1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *	fs/libfs.c
4 *	Library for filesystems writers.
5 */
6
7#include <linux/blkdev.h>
8#include <linux/export.h>
9#include <linux/pagemap.h>
10#include <linux/slab.h>
11#include <linux/cred.h>
12#include <linux/mount.h>
13#include <linux/vfs.h>
14#include <linux/quotaops.h>
15#include <linux/mutex.h>
16#include <linux/namei.h>
17#include <linux/exportfs.h>
18#include <linux/iversion.h>
19#include <linux/writeback.h>
20#include <linux/buffer_head.h> /* sync_mapping_buffers */
21#include <linux/fs_context.h>
22#include <linux/pseudo_fs.h>
23#include <linux/fsnotify.h>
24#include <linux/unicode.h>
25#include <linux/fscrypt.h>
26#include <linux/pidfs.h>
27
28#include <linux/uaccess.h>
29
30#include "internal.h"
31
32int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33		   struct kstat *stat, u32 request_mask,
34		   unsigned int query_flags)
35{
36	struct inode *inode = d_inode(path->dentry);
37	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39	return 0;
40}
41EXPORT_SYMBOL(simple_getattr);
42
43int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44{
45	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46
47	buf->f_fsid = u64_to_fsid(id);
48	buf->f_type = dentry->d_sb->s_magic;
49	buf->f_bsize = PAGE_SIZE;
50	buf->f_namelen = NAME_MAX;
51	return 0;
52}
53EXPORT_SYMBOL(simple_statfs);
54
55/*
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
58 */
59int always_delete_dentry(const struct dentry *dentry)
60{
61	return 1;
62}
63EXPORT_SYMBOL(always_delete_dentry);
64
65const struct dentry_operations simple_dentry_operations = {
66	.d_delete = always_delete_dentry,
67};
68EXPORT_SYMBOL(simple_dentry_operations);
69
70/*
71 * Lookup the data. This is trivial - if the dentry didn't already
72 * exist, we know it is negative.  Set d_op to delete negative dentries.
73 */
74struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75{
76	if (dentry->d_name.len > NAME_MAX)
77		return ERR_PTR(-ENAMETOOLONG);
78	if (!dentry->d_sb->s_d_op)
79		d_set_d_op(dentry, &simple_dentry_operations);
80	d_add(dentry, NULL);
81	return NULL;
82}
83EXPORT_SYMBOL(simple_lookup);
84
85int dcache_dir_open(struct inode *inode, struct file *file)
86{
87	file->private_data = d_alloc_cursor(file->f_path.dentry);
88
89	return file->private_data ? 0 : -ENOMEM;
90}
91EXPORT_SYMBOL(dcache_dir_open);
92
93int dcache_dir_close(struct inode *inode, struct file *file)
94{
95	dput(file->private_data);
96	return 0;
97}
98EXPORT_SYMBOL(dcache_dir_close);
99
100/* parent is locked at least shared */
101/*
102 * Returns an element of siblings' list.
103 * We are looking for <count>th positive after <p>; if
104 * found, dentry is grabbed and returned to caller.
105 * If no such element exists, NULL is returned.
106 */
107static struct dentry *scan_positives(struct dentry *cursor,
108					struct hlist_node **p,
109					loff_t count,
110					struct dentry *last)
111{
112	struct dentry *dentry = cursor->d_parent, *found = NULL;
113
114	spin_lock(&dentry->d_lock);
115	while (*p) {
116		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
117		p = &d->d_sib.next;
118		// we must at least skip cursors, to avoid livelocks
119		if (d->d_flags & DCACHE_DENTRY_CURSOR)
120			continue;
121		if (simple_positive(d) && !--count) {
122			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
123			if (simple_positive(d))
124				found = dget_dlock(d);
125			spin_unlock(&d->d_lock);
126			if (likely(found))
127				break;
128			count = 1;
129		}
130		if (need_resched()) {
131			if (!hlist_unhashed(&cursor->d_sib))
132				__hlist_del(&cursor->d_sib);
133			hlist_add_behind(&cursor->d_sib, &d->d_sib);
134			p = &cursor->d_sib.next;
135			spin_unlock(&dentry->d_lock);
136			cond_resched();
137			spin_lock(&dentry->d_lock);
138		}
139	}
140	spin_unlock(&dentry->d_lock);
141	dput(last);
142	return found;
143}
144
145loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
146{
147	struct dentry *dentry = file->f_path.dentry;
148	switch (whence) {
149		case 1:
150			offset += file->f_pos;
151			fallthrough;
152		case 0:
153			if (offset >= 0)
154				break;
155			fallthrough;
156		default:
157			return -EINVAL;
158	}
159	if (offset != file->f_pos) {
160		struct dentry *cursor = file->private_data;
161		struct dentry *to = NULL;
162
163		inode_lock_shared(dentry->d_inode);
164
165		if (offset > 2)
166			to = scan_positives(cursor, &dentry->d_children.first,
167					    offset - 2, NULL);
168		spin_lock(&dentry->d_lock);
169		hlist_del_init(&cursor->d_sib);
170		if (to)
171			hlist_add_behind(&cursor->d_sib, &to->d_sib);
172		spin_unlock(&dentry->d_lock);
173		dput(to);
174
175		file->f_pos = offset;
176
177		inode_unlock_shared(dentry->d_inode);
178	}
179	return offset;
180}
181EXPORT_SYMBOL(dcache_dir_lseek);
182
183/*
184 * Directory is locked and all positive dentries in it are safe, since
185 * for ramfs-type trees they can't go away without unlink() or rmdir(),
186 * both impossible due to the lock on directory.
187 */
188
189int dcache_readdir(struct file *file, struct dir_context *ctx)
190{
191	struct dentry *dentry = file->f_path.dentry;
192	struct dentry *cursor = file->private_data;
193	struct dentry *next = NULL;
194	struct hlist_node **p;
195
196	if (!dir_emit_dots(file, ctx))
197		return 0;
198
199	if (ctx->pos == 2)
200		p = &dentry->d_children.first;
201	else
202		p = &cursor->d_sib.next;
203
204	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
205		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
206			      d_inode(next)->i_ino,
207			      fs_umode_to_dtype(d_inode(next)->i_mode)))
208			break;
209		ctx->pos++;
210		p = &next->d_sib.next;
211	}
212	spin_lock(&dentry->d_lock);
213	hlist_del_init(&cursor->d_sib);
214	if (next)
215		hlist_add_before(&cursor->d_sib, &next->d_sib);
216	spin_unlock(&dentry->d_lock);
217	dput(next);
218
219	return 0;
220}
221EXPORT_SYMBOL(dcache_readdir);
222
223ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
224{
225	return -EISDIR;
226}
227EXPORT_SYMBOL(generic_read_dir);
228
229const struct file_operations simple_dir_operations = {
230	.open		= dcache_dir_open,
231	.release	= dcache_dir_close,
232	.llseek		= dcache_dir_lseek,
233	.read		= generic_read_dir,
234	.iterate_shared	= dcache_readdir,
235	.fsync		= noop_fsync,
236};
237EXPORT_SYMBOL(simple_dir_operations);
238
239const struct inode_operations simple_dir_inode_operations = {
240	.lookup		= simple_lookup,
241};
242EXPORT_SYMBOL(simple_dir_inode_operations);
243
244/* 0 is '.', 1 is '..', so always start with offset 2 or more */
245enum {
246	DIR_OFFSET_MIN	= 2,
247};
248
249static void offset_set(struct dentry *dentry, long offset)
250{
251	dentry->d_fsdata = (void *)offset;
252}
253
254static long dentry2offset(struct dentry *dentry)
255{
256	return (long)dentry->d_fsdata;
257}
258
259static struct lock_class_key simple_offset_lock_class;
260
261/**
262 * simple_offset_init - initialize an offset_ctx
263 * @octx: directory offset map to be initialized
264 *
265 */
266void simple_offset_init(struct offset_ctx *octx)
267{
268	mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
269	lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
270	octx->next_offset = DIR_OFFSET_MIN;
271}
272
273/**
274 * simple_offset_add - Add an entry to a directory's offset map
275 * @octx: directory offset ctx to be updated
276 * @dentry: new dentry being added
277 *
278 * Returns zero on success. @octx and the dentry's offset are updated.
279 * Otherwise, a negative errno value is returned.
280 */
281int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
282{
283	unsigned long offset;
284	int ret;
285
286	if (dentry2offset(dentry) != 0)
287		return -EBUSY;
288
289	ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
290				 LONG_MAX, &octx->next_offset, GFP_KERNEL);
291	if (ret < 0)
292		return ret;
293
294	offset_set(dentry, offset);
295	return 0;
296}
297
298/**
299 * simple_offset_remove - Remove an entry to a directory's offset map
300 * @octx: directory offset ctx to be updated
301 * @dentry: dentry being removed
302 *
303 */
304void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
305{
306	long offset;
307
308	offset = dentry2offset(dentry);
309	if (offset == 0)
310		return;
311
312	mtree_erase(&octx->mt, offset);
313	offset_set(dentry, 0);
314}
315
316/**
317 * simple_offset_empty - Check if a dentry can be unlinked
318 * @dentry: dentry to be tested
319 *
320 * Returns 0 if @dentry is a non-empty directory; otherwise returns 1.
321 */
322int simple_offset_empty(struct dentry *dentry)
323{
324	struct inode *inode = d_inode(dentry);
325	struct offset_ctx *octx;
326	struct dentry *child;
327	unsigned long index;
328	int ret = 1;
329
330	if (!inode || !S_ISDIR(inode->i_mode))
331		return ret;
332
333	index = DIR_OFFSET_MIN;
334	octx = inode->i_op->get_offset_ctx(inode);
335	mt_for_each(&octx->mt, child, index, LONG_MAX) {
336		spin_lock(&child->d_lock);
337		if (simple_positive(child)) {
338			spin_unlock(&child->d_lock);
339			ret = 0;
340			break;
341		}
342		spin_unlock(&child->d_lock);
343	}
344
345	return ret;
346}
347
348/**
349 * simple_offset_rename_exchange - exchange rename with directory offsets
350 * @old_dir: parent of dentry being moved
351 * @old_dentry: dentry being moved
352 * @new_dir: destination parent
353 * @new_dentry: destination dentry
354 *
355 * Returns zero on success. Otherwise a negative errno is returned and the
356 * rename is rolled back.
357 */
358int simple_offset_rename_exchange(struct inode *old_dir,
359				  struct dentry *old_dentry,
360				  struct inode *new_dir,
361				  struct dentry *new_dentry)
362{
363	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
364	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
365	long old_index = dentry2offset(old_dentry);
366	long new_index = dentry2offset(new_dentry);
367	int ret;
368
369	simple_offset_remove(old_ctx, old_dentry);
370	simple_offset_remove(new_ctx, new_dentry);
371
372	ret = simple_offset_add(new_ctx, old_dentry);
373	if (ret)
374		goto out_restore;
375
376	ret = simple_offset_add(old_ctx, new_dentry);
377	if (ret) {
378		simple_offset_remove(new_ctx, old_dentry);
379		goto out_restore;
380	}
381
382	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
383	if (ret) {
384		simple_offset_remove(new_ctx, old_dentry);
385		simple_offset_remove(old_ctx, new_dentry);
386		goto out_restore;
387	}
388	return 0;
389
390out_restore:
391	offset_set(old_dentry, old_index);
392	mtree_store(&old_ctx->mt, old_index, old_dentry, GFP_KERNEL);
393	offset_set(new_dentry, new_index);
394	mtree_store(&new_ctx->mt, new_index, new_dentry, GFP_KERNEL);
395	return ret;
396}
397
398/**
399 * simple_offset_destroy - Release offset map
400 * @octx: directory offset ctx that is about to be destroyed
401 *
402 * During fs teardown (eg. umount), a directory's offset map might still
403 * contain entries. xa_destroy() cleans out anything that remains.
404 */
405void simple_offset_destroy(struct offset_ctx *octx)
406{
407	mtree_destroy(&octx->mt);
408}
409
410/**
411 * offset_dir_llseek - Advance the read position of a directory descriptor
412 * @file: an open directory whose position is to be updated
413 * @offset: a byte offset
414 * @whence: enumerator describing the starting position for this update
415 *
416 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
417 *
418 * Returns the updated read position if successful; otherwise a
419 * negative errno is returned and the read position remains unchanged.
420 */
421static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
422{
423	switch (whence) {
424	case SEEK_CUR:
425		offset += file->f_pos;
426		fallthrough;
427	case SEEK_SET:
428		if (offset >= 0)
429			break;
430		fallthrough;
431	default:
432		return -EINVAL;
433	}
434
435	/* In this case, ->private_data is protected by f_pos_lock */
436	file->private_data = NULL;
437	return vfs_setpos(file, offset, LONG_MAX);
438}
439
440static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset)
441{
442	MA_STATE(mas, &octx->mt, offset, offset);
443	struct dentry *child, *found = NULL;
444
445	rcu_read_lock();
446	child = mas_find(&mas, LONG_MAX);
447	if (!child)
448		goto out;
449	spin_lock(&child->d_lock);
450	if (simple_positive(child))
451		found = dget_dlock(child);
452	spin_unlock(&child->d_lock);
453out:
454	rcu_read_unlock();
455	return found;
456}
457
458static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
459{
460	struct inode *inode = d_inode(dentry);
461	long offset = dentry2offset(dentry);
462
463	return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
464			  inode->i_ino, fs_umode_to_dtype(inode->i_mode));
465}
466
467static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
468{
469	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
470	struct dentry *dentry;
471
472	while (true) {
473		dentry = offset_find_next(octx, ctx->pos);
474		if (!dentry)
475			return ERR_PTR(-ENOENT);
476
477		if (!offset_dir_emit(ctx, dentry)) {
478			dput(dentry);
479			break;
480		}
481
482		ctx->pos = dentry2offset(dentry) + 1;
483		dput(dentry);
484	}
485	return NULL;
486}
487
488/**
489 * offset_readdir - Emit entries starting at offset @ctx->pos
490 * @file: an open directory to iterate over
491 * @ctx: directory iteration context
492 *
493 * Caller must hold @file's i_rwsem to prevent insertion or removal of
494 * entries during this call.
495 *
496 * On entry, @ctx->pos contains an offset that represents the first entry
497 * to be read from the directory.
498 *
499 * The operation continues until there are no more entries to read, or
500 * until the ctx->actor indicates there is no more space in the caller's
501 * output buffer.
502 *
503 * On return, @ctx->pos contains an offset that will read the next entry
504 * in this directory when offset_readdir() is called again with @ctx.
505 *
506 * Return values:
507 *   %0 - Complete
508 */
509static int offset_readdir(struct file *file, struct dir_context *ctx)
510{
511	struct dentry *dir = file->f_path.dentry;
512
513	lockdep_assert_held(&d_inode(dir)->i_rwsem);
514
515	if (!dir_emit_dots(file, ctx))
516		return 0;
517
518	/* In this case, ->private_data is protected by f_pos_lock */
519	if (ctx->pos == DIR_OFFSET_MIN)
520		file->private_data = NULL;
521	else if (file->private_data == ERR_PTR(-ENOENT))
522		return 0;
523	file->private_data = offset_iterate_dir(d_inode(dir), ctx);
524	return 0;
525}
526
527const struct file_operations simple_offset_dir_operations = {
528	.llseek		= offset_dir_llseek,
529	.iterate_shared	= offset_readdir,
530	.read		= generic_read_dir,
531	.fsync		= noop_fsync,
532};
533
534static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
535{
536	struct dentry *child = NULL, *d;
537
538	spin_lock(&parent->d_lock);
539	d = prev ? d_next_sibling(prev) : d_first_child(parent);
540	hlist_for_each_entry_from(d, d_sib) {
541		if (simple_positive(d)) {
542			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
543			if (simple_positive(d))
544				child = dget_dlock(d);
545			spin_unlock(&d->d_lock);
546			if (likely(child))
547				break;
548		}
549	}
550	spin_unlock(&parent->d_lock);
551	dput(prev);
552	return child;
553}
554
555void simple_recursive_removal(struct dentry *dentry,
556                              void (*callback)(struct dentry *))
557{
558	struct dentry *this = dget(dentry);
559	while (true) {
560		struct dentry *victim = NULL, *child;
561		struct inode *inode = this->d_inode;
562
563		inode_lock(inode);
564		if (d_is_dir(this))
565			inode->i_flags |= S_DEAD;
566		while ((child = find_next_child(this, victim)) == NULL) {
567			// kill and ascend
568			// update metadata while it's still locked
569			inode_set_ctime_current(inode);
570			clear_nlink(inode);
571			inode_unlock(inode);
572			victim = this;
573			this = this->d_parent;
574			inode = this->d_inode;
575			inode_lock(inode);
576			if (simple_positive(victim)) {
577				d_invalidate(victim);	// avoid lost mounts
578				if (d_is_dir(victim))
579					fsnotify_rmdir(inode, victim);
580				else
581					fsnotify_unlink(inode, victim);
582				if (callback)
583					callback(victim);
584				dput(victim);		// unpin it
585			}
586			if (victim == dentry) {
587				inode_set_mtime_to_ts(inode,
588						      inode_set_ctime_current(inode));
589				if (d_is_dir(dentry))
590					drop_nlink(inode);
591				inode_unlock(inode);
592				dput(dentry);
593				return;
594			}
595		}
596		inode_unlock(inode);
597		this = child;
598	}
599}
600EXPORT_SYMBOL(simple_recursive_removal);
601
602static const struct super_operations simple_super_operations = {
603	.statfs		= simple_statfs,
604};
605
606static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
607{
608	struct pseudo_fs_context *ctx = fc->fs_private;
609	struct inode *root;
610
611	s->s_maxbytes = MAX_LFS_FILESIZE;
612	s->s_blocksize = PAGE_SIZE;
613	s->s_blocksize_bits = PAGE_SHIFT;
614	s->s_magic = ctx->magic;
615	s->s_op = ctx->ops ?: &simple_super_operations;
616	s->s_xattr = ctx->xattr;
617	s->s_time_gran = 1;
618	root = new_inode(s);
619	if (!root)
620		return -ENOMEM;
621
622	/*
623	 * since this is the first inode, make it number 1. New inodes created
624	 * after this must take care not to collide with it (by passing
625	 * max_reserved of 1 to iunique).
626	 */
627	root->i_ino = 1;
628	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
629	simple_inode_init_ts(root);
630	s->s_root = d_make_root(root);
631	if (!s->s_root)
632		return -ENOMEM;
633	s->s_d_op = ctx->dops;
634	return 0;
635}
636
637static int pseudo_fs_get_tree(struct fs_context *fc)
638{
639	return get_tree_nodev(fc, pseudo_fs_fill_super);
640}
641
642static void pseudo_fs_free(struct fs_context *fc)
643{
644	kfree(fc->fs_private);
645}
646
647static const struct fs_context_operations pseudo_fs_context_ops = {
648	.free		= pseudo_fs_free,
649	.get_tree	= pseudo_fs_get_tree,
650};
651
652/*
653 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
654 * will never be mountable)
655 */
656struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
657					unsigned long magic)
658{
659	struct pseudo_fs_context *ctx;
660
661	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
662	if (likely(ctx)) {
663		ctx->magic = magic;
664		fc->fs_private = ctx;
665		fc->ops = &pseudo_fs_context_ops;
666		fc->sb_flags |= SB_NOUSER;
667		fc->global = true;
668	}
669	return ctx;
670}
671EXPORT_SYMBOL(init_pseudo);
672
673int simple_open(struct inode *inode, struct file *file)
674{
675	if (inode->i_private)
676		file->private_data = inode->i_private;
677	return 0;
678}
679EXPORT_SYMBOL(simple_open);
680
681int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
682{
683	struct inode *inode = d_inode(old_dentry);
684
685	inode_set_mtime_to_ts(dir,
686			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
687	inc_nlink(inode);
688	ihold(inode);
689	dget(dentry);
690	d_instantiate(dentry, inode);
691	return 0;
692}
693EXPORT_SYMBOL(simple_link);
694
695int simple_empty(struct dentry *dentry)
696{
697	struct dentry *child;
698	int ret = 0;
699
700	spin_lock(&dentry->d_lock);
701	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
702		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
703		if (simple_positive(child)) {
704			spin_unlock(&child->d_lock);
705			goto out;
706		}
707		spin_unlock(&child->d_lock);
708	}
709	ret = 1;
710out:
711	spin_unlock(&dentry->d_lock);
712	return ret;
713}
714EXPORT_SYMBOL(simple_empty);
715
716int simple_unlink(struct inode *dir, struct dentry *dentry)
717{
718	struct inode *inode = d_inode(dentry);
719
720	inode_set_mtime_to_ts(dir,
721			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
722	drop_nlink(inode);
723	dput(dentry);
724	return 0;
725}
726EXPORT_SYMBOL(simple_unlink);
727
728int simple_rmdir(struct inode *dir, struct dentry *dentry)
729{
730	if (!simple_empty(dentry))
731		return -ENOTEMPTY;
732
733	drop_nlink(d_inode(dentry));
734	simple_unlink(dir, dentry);
735	drop_nlink(dir);
736	return 0;
737}
738EXPORT_SYMBOL(simple_rmdir);
739
740/**
741 * simple_rename_timestamp - update the various inode timestamps for rename
742 * @old_dir: old parent directory
743 * @old_dentry: dentry that is being renamed
744 * @new_dir: new parent directory
745 * @new_dentry: target for rename
746 *
747 * POSIX mandates that the old and new parent directories have their ctime and
748 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
749 * their ctime updated.
750 */
751void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
752			     struct inode *new_dir, struct dentry *new_dentry)
753{
754	struct inode *newino = d_inode(new_dentry);
755
756	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
757	if (new_dir != old_dir)
758		inode_set_mtime_to_ts(new_dir,
759				      inode_set_ctime_current(new_dir));
760	inode_set_ctime_current(d_inode(old_dentry));
761	if (newino)
762		inode_set_ctime_current(newino);
763}
764EXPORT_SYMBOL_GPL(simple_rename_timestamp);
765
766int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
767			   struct inode *new_dir, struct dentry *new_dentry)
768{
769	bool old_is_dir = d_is_dir(old_dentry);
770	bool new_is_dir = d_is_dir(new_dentry);
771
772	if (old_dir != new_dir && old_is_dir != new_is_dir) {
773		if (old_is_dir) {
774			drop_nlink(old_dir);
775			inc_nlink(new_dir);
776		} else {
777			drop_nlink(new_dir);
778			inc_nlink(old_dir);
779		}
780	}
781	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
782	return 0;
783}
784EXPORT_SYMBOL_GPL(simple_rename_exchange);
785
786int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
787		  struct dentry *old_dentry, struct inode *new_dir,
788		  struct dentry *new_dentry, unsigned int flags)
789{
790	int they_are_dirs = d_is_dir(old_dentry);
791
792	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
793		return -EINVAL;
794
795	if (flags & RENAME_EXCHANGE)
796		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
797
798	if (!simple_empty(new_dentry))
799		return -ENOTEMPTY;
800
801	if (d_really_is_positive(new_dentry)) {
802		simple_unlink(new_dir, new_dentry);
803		if (they_are_dirs) {
804			drop_nlink(d_inode(new_dentry));
805			drop_nlink(old_dir);
806		}
807	} else if (they_are_dirs) {
808		drop_nlink(old_dir);
809		inc_nlink(new_dir);
810	}
811
812	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
813	return 0;
814}
815EXPORT_SYMBOL(simple_rename);
816
817/**
818 * simple_setattr - setattr for simple filesystem
819 * @idmap: idmap of the target mount
820 * @dentry: dentry
821 * @iattr: iattr structure
822 *
823 * Returns 0 on success, -error on failure.
824 *
825 * simple_setattr is a simple ->setattr implementation without a proper
826 * implementation of size changes.
827 *
828 * It can either be used for in-memory filesystems or special files
829 * on simple regular filesystems.  Anything that needs to change on-disk
830 * or wire state on size changes needs its own setattr method.
831 */
832int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
833		   struct iattr *iattr)
834{
835	struct inode *inode = d_inode(dentry);
836	int error;
837
838	error = setattr_prepare(idmap, dentry, iattr);
839	if (error)
840		return error;
841
842	if (iattr->ia_valid & ATTR_SIZE)
843		truncate_setsize(inode, iattr->ia_size);
844	setattr_copy(idmap, inode, iattr);
845	mark_inode_dirty(inode);
846	return 0;
847}
848EXPORT_SYMBOL(simple_setattr);
849
850static int simple_read_folio(struct file *file, struct folio *folio)
851{
852	folio_zero_range(folio, 0, folio_size(folio));
853	flush_dcache_folio(folio);
854	folio_mark_uptodate(folio);
855	folio_unlock(folio);
856	return 0;
857}
858
859int simple_write_begin(struct file *file, struct address_space *mapping,
860			loff_t pos, unsigned len,
861			struct page **pagep, void **fsdata)
862{
863	struct folio *folio;
864
865	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
866			mapping_gfp_mask(mapping));
867	if (IS_ERR(folio))
868		return PTR_ERR(folio);
869
870	*pagep = &folio->page;
871
872	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
873		size_t from = offset_in_folio(folio, pos);
874
875		folio_zero_segments(folio, 0, from,
876				from + len, folio_size(folio));
877	}
878	return 0;
879}
880EXPORT_SYMBOL(simple_write_begin);
881
882/**
883 * simple_write_end - .write_end helper for non-block-device FSes
884 * @file: See .write_end of address_space_operations
885 * @mapping: 		"
886 * @pos: 		"
887 * @len: 		"
888 * @copied: 		"
889 * @page: 		"
890 * @fsdata: 		"
891 *
892 * simple_write_end does the minimum needed for updating a page after writing is
893 * done. It has the same API signature as the .write_end of
894 * address_space_operations vector. So it can just be set onto .write_end for
895 * FSes that don't need any other processing. i_mutex is assumed to be held.
896 * Block based filesystems should use generic_write_end().
897 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
898 * is not called, so a filesystem that actually does store data in .write_inode
899 * should extend on what's done here with a call to mark_inode_dirty() in the
900 * case that i_size has changed.
901 *
902 * Use *ONLY* with simple_read_folio()
903 */
904static int simple_write_end(struct file *file, struct address_space *mapping,
905			loff_t pos, unsigned len, unsigned copied,
906			struct page *page, void *fsdata)
907{
908	struct folio *folio = page_folio(page);
909	struct inode *inode = folio->mapping->host;
910	loff_t last_pos = pos + copied;
911
912	/* zero the stale part of the folio if we did a short copy */
913	if (!folio_test_uptodate(folio)) {
914		if (copied < len) {
915			size_t from = offset_in_folio(folio, pos);
916
917			folio_zero_range(folio, from + copied, len - copied);
918		}
919		folio_mark_uptodate(folio);
920	}
921	/*
922	 * No need to use i_size_read() here, the i_size
923	 * cannot change under us because we hold the i_mutex.
924	 */
925	if (last_pos > inode->i_size)
926		i_size_write(inode, last_pos);
927
928	folio_mark_dirty(folio);
929	folio_unlock(folio);
930	folio_put(folio);
931
932	return copied;
933}
934
935/*
936 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
937 */
938const struct address_space_operations ram_aops = {
939	.read_folio	= simple_read_folio,
940	.write_begin	= simple_write_begin,
941	.write_end	= simple_write_end,
942	.dirty_folio	= noop_dirty_folio,
943};
944EXPORT_SYMBOL(ram_aops);
945
946/*
947 * the inodes created here are not hashed. If you use iunique to generate
948 * unique inode values later for this filesystem, then you must take care
949 * to pass it an appropriate max_reserved value to avoid collisions.
950 */
951int simple_fill_super(struct super_block *s, unsigned long magic,
952		      const struct tree_descr *files)
953{
954	struct inode *inode;
955	struct dentry *dentry;
956	int i;
957
958	s->s_blocksize = PAGE_SIZE;
959	s->s_blocksize_bits = PAGE_SHIFT;
960	s->s_magic = magic;
961	s->s_op = &simple_super_operations;
962	s->s_time_gran = 1;
963
964	inode = new_inode(s);
965	if (!inode)
966		return -ENOMEM;
967	/*
968	 * because the root inode is 1, the files array must not contain an
969	 * entry at index 1
970	 */
971	inode->i_ino = 1;
972	inode->i_mode = S_IFDIR | 0755;
973	simple_inode_init_ts(inode);
974	inode->i_op = &simple_dir_inode_operations;
975	inode->i_fop = &simple_dir_operations;
976	set_nlink(inode, 2);
977	s->s_root = d_make_root(inode);
978	if (!s->s_root)
979		return -ENOMEM;
980	for (i = 0; !files->name || files->name[0]; i++, files++) {
981		if (!files->name)
982			continue;
983
984		/* warn if it tries to conflict with the root inode */
985		if (unlikely(i == 1))
986			printk(KERN_WARNING "%s: %s passed in a files array"
987				"with an index of 1!\n", __func__,
988				s->s_type->name);
989
990		dentry = d_alloc_name(s->s_root, files->name);
991		if (!dentry)
992			return -ENOMEM;
993		inode = new_inode(s);
994		if (!inode) {
995			dput(dentry);
996			return -ENOMEM;
997		}
998		inode->i_mode = S_IFREG | files->mode;
999		simple_inode_init_ts(inode);
1000		inode->i_fop = files->ops;
1001		inode->i_ino = i;
1002		d_add(dentry, inode);
1003	}
1004	return 0;
1005}
1006EXPORT_SYMBOL(simple_fill_super);
1007
1008static DEFINE_SPINLOCK(pin_fs_lock);
1009
1010int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1011{
1012	struct vfsmount *mnt = NULL;
1013	spin_lock(&pin_fs_lock);
1014	if (unlikely(!*mount)) {
1015		spin_unlock(&pin_fs_lock);
1016		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1017		if (IS_ERR(mnt))
1018			return PTR_ERR(mnt);
1019		spin_lock(&pin_fs_lock);
1020		if (!*mount)
1021			*mount = mnt;
1022	}
1023	mntget(*mount);
1024	++*count;
1025	spin_unlock(&pin_fs_lock);
1026	mntput(mnt);
1027	return 0;
1028}
1029EXPORT_SYMBOL(simple_pin_fs);
1030
1031void simple_release_fs(struct vfsmount **mount, int *count)
1032{
1033	struct vfsmount *mnt;
1034	spin_lock(&pin_fs_lock);
1035	mnt = *mount;
1036	if (!--*count)
1037		*mount = NULL;
1038	spin_unlock(&pin_fs_lock);
1039	mntput(mnt);
1040}
1041EXPORT_SYMBOL(simple_release_fs);
1042
1043/**
1044 * simple_read_from_buffer - copy data from the buffer to user space
1045 * @to: the user space buffer to read to
1046 * @count: the maximum number of bytes to read
1047 * @ppos: the current position in the buffer
1048 * @from: the buffer to read from
1049 * @available: the size of the buffer
1050 *
1051 * The simple_read_from_buffer() function reads up to @count bytes from the
1052 * buffer @from at offset @ppos into the user space address starting at @to.
1053 *
1054 * On success, the number of bytes read is returned and the offset @ppos is
1055 * advanced by this number, or negative value is returned on error.
1056 **/
1057ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1058				const void *from, size_t available)
1059{
1060	loff_t pos = *ppos;
1061	size_t ret;
1062
1063	if (pos < 0)
1064		return -EINVAL;
1065	if (pos >= available || !count)
1066		return 0;
1067	if (count > available - pos)
1068		count = available - pos;
1069	ret = copy_to_user(to, from + pos, count);
1070	if (ret == count)
1071		return -EFAULT;
1072	count -= ret;
1073	*ppos = pos + count;
1074	return count;
1075}
1076EXPORT_SYMBOL(simple_read_from_buffer);
1077
1078/**
1079 * simple_write_to_buffer - copy data from user space to the buffer
1080 * @to: the buffer to write to
1081 * @available: the size of the buffer
1082 * @ppos: the current position in the buffer
1083 * @from: the user space buffer to read from
1084 * @count: the maximum number of bytes to read
1085 *
1086 * The simple_write_to_buffer() function reads up to @count bytes from the user
1087 * space address starting at @from into the buffer @to at offset @ppos.
1088 *
1089 * On success, the number of bytes written is returned and the offset @ppos is
1090 * advanced by this number, or negative value is returned on error.
1091 **/
1092ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1093		const void __user *from, size_t count)
1094{
1095	loff_t pos = *ppos;
1096	size_t res;
1097
1098	if (pos < 0)
1099		return -EINVAL;
1100	if (pos >= available || !count)
1101		return 0;
1102	if (count > available - pos)
1103		count = available - pos;
1104	res = copy_from_user(to + pos, from, count);
1105	if (res == count)
1106		return -EFAULT;
1107	count -= res;
1108	*ppos = pos + count;
1109	return count;
1110}
1111EXPORT_SYMBOL(simple_write_to_buffer);
1112
1113/**
1114 * memory_read_from_buffer - copy data from the buffer
1115 * @to: the kernel space buffer to read to
1116 * @count: the maximum number of bytes to read
1117 * @ppos: the current position in the buffer
1118 * @from: the buffer to read from
1119 * @available: the size of the buffer
1120 *
1121 * The memory_read_from_buffer() function reads up to @count bytes from the
1122 * buffer @from at offset @ppos into the kernel space address starting at @to.
1123 *
1124 * On success, the number of bytes read is returned and the offset @ppos is
1125 * advanced by this number, or negative value is returned on error.
1126 **/
1127ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1128				const void *from, size_t available)
1129{
1130	loff_t pos = *ppos;
1131
1132	if (pos < 0)
1133		return -EINVAL;
1134	if (pos >= available)
1135		return 0;
1136	if (count > available - pos)
1137		count = available - pos;
1138	memcpy(to, from + pos, count);
1139	*ppos = pos + count;
1140
1141	return count;
1142}
1143EXPORT_SYMBOL(memory_read_from_buffer);
1144
1145/*
1146 * Transaction based IO.
1147 * The file expects a single write which triggers the transaction, and then
1148 * possibly a read which collects the result - which is stored in a
1149 * file-local buffer.
1150 */
1151
1152void simple_transaction_set(struct file *file, size_t n)
1153{
1154	struct simple_transaction_argresp *ar = file->private_data;
1155
1156	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1157
1158	/*
1159	 * The barrier ensures that ar->size will really remain zero until
1160	 * ar->data is ready for reading.
1161	 */
1162	smp_mb();
1163	ar->size = n;
1164}
1165EXPORT_SYMBOL(simple_transaction_set);
1166
1167char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1168{
1169	struct simple_transaction_argresp *ar;
1170	static DEFINE_SPINLOCK(simple_transaction_lock);
1171
1172	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1173		return ERR_PTR(-EFBIG);
1174
1175	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1176	if (!ar)
1177		return ERR_PTR(-ENOMEM);
1178
1179	spin_lock(&simple_transaction_lock);
1180
1181	/* only one write allowed per open */
1182	if (file->private_data) {
1183		spin_unlock(&simple_transaction_lock);
1184		free_page((unsigned long)ar);
1185		return ERR_PTR(-EBUSY);
1186	}
1187
1188	file->private_data = ar;
1189
1190	spin_unlock(&simple_transaction_lock);
1191
1192	if (copy_from_user(ar->data, buf, size))
1193		return ERR_PTR(-EFAULT);
1194
1195	return ar->data;
1196}
1197EXPORT_SYMBOL(simple_transaction_get);
1198
1199ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1200{
1201	struct simple_transaction_argresp *ar = file->private_data;
1202
1203	if (!ar)
1204		return 0;
1205	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1206}
1207EXPORT_SYMBOL(simple_transaction_read);
1208
1209int simple_transaction_release(struct inode *inode, struct file *file)
1210{
1211	free_page((unsigned long)file->private_data);
1212	return 0;
1213}
1214EXPORT_SYMBOL(simple_transaction_release);
1215
1216/* Simple attribute files */
1217
1218struct simple_attr {
1219	int (*get)(void *, u64 *);
1220	int (*set)(void *, u64);
1221	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1222	char set_buf[24];
1223	void *data;
1224	const char *fmt;	/* format for read operation */
1225	struct mutex mutex;	/* protects access to these buffers */
1226};
1227
1228/* simple_attr_open is called by an actual attribute open file operation
1229 * to set the attribute specific access operations. */
1230int simple_attr_open(struct inode *inode, struct file *file,
1231		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1232		     const char *fmt)
1233{
1234	struct simple_attr *attr;
1235
1236	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1237	if (!attr)
1238		return -ENOMEM;
1239
1240	attr->get = get;
1241	attr->set = set;
1242	attr->data = inode->i_private;
1243	attr->fmt = fmt;
1244	mutex_init(&attr->mutex);
1245
1246	file->private_data = attr;
1247
1248	return nonseekable_open(inode, file);
1249}
1250EXPORT_SYMBOL_GPL(simple_attr_open);
1251
1252int simple_attr_release(struct inode *inode, struct file *file)
1253{
1254	kfree(file->private_data);
1255	return 0;
1256}
1257EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1258
1259/* read from the buffer that is filled with the get function */
1260ssize_t simple_attr_read(struct file *file, char __user *buf,
1261			 size_t len, loff_t *ppos)
1262{
1263	struct simple_attr *attr;
1264	size_t size;
1265	ssize_t ret;
1266
1267	attr = file->private_data;
1268
1269	if (!attr->get)
1270		return -EACCES;
1271
1272	ret = mutex_lock_interruptible(&attr->mutex);
1273	if (ret)
1274		return ret;
1275
1276	if (*ppos && attr->get_buf[0]) {
1277		/* continued read */
1278		size = strlen(attr->get_buf);
1279	} else {
1280		/* first read */
1281		u64 val;
1282		ret = attr->get(attr->data, &val);
1283		if (ret)
1284			goto out;
1285
1286		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1287				 attr->fmt, (unsigned long long)val);
1288	}
1289
1290	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1291out:
1292	mutex_unlock(&attr->mutex);
1293	return ret;
1294}
1295EXPORT_SYMBOL_GPL(simple_attr_read);
1296
1297/* interpret the buffer as a number to call the set function with */
1298static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1299			  size_t len, loff_t *ppos, bool is_signed)
1300{
1301	struct simple_attr *attr;
1302	unsigned long long val;
1303	size_t size;
1304	ssize_t ret;
1305
1306	attr = file->private_data;
1307	if (!attr->set)
1308		return -EACCES;
1309
1310	ret = mutex_lock_interruptible(&attr->mutex);
1311	if (ret)
1312		return ret;
1313
1314	ret = -EFAULT;
1315	size = min(sizeof(attr->set_buf) - 1, len);
1316	if (copy_from_user(attr->set_buf, buf, size))
1317		goto out;
1318
1319	attr->set_buf[size] = '\0';
1320	if (is_signed)
1321		ret = kstrtoll(attr->set_buf, 0, &val);
1322	else
1323		ret = kstrtoull(attr->set_buf, 0, &val);
1324	if (ret)
1325		goto out;
1326	ret = attr->set(attr->data, val);
1327	if (ret == 0)
1328		ret = len; /* on success, claim we got the whole input */
1329out:
1330	mutex_unlock(&attr->mutex);
1331	return ret;
1332}
1333
1334ssize_t simple_attr_write(struct file *file, const char __user *buf,
1335			  size_t len, loff_t *ppos)
1336{
1337	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1338}
1339EXPORT_SYMBOL_GPL(simple_attr_write);
1340
1341ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1342			  size_t len, loff_t *ppos)
1343{
1344	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1345}
1346EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1347
1348/**
1349 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1350 * @inode:   the object to encode
1351 * @fh:      where to store the file handle fragment
1352 * @max_len: maximum length to store there (in 4 byte units)
1353 * @parent:  parent directory inode, if wanted
1354 *
1355 * This generic encode_fh function assumes that the 32 inode number
1356 * is suitable for locating an inode, and that the generation number
1357 * can be used to check that it is still valid.  It places them in the
1358 * filehandle fragment where export_decode_fh expects to find them.
1359 */
1360int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1361			    struct inode *parent)
1362{
1363	struct fid *fid = (void *)fh;
1364	int len = *max_len;
1365	int type = FILEID_INO32_GEN;
1366
1367	if (parent && (len < 4)) {
1368		*max_len = 4;
1369		return FILEID_INVALID;
1370	} else if (len < 2) {
1371		*max_len = 2;
1372		return FILEID_INVALID;
1373	}
1374
1375	len = 2;
1376	fid->i32.ino = inode->i_ino;
1377	fid->i32.gen = inode->i_generation;
1378	if (parent) {
1379		fid->i32.parent_ino = parent->i_ino;
1380		fid->i32.parent_gen = parent->i_generation;
1381		len = 4;
1382		type = FILEID_INO32_GEN_PARENT;
1383	}
1384	*max_len = len;
1385	return type;
1386}
1387EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1388
1389/**
1390 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1391 * @sb:		filesystem to do the file handle conversion on
1392 * @fid:	file handle to convert
1393 * @fh_len:	length of the file handle in bytes
1394 * @fh_type:	type of file handle
1395 * @get_inode:	filesystem callback to retrieve inode
1396 *
1397 * This function decodes @fid as long as it has one of the well-known
1398 * Linux filehandle types and calls @get_inode on it to retrieve the
1399 * inode for the object specified in the file handle.
1400 */
1401struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1402		int fh_len, int fh_type, struct inode *(*get_inode)
1403			(struct super_block *sb, u64 ino, u32 gen))
1404{
1405	struct inode *inode = NULL;
1406
1407	if (fh_len < 2)
1408		return NULL;
1409
1410	switch (fh_type) {
1411	case FILEID_INO32_GEN:
1412	case FILEID_INO32_GEN_PARENT:
1413		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1414		break;
1415	}
1416
1417	return d_obtain_alias(inode);
1418}
1419EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1420
1421/**
1422 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1423 * @sb:		filesystem to do the file handle conversion on
1424 * @fid:	file handle to convert
1425 * @fh_len:	length of the file handle in bytes
1426 * @fh_type:	type of file handle
1427 * @get_inode:	filesystem callback to retrieve inode
1428 *
1429 * This function decodes @fid as long as it has one of the well-known
1430 * Linux filehandle types and calls @get_inode on it to retrieve the
1431 * inode for the _parent_ object specified in the file handle if it
1432 * is specified in the file handle, or NULL otherwise.
1433 */
1434struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1435		int fh_len, int fh_type, struct inode *(*get_inode)
1436			(struct super_block *sb, u64 ino, u32 gen))
1437{
1438	struct inode *inode = NULL;
1439
1440	if (fh_len <= 2)
1441		return NULL;
1442
1443	switch (fh_type) {
1444	case FILEID_INO32_GEN_PARENT:
1445		inode = get_inode(sb, fid->i32.parent_ino,
1446				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1447		break;
1448	}
1449
1450	return d_obtain_alias(inode);
1451}
1452EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1453
1454/**
1455 * __generic_file_fsync - generic fsync implementation for simple filesystems
1456 *
1457 * @file:	file to synchronize
1458 * @start:	start offset in bytes
1459 * @end:	end offset in bytes (inclusive)
1460 * @datasync:	only synchronize essential metadata if true
1461 *
1462 * This is a generic implementation of the fsync method for simple
1463 * filesystems which track all non-inode metadata in the buffers list
1464 * hanging off the address_space structure.
1465 */
1466int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1467				 int datasync)
1468{
1469	struct inode *inode = file->f_mapping->host;
1470	int err;
1471	int ret;
1472
1473	err = file_write_and_wait_range(file, start, end);
1474	if (err)
1475		return err;
1476
1477	inode_lock(inode);
1478	ret = sync_mapping_buffers(inode->i_mapping);
1479	if (!(inode->i_state & I_DIRTY_ALL))
1480		goto out;
1481	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1482		goto out;
1483
1484	err = sync_inode_metadata(inode, 1);
1485	if (ret == 0)
1486		ret = err;
1487
1488out:
1489	inode_unlock(inode);
1490	/* check and advance again to catch errors after syncing out buffers */
1491	err = file_check_and_advance_wb_err(file);
1492	if (ret == 0)
1493		ret = err;
1494	return ret;
1495}
1496EXPORT_SYMBOL(__generic_file_fsync);
1497
1498/**
1499 * generic_file_fsync - generic fsync implementation for simple filesystems
1500 *			with flush
1501 * @file:	file to synchronize
1502 * @start:	start offset in bytes
1503 * @end:	end offset in bytes (inclusive)
1504 * @datasync:	only synchronize essential metadata if true
1505 *
1506 */
1507
1508int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1509		       int datasync)
1510{
1511	struct inode *inode = file->f_mapping->host;
1512	int err;
1513
1514	err = __generic_file_fsync(file, start, end, datasync);
1515	if (err)
1516		return err;
1517	return blkdev_issue_flush(inode->i_sb->s_bdev);
1518}
1519EXPORT_SYMBOL(generic_file_fsync);
1520
1521/**
1522 * generic_check_addressable - Check addressability of file system
1523 * @blocksize_bits:	log of file system block size
1524 * @num_blocks:		number of blocks in file system
1525 *
1526 * Determine whether a file system with @num_blocks blocks (and a
1527 * block size of 2**@blocksize_bits) is addressable by the sector_t
1528 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1529 */
1530int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1531{
1532	u64 last_fs_block = num_blocks - 1;
1533	u64 last_fs_page =
1534		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1535
1536	if (unlikely(num_blocks == 0))
1537		return 0;
1538
1539	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1540		return -EINVAL;
1541
1542	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1543	    (last_fs_page > (pgoff_t)(~0ULL))) {
1544		return -EFBIG;
1545	}
1546	return 0;
1547}
1548EXPORT_SYMBOL(generic_check_addressable);
1549
1550/*
1551 * No-op implementation of ->fsync for in-memory filesystems.
1552 */
1553int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1554{
1555	return 0;
1556}
1557EXPORT_SYMBOL(noop_fsync);
1558
1559ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1560{
1561	/*
1562	 * iomap based filesystems support direct I/O without need for
1563	 * this callback. However, it still needs to be set in
1564	 * inode->a_ops so that open/fcntl know that direct I/O is
1565	 * generally supported.
1566	 */
1567	return -EINVAL;
1568}
1569EXPORT_SYMBOL_GPL(noop_direct_IO);
1570
1571/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1572void kfree_link(void *p)
1573{
1574	kfree(p);
1575}
1576EXPORT_SYMBOL(kfree_link);
1577
1578struct inode *alloc_anon_inode(struct super_block *s)
1579{
1580	static const struct address_space_operations anon_aops = {
1581		.dirty_folio	= noop_dirty_folio,
1582	};
1583	struct inode *inode = new_inode_pseudo(s);
1584
1585	if (!inode)
1586		return ERR_PTR(-ENOMEM);
1587
1588	inode->i_ino = get_next_ino();
1589	inode->i_mapping->a_ops = &anon_aops;
1590
1591	/*
1592	 * Mark the inode dirty from the very beginning,
1593	 * that way it will never be moved to the dirty
1594	 * list because mark_inode_dirty() will think
1595	 * that it already _is_ on the dirty list.
1596	 */
1597	inode->i_state = I_DIRTY;
1598	inode->i_mode = S_IRUSR | S_IWUSR;
1599	inode->i_uid = current_fsuid();
1600	inode->i_gid = current_fsgid();
1601	inode->i_flags |= S_PRIVATE;
1602	simple_inode_init_ts(inode);
1603	return inode;
1604}
1605EXPORT_SYMBOL(alloc_anon_inode);
1606
1607/**
1608 * simple_nosetlease - generic helper for prohibiting leases
1609 * @filp: file pointer
1610 * @arg: type of lease to obtain
1611 * @flp: new lease supplied for insertion
1612 * @priv: private data for lm_setup operation
1613 *
1614 * Generic helper for filesystems that do not wish to allow leases to be set.
1615 * All arguments are ignored and it just returns -EINVAL.
1616 */
1617int
1618simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1619		  void **priv)
1620{
1621	return -EINVAL;
1622}
1623EXPORT_SYMBOL(simple_nosetlease);
1624
1625/**
1626 * simple_get_link - generic helper to get the target of "fast" symlinks
1627 * @dentry: not used here
1628 * @inode: the symlink inode
1629 * @done: not used here
1630 *
1631 * Generic helper for filesystems to use for symlink inodes where a pointer to
1632 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1633 * since as an optimization the path lookup code uses any non-NULL ->i_link
1634 * directly, without calling ->get_link().  But ->get_link() still must be set,
1635 * to mark the inode_operations as being for a symlink.
1636 *
1637 * Return: the symlink target
1638 */
1639const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1640			    struct delayed_call *done)
1641{
1642	return inode->i_link;
1643}
1644EXPORT_SYMBOL(simple_get_link);
1645
1646const struct inode_operations simple_symlink_inode_operations = {
1647	.get_link = simple_get_link,
1648};
1649EXPORT_SYMBOL(simple_symlink_inode_operations);
1650
1651/*
1652 * Operations for a permanently empty directory.
1653 */
1654static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1655{
1656	return ERR_PTR(-ENOENT);
1657}
1658
1659static int empty_dir_getattr(struct mnt_idmap *idmap,
1660			     const struct path *path, struct kstat *stat,
1661			     u32 request_mask, unsigned int query_flags)
1662{
1663	struct inode *inode = d_inode(path->dentry);
1664	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1665	return 0;
1666}
1667
1668static int empty_dir_setattr(struct mnt_idmap *idmap,
1669			     struct dentry *dentry, struct iattr *attr)
1670{
1671	return -EPERM;
1672}
1673
1674static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1675{
1676	return -EOPNOTSUPP;
1677}
1678
1679static const struct inode_operations empty_dir_inode_operations = {
1680	.lookup		= empty_dir_lookup,
1681	.permission	= generic_permission,
1682	.setattr	= empty_dir_setattr,
1683	.getattr	= empty_dir_getattr,
1684	.listxattr	= empty_dir_listxattr,
1685};
1686
1687static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1688{
1689	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1690	return generic_file_llseek_size(file, offset, whence, 2, 2);
1691}
1692
1693static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1694{
1695	dir_emit_dots(file, ctx);
1696	return 0;
1697}
1698
1699static const struct file_operations empty_dir_operations = {
1700	.llseek		= empty_dir_llseek,
1701	.read		= generic_read_dir,
1702	.iterate_shared	= empty_dir_readdir,
1703	.fsync		= noop_fsync,
1704};
1705
1706
1707void make_empty_dir_inode(struct inode *inode)
1708{
1709	set_nlink(inode, 2);
1710	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1711	inode->i_uid = GLOBAL_ROOT_UID;
1712	inode->i_gid = GLOBAL_ROOT_GID;
1713	inode->i_rdev = 0;
1714	inode->i_size = 0;
1715	inode->i_blkbits = PAGE_SHIFT;
1716	inode->i_blocks = 0;
1717
1718	inode->i_op = &empty_dir_inode_operations;
1719	inode->i_opflags &= ~IOP_XATTR;
1720	inode->i_fop = &empty_dir_operations;
1721}
1722
1723bool is_empty_dir_inode(struct inode *inode)
1724{
1725	return (inode->i_fop == &empty_dir_operations) &&
1726		(inode->i_op == &empty_dir_inode_operations);
1727}
1728
1729#if IS_ENABLED(CONFIG_UNICODE)
1730/**
1731 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1732 * @dentry:	dentry whose name we are checking against
1733 * @len:	len of name of dentry
1734 * @str:	str pointer to name of dentry
1735 * @name:	Name to compare against
1736 *
1737 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1738 */
1739static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1740				const char *str, const struct qstr *name)
1741{
1742	const struct dentry *parent;
1743	const struct inode *dir;
1744	char strbuf[DNAME_INLINE_LEN];
1745	struct qstr qstr;
1746
1747	/*
1748	 * Attempt a case-sensitive match first. It is cheaper and
1749	 * should cover most lookups, including all the sane
1750	 * applications that expect a case-sensitive filesystem.
1751	 *
1752	 * This comparison is safe under RCU because the caller
1753	 * guarantees the consistency between str and len. See
1754	 * __d_lookup_rcu_op_compare() for details.
1755	 */
1756	if (len == name->len && !memcmp(str, name->name, len))
1757		return 0;
1758
1759	parent = READ_ONCE(dentry->d_parent);
1760	dir = READ_ONCE(parent->d_inode);
1761	if (!dir || !IS_CASEFOLDED(dir))
1762		return 1;
1763
1764	/*
1765	 * If the dentry name is stored in-line, then it may be concurrently
1766	 * modified by a rename.  If this happens, the VFS will eventually retry
1767	 * the lookup, so it doesn't matter what ->d_compare() returns.
1768	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1769	 * string.  Therefore, we have to copy the name into a temporary buffer.
1770	 */
1771	if (len <= DNAME_INLINE_LEN - 1) {
1772		memcpy(strbuf, str, len);
1773		strbuf[len] = 0;
1774		str = strbuf;
1775		/* prevent compiler from optimizing out the temporary buffer */
1776		barrier();
1777	}
1778	qstr.len = len;
1779	qstr.name = str;
1780
1781	return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1782}
1783
1784/**
1785 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1786 * @dentry:	dentry of the parent directory
1787 * @str:	qstr of name whose hash we should fill in
1788 *
1789 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1790 */
1791static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1792{
1793	const struct inode *dir = READ_ONCE(dentry->d_inode);
1794	struct super_block *sb = dentry->d_sb;
1795	const struct unicode_map *um = sb->s_encoding;
1796	int ret;
1797
1798	if (!dir || !IS_CASEFOLDED(dir))
1799		return 0;
1800
1801	ret = utf8_casefold_hash(um, dentry, str);
1802	if (ret < 0 && sb_has_strict_encoding(sb))
1803		return -EINVAL;
1804	return 0;
1805}
1806
1807static const struct dentry_operations generic_ci_dentry_ops = {
1808	.d_hash = generic_ci_d_hash,
1809	.d_compare = generic_ci_d_compare,
1810#ifdef CONFIG_FS_ENCRYPTION
1811	.d_revalidate = fscrypt_d_revalidate,
1812#endif
1813};
1814#endif
1815
1816#ifdef CONFIG_FS_ENCRYPTION
1817static const struct dentry_operations generic_encrypted_dentry_ops = {
1818	.d_revalidate = fscrypt_d_revalidate,
1819};
1820#endif
1821
1822/**
1823 * generic_set_sb_d_ops - helper for choosing the set of
1824 * filesystem-wide dentry operations for the enabled features
1825 * @sb: superblock to be configured
1826 *
1827 * Filesystems supporting casefolding and/or fscrypt can call this
1828 * helper at mount-time to configure sb->s_d_op to best set of dentry
1829 * operations required for the enabled features. The helper must be
1830 * called after these have been configured, but before the root dentry
1831 * is created.
1832 */
1833void generic_set_sb_d_ops(struct super_block *sb)
1834{
1835#if IS_ENABLED(CONFIG_UNICODE)
1836	if (sb->s_encoding) {
1837		sb->s_d_op = &generic_ci_dentry_ops;
1838		return;
1839	}
1840#endif
1841#ifdef CONFIG_FS_ENCRYPTION
1842	if (sb->s_cop) {
1843		sb->s_d_op = &generic_encrypted_dentry_ops;
1844		return;
1845	}
1846#endif
1847}
1848EXPORT_SYMBOL(generic_set_sb_d_ops);
1849
1850/**
1851 * inode_maybe_inc_iversion - increments i_version
1852 * @inode: inode with the i_version that should be updated
1853 * @force: increment the counter even if it's not necessary?
1854 *
1855 * Every time the inode is modified, the i_version field must be seen to have
1856 * changed by any observer.
1857 *
1858 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1859 * the value, and clear the queried flag.
1860 *
1861 * In the common case where neither is set, then we can return "false" without
1862 * updating i_version.
1863 *
1864 * If this function returns false, and no other metadata has changed, then we
1865 * can avoid logging the metadata.
1866 */
1867bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1868{
1869	u64 cur, new;
1870
1871	/*
1872	 * The i_version field is not strictly ordered with any other inode
1873	 * information, but the legacy inode_inc_iversion code used a spinlock
1874	 * to serialize increments.
1875	 *
1876	 * Here, we add full memory barriers to ensure that any de-facto
1877	 * ordering with other info is preserved.
1878	 *
1879	 * This barrier pairs with the barrier in inode_query_iversion()
1880	 */
1881	smp_mb();
1882	cur = inode_peek_iversion_raw(inode);
1883	do {
1884		/* If flag is clear then we needn't do anything */
1885		if (!force && !(cur & I_VERSION_QUERIED))
1886			return false;
1887
1888		/* Since lowest bit is flag, add 2 to avoid it */
1889		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1890	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1891	return true;
1892}
1893EXPORT_SYMBOL(inode_maybe_inc_iversion);
1894
1895/**
1896 * inode_query_iversion - read i_version for later use
1897 * @inode: inode from which i_version should be read
1898 *
1899 * Read the inode i_version counter. This should be used by callers that wish
1900 * to store the returned i_version for later comparison. This will guarantee
1901 * that a later query of the i_version will result in a different value if
1902 * anything has changed.
1903 *
1904 * In this implementation, we fetch the current value, set the QUERIED flag and
1905 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1906 * that fails, we try again with the newly fetched value from the cmpxchg.
1907 */
1908u64 inode_query_iversion(struct inode *inode)
1909{
1910	u64 cur, new;
1911
1912	cur = inode_peek_iversion_raw(inode);
1913	do {
1914		/* If flag is already set, then no need to swap */
1915		if (cur & I_VERSION_QUERIED) {
1916			/*
1917			 * This barrier (and the implicit barrier in the
1918			 * cmpxchg below) pairs with the barrier in
1919			 * inode_maybe_inc_iversion().
1920			 */
1921			smp_mb();
1922			break;
1923		}
1924
1925		new = cur | I_VERSION_QUERIED;
1926	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1927	return cur >> I_VERSION_QUERIED_SHIFT;
1928}
1929EXPORT_SYMBOL(inode_query_iversion);
1930
1931ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1932		ssize_t direct_written, ssize_t buffered_written)
1933{
1934	struct address_space *mapping = iocb->ki_filp->f_mapping;
1935	loff_t pos = iocb->ki_pos - buffered_written;
1936	loff_t end = iocb->ki_pos - 1;
1937	int err;
1938
1939	/*
1940	 * If the buffered write fallback returned an error, we want to return
1941	 * the number of bytes which were written by direct I/O, or the error
1942	 * code if that was zero.
1943	 *
1944	 * Note that this differs from normal direct-io semantics, which will
1945	 * return -EFOO even if some bytes were written.
1946	 */
1947	if (unlikely(buffered_written < 0)) {
1948		if (direct_written)
1949			return direct_written;
1950		return buffered_written;
1951	}
1952
1953	/*
1954	 * We need to ensure that the page cache pages are written to disk and
1955	 * invalidated to preserve the expected O_DIRECT semantics.
1956	 */
1957	err = filemap_write_and_wait_range(mapping, pos, end);
1958	if (err < 0) {
1959		/*
1960		 * We don't know how much we wrote, so just return the number of
1961		 * bytes which were direct-written
1962		 */
1963		iocb->ki_pos -= buffered_written;
1964		if (direct_written)
1965			return direct_written;
1966		return err;
1967	}
1968	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1969	return direct_written + buffered_written;
1970}
1971EXPORT_SYMBOL_GPL(direct_write_fallback);
1972
1973/**
1974 * simple_inode_init_ts - initialize the timestamps for a new inode
1975 * @inode: inode to be initialized
1976 *
1977 * When a new inode is created, most filesystems set the timestamps to the
1978 * current time. Add a helper to do this.
1979 */
1980struct timespec64 simple_inode_init_ts(struct inode *inode)
1981{
1982	struct timespec64 ts = inode_set_ctime_current(inode);
1983
1984	inode_set_atime_to_ts(inode, ts);
1985	inode_set_mtime_to_ts(inode, ts);
1986	return ts;
1987}
1988EXPORT_SYMBOL(simple_inode_init_ts);
1989
1990static inline struct dentry *get_stashed_dentry(struct dentry *stashed)
1991{
1992	struct dentry *dentry;
1993
1994	guard(rcu)();
1995	dentry = READ_ONCE(stashed);
1996	if (!dentry)
1997		return NULL;
1998	if (!lockref_get_not_dead(&dentry->d_lockref))
1999		return NULL;
2000	return dentry;
2001}
2002
2003static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2004					  struct super_block *sb,
2005					  void *data)
2006{
2007	struct dentry *dentry;
2008	struct inode *inode;
2009	const struct stashed_operations *sops = sb->s_fs_info;
2010	int ret;
2011
2012	inode = new_inode_pseudo(sb);
2013	if (!inode) {
2014		sops->put_data(data);
2015		return ERR_PTR(-ENOMEM);
2016	}
2017
2018	inode->i_flags |= S_IMMUTABLE;
2019	inode->i_mode = S_IFREG;
2020	simple_inode_init_ts(inode);
2021
2022	ret = sops->init_inode(inode, data);
2023	if (ret < 0) {
2024		iput(inode);
2025		return ERR_PTR(ret);
2026	}
2027
2028	/* Notice when this is changed. */
2029	WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2030	WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2031
2032	dentry = d_alloc_anon(sb);
2033	if (!dentry) {
2034		iput(inode);
2035		return ERR_PTR(-ENOMEM);
2036	}
2037
2038	/* Store address of location where dentry's supposed to be stashed. */
2039	dentry->d_fsdata = stashed;
2040
2041	/* @data is now owned by the fs */
2042	d_instantiate(dentry, inode);
2043	return dentry;
2044}
2045
2046static struct dentry *stash_dentry(struct dentry **stashed,
2047				   struct dentry *dentry)
2048{
2049	guard(rcu)();
2050	for (;;) {
2051		struct dentry *old;
2052
2053		/* Assume any old dentry was cleared out. */
2054		old = cmpxchg(stashed, NULL, dentry);
2055		if (likely(!old))
2056			return dentry;
2057
2058		/* Check if somebody else installed a reusable dentry. */
2059		if (lockref_get_not_dead(&old->d_lockref))
2060			return old;
2061
2062		/* There's an old dead dentry there, try to take it over. */
2063		if (likely(try_cmpxchg(stashed, &old, dentry)))
2064			return dentry;
2065	}
2066}
2067
2068/**
2069 * path_from_stashed - create path from stashed or new dentry
2070 * @stashed:    where to retrieve or stash dentry
2071 * @mnt:        mnt of the filesystems to use
2072 * @data:       data to store in inode->i_private
2073 * @path:       path to create
2074 *
2075 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2076 * is still valid then it will be reused. If the dentry isn't able the function
2077 * will allocate a new dentry and inode. It will then check again whether it
2078 * can reuse an existing dentry in case one has been added in the meantime or
2079 * update @stashed with the newly added dentry.
2080 *
2081 * Special-purpose helper for nsfs and pidfs.
2082 *
2083 * Return: On success zero and on failure a negative error is returned.
2084 */
2085int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2086		      struct path *path)
2087{
2088	struct dentry *dentry;
2089	const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2090
2091	/* See if dentry can be reused. */
2092	path->dentry = get_stashed_dentry(*stashed);
2093	if (path->dentry) {
2094		sops->put_data(data);
2095		goto out_path;
2096	}
2097
2098	/* Allocate a new dentry. */
2099	dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2100	if (IS_ERR(dentry))
2101		return PTR_ERR(dentry);
2102
2103	/* Added a new dentry. @data is now owned by the filesystem. */
2104	path->dentry = stash_dentry(stashed, dentry);
2105	if (path->dentry != dentry)
2106		dput(dentry);
2107
2108out_path:
2109	WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2110	WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2111	path->mnt = mntget(mnt);
2112	return 0;
2113}
2114
2115void stashed_dentry_prune(struct dentry *dentry)
2116{
2117	struct dentry **stashed = dentry->d_fsdata;
2118	struct inode *inode = d_inode(dentry);
2119
2120	if (WARN_ON_ONCE(!stashed))
2121		return;
2122
2123	if (!inode)
2124		return;
2125
2126	/*
2127	 * Only replace our own @dentry as someone else might've
2128	 * already cleared out @dentry and stashed their own
2129	 * dentry in there.
2130	 */
2131	cmpxchg(stashed, dentry, NULL);
2132}
2133