1// SPDX-License-Identifier: GPL-2.0
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8#include <linux/fiemap.h>
9#include <linux/fs.h>
10#include <linux/minmax.h>
11#include <linux/vmalloc.h>
12
13#include "debug.h"
14#include "ntfs.h"
15#include "ntfs_fs.h"
16#ifdef CONFIG_NTFS3_LZX_XPRESS
17#include "lib/lib.h"
18#endif
19
20static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21				   CLST ino, struct rb_node *ins)
22{
23	struct rb_node **p = &tree->rb_node;
24	struct rb_node *pr = NULL;
25
26	while (*p) {
27		struct mft_inode *mi;
28
29		pr = *p;
30		mi = rb_entry(pr, struct mft_inode, node);
31		if (mi->rno > ino)
32			p = &pr->rb_left;
33		else if (mi->rno < ino)
34			p = &pr->rb_right;
35		else
36			return mi;
37	}
38
39	if (!ins)
40		return NULL;
41
42	rb_link_node(ins, pr, p);
43	rb_insert_color(ins, tree);
44	return rb_entry(ins, struct mft_inode, node);
45}
46
47/*
48 * ni_find_mi - Find mft_inode by record number.
49 */
50static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51{
52	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53}
54
55/*
56 * ni_add_mi - Add new mft_inode into ntfs_inode.
57 */
58static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59{
60	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61}
62
63/*
64 * ni_remove_mi - Remove mft_inode from ntfs_inode.
65 */
66void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67{
68	rb_erase(&mi->node, &ni->mi_tree);
69}
70
71/*
72 * ni_std - Return: Pointer into std_info from primary record.
73 */
74struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75{
76	const struct ATTRIB *attr;
77
78	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
80		      NULL;
81}
82
83/*
84 * ni_std5
85 *
86 * Return: Pointer into std_info from primary record.
87 */
88struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89{
90	const struct ATTRIB *attr;
91
92	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93
94	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
95		      NULL;
96}
97
98/*
99 * ni_clear - Clear resources allocated by ntfs_inode.
100 */
101void ni_clear(struct ntfs_inode *ni)
102{
103	struct rb_node *node;
104
105	if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec))
106		ni_delete_all(ni);
107
108	al_destroy(ni);
109
110	for (node = rb_first(&ni->mi_tree); node;) {
111		struct rb_node *next = rb_next(node);
112		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
113
114		rb_erase(node, &ni->mi_tree);
115		mi_put(mi);
116		node = next;
117	}
118
119	/* Bad inode always has mode == S_IFREG. */
120	if (ni->ni_flags & NI_FLAG_DIR)
121		indx_clear(&ni->dir);
122	else {
123		run_close(&ni->file.run);
124#ifdef CONFIG_NTFS3_LZX_XPRESS
125		if (ni->file.offs_page) {
126			/* On-demand allocated page for offsets. */
127			put_page(ni->file.offs_page);
128			ni->file.offs_page = NULL;
129		}
130#endif
131	}
132
133	mi_clear(&ni->mi);
134}
135
136/*
137 * ni_load_mi_ex - Find mft_inode by record number.
138 */
139int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
140{
141	int err;
142	struct mft_inode *r;
143
144	r = ni_find_mi(ni, rno);
145	if (r)
146		goto out;
147
148	err = mi_get(ni->mi.sbi, rno, &r);
149	if (err)
150		return err;
151
152	ni_add_mi(ni, r);
153
154out:
155	if (mi)
156		*mi = r;
157	return 0;
158}
159
160/*
161 * ni_load_mi - Load mft_inode corresponded list_entry.
162 */
163int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
164	       struct mft_inode **mi)
165{
166	CLST rno;
167
168	if (!le) {
169		*mi = &ni->mi;
170		return 0;
171	}
172
173	rno = ino_get(&le->ref);
174	if (rno == ni->mi.rno) {
175		*mi = &ni->mi;
176		return 0;
177	}
178	return ni_load_mi_ex(ni, rno, mi);
179}
180
181/*
182 * ni_find_attr
183 *
184 * Return: Attribute and record this attribute belongs to.
185 */
186struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
187			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
188			    const __le16 *name, u8 name_len, const CLST *vcn,
189			    struct mft_inode **mi)
190{
191	struct ATTR_LIST_ENTRY *le;
192	struct mft_inode *m;
193
194	if (!ni->attr_list.size ||
195	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
196		if (le_o)
197			*le_o = NULL;
198		if (mi)
199			*mi = &ni->mi;
200
201		/* Look for required attribute in primary record. */
202		return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
203	}
204
205	/* First look for list entry of required type. */
206	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
207	if (!le)
208		return NULL;
209
210	if (le_o)
211		*le_o = le;
212
213	/* Load record that contains this attribute. */
214	if (ni_load_mi(ni, le, &m))
215		return NULL;
216
217	/* Look for required attribute. */
218	attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
219
220	if (!attr)
221		goto out;
222
223	if (!attr->non_res) {
224		if (vcn && *vcn)
225			goto out;
226	} else if (!vcn) {
227		if (attr->nres.svcn)
228			goto out;
229	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
230		   *vcn > le64_to_cpu(attr->nres.evcn)) {
231		goto out;
232	}
233
234	if (mi)
235		*mi = m;
236	return attr;
237
238out:
239	ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record");
240	ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
241	return NULL;
242}
243
244/*
245 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
246 */
247struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
248			       struct ATTR_LIST_ENTRY **le,
249			       struct mft_inode **mi)
250{
251	struct mft_inode *mi2;
252	struct ATTR_LIST_ENTRY *le2;
253
254	/* Do we have an attribute list? */
255	if (!ni->attr_list.size) {
256		*le = NULL;
257		if (mi)
258			*mi = &ni->mi;
259		/* Enum attributes in primary record. */
260		return mi_enum_attr(&ni->mi, attr);
261	}
262
263	/* Get next list entry. */
264	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
265	if (!le2)
266		return NULL;
267
268	/* Load record that contains the required attribute. */
269	if (ni_load_mi(ni, le2, &mi2))
270		return NULL;
271
272	if (mi)
273		*mi = mi2;
274
275	/* Find attribute in loaded record. */
276	return rec_find_attr_le(mi2, le2);
277}
278
279/*
280 * ni_load_attr - Load attribute that contains given VCN.
281 */
282struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
283			    const __le16 *name, u8 name_len, CLST vcn,
284			    struct mft_inode **pmi)
285{
286	struct ATTR_LIST_ENTRY *le;
287	struct ATTRIB *attr;
288	struct mft_inode *mi;
289	struct ATTR_LIST_ENTRY *next;
290
291	if (!ni->attr_list.size) {
292		if (pmi)
293			*pmi = &ni->mi;
294		return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
295	}
296
297	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
298	if (!le)
299		return NULL;
300
301	/*
302	 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
303	 * So to find the ATTRIB segment that contains 'vcn' we should
304	 * enumerate some entries.
305	 */
306	if (vcn) {
307		for (;; le = next) {
308			next = al_find_ex(ni, le, type, name, name_len, NULL);
309			if (!next || le64_to_cpu(next->vcn) > vcn)
310				break;
311		}
312	}
313
314	if (ni_load_mi(ni, le, &mi))
315		return NULL;
316
317	if (pmi)
318		*pmi = mi;
319
320	attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
321	if (!attr)
322		return NULL;
323
324	if (!attr->non_res)
325		return attr;
326
327	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
328	    vcn <= le64_to_cpu(attr->nres.evcn))
329		return attr;
330
331	return NULL;
332}
333
334/*
335 * ni_load_all_mi - Load all subrecords.
336 */
337int ni_load_all_mi(struct ntfs_inode *ni)
338{
339	int err;
340	struct ATTR_LIST_ENTRY *le;
341
342	if (!ni->attr_list.size)
343		return 0;
344
345	le = NULL;
346
347	while ((le = al_enumerate(ni, le))) {
348		CLST rno = ino_get(&le->ref);
349
350		if (rno == ni->mi.rno)
351			continue;
352
353		err = ni_load_mi_ex(ni, rno, NULL);
354		if (err)
355			return err;
356	}
357
358	return 0;
359}
360
361/*
362 * ni_add_subrecord - Allocate + format + attach a new subrecord.
363 */
364bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
365{
366	struct mft_inode *m;
367
368	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
369	if (!m)
370		return false;
371
372	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
373		mi_put(m);
374		return false;
375	}
376
377	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
378
379	ni_add_mi(ni, m);
380	*mi = m;
381	return true;
382}
383
384/*
385 * ni_remove_attr - Remove all attributes for the given type/name/id.
386 */
387int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
388		   const __le16 *name, u8 name_len, bool base_only,
389		   const __le16 *id)
390{
391	int err;
392	struct ATTRIB *attr;
393	struct ATTR_LIST_ENTRY *le;
394	struct mft_inode *mi;
395	u32 type_in;
396	int diff;
397
398	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
399		attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
400		if (!attr)
401			return -ENOENT;
402
403		mi_remove_attr(ni, &ni->mi, attr);
404		return 0;
405	}
406
407	type_in = le32_to_cpu(type);
408	le = NULL;
409
410	for (;;) {
411		le = al_enumerate(ni, le);
412		if (!le)
413			return 0;
414
415next_le2:
416		diff = le32_to_cpu(le->type) - type_in;
417		if (diff < 0)
418			continue;
419
420		if (diff > 0)
421			return 0;
422
423		if (le->name_len != name_len)
424			continue;
425
426		if (name_len &&
427		    memcmp(le_name(le), name, name_len * sizeof(short)))
428			continue;
429
430		if (id && le->id != *id)
431			continue;
432		err = ni_load_mi(ni, le, &mi);
433		if (err)
434			return err;
435
436		al_remove_le(ni, le);
437
438		attr = mi_find_attr(mi, NULL, type, name, name_len, id);
439		if (!attr)
440			return -ENOENT;
441
442		mi_remove_attr(ni, mi, attr);
443
444		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
445			return 0;
446		goto next_le2;
447	}
448}
449
450/*
451 * ni_ins_new_attr - Insert the attribute into record.
452 *
453 * Return: Not full constructed attribute or NULL if not possible to create.
454 */
455static struct ATTRIB *
456ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
457		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
458		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
459		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
460{
461	int err;
462	struct ATTRIB *attr;
463	bool le_added = false;
464	struct MFT_REF ref;
465
466	mi_get_ref(mi, &ref);
467
468	if (type != ATTR_LIST && !le && ni->attr_list.size) {
469		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
470				&ref, &le);
471		if (err) {
472			/* No memory or no space. */
473			return ERR_PTR(err);
474		}
475		le_added = true;
476
477		/*
478		 * al_add_le -> attr_set_size (list) -> ni_expand_list
479		 * which moves some attributes out of primary record
480		 * this means that name may point into moved memory
481		 * reinit 'name' from le.
482		 */
483		name = le->name;
484	}
485
486	attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
487	if (!attr) {
488		if (le_added)
489			al_remove_le(ni, le);
490		return NULL;
491	}
492
493	if (type == ATTR_LIST) {
494		/* Attr list is not in list entry array. */
495		goto out;
496	}
497
498	if (!le)
499		goto out;
500
501	/* Update ATTRIB Id and record reference. */
502	le->id = attr->id;
503	ni->attr_list.dirty = true;
504	le->ref = ref;
505
506out:
507	if (ins_le)
508		*ins_le = le;
509	return attr;
510}
511
512/*
513 * ni_repack
514 *
515 * Random write access to sparsed or compressed file may result to
516 * not optimized packed runs.
517 * Here is the place to optimize it.
518 */
519static int ni_repack(struct ntfs_inode *ni)
520{
521#if 1
522	return 0;
523#else
524	int err = 0;
525	struct ntfs_sb_info *sbi = ni->mi.sbi;
526	struct mft_inode *mi, *mi_p = NULL;
527	struct ATTRIB *attr = NULL, *attr_p;
528	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
529	CLST alloc = 0;
530	u8 cluster_bits = sbi->cluster_bits;
531	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
532	u32 roff, rs = sbi->record_size;
533	struct runs_tree run;
534
535	run_init(&run);
536
537	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
538		if (!attr->non_res)
539			continue;
540
541		svcn = le64_to_cpu(attr->nres.svcn);
542		if (svcn != le64_to_cpu(le->vcn)) {
543			err = -EINVAL;
544			break;
545		}
546
547		if (!svcn) {
548			alloc = le64_to_cpu(attr->nres.alloc_size) >>
549				cluster_bits;
550			mi_p = NULL;
551		} else if (svcn != evcn + 1) {
552			err = -EINVAL;
553			break;
554		}
555
556		evcn = le64_to_cpu(attr->nres.evcn);
557
558		if (svcn > evcn + 1) {
559			err = -EINVAL;
560			break;
561		}
562
563		if (!mi_p) {
564			/* Do not try if not enough free space. */
565			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
566				continue;
567
568			/* Do not try if last attribute segment. */
569			if (evcn + 1 == alloc)
570				continue;
571			run_close(&run);
572		}
573
574		roff = le16_to_cpu(attr->nres.run_off);
575
576		if (roff > le32_to_cpu(attr->size)) {
577			err = -EINVAL;
578			break;
579		}
580
581		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
582				 Add2Ptr(attr, roff),
583				 le32_to_cpu(attr->size) - roff);
584		if (err < 0)
585			break;
586
587		if (!mi_p) {
588			mi_p = mi;
589			attr_p = attr;
590			svcn_p = svcn;
591			evcn_p = evcn;
592			le_p = le;
593			err = 0;
594			continue;
595		}
596
597		/*
598		 * Run contains data from two records: mi_p and mi
599		 * Try to pack in one.
600		 */
601		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
602		if (err)
603			break;
604
605		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
606
607		if (next_svcn >= evcn + 1) {
608			/* We can remove this attribute segment. */
609			al_remove_le(ni, le);
610			mi_remove_attr(NULL, mi, attr);
611			le = le_p;
612			continue;
613		}
614
615		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
616		mi->dirty = true;
617		ni->attr_list.dirty = true;
618
619		if (evcn + 1 == alloc) {
620			err = mi_pack_runs(mi, attr, &run,
621					   evcn + 1 - next_svcn);
622			if (err)
623				break;
624			mi_p = NULL;
625		} else {
626			mi_p = mi;
627			attr_p = attr;
628			svcn_p = next_svcn;
629			evcn_p = evcn;
630			le_p = le;
631			run_truncate_head(&run, next_svcn);
632		}
633	}
634
635	if (err) {
636		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
637		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
638
639		/* Pack loaded but not packed runs. */
640		if (mi_p)
641			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
642	}
643
644	run_close(&run);
645	return err;
646#endif
647}
648
649/*
650 * ni_try_remove_attr_list
651 *
652 * Can we remove attribute list?
653 * Check the case when primary record contains enough space for all attributes.
654 */
655static int ni_try_remove_attr_list(struct ntfs_inode *ni)
656{
657	int err = 0;
658	struct ntfs_sb_info *sbi = ni->mi.sbi;
659	struct ATTRIB *attr, *attr_list, *attr_ins;
660	struct ATTR_LIST_ENTRY *le;
661	struct mft_inode *mi;
662	u32 asize, free;
663	struct MFT_REF ref;
664	struct MFT_REC *mrec;
665	__le16 id;
666
667	if (!ni->attr_list.dirty)
668		return 0;
669
670	err = ni_repack(ni);
671	if (err)
672		return err;
673
674	attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
675	if (!attr_list)
676		return 0;
677
678	asize = le32_to_cpu(attr_list->size);
679
680	/* Free space in primary record without attribute list. */
681	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
682	mi_get_ref(&ni->mi, &ref);
683
684	le = NULL;
685	while ((le = al_enumerate(ni, le))) {
686		if (!memcmp(&le->ref, &ref, sizeof(ref)))
687			continue;
688
689		if (le->vcn)
690			return 0;
691
692		mi = ni_find_mi(ni, ino_get(&le->ref));
693		if (!mi)
694			return 0;
695
696		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
697				    le->name_len, &le->id);
698		if (!attr)
699			return 0;
700
701		asize = le32_to_cpu(attr->size);
702		if (asize > free)
703			return 0;
704
705		free -= asize;
706	}
707
708	/* Make a copy of primary record to restore if error. */
709	mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
710	if (!mrec)
711		return 0; /* Not critical. */
712
713	/* It seems that attribute list can be removed from primary record. */
714	mi_remove_attr(NULL, &ni->mi, attr_list);
715
716	/*
717	 * Repeat the cycle above and copy all attributes to primary record.
718	 * Do not remove original attributes from subrecords!
719	 * It should be success!
720	 */
721	le = NULL;
722	while ((le = al_enumerate(ni, le))) {
723		if (!memcmp(&le->ref, &ref, sizeof(ref)))
724			continue;
725
726		mi = ni_find_mi(ni, ino_get(&le->ref));
727		if (!mi) {
728			/* Should never happened, 'cause already checked. */
729			goto out;
730		}
731
732		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
733				    le->name_len, &le->id);
734		if (!attr) {
735			/* Should never happened, 'cause already checked. */
736			goto out;
737		}
738		asize = le32_to_cpu(attr->size);
739
740		/* Insert into primary record. */
741		attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
742					  le->name_len, asize,
743					  le16_to_cpu(attr->name_off));
744		if (!attr_ins) {
745			/*
746			 * No space in primary record (already checked).
747			 */
748			goto out;
749		}
750
751		/* Copy all except id. */
752		id = attr_ins->id;
753		memcpy(attr_ins, attr, asize);
754		attr_ins->id = id;
755	}
756
757	/*
758	 * Repeat the cycle above and remove all attributes from subrecords.
759	 */
760	le = NULL;
761	while ((le = al_enumerate(ni, le))) {
762		if (!memcmp(&le->ref, &ref, sizeof(ref)))
763			continue;
764
765		mi = ni_find_mi(ni, ino_get(&le->ref));
766		if (!mi)
767			continue;
768
769		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
770				    le->name_len, &le->id);
771		if (!attr)
772			continue;
773
774		/* Remove from original record. */
775		mi_remove_attr(NULL, mi, attr);
776	}
777
778	run_deallocate(sbi, &ni->attr_list.run, true);
779	run_close(&ni->attr_list.run);
780	ni->attr_list.size = 0;
781	kvfree(ni->attr_list.le);
782	ni->attr_list.le = NULL;
783	ni->attr_list.dirty = false;
784
785	kfree(mrec);
786	return 0;
787out:
788	/* Restore primary record. */
789	swap(mrec, ni->mi.mrec);
790	kfree(mrec);
791	return 0;
792}
793
794/*
795 * ni_create_attr_list - Generates an attribute list for this primary record.
796 */
797int ni_create_attr_list(struct ntfs_inode *ni)
798{
799	struct ntfs_sb_info *sbi = ni->mi.sbi;
800	int err;
801	u32 lsize;
802	struct ATTRIB *attr;
803	struct ATTRIB *arr_move[7];
804	struct ATTR_LIST_ENTRY *le, *le_b[7];
805	struct MFT_REC *rec;
806	bool is_mft;
807	CLST rno = 0;
808	struct mft_inode *mi;
809	u32 free_b, nb, to_free, rs;
810	u16 sz;
811
812	is_mft = ni->mi.rno == MFT_REC_MFT;
813	rec = ni->mi.mrec;
814	rs = sbi->record_size;
815
816	/*
817	 * Skip estimating exact memory requirement.
818	 * Looks like one record_size is always enough.
819	 */
820	le = kmalloc(al_aligned(rs), GFP_NOFS);
821	if (!le)
822		return -ENOMEM;
823
824	mi_get_ref(&ni->mi, &le->ref);
825	ni->attr_list.le = le;
826
827	attr = NULL;
828	nb = 0;
829	free_b = 0;
830	attr = NULL;
831
832	for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
833		sz = le_size(attr->name_len);
834		le->type = attr->type;
835		le->size = cpu_to_le16(sz);
836		le->name_len = attr->name_len;
837		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
838		le->vcn = 0;
839		if (le != ni->attr_list.le)
840			le->ref = ni->attr_list.le->ref;
841		le->id = attr->id;
842
843		if (attr->name_len)
844			memcpy(le->name, attr_name(attr),
845			       sizeof(short) * attr->name_len);
846		else if (attr->type == ATTR_STD)
847			continue;
848		else if (attr->type == ATTR_LIST)
849			continue;
850		else if (is_mft && attr->type == ATTR_DATA)
851			continue;
852
853		if (!nb || nb < ARRAY_SIZE(arr_move)) {
854			le_b[nb] = le;
855			arr_move[nb++] = attr;
856			free_b += le32_to_cpu(attr->size);
857		}
858	}
859
860	lsize = PtrOffset(ni->attr_list.le, le);
861	ni->attr_list.size = lsize;
862
863	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
864	if (to_free <= rs) {
865		to_free = 0;
866	} else {
867		to_free -= rs;
868
869		if (to_free > free_b) {
870			err = -EINVAL;
871			goto out;
872		}
873	}
874
875	/* Allocate child MFT. */
876	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
877	if (err)
878		goto out;
879
880	err = -EINVAL;
881	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
882	while (to_free > 0) {
883		struct ATTRIB *b = arr_move[--nb];
884		u32 asize = le32_to_cpu(b->size);
885		u16 name_off = le16_to_cpu(b->name_off);
886
887		attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
888				      b->name_len, asize, name_off);
889		if (!attr)
890			goto out;
891
892		mi_get_ref(mi, &le_b[nb]->ref);
893		le_b[nb]->id = attr->id;
894
895		/* Copy all except id. */
896		memcpy(attr, b, asize);
897		attr->id = le_b[nb]->id;
898
899		/* Remove from primary record. */
900		if (!mi_remove_attr(NULL, &ni->mi, b))
901			goto out;
902
903		if (to_free <= asize)
904			break;
905		to_free -= asize;
906		if (!nb)
907			goto out;
908	}
909
910	attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
911			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
912	if (!attr)
913		goto out;
914
915	attr->non_res = 0;
916	attr->flags = 0;
917	attr->res.data_size = cpu_to_le32(lsize);
918	attr->res.data_off = SIZEOF_RESIDENT_LE;
919	attr->res.flags = 0;
920	attr->res.res = 0;
921
922	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
923
924	ni->attr_list.dirty = false;
925
926	mark_inode_dirty(&ni->vfs_inode);
927	return 0;
928
929out:
930	kvfree(ni->attr_list.le);
931	ni->attr_list.le = NULL;
932	ni->attr_list.size = 0;
933	return err;
934}
935
936/*
937 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
938 */
939static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
940			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
941			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
942			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
943			   struct ATTR_LIST_ENTRY **ins_le)
944{
945	struct ATTRIB *attr;
946	struct mft_inode *mi;
947	CLST rno;
948	u64 vbo;
949	struct rb_node *node;
950	int err;
951	bool is_mft, is_mft_data;
952	struct ntfs_sb_info *sbi = ni->mi.sbi;
953
954	is_mft = ni->mi.rno == MFT_REC_MFT;
955	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
956
957	if (asize > sbi->max_bytes_per_attr) {
958		err = -EINVAL;
959		goto out;
960	}
961
962	/*
963	 * Standard information and attr_list cannot be made external.
964	 * The Log File cannot have any external attributes.
965	 */
966	if (type == ATTR_STD || type == ATTR_LIST ||
967	    ni->mi.rno == MFT_REC_LOG) {
968		err = -EINVAL;
969		goto out;
970	}
971
972	/* Create attribute list if it is not already existed. */
973	if (!ni->attr_list.size) {
974		err = ni_create_attr_list(ni);
975		if (err)
976			goto out;
977	}
978
979	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
980
981	if (force_ext)
982		goto insert_ext;
983
984	/* Load all subrecords into memory. */
985	err = ni_load_all_mi(ni);
986	if (err)
987		goto out;
988
989	/* Check each of loaded subrecord. */
990	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
991		mi = rb_entry(node, struct mft_inode, node);
992
993		if (is_mft_data &&
994		    (mi_enum_attr(mi, NULL) ||
995		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
996			/* We can't accept this record 'cause MFT's bootstrapping. */
997			continue;
998		}
999		if (is_mft &&
1000		    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1001			/*
1002			 * This child record already has a ATTR_DATA.
1003			 * So it can't accept any other records.
1004			 */
1005			continue;
1006		}
1007
1008		if ((type != ATTR_NAME || name_len) &&
1009		    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1010			/* Only indexed attributes can share same record. */
1011			continue;
1012		}
1013
1014		/*
1015		 * Do not try to insert this attribute
1016		 * if there is no room in record.
1017		 */
1018		if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1019			continue;
1020
1021		/* Try to insert attribute into this subrecord. */
1022		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1023				       name_off, svcn, ins_le);
1024		if (!attr)
1025			continue;
1026		if (IS_ERR(attr))
1027			return PTR_ERR(attr);
1028
1029		if (ins_attr)
1030			*ins_attr = attr;
1031		if (ins_mi)
1032			*ins_mi = mi;
1033		return 0;
1034	}
1035
1036insert_ext:
1037	/* We have to allocate a new child subrecord. */
1038	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1039	if (err)
1040		goto out;
1041
1042	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1043		err = -EINVAL;
1044		goto out1;
1045	}
1046
1047	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1048			       name_off, svcn, ins_le);
1049	if (!attr) {
1050		err = -EINVAL;
1051		goto out2;
1052	}
1053
1054	if (IS_ERR(attr)) {
1055		err = PTR_ERR(attr);
1056		goto out2;
1057	}
1058
1059	if (ins_attr)
1060		*ins_attr = attr;
1061	if (ins_mi)
1062		*ins_mi = mi;
1063
1064	return 0;
1065
1066out2:
1067	ni_remove_mi(ni, mi);
1068	mi_put(mi);
1069
1070out1:
1071	ntfs_mark_rec_free(sbi, rno, is_mft);
1072
1073out:
1074	return err;
1075}
1076
1077/*
1078 * ni_insert_attr - Insert an attribute into the file.
1079 *
1080 * If the primary record has room, it will just insert the attribute.
1081 * If not, it may make the attribute external.
1082 * For $MFT::Data it may make room for the attribute by
1083 * making other attributes external.
1084 *
1085 * NOTE:
1086 * The ATTR_LIST and ATTR_STD cannot be made external.
1087 * This function does not fill new attribute full.
1088 * It only fills 'size'/'type'/'id'/'name_len' fields.
1089 */
1090static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1091			  const __le16 *name, u8 name_len, u32 asize,
1092			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1093			  struct mft_inode **ins_mi,
1094			  struct ATTR_LIST_ENTRY **ins_le)
1095{
1096	struct ntfs_sb_info *sbi = ni->mi.sbi;
1097	int err;
1098	struct ATTRIB *attr, *eattr;
1099	struct MFT_REC *rec;
1100	bool is_mft;
1101	struct ATTR_LIST_ENTRY *le;
1102	u32 list_reserve, max_free, free, used, t32;
1103	__le16 id;
1104	u16 t16;
1105
1106	is_mft = ni->mi.rno == MFT_REC_MFT;
1107	rec = ni->mi.mrec;
1108
1109	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1110	used = le32_to_cpu(rec->used);
1111	free = sbi->record_size - used;
1112
1113	if (is_mft && type != ATTR_LIST) {
1114		/* Reserve space for the ATTRIB list. */
1115		if (free < list_reserve)
1116			free = 0;
1117		else
1118			free -= list_reserve;
1119	}
1120
1121	if (asize <= free) {
1122		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1123				       asize, name_off, svcn, ins_le);
1124		if (IS_ERR(attr)) {
1125			err = PTR_ERR(attr);
1126			goto out;
1127		}
1128
1129		if (attr) {
1130			if (ins_attr)
1131				*ins_attr = attr;
1132			if (ins_mi)
1133				*ins_mi = &ni->mi;
1134			err = 0;
1135			goto out;
1136		}
1137	}
1138
1139	if (!is_mft || type != ATTR_DATA || svcn) {
1140		/* This ATTRIB will be external. */
1141		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1142				      svcn, name_off, false, ins_attr, ins_mi,
1143				      ins_le);
1144		goto out;
1145	}
1146
1147	/*
1148	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1149	 *
1150	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1151	 * Evict as many other attributes as possible.
1152	 */
1153	max_free = free;
1154
1155	/* Estimate the result of moving all possible attributes away. */
1156	attr = NULL;
1157
1158	while ((attr = mi_enum_attr(&ni->mi, attr))) {
1159		if (attr->type == ATTR_STD)
1160			continue;
1161		if (attr->type == ATTR_LIST)
1162			continue;
1163		max_free += le32_to_cpu(attr->size);
1164	}
1165
1166	if (max_free < asize + list_reserve) {
1167		/* Impossible to insert this attribute into primary record. */
1168		err = -EINVAL;
1169		goto out;
1170	}
1171
1172	/* Start real attribute moving. */
1173	attr = NULL;
1174
1175	for (;;) {
1176		attr = mi_enum_attr(&ni->mi, attr);
1177		if (!attr) {
1178			/* We should never be here 'cause we have already check this case. */
1179			err = -EINVAL;
1180			goto out;
1181		}
1182
1183		/* Skip attributes that MUST be primary record. */
1184		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1185			continue;
1186
1187		le = NULL;
1188		if (ni->attr_list.size) {
1189			le = al_find_le(ni, NULL, attr);
1190			if (!le) {
1191				/* Really this is a serious bug. */
1192				err = -EINVAL;
1193				goto out;
1194			}
1195		}
1196
1197		t32 = le32_to_cpu(attr->size);
1198		t16 = le16_to_cpu(attr->name_off);
1199		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1200				      attr->name_len, t32, attr_svcn(attr), t16,
1201				      false, &eattr, NULL, NULL);
1202		if (err)
1203			return err;
1204
1205		id = eattr->id;
1206		memcpy(eattr, attr, t32);
1207		eattr->id = id;
1208
1209		/* Remove from primary record. */
1210		mi_remove_attr(NULL, &ni->mi, attr);
1211
1212		/* attr now points to next attribute. */
1213		if (attr->type == ATTR_END)
1214			goto out;
1215	}
1216	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1217		;
1218
1219	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1220			       name_off, svcn, ins_le);
1221	if (!attr) {
1222		err = -EINVAL;
1223		goto out;
1224	}
1225
1226	if (IS_ERR(attr)) {
1227		err = PTR_ERR(attr);
1228		goto out;
1229	}
1230
1231	if (ins_attr)
1232		*ins_attr = attr;
1233	if (ins_mi)
1234		*ins_mi = &ni->mi;
1235
1236out:
1237	return err;
1238}
1239
1240/* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
1241static int ni_expand_mft_list(struct ntfs_inode *ni)
1242{
1243	int err = 0;
1244	struct runs_tree *run = &ni->file.run;
1245	u32 asize, run_size, done = 0;
1246	struct ATTRIB *attr;
1247	struct rb_node *node;
1248	CLST mft_min, mft_new, svcn, evcn, plen;
1249	struct mft_inode *mi, *mi_min, *mi_new;
1250	struct ntfs_sb_info *sbi = ni->mi.sbi;
1251
1252	/* Find the nearest MFT. */
1253	mft_min = 0;
1254	mft_new = 0;
1255	mi_min = NULL;
1256
1257	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1258		mi = rb_entry(node, struct mft_inode, node);
1259
1260		attr = mi_enum_attr(mi, NULL);
1261
1262		if (!attr) {
1263			mft_min = mi->rno;
1264			mi_min = mi;
1265			break;
1266		}
1267	}
1268
1269	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1270		mft_new = 0;
1271		/* Really this is not critical. */
1272	} else if (mft_min > mft_new) {
1273		mft_min = mft_new;
1274		mi_min = mi_new;
1275	} else {
1276		ntfs_mark_rec_free(sbi, mft_new, true);
1277		mft_new = 0;
1278		ni_remove_mi(ni, mi_new);
1279	}
1280
1281	attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1282	if (!attr) {
1283		err = -EINVAL;
1284		goto out;
1285	}
1286
1287	asize = le32_to_cpu(attr->size);
1288
1289	evcn = le64_to_cpu(attr->nres.evcn);
1290	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1291	if (evcn + 1 >= svcn) {
1292		err = -EINVAL;
1293		goto out;
1294	}
1295
1296	/*
1297	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1298	 *
1299	 * Update first part of ATTR_DATA in 'primary MFT.
1300	 */
1301	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1302		       asize - SIZEOF_NONRESIDENT, &plen);
1303	if (err < 0)
1304		goto out;
1305
1306	run_size = ALIGN(err, 8);
1307	err = 0;
1308
1309	if (plen < svcn) {
1310		err = -EINVAL;
1311		goto out;
1312	}
1313
1314	attr->nres.evcn = cpu_to_le64(svcn - 1);
1315	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1316	/* 'done' - How many bytes of primary MFT becomes free. */
1317	done = asize - run_size - SIZEOF_NONRESIDENT;
1318	le32_sub_cpu(&ni->mi.mrec->used, done);
1319
1320	/* Estimate packed size (run_buf=NULL). */
1321	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1322		       &plen);
1323	if (err < 0)
1324		goto out;
1325
1326	run_size = ALIGN(err, 8);
1327	err = 0;
1328
1329	if (plen < evcn + 1 - svcn) {
1330		err = -EINVAL;
1331		goto out;
1332	}
1333
1334	/*
1335	 * This function may implicitly call expand attr_list.
1336	 * Insert second part of ATTR_DATA in 'mi_min'.
1337	 */
1338	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1339			       SIZEOF_NONRESIDENT + run_size,
1340			       SIZEOF_NONRESIDENT, svcn, NULL);
1341	if (!attr) {
1342		err = -EINVAL;
1343		goto out;
1344	}
1345
1346	if (IS_ERR(attr)) {
1347		err = PTR_ERR(attr);
1348		goto out;
1349	}
1350
1351	attr->non_res = 1;
1352	attr->name_off = SIZEOF_NONRESIDENT_LE;
1353	attr->flags = 0;
1354
1355	/* This function can't fail - cause already checked above. */
1356	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1357		 run_size, &plen);
1358
1359	attr->nres.svcn = cpu_to_le64(svcn);
1360	attr->nres.evcn = cpu_to_le64(evcn);
1361	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1362
1363out:
1364	if (mft_new) {
1365		ntfs_mark_rec_free(sbi, mft_new, true);
1366		ni_remove_mi(ni, mi_new);
1367	}
1368
1369	return !err && !done ? -EOPNOTSUPP : err;
1370}
1371
1372/*
1373 * ni_expand_list - Move all possible attributes out of primary record.
1374 */
1375int ni_expand_list(struct ntfs_inode *ni)
1376{
1377	int err = 0;
1378	u32 asize, done = 0;
1379	struct ATTRIB *attr, *ins_attr;
1380	struct ATTR_LIST_ENTRY *le;
1381	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1382	struct MFT_REF ref;
1383
1384	mi_get_ref(&ni->mi, &ref);
1385	le = NULL;
1386
1387	while ((le = al_enumerate(ni, le))) {
1388		if (le->type == ATTR_STD)
1389			continue;
1390
1391		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1392			continue;
1393
1394		if (is_mft && le->type == ATTR_DATA)
1395			continue;
1396
1397		/* Find attribute in primary record. */
1398		attr = rec_find_attr_le(&ni->mi, le);
1399		if (!attr) {
1400			err = -EINVAL;
1401			goto out;
1402		}
1403
1404		asize = le32_to_cpu(attr->size);
1405
1406		/* Always insert into new record to avoid collisions (deep recursive). */
1407		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1408				      attr->name_len, asize, attr_svcn(attr),
1409				      le16_to_cpu(attr->name_off), true,
1410				      &ins_attr, NULL, NULL);
1411
1412		if (err)
1413			goto out;
1414
1415		memcpy(ins_attr, attr, asize);
1416		ins_attr->id = le->id;
1417		/* Remove from primary record. */
1418		mi_remove_attr(NULL, &ni->mi, attr);
1419
1420		done += asize;
1421		goto out;
1422	}
1423
1424	if (!is_mft) {
1425		err = -EFBIG; /* Attr list is too big(?) */
1426		goto out;
1427	}
1428
1429	/* Split MFT data as much as possible. */
1430	err = ni_expand_mft_list(ni);
1431
1432out:
1433	return !err && !done ? -EOPNOTSUPP : err;
1434}
1435
1436/*
1437 * ni_insert_nonresident - Insert new nonresident attribute.
1438 */
1439int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1440			  const __le16 *name, u8 name_len,
1441			  const struct runs_tree *run, CLST svcn, CLST len,
1442			  __le16 flags, struct ATTRIB **new_attr,
1443			  struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1444{
1445	int err;
1446	CLST plen;
1447	struct ATTRIB *attr;
1448	bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1449		      !svcn;
1450	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1451	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1452	u32 run_off = name_off + name_size;
1453	u32 run_size, asize;
1454	struct ntfs_sb_info *sbi = ni->mi.sbi;
1455
1456	/* Estimate packed size (run_buf=NULL). */
1457	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1458		       &plen);
1459	if (err < 0)
1460		goto out;
1461
1462	run_size = ALIGN(err, 8);
1463
1464	if (plen < len) {
1465		err = -EINVAL;
1466		goto out;
1467	}
1468
1469	asize = run_off + run_size;
1470
1471	if (asize > sbi->max_bytes_per_attr) {
1472		err = -EINVAL;
1473		goto out;
1474	}
1475
1476	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1477			     &attr, mi, le);
1478
1479	if (err)
1480		goto out;
1481
1482	attr->non_res = 1;
1483	attr->name_off = cpu_to_le16(name_off);
1484	attr->flags = flags;
1485
1486	/* This function can't fail - cause already checked above. */
1487	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1488
1489	attr->nres.svcn = cpu_to_le64(svcn);
1490	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1491
1492	if (new_attr)
1493		*new_attr = attr;
1494
1495	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1496
1497	attr->nres.alloc_size =
1498		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1499	attr->nres.data_size = attr->nres.alloc_size;
1500	attr->nres.valid_size = attr->nres.alloc_size;
1501
1502	if (is_ext) {
1503		if (flags & ATTR_FLAG_COMPRESSED)
1504			attr->nres.c_unit = COMPRESSION_UNIT;
1505		attr->nres.total_size = attr->nres.alloc_size;
1506	}
1507
1508out:
1509	return err;
1510}
1511
1512/*
1513 * ni_insert_resident - Inserts new resident attribute.
1514 */
1515int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1516		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1517		       struct ATTRIB **new_attr, struct mft_inode **mi,
1518		       struct ATTR_LIST_ENTRY **le)
1519{
1520	int err;
1521	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1522	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1523	struct ATTRIB *attr;
1524
1525	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1526			     0, &attr, mi, le);
1527	if (err)
1528		return err;
1529
1530	attr->non_res = 0;
1531	attr->flags = 0;
1532
1533	attr->res.data_size = cpu_to_le32(data_size);
1534	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1535	if (type == ATTR_NAME) {
1536		attr->res.flags = RESIDENT_FLAG_INDEXED;
1537
1538		/* is_attr_indexed(attr)) == true */
1539		le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1540		ni->mi.dirty = true;
1541	}
1542	attr->res.res = 0;
1543
1544	if (new_attr)
1545		*new_attr = attr;
1546
1547	return 0;
1548}
1549
1550/*
1551 * ni_remove_attr_le - Remove attribute from record.
1552 */
1553void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1554		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1555{
1556	mi_remove_attr(ni, mi, attr);
1557
1558	if (le)
1559		al_remove_le(ni, le);
1560}
1561
1562/*
1563 * ni_delete_all - Remove all attributes and frees allocates space.
1564 *
1565 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1566 */
1567int ni_delete_all(struct ntfs_inode *ni)
1568{
1569	int err;
1570	struct ATTR_LIST_ENTRY *le = NULL;
1571	struct ATTRIB *attr = NULL;
1572	struct rb_node *node;
1573	u16 roff;
1574	u32 asize;
1575	CLST svcn, evcn;
1576	struct ntfs_sb_info *sbi = ni->mi.sbi;
1577	bool nt3 = is_ntfs3(sbi);
1578	struct MFT_REF ref;
1579
1580	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1581		if (!nt3 || attr->name_len) {
1582			;
1583		} else if (attr->type == ATTR_REPARSE) {
1584			mi_get_ref(&ni->mi, &ref);
1585			ntfs_remove_reparse(sbi, 0, &ref);
1586		} else if (attr->type == ATTR_ID && !attr->non_res &&
1587			   le32_to_cpu(attr->res.data_size) >=
1588				   sizeof(struct GUID)) {
1589			ntfs_objid_remove(sbi, resident_data(attr));
1590		}
1591
1592		if (!attr->non_res)
1593			continue;
1594
1595		svcn = le64_to_cpu(attr->nres.svcn);
1596		evcn = le64_to_cpu(attr->nres.evcn);
1597
1598		if (evcn + 1 <= svcn)
1599			continue;
1600
1601		asize = le32_to_cpu(attr->size);
1602		roff = le16_to_cpu(attr->nres.run_off);
1603
1604		if (roff > asize)
1605			return -EINVAL;
1606
1607		/* run==1 means unpack and deallocate. */
1608		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1609			      Add2Ptr(attr, roff), asize - roff);
1610	}
1611
1612	if (ni->attr_list.size) {
1613		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1614		al_destroy(ni);
1615	}
1616
1617	/* Free all subrecords. */
1618	for (node = rb_first(&ni->mi_tree); node;) {
1619		struct rb_node *next = rb_next(node);
1620		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1621
1622		clear_rec_inuse(mi->mrec);
1623		mi->dirty = true;
1624		mi_write(mi, 0);
1625
1626		ntfs_mark_rec_free(sbi, mi->rno, false);
1627		ni_remove_mi(ni, mi);
1628		mi_put(mi);
1629		node = next;
1630	}
1631
1632	/* Free base record. */
1633	clear_rec_inuse(ni->mi.mrec);
1634	ni->mi.dirty = true;
1635	err = mi_write(&ni->mi, 0);
1636
1637	ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1638
1639	return err;
1640}
1641
1642/* ni_fname_name
1643 *
1644 * Return: File name attribute by its value.
1645 */
1646struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1647				     const struct le_str *uni,
1648				     const struct MFT_REF *home_dir,
1649				     struct mft_inode **mi,
1650				     struct ATTR_LIST_ENTRY **le)
1651{
1652	struct ATTRIB *attr = NULL;
1653	struct ATTR_FILE_NAME *fname;
1654
1655	if (le)
1656		*le = NULL;
1657
1658	/* Enumerate all names. */
1659next:
1660	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1661	if (!attr)
1662		return NULL;
1663
1664	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1665	if (!fname)
1666		goto next;
1667
1668	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1669		goto next;
1670
1671	if (!uni)
1672		return fname;
1673
1674	if (uni->len != fname->name_len)
1675		goto next;
1676
1677	if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1678			   false))
1679		goto next;
1680	return fname;
1681}
1682
1683/*
1684 * ni_fname_type
1685 *
1686 * Return: File name attribute with given type.
1687 */
1688struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1689				     struct mft_inode **mi,
1690				     struct ATTR_LIST_ENTRY **le)
1691{
1692	struct ATTRIB *attr = NULL;
1693	struct ATTR_FILE_NAME *fname;
1694
1695	*le = NULL;
1696
1697	if (name_type == FILE_NAME_POSIX)
1698		return NULL;
1699
1700	/* Enumerate all names. */
1701	for (;;) {
1702		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1703		if (!attr)
1704			return NULL;
1705
1706		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1707		if (fname && name_type == fname->type)
1708			return fname;
1709	}
1710}
1711
1712/*
1713 * ni_new_attr_flags
1714 *
1715 * Process compressed/sparsed in special way.
1716 * NOTE: You need to set ni->std_fa = new_fa
1717 * after this function to keep internal structures in consistency.
1718 */
1719int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1720{
1721	struct ATTRIB *attr;
1722	struct mft_inode *mi;
1723	__le16 new_aflags;
1724	u32 new_asize;
1725
1726	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1727	if (!attr)
1728		return -EINVAL;
1729
1730	new_aflags = attr->flags;
1731
1732	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1733		new_aflags |= ATTR_FLAG_SPARSED;
1734	else
1735		new_aflags &= ~ATTR_FLAG_SPARSED;
1736
1737	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1738		new_aflags |= ATTR_FLAG_COMPRESSED;
1739	else
1740		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1741
1742	if (new_aflags == attr->flags)
1743		return 0;
1744
1745	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1746	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1747		ntfs_inode_warn(&ni->vfs_inode,
1748				"file can't be sparsed and compressed");
1749		return -EOPNOTSUPP;
1750	}
1751
1752	if (!attr->non_res)
1753		goto out;
1754
1755	if (attr->nres.data_size) {
1756		ntfs_inode_warn(
1757			&ni->vfs_inode,
1758			"one can change sparsed/compressed only for empty files");
1759		return -EOPNOTSUPP;
1760	}
1761
1762	/* Resize nonresident empty attribute in-place only. */
1763	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1764			    (SIZEOF_NONRESIDENT_EX + 8) :
1765			    (SIZEOF_NONRESIDENT + 8);
1766
1767	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1768		return -EOPNOTSUPP;
1769
1770	if (new_aflags & ATTR_FLAG_SPARSED) {
1771		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1772		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1773		attr->nres.c_unit = 0;
1774		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1775	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1776		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1777		/* The only allowed: 16 clusters per frame. */
1778		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1779		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1780	} else {
1781		attr->name_off = SIZEOF_NONRESIDENT_LE;
1782		/* Normal files. */
1783		attr->nres.c_unit = 0;
1784		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1785	}
1786	attr->nres.run_off = attr->name_off;
1787out:
1788	attr->flags = new_aflags;
1789	mi->dirty = true;
1790
1791	return 0;
1792}
1793
1794/*
1795 * ni_parse_reparse
1796 *
1797 * buffer - memory for reparse buffer header
1798 */
1799enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1800				   struct REPARSE_DATA_BUFFER *buffer)
1801{
1802	const struct REPARSE_DATA_BUFFER *rp = NULL;
1803	u8 bits;
1804	u16 len;
1805	typeof(rp->CompressReparseBuffer) *cmpr;
1806
1807	/* Try to estimate reparse point. */
1808	if (!attr->non_res) {
1809		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1810	} else if (le64_to_cpu(attr->nres.data_size) >=
1811		   sizeof(struct REPARSE_DATA_BUFFER)) {
1812		struct runs_tree run;
1813
1814		run_init(&run);
1815
1816		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1817		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1818				      sizeof(struct REPARSE_DATA_BUFFER),
1819				      NULL)) {
1820			rp = buffer;
1821		}
1822
1823		run_close(&run);
1824	}
1825
1826	if (!rp)
1827		return REPARSE_NONE;
1828
1829	len = le16_to_cpu(rp->ReparseDataLength);
1830	switch (rp->ReparseTag) {
1831	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1832		break; /* Symbolic link. */
1833	case IO_REPARSE_TAG_MOUNT_POINT:
1834		break; /* Mount points and junctions. */
1835	case IO_REPARSE_TAG_SYMLINK:
1836		break;
1837	case IO_REPARSE_TAG_COMPRESS:
1838		/*
1839		 * WOF - Windows Overlay Filter - Used to compress files with
1840		 * LZX/Xpress.
1841		 *
1842		 * Unlike native NTFS file compression, the Windows
1843		 * Overlay Filter supports only read operations. This means
1844		 * that it doesn't need to sector-align each compressed chunk,
1845		 * so the compressed data can be packed more tightly together.
1846		 * If you open the file for writing, the WOF just decompresses
1847		 * the entire file, turning it back into a plain file.
1848		 *
1849		 * Ntfs3 driver decompresses the entire file only on write or
1850		 * change size requests.
1851		 */
1852
1853		cmpr = &rp->CompressReparseBuffer;
1854		if (len < sizeof(*cmpr) ||
1855		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1856		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1857		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1858			return REPARSE_NONE;
1859		}
1860
1861		switch (cmpr->CompressionFormat) {
1862		case WOF_COMPRESSION_XPRESS4K:
1863			bits = 0xc; // 4k
1864			break;
1865		case WOF_COMPRESSION_XPRESS8K:
1866			bits = 0xd; // 8k
1867			break;
1868		case WOF_COMPRESSION_XPRESS16K:
1869			bits = 0xe; // 16k
1870			break;
1871		case WOF_COMPRESSION_LZX32K:
1872			bits = 0xf; // 32k
1873			break;
1874		default:
1875			bits = 0x10; // 64k
1876			break;
1877		}
1878		ni_set_ext_compress_bits(ni, bits);
1879		return REPARSE_COMPRESSED;
1880
1881	case IO_REPARSE_TAG_DEDUP:
1882		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1883		return REPARSE_DEDUPLICATED;
1884
1885	default:
1886		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1887			break;
1888
1889		return REPARSE_NONE;
1890	}
1891
1892	if (buffer != rp)
1893		memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1894
1895	/* Looks like normal symlink. */
1896	return REPARSE_LINK;
1897}
1898
1899/*
1900 * ni_fiemap - Helper for file_fiemap().
1901 *
1902 * Assumed ni_lock.
1903 * TODO: Less aggressive locks.
1904 */
1905int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1906	      __u64 vbo, __u64 len)
1907{
1908	int err = 0;
1909	struct ntfs_sb_info *sbi = ni->mi.sbi;
1910	u8 cluster_bits = sbi->cluster_bits;
1911	struct runs_tree *run;
1912	struct rw_semaphore *run_lock;
1913	struct ATTRIB *attr;
1914	CLST vcn = vbo >> cluster_bits;
1915	CLST lcn, clen;
1916	u64 valid = ni->i_valid;
1917	u64 lbo, bytes;
1918	u64 end, alloc_size;
1919	size_t idx = -1;
1920	u32 flags;
1921	bool ok;
1922
1923	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1924		run = &ni->dir.alloc_run;
1925		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1926				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1927		run_lock = &ni->dir.run_lock;
1928	} else {
1929		run = &ni->file.run;
1930		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1931				    NULL);
1932		if (!attr) {
1933			err = -EINVAL;
1934			goto out;
1935		}
1936		if (is_attr_compressed(attr)) {
1937			/* Unfortunately cp -r incorrectly treats compressed clusters. */
1938			err = -EOPNOTSUPP;
1939			ntfs_inode_warn(
1940				&ni->vfs_inode,
1941				"fiemap is not supported for compressed file (cp -r)");
1942			goto out;
1943		}
1944		run_lock = &ni->file.run_lock;
1945	}
1946
1947	if (!attr || !attr->non_res) {
1948		err = fiemap_fill_next_extent(
1949			fieinfo, 0, 0,
1950			attr ? le32_to_cpu(attr->res.data_size) : 0,
1951			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1952				FIEMAP_EXTENT_MERGED);
1953		goto out;
1954	}
1955
1956	end = vbo + len;
1957	alloc_size = le64_to_cpu(attr->nres.alloc_size);
1958	if (end > alloc_size)
1959		end = alloc_size;
1960
1961	down_read(run_lock);
1962
1963	while (vbo < end) {
1964		if (idx == -1) {
1965			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1966		} else {
1967			CLST vcn_next = vcn;
1968
1969			ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1970			     vcn == vcn_next;
1971			if (!ok)
1972				vcn = vcn_next;
1973		}
1974
1975		if (!ok) {
1976			up_read(run_lock);
1977			down_write(run_lock);
1978
1979			err = attr_load_runs_vcn(ni, attr->type,
1980						 attr_name(attr),
1981						 attr->name_len, run, vcn);
1982
1983			up_write(run_lock);
1984			down_read(run_lock);
1985
1986			if (err)
1987				break;
1988
1989			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1990
1991			if (!ok) {
1992				err = -EINVAL;
1993				break;
1994			}
1995		}
1996
1997		if (!clen) {
1998			err = -EINVAL; // ?
1999			break;
2000		}
2001
2002		if (lcn == SPARSE_LCN) {
2003			vcn += clen;
2004			vbo = (u64)vcn << cluster_bits;
2005			continue;
2006		}
2007
2008		flags = FIEMAP_EXTENT_MERGED;
2009		if (S_ISDIR(ni->vfs_inode.i_mode)) {
2010			;
2011		} else if (is_attr_compressed(attr)) {
2012			CLST clst_data;
2013
2014			err = attr_is_frame_compressed(
2015				ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2016			if (err)
2017				break;
2018			if (clst_data < NTFS_LZNT_CLUSTERS)
2019				flags |= FIEMAP_EXTENT_ENCODED;
2020		} else if (is_attr_encrypted(attr)) {
2021			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2022		}
2023
2024		vbo = (u64)vcn << cluster_bits;
2025		bytes = (u64)clen << cluster_bits;
2026		lbo = (u64)lcn << cluster_bits;
2027
2028		vcn += clen;
2029
2030		if (vbo + bytes >= end)
2031			bytes = end - vbo;
2032
2033		if (vbo + bytes <= valid) {
2034			;
2035		} else if (vbo >= valid) {
2036			flags |= FIEMAP_EXTENT_UNWRITTEN;
2037		} else {
2038			/* vbo < valid && valid < vbo + bytes */
2039			u64 dlen = valid - vbo;
2040
2041			if (vbo + dlen >= end)
2042				flags |= FIEMAP_EXTENT_LAST;
2043
2044			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2045						      flags);
2046			if (err < 0)
2047				break;
2048			if (err == 1) {
2049				err = 0;
2050				break;
2051			}
2052
2053			vbo = valid;
2054			bytes -= dlen;
2055			if (!bytes)
2056				continue;
2057
2058			lbo += dlen;
2059			flags |= FIEMAP_EXTENT_UNWRITTEN;
2060		}
2061
2062		if (vbo + bytes >= end)
2063			flags |= FIEMAP_EXTENT_LAST;
2064
2065		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2066		if (err < 0)
2067			break;
2068		if (err == 1) {
2069			err = 0;
2070			break;
2071		}
2072
2073		vbo += bytes;
2074	}
2075
2076	up_read(run_lock);
2077
2078out:
2079	return err;
2080}
2081
2082/*
2083 * ni_readpage_cmpr
2084 *
2085 * When decompressing, we typically obtain more than one page per reference.
2086 * We inject the additional pages into the page cache.
2087 */
2088int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2089{
2090	int err;
2091	struct ntfs_sb_info *sbi = ni->mi.sbi;
2092	struct address_space *mapping = page->mapping;
2093	pgoff_t index = page->index;
2094	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2095	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2096	u8 frame_bits;
2097	CLST frame;
2098	u32 i, idx, frame_size, pages_per_frame;
2099	gfp_t gfp_mask;
2100	struct page *pg;
2101
2102	if (vbo >= i_size_read(&ni->vfs_inode)) {
2103		SetPageUptodate(page);
2104		err = 0;
2105		goto out;
2106	}
2107
2108	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2109		/* Xpress or LZX. */
2110		frame_bits = ni_ext_compress_bits(ni);
2111	} else {
2112		/* LZNT compression. */
2113		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2114	}
2115	frame_size = 1u << frame_bits;
2116	frame = vbo >> frame_bits;
2117	frame_vbo = (u64)frame << frame_bits;
2118	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2119
2120	pages_per_frame = frame_size >> PAGE_SHIFT;
2121	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2122	if (!pages) {
2123		err = -ENOMEM;
2124		goto out;
2125	}
2126
2127	pages[idx] = page;
2128	index = frame_vbo >> PAGE_SHIFT;
2129	gfp_mask = mapping_gfp_mask(mapping);
2130
2131	for (i = 0; i < pages_per_frame; i++, index++) {
2132		if (i == idx)
2133			continue;
2134
2135		pg = find_or_create_page(mapping, index, gfp_mask);
2136		if (!pg) {
2137			err = -ENOMEM;
2138			goto out1;
2139		}
2140		pages[i] = pg;
2141	}
2142
2143	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2144
2145out1:
2146	if (err)
2147		SetPageError(page);
2148
2149	for (i = 0; i < pages_per_frame; i++) {
2150		pg = pages[i];
2151		if (i == idx || !pg)
2152			continue;
2153		unlock_page(pg);
2154		put_page(pg);
2155	}
2156
2157out:
2158	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
2159	kfree(pages);
2160	unlock_page(page);
2161
2162	return err;
2163}
2164
2165#ifdef CONFIG_NTFS3_LZX_XPRESS
2166/*
2167 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2168 *
2169 * Remove ATTR_DATA::WofCompressedData.
2170 * Remove ATTR_REPARSE.
2171 */
2172int ni_decompress_file(struct ntfs_inode *ni)
2173{
2174	struct ntfs_sb_info *sbi = ni->mi.sbi;
2175	struct inode *inode = &ni->vfs_inode;
2176	loff_t i_size = i_size_read(inode);
2177	struct address_space *mapping = inode->i_mapping;
2178	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2179	struct page **pages = NULL;
2180	struct ATTR_LIST_ENTRY *le;
2181	struct ATTRIB *attr;
2182	CLST vcn, cend, lcn, clen, end;
2183	pgoff_t index;
2184	u64 vbo;
2185	u8 frame_bits;
2186	u32 i, frame_size, pages_per_frame, bytes;
2187	struct mft_inode *mi;
2188	int err;
2189
2190	/* Clusters for decompressed data. */
2191	cend = bytes_to_cluster(sbi, i_size);
2192
2193	if (!i_size)
2194		goto remove_wof;
2195
2196	/* Check in advance. */
2197	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2198		err = -ENOSPC;
2199		goto out;
2200	}
2201
2202	frame_bits = ni_ext_compress_bits(ni);
2203	frame_size = 1u << frame_bits;
2204	pages_per_frame = frame_size >> PAGE_SHIFT;
2205	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2206	if (!pages) {
2207		err = -ENOMEM;
2208		goto out;
2209	}
2210
2211	/*
2212	 * Step 1: Decompress data and copy to new allocated clusters.
2213	 */
2214	index = 0;
2215	for (vbo = 0; vbo < i_size; vbo += bytes) {
2216		u32 nr_pages;
2217		bool new;
2218
2219		if (vbo + frame_size > i_size) {
2220			bytes = i_size - vbo;
2221			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2222		} else {
2223			nr_pages = pages_per_frame;
2224			bytes = frame_size;
2225		}
2226
2227		end = bytes_to_cluster(sbi, vbo + bytes);
2228
2229		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2230			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2231						  &clen, &new, false);
2232			if (err)
2233				goto out;
2234		}
2235
2236		for (i = 0; i < pages_per_frame; i++, index++) {
2237			struct page *pg;
2238
2239			pg = find_or_create_page(mapping, index, gfp_mask);
2240			if (!pg) {
2241				while (i--) {
2242					unlock_page(pages[i]);
2243					put_page(pages[i]);
2244				}
2245				err = -ENOMEM;
2246				goto out;
2247			}
2248			pages[i] = pg;
2249		}
2250
2251		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2252
2253		if (!err) {
2254			down_read(&ni->file.run_lock);
2255			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2256					     nr_pages, vbo, bytes,
2257					     REQ_OP_WRITE);
2258			up_read(&ni->file.run_lock);
2259		}
2260
2261		for (i = 0; i < pages_per_frame; i++) {
2262			unlock_page(pages[i]);
2263			put_page(pages[i]);
2264		}
2265
2266		if (err)
2267			goto out;
2268
2269		cond_resched();
2270	}
2271
2272remove_wof:
2273	/*
2274	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2275	 * and ATTR_REPARSE.
2276	 */
2277	attr = NULL;
2278	le = NULL;
2279	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2280		CLST svcn, evcn;
2281		u32 asize, roff;
2282
2283		if (attr->type == ATTR_REPARSE) {
2284			struct MFT_REF ref;
2285
2286			mi_get_ref(&ni->mi, &ref);
2287			ntfs_remove_reparse(sbi, 0, &ref);
2288		}
2289
2290		if (!attr->non_res)
2291			continue;
2292
2293		if (attr->type != ATTR_REPARSE &&
2294		    (attr->type != ATTR_DATA ||
2295		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2296		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2297			continue;
2298
2299		svcn = le64_to_cpu(attr->nres.svcn);
2300		evcn = le64_to_cpu(attr->nres.evcn);
2301
2302		if (evcn + 1 <= svcn)
2303			continue;
2304
2305		asize = le32_to_cpu(attr->size);
2306		roff = le16_to_cpu(attr->nres.run_off);
2307
2308		if (roff > asize) {
2309			err = -EINVAL;
2310			goto out;
2311		}
2312
2313		/*run==1  Means unpack and deallocate. */
2314		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2315			      Add2Ptr(attr, roff), asize - roff);
2316	}
2317
2318	/*
2319	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2320	 */
2321	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2322			     false, NULL);
2323	if (err)
2324		goto out;
2325
2326	/*
2327	 * Step 4: Remove ATTR_REPARSE.
2328	 */
2329	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2330	if (err)
2331		goto out;
2332
2333	/*
2334	 * Step 5: Remove sparse flag from data attribute.
2335	 */
2336	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2337	if (!attr) {
2338		err = -EINVAL;
2339		goto out;
2340	}
2341
2342	if (attr->non_res && is_attr_sparsed(attr)) {
2343		/* Sparsed attribute header is 8 bytes bigger than normal. */
2344		struct MFT_REC *rec = mi->mrec;
2345		u32 used = le32_to_cpu(rec->used);
2346		u32 asize = le32_to_cpu(attr->size);
2347		u16 roff = le16_to_cpu(attr->nres.run_off);
2348		char *rbuf = Add2Ptr(attr, roff);
2349
2350		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2351		attr->size = cpu_to_le32(asize - 8);
2352		attr->flags &= ~ATTR_FLAG_SPARSED;
2353		attr->nres.run_off = cpu_to_le16(roff - 8);
2354		attr->nres.c_unit = 0;
2355		rec->used = cpu_to_le32(used - 8);
2356		mi->dirty = true;
2357		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2358				FILE_ATTRIBUTE_REPARSE_POINT);
2359
2360		mark_inode_dirty(inode);
2361	}
2362
2363	/* Clear cached flag. */
2364	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2365	if (ni->file.offs_page) {
2366		put_page(ni->file.offs_page);
2367		ni->file.offs_page = NULL;
2368	}
2369	mapping->a_ops = &ntfs_aops;
2370
2371out:
2372	kfree(pages);
2373	if (err)
2374		_ntfs_bad_inode(inode);
2375
2376	return err;
2377}
2378
2379/*
2380 * decompress_lzx_xpress - External compression LZX/Xpress.
2381 */
2382static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2383				 size_t cmpr_size, void *unc, size_t unc_size,
2384				 u32 frame_size)
2385{
2386	int err;
2387	void *ctx;
2388
2389	if (cmpr_size == unc_size) {
2390		/* Frame not compressed. */
2391		memcpy(unc, cmpr, unc_size);
2392		return 0;
2393	}
2394
2395	err = 0;
2396	if (frame_size == 0x8000) {
2397		mutex_lock(&sbi->compress.mtx_lzx);
2398		/* LZX: Frame compressed. */
2399		ctx = sbi->compress.lzx;
2400		if (!ctx) {
2401			/* Lazy initialize LZX decompress context. */
2402			ctx = lzx_allocate_decompressor();
2403			if (!ctx) {
2404				err = -ENOMEM;
2405				goto out1;
2406			}
2407
2408			sbi->compress.lzx = ctx;
2409		}
2410
2411		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2412			/* Treat all errors as "invalid argument". */
2413			err = -EINVAL;
2414		}
2415out1:
2416		mutex_unlock(&sbi->compress.mtx_lzx);
2417	} else {
2418		/* XPRESS: Frame compressed. */
2419		mutex_lock(&sbi->compress.mtx_xpress);
2420		ctx = sbi->compress.xpress;
2421		if (!ctx) {
2422			/* Lazy initialize Xpress decompress context. */
2423			ctx = xpress_allocate_decompressor();
2424			if (!ctx) {
2425				err = -ENOMEM;
2426				goto out2;
2427			}
2428
2429			sbi->compress.xpress = ctx;
2430		}
2431
2432		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2433			/* Treat all errors as "invalid argument". */
2434			err = -EINVAL;
2435		}
2436out2:
2437		mutex_unlock(&sbi->compress.mtx_xpress);
2438	}
2439	return err;
2440}
2441#endif
2442
2443/*
2444 * ni_read_frame
2445 *
2446 * Pages - Array of locked pages.
2447 */
2448int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2449		  u32 pages_per_frame)
2450{
2451	int err;
2452	struct ntfs_sb_info *sbi = ni->mi.sbi;
2453	u8 cluster_bits = sbi->cluster_bits;
2454	char *frame_ondisk = NULL;
2455	char *frame_mem = NULL;
2456	struct page **pages_disk = NULL;
2457	struct ATTR_LIST_ENTRY *le = NULL;
2458	struct runs_tree *run = &ni->file.run;
2459	u64 valid_size = ni->i_valid;
2460	u64 vbo_disk;
2461	size_t unc_size;
2462	u32 frame_size, i, npages_disk, ondisk_size;
2463	struct page *pg;
2464	struct ATTRIB *attr;
2465	CLST frame, clst_data;
2466
2467	/*
2468	 * To simplify decompress algorithm do vmap for source
2469	 * and target pages.
2470	 */
2471	for (i = 0; i < pages_per_frame; i++)
2472		kmap(pages[i]);
2473
2474	frame_size = pages_per_frame << PAGE_SHIFT;
2475	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2476	if (!frame_mem) {
2477		err = -ENOMEM;
2478		goto out;
2479	}
2480
2481	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2482	if (!attr) {
2483		err = -ENOENT;
2484		goto out1;
2485	}
2486
2487	if (!attr->non_res) {
2488		u32 data_size = le32_to_cpu(attr->res.data_size);
2489
2490		memset(frame_mem, 0, frame_size);
2491		if (frame_vbo < data_size) {
2492			ondisk_size = data_size - frame_vbo;
2493			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2494			       min(ondisk_size, frame_size));
2495		}
2496		err = 0;
2497		goto out1;
2498	}
2499
2500	if (frame_vbo >= valid_size) {
2501		memset(frame_mem, 0, frame_size);
2502		err = 0;
2503		goto out1;
2504	}
2505
2506	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2507#ifndef CONFIG_NTFS3_LZX_XPRESS
2508		err = -EOPNOTSUPP;
2509		goto out1;
2510#else
2511		loff_t i_size = i_size_read(&ni->vfs_inode);
2512		u32 frame_bits = ni_ext_compress_bits(ni);
2513		u64 frame64 = frame_vbo >> frame_bits;
2514		u64 frames, vbo_data;
2515
2516		if (frame_size != (1u << frame_bits)) {
2517			err = -EINVAL;
2518			goto out1;
2519		}
2520		switch (frame_size) {
2521		case 0x1000:
2522		case 0x2000:
2523		case 0x4000:
2524		case 0x8000:
2525			break;
2526		default:
2527			/* Unknown compression. */
2528			err = -EOPNOTSUPP;
2529			goto out1;
2530		}
2531
2532		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2533				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2534		if (!attr) {
2535			ntfs_inode_err(
2536				&ni->vfs_inode,
2537				"external compressed file should contains data attribute \"WofCompressedData\"");
2538			err = -EINVAL;
2539			goto out1;
2540		}
2541
2542		if (!attr->non_res) {
2543			run = NULL;
2544		} else {
2545			run = run_alloc();
2546			if (!run) {
2547				err = -ENOMEM;
2548				goto out1;
2549			}
2550		}
2551
2552		frames = (i_size - 1) >> frame_bits;
2553
2554		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2555					  frame_bits, &ondisk_size, &vbo_data);
2556		if (err)
2557			goto out2;
2558
2559		if (frame64 == frames) {
2560			unc_size = 1 + ((i_size - 1) & (frame_size - 1));
2561			ondisk_size = attr_size(attr) - vbo_data;
2562		} else {
2563			unc_size = frame_size;
2564		}
2565
2566		if (ondisk_size > frame_size) {
2567			err = -EINVAL;
2568			goto out2;
2569		}
2570
2571		if (!attr->non_res) {
2572			if (vbo_data + ondisk_size >
2573			    le32_to_cpu(attr->res.data_size)) {
2574				err = -EINVAL;
2575				goto out1;
2576			}
2577
2578			err = decompress_lzx_xpress(
2579				sbi, Add2Ptr(resident_data(attr), vbo_data),
2580				ondisk_size, frame_mem, unc_size, frame_size);
2581			goto out1;
2582		}
2583		vbo_disk = vbo_data;
2584		/* Load all runs to read [vbo_disk-vbo_to). */
2585		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2586					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2587					   vbo_data + ondisk_size);
2588		if (err)
2589			goto out2;
2590		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2591			       PAGE_SIZE - 1) >>
2592			      PAGE_SHIFT;
2593#endif
2594	} else if (is_attr_compressed(attr)) {
2595		/* LZNT compression. */
2596		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2597			err = -EOPNOTSUPP;
2598			goto out1;
2599		}
2600
2601		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2602			err = -EOPNOTSUPP;
2603			goto out1;
2604		}
2605
2606		down_write(&ni->file.run_lock);
2607		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2608		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2609		err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2610		up_write(&ni->file.run_lock);
2611		if (err)
2612			goto out1;
2613
2614		if (!clst_data) {
2615			memset(frame_mem, 0, frame_size);
2616			goto out1;
2617		}
2618
2619		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2620		ondisk_size = clst_data << cluster_bits;
2621
2622		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2623			/* Frame is not compressed. */
2624			down_read(&ni->file.run_lock);
2625			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2626					     frame_vbo, ondisk_size,
2627					     REQ_OP_READ);
2628			up_read(&ni->file.run_lock);
2629			goto out1;
2630		}
2631		vbo_disk = frame_vbo;
2632		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2633	} else {
2634		__builtin_unreachable();
2635		err = -EINVAL;
2636		goto out1;
2637	}
2638
2639	pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2640	if (!pages_disk) {
2641		err = -ENOMEM;
2642		goto out2;
2643	}
2644
2645	for (i = 0; i < npages_disk; i++) {
2646		pg = alloc_page(GFP_KERNEL);
2647		if (!pg) {
2648			err = -ENOMEM;
2649			goto out3;
2650		}
2651		pages_disk[i] = pg;
2652		lock_page(pg);
2653		kmap(pg);
2654	}
2655
2656	/* Read 'ondisk_size' bytes from disk. */
2657	down_read(&ni->file.run_lock);
2658	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2659			     ondisk_size, REQ_OP_READ);
2660	up_read(&ni->file.run_lock);
2661	if (err)
2662		goto out3;
2663
2664	/*
2665	 * To simplify decompress algorithm do vmap for source and target pages.
2666	 */
2667	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2668	if (!frame_ondisk) {
2669		err = -ENOMEM;
2670		goto out3;
2671	}
2672
2673	/* Decompress: Frame_ondisk -> frame_mem. */
2674#ifdef CONFIG_NTFS3_LZX_XPRESS
2675	if (run != &ni->file.run) {
2676		/* LZX or XPRESS */
2677		err = decompress_lzx_xpress(
2678			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2679			ondisk_size, frame_mem, unc_size, frame_size);
2680	} else
2681#endif
2682	{
2683		/* LZNT - Native NTFS compression. */
2684		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2685					   frame_size);
2686		if ((ssize_t)unc_size < 0)
2687			err = unc_size;
2688		else if (!unc_size || unc_size > frame_size)
2689			err = -EINVAL;
2690	}
2691	if (!err && valid_size < frame_vbo + frame_size) {
2692		size_t ok = valid_size - frame_vbo;
2693
2694		memset(frame_mem + ok, 0, frame_size - ok);
2695	}
2696
2697	vunmap(frame_ondisk);
2698
2699out3:
2700	for (i = 0; i < npages_disk; i++) {
2701		pg = pages_disk[i];
2702		if (pg) {
2703			kunmap(pg);
2704			unlock_page(pg);
2705			put_page(pg);
2706		}
2707	}
2708	kfree(pages_disk);
2709
2710out2:
2711#ifdef CONFIG_NTFS3_LZX_XPRESS
2712	if (run != &ni->file.run)
2713		run_free(run);
2714#endif
2715out1:
2716	vunmap(frame_mem);
2717out:
2718	for (i = 0; i < pages_per_frame; i++) {
2719		pg = pages[i];
2720		kunmap(pg);
2721		ClearPageError(pg);
2722		SetPageUptodate(pg);
2723	}
2724
2725	return err;
2726}
2727
2728/*
2729 * ni_write_frame
2730 *
2731 * Pages - Array of locked pages.
2732 */
2733int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2734		   u32 pages_per_frame)
2735{
2736	int err;
2737	struct ntfs_sb_info *sbi = ni->mi.sbi;
2738	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2739	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2740	u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2741	CLST frame = frame_vbo >> frame_bits;
2742	char *frame_ondisk = NULL;
2743	struct page **pages_disk = NULL;
2744	struct ATTR_LIST_ENTRY *le = NULL;
2745	char *frame_mem;
2746	struct ATTRIB *attr;
2747	struct mft_inode *mi;
2748	u32 i;
2749	struct page *pg;
2750	size_t compr_size, ondisk_size;
2751	struct lznt *lznt;
2752
2753	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2754	if (!attr) {
2755		err = -ENOENT;
2756		goto out;
2757	}
2758
2759	if (WARN_ON(!is_attr_compressed(attr))) {
2760		err = -EINVAL;
2761		goto out;
2762	}
2763
2764	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2765		err = -EOPNOTSUPP;
2766		goto out;
2767	}
2768
2769	if (!attr->non_res) {
2770		down_write(&ni->file.run_lock);
2771		err = attr_make_nonresident(ni, attr, le, mi,
2772					    le32_to_cpu(attr->res.data_size),
2773					    &ni->file.run, &attr, pages[0]);
2774		up_write(&ni->file.run_lock);
2775		if (err)
2776			goto out;
2777	}
2778
2779	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2780		err = -EOPNOTSUPP;
2781		goto out;
2782	}
2783
2784	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2785	if (!pages_disk) {
2786		err = -ENOMEM;
2787		goto out;
2788	}
2789
2790	for (i = 0; i < pages_per_frame; i++) {
2791		pg = alloc_page(GFP_KERNEL);
2792		if (!pg) {
2793			err = -ENOMEM;
2794			goto out1;
2795		}
2796		pages_disk[i] = pg;
2797		lock_page(pg);
2798		kmap(pg);
2799	}
2800
2801	/* To simplify compress algorithm do vmap for source and target pages. */
2802	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2803	if (!frame_ondisk) {
2804		err = -ENOMEM;
2805		goto out1;
2806	}
2807
2808	for (i = 0; i < pages_per_frame; i++)
2809		kmap(pages[i]);
2810
2811	/* Map in-memory frame for read-only. */
2812	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2813	if (!frame_mem) {
2814		err = -ENOMEM;
2815		goto out2;
2816	}
2817
2818	mutex_lock(&sbi->compress.mtx_lznt);
2819	lznt = NULL;
2820	if (!sbi->compress.lznt) {
2821		/*
2822		 * LZNT implements two levels of compression:
2823		 * 0 - Standard compression
2824		 * 1 - Best compression, requires a lot of cpu
2825		 * use mount option?
2826		 */
2827		lznt = get_lznt_ctx(0);
2828		if (!lznt) {
2829			mutex_unlock(&sbi->compress.mtx_lznt);
2830			err = -ENOMEM;
2831			goto out3;
2832		}
2833
2834		sbi->compress.lznt = lznt;
2835		lznt = NULL;
2836	}
2837
2838	/* Compress: frame_mem -> frame_ondisk */
2839	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2840				   frame_size, sbi->compress.lznt);
2841	mutex_unlock(&sbi->compress.mtx_lznt);
2842	kfree(lznt);
2843
2844	if (compr_size + sbi->cluster_size > frame_size) {
2845		/* Frame is not compressed. */
2846		compr_size = frame_size;
2847		ondisk_size = frame_size;
2848	} else if (compr_size) {
2849		/* Frame is compressed. */
2850		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2851		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2852	} else {
2853		/* Frame is sparsed. */
2854		ondisk_size = 0;
2855	}
2856
2857	down_write(&ni->file.run_lock);
2858	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2859	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2860	up_write(&ni->file.run_lock);
2861	if (err)
2862		goto out2;
2863
2864	if (!ondisk_size)
2865		goto out2;
2866
2867	down_read(&ni->file.run_lock);
2868	err = ntfs_bio_pages(sbi, &ni->file.run,
2869			     ondisk_size < frame_size ? pages_disk : pages,
2870			     pages_per_frame, frame_vbo, ondisk_size,
2871			     REQ_OP_WRITE);
2872	up_read(&ni->file.run_lock);
2873
2874out3:
2875	vunmap(frame_mem);
2876
2877out2:
2878	for (i = 0; i < pages_per_frame; i++)
2879		kunmap(pages[i]);
2880
2881	vunmap(frame_ondisk);
2882out1:
2883	for (i = 0; i < pages_per_frame; i++) {
2884		pg = pages_disk[i];
2885		if (pg) {
2886			kunmap(pg);
2887			unlock_page(pg);
2888			put_page(pg);
2889		}
2890	}
2891	kfree(pages_disk);
2892out:
2893	return err;
2894}
2895
2896/*
2897 * ni_remove_name - Removes name 'de' from MFT and from directory.
2898 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2899 */
2900int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2901		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2902{
2903	int err;
2904	struct ntfs_sb_info *sbi = ni->mi.sbi;
2905	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2906	struct ATTR_FILE_NAME *fname;
2907	struct ATTR_LIST_ENTRY *le;
2908	struct mft_inode *mi;
2909	u16 de_key_size = le16_to_cpu(de->key_size);
2910	u8 name_type;
2911
2912	*undo_step = 0;
2913
2914	/* Find name in record. */
2915	mi_get_ref(&dir_ni->mi, &de_name->home);
2916
2917	fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2918			      &de_name->home, &mi, &le);
2919	if (!fname)
2920		return -ENOENT;
2921
2922	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2923	name_type = paired_name(fname->type);
2924
2925	/* Mark ntfs as dirty. It will be cleared at umount. */
2926	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2927
2928	/* Step 1: Remove name from directory. */
2929	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2930	if (err)
2931		return err;
2932
2933	/* Step 2: Remove name from MFT. */
2934	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2935
2936	*undo_step = 2;
2937
2938	/* Get paired name. */
2939	fname = ni_fname_type(ni, name_type, &mi, &le);
2940	if (fname) {
2941		u16 de2_key_size = fname_full_size(fname);
2942
2943		*de2 = Add2Ptr(de, 1024);
2944		(*de2)->key_size = cpu_to_le16(de2_key_size);
2945
2946		memcpy(*de2 + 1, fname, de2_key_size);
2947
2948		/* Step 3: Remove paired name from directory. */
2949		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2950					de2_key_size, sbi);
2951		if (err)
2952			return err;
2953
2954		/* Step 4: Remove paired name from MFT. */
2955		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2956
2957		*undo_step = 4;
2958	}
2959	return 0;
2960}
2961
2962/*
2963 * ni_remove_name_undo - Paired function for ni_remove_name.
2964 *
2965 * Return: True if ok
2966 */
2967bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2968			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2969{
2970	struct ntfs_sb_info *sbi = ni->mi.sbi;
2971	struct ATTRIB *attr;
2972	u16 de_key_size;
2973
2974	switch (undo_step) {
2975	case 4:
2976		de_key_size = le16_to_cpu(de2->key_size);
2977		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2978				       &attr, NULL, NULL))
2979			return false;
2980		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2981
2982		mi_get_ref(&ni->mi, &de2->ref);
2983		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2984					sizeof(struct NTFS_DE));
2985		de2->flags = 0;
2986		de2->res = 0;
2987
2988		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
2989			return false;
2990		fallthrough;
2991
2992	case 2:
2993		de_key_size = le16_to_cpu(de->key_size);
2994
2995		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2996				       &attr, NULL, NULL))
2997			return false;
2998
2999		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
3000		mi_get_ref(&ni->mi, &de->ref);
3001
3002		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3003			return false;
3004	}
3005
3006	return true;
3007}
3008
3009/*
3010 * ni_add_name - Add new name into MFT and into directory.
3011 */
3012int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3013		struct NTFS_DE *de)
3014{
3015	int err;
3016	struct ntfs_sb_info *sbi = ni->mi.sbi;
3017	struct ATTRIB *attr;
3018	struct ATTR_LIST_ENTRY *le;
3019	struct mft_inode *mi;
3020	struct ATTR_FILE_NAME *fname;
3021	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3022	u16 de_key_size = le16_to_cpu(de->key_size);
3023
3024	if (sbi->options->windows_names &&
3025	    !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3026		return -EINVAL;
3027
3028	/* If option "hide_dot_files" then set hidden attribute for dot files. */
3029	if (ni->mi.sbi->options->hide_dot_files) {
3030		if (de_name->name_len > 0 &&
3031		    le16_to_cpu(de_name->name[0]) == '.')
3032			ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3033		else
3034			ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3035	}
3036
3037	mi_get_ref(&ni->mi, &de->ref);
3038	mi_get_ref(&dir_ni->mi, &de_name->home);
3039
3040	/* Fill duplicate from any ATTR_NAME. */
3041	fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3042	if (fname)
3043		memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3044	de_name->dup.fa = ni->std_fa;
3045
3046	/* Insert new name into MFT. */
3047	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3048				 &mi, &le);
3049	if (err)
3050		return err;
3051
3052	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3053
3054	/* Insert new name into directory. */
3055	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3056	if (err)
3057		ni_remove_attr_le(ni, attr, mi, le);
3058
3059	return err;
3060}
3061
3062/*
3063 * ni_rename - Remove one name and insert new name.
3064 */
3065int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3066	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3067	      bool *is_bad)
3068{
3069	int err;
3070	struct NTFS_DE *de2 = NULL;
3071	int undo = 0;
3072
3073	/*
3074	 * There are two possible ways to rename:
3075	 * 1) Add new name and remove old name.
3076	 * 2) Remove old name and add new name.
3077	 *
3078	 * In most cases (not all!) adding new name into MFT and into directory can
3079	 * allocate additional cluster(s).
3080	 * Second way may result to bad inode if we can't add new name
3081	 * and then can't restore (add) old name.
3082	 */
3083
3084	/*
3085	 * Way 1 - Add new + remove old.
3086	 */
3087	err = ni_add_name(new_dir_ni, ni, new_de);
3088	if (!err) {
3089		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3090		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3091			*is_bad = true;
3092	}
3093
3094	/*
3095	 * Way 2 - Remove old + add new.
3096	 */
3097	/*
3098	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3099	 *	if (!err) {
3100	 *		err = ni_add_name(new_dir_ni, ni, new_de);
3101	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3102	 *			*is_bad = true;
3103	 *	}
3104	 */
3105
3106	return err;
3107}
3108
3109/*
3110 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3111 */
3112bool ni_is_dirty(struct inode *inode)
3113{
3114	struct ntfs_inode *ni = ntfs_i(inode);
3115	struct rb_node *node;
3116
3117	if (ni->mi.dirty || ni->attr_list.dirty ||
3118	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3119		return true;
3120
3121	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3122		if (rb_entry(node, struct mft_inode, node)->dirty)
3123			return true;
3124	}
3125
3126	return false;
3127}
3128
3129/*
3130 * ni_update_parent
3131 *
3132 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3133 */
3134static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3135			     int sync)
3136{
3137	struct ATTRIB *attr;
3138	struct mft_inode *mi;
3139	struct ATTR_LIST_ENTRY *le = NULL;
3140	struct ntfs_sb_info *sbi = ni->mi.sbi;
3141	struct super_block *sb = sbi->sb;
3142	bool re_dirty = false;
3143
3144	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3145		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3146		attr = NULL;
3147		dup->alloc_size = 0;
3148		dup->data_size = 0;
3149	} else {
3150		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3151
3152		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3153				    &mi);
3154		if (!attr) {
3155			dup->alloc_size = dup->data_size = 0;
3156		} else if (!attr->non_res) {
3157			u32 data_size = le32_to_cpu(attr->res.data_size);
3158
3159			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3160			dup->data_size = cpu_to_le64(data_size);
3161		} else {
3162			u64 new_valid = ni->i_valid;
3163			u64 data_size = le64_to_cpu(attr->nres.data_size);
3164			__le64 valid_le;
3165
3166			dup->alloc_size = is_attr_ext(attr) ?
3167						  attr->nres.total_size :
3168						  attr->nres.alloc_size;
3169			dup->data_size = attr->nres.data_size;
3170
3171			if (new_valid > data_size)
3172				new_valid = data_size;
3173
3174			valid_le = cpu_to_le64(new_valid);
3175			if (valid_le != attr->nres.valid_size) {
3176				attr->nres.valid_size = valid_le;
3177				mi->dirty = true;
3178			}
3179		}
3180	}
3181
3182	/* TODO: Fill reparse info. */
3183	dup->reparse = 0;
3184	dup->ea_size = 0;
3185
3186	if (ni->ni_flags & NI_FLAG_EA) {
3187		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3188				    NULL);
3189		if (attr) {
3190			const struct EA_INFO *info;
3191
3192			info = resident_data_ex(attr, sizeof(struct EA_INFO));
3193			/* If ATTR_EA_INFO exists 'info' can't be NULL. */
3194			if (info)
3195				dup->ea_size = info->size_pack;
3196		}
3197	}
3198
3199	attr = NULL;
3200	le = NULL;
3201
3202	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3203				    &mi))) {
3204		struct inode *dir;
3205		struct ATTR_FILE_NAME *fname;
3206
3207		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3208		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3209			continue;
3210
3211		/* Check simple case when parent inode equals current inode. */
3212		if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3213			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3214			continue;
3215		}
3216
3217		/* ntfs_iget5 may sleep. */
3218		dir = ntfs_iget5(sb, &fname->home, NULL);
3219		if (IS_ERR(dir)) {
3220			ntfs_inode_warn(
3221				&ni->vfs_inode,
3222				"failed to open parent directory r=%lx to update",
3223				(long)ino_get(&fname->home));
3224			continue;
3225		}
3226
3227		if (!is_bad_inode(dir)) {
3228			struct ntfs_inode *dir_ni = ntfs_i(dir);
3229
3230			if (!ni_trylock(dir_ni)) {
3231				re_dirty = true;
3232			} else {
3233				indx_update_dup(dir_ni, sbi, fname, dup, sync);
3234				ni_unlock(dir_ni);
3235				memcpy(&fname->dup, dup, sizeof(fname->dup));
3236				mi->dirty = true;
3237			}
3238		}
3239		iput(dir);
3240	}
3241
3242	return re_dirty;
3243}
3244
3245/*
3246 * ni_write_inode - Write MFT base record and all subrecords to disk.
3247 */
3248int ni_write_inode(struct inode *inode, int sync, const char *hint)
3249{
3250	int err = 0, err2;
3251	struct ntfs_inode *ni = ntfs_i(inode);
3252	struct super_block *sb = inode->i_sb;
3253	struct ntfs_sb_info *sbi = sb->s_fs_info;
3254	bool re_dirty = false;
3255	struct ATTR_STD_INFO *std;
3256	struct rb_node *node, *next;
3257	struct NTFS_DUP_INFO dup;
3258
3259	if (is_bad_inode(inode) || sb_rdonly(sb))
3260		return 0;
3261
3262	if (unlikely(ntfs3_forced_shutdown(sb)))
3263		return -EIO;
3264
3265	if (!ni_trylock(ni)) {
3266		/* 'ni' is under modification, skip for now. */
3267		mark_inode_dirty_sync(inode);
3268		return 0;
3269	}
3270
3271	if (!ni->mi.mrec)
3272		goto out;
3273
3274	if (is_rec_inuse(ni->mi.mrec) &&
3275	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3276		bool modified = false;
3277		struct timespec64 ts;
3278
3279		/* Update times in standard attribute. */
3280		std = ni_std(ni);
3281		if (!std) {
3282			err = -EINVAL;
3283			goto out;
3284		}
3285
3286		/* Update the access times if they have changed. */
3287		ts = inode_get_mtime(inode);
3288		dup.m_time = kernel2nt(&ts);
3289		if (std->m_time != dup.m_time) {
3290			std->m_time = dup.m_time;
3291			modified = true;
3292		}
3293
3294		ts = inode_get_ctime(inode);
3295		dup.c_time = kernel2nt(&ts);
3296		if (std->c_time != dup.c_time) {
3297			std->c_time = dup.c_time;
3298			modified = true;
3299		}
3300
3301		ts = inode_get_atime(inode);
3302		dup.a_time = kernel2nt(&ts);
3303		if (std->a_time != dup.a_time) {
3304			std->a_time = dup.a_time;
3305			modified = true;
3306		}
3307
3308		dup.fa = ni->std_fa;
3309		if (std->fa != dup.fa) {
3310			std->fa = dup.fa;
3311			modified = true;
3312		}
3313
3314		/* std attribute is always in primary MFT record. */
3315		if (modified)
3316			ni->mi.dirty = true;
3317
3318		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3319		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3320		    /* Avoid __wait_on_freeing_inode(inode). */
3321		    && (sb->s_flags & SB_ACTIVE)) {
3322			dup.cr_time = std->cr_time;
3323			/* Not critical if this function fail. */
3324			re_dirty = ni_update_parent(ni, &dup, sync);
3325
3326			if (re_dirty)
3327				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3328			else
3329				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3330		}
3331
3332		/* Update attribute list. */
3333		if (ni->attr_list.size && ni->attr_list.dirty) {
3334			if (inode->i_ino != MFT_REC_MFT || sync) {
3335				err = ni_try_remove_attr_list(ni);
3336				if (err)
3337					goto out;
3338			}
3339
3340			err = al_update(ni, sync);
3341			if (err)
3342				goto out;
3343		}
3344	}
3345
3346	for (node = rb_first(&ni->mi_tree); node; node = next) {
3347		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3348		bool is_empty;
3349
3350		next = rb_next(node);
3351
3352		if (!mi->dirty)
3353			continue;
3354
3355		is_empty = !mi_enum_attr(mi, NULL);
3356
3357		if (is_empty)
3358			clear_rec_inuse(mi->mrec);
3359
3360		err2 = mi_write(mi, sync);
3361		if (!err && err2)
3362			err = err2;
3363
3364		if (is_empty) {
3365			ntfs_mark_rec_free(sbi, mi->rno, false);
3366			rb_erase(node, &ni->mi_tree);
3367			mi_put(mi);
3368		}
3369	}
3370
3371	if (ni->mi.dirty) {
3372		err2 = mi_write(&ni->mi, sync);
3373		if (!err && err2)
3374			err = err2;
3375	}
3376out:
3377	ni_unlock(ni);
3378
3379	if (err) {
3380		ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3381		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3382		return err;
3383	}
3384
3385	if (re_dirty)
3386		mark_inode_dirty_sync(inode);
3387
3388	return 0;
3389}
3390