0;
2612		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2613		e->flags = NTFS_IE_LAST; // 0x02
2614		e->key_size = 0;
2615		e->res = 0;
2616
2617		hdr = &root->ihdr;
2618		hdr->flags = 0;
2619		hdr->used = hdr->total = cpu_to_le32(
2620			new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2621		mi->dirty = true;
2622	}
2623
2624out:
2625	fnd_put(fnd2);
2626out1:
2627	fnd_put(fnd);
2628out2:
2629	return err;
2630}
2631
2632/*
2633 * Update duplicated information in directory entry
2634 * 'dup' - info from MFT record
2635 */
2636int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2637		    const struct ATTR_FILE_NAME *fname,
2638		    const struct NTFS_DUP_INFO *dup, int sync)
2639{
2640	int err, diff;
2641	struct NTFS_DE *e = NULL;
2642	struct ATTR_FILE_NAME *e_fname;
2643	struct ntfs_fnd *fnd;
2644	struct INDEX_ROOT *root;
2645	struct mft_inode *mi;
2646	struct ntfs_index *indx = &ni->dir;
2647
2648	fnd = fnd_get();
2649	if (!fnd)
2650		return -ENOMEM;
2651
2652	root = indx_get_root(indx, ni, NULL, &mi);
2653	if (!root) {
2654		err = -EINVAL;
2655		goto out;
2656	}
2657
2658	/* Find entry in directory. */
2659	err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2660			&diff, &e, fnd);
2661	if (err)
2662		goto out;
2663
2664	if (!e) {
2665		err = -EINVAL;
2666		goto out;
2667	}
2668
2669	if (diff) {
2670		err = -EINVAL;
2671		goto out;
2672	}
2673
2674	e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2675
2676	if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2677		/*
2678		 * Nothing to update in index! Try to avoid this call.
2679		 */
2680		goto out;
2681	}
2682
2683	memcpy(&e_fname->dup, dup, sizeof(*dup));
2684
2685	if (fnd->level) {
2686		/* Directory entry in index. */
2687		err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2688	} else {
2689		/* Directory entry in directory MFT record. */
2690		mi->dirty = true;
2691		if (sync)
2692			err = mi_write(mi, 1);
2693		else
2694			mark_inode_dirty(&ni->vfs_inode);
2695	}
2696
2697out:
2698	fnd_put(fnd);
2699	return err;
2700}
2701