1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6#include <linux/export.h>
7#include <linux/fs.h>
8#include <linux/filelock.h>
9#include <linux/mm.h>
10#include <linux/backing-dev.h>
11#include <linux/hash.h>
12#include <linux/swap.h>
13#include <linux/security.h>
14#include <linux/cdev.h>
15#include <linux/memblock.h>
16#include <linux/fsnotify.h>
17#include <linux/mount.h>
18#include <linux/posix_acl.h>
19#include <linux/buffer_head.h> /* for inode_has_buffers */
20#include <linux/ratelimit.h>
21#include <linux/list_lru.h>
22#include <linux/iversion.h>
23#include <linux/rw_hint.h>
24#include <trace/events/writeback.h>
25#include "internal.h"
26
27/*
28 * Inode locking rules:
29 *
30 * inode->i_lock protects:
31 *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
32 * Inode LRU list locks protect:
33 *   inode->i_sb->s_inode_lru, inode->i_lru
34 * inode->i_sb->s_inode_list_lock protects:
35 *   inode->i_sb->s_inodes, inode->i_sb_list
36 * bdi->wb.list_lock protects:
37 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38 * inode_hash_lock protects:
39 *   inode_hashtable, inode->i_hash
40 *
41 * Lock ordering:
42 *
43 * inode->i_sb->s_inode_list_lock
44 *   inode->i_lock
45 *     Inode LRU list locks
46 *
47 * bdi->wb.list_lock
48 *   inode->i_lock
49 *
50 * inode_hash_lock
51 *   inode->i_sb->s_inode_list_lock
52 *   inode->i_lock
53 *
54 * iunique_lock
55 *   inode_hash_lock
56 */
57
58static unsigned int i_hash_mask __ro_after_init;
59static unsigned int i_hash_shift __ro_after_init;
60static struct hlist_head *inode_hashtable __ro_after_init;
61static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62
63/*
64 * Empty aops. Can be used for the cases where the user does not
65 * define any of the address_space operations.
66 */
67const struct address_space_operations empty_aops = {
68};
69EXPORT_SYMBOL(empty_aops);
70
71static DEFINE_PER_CPU(unsigned long, nr_inodes);
72static DEFINE_PER_CPU(unsigned long, nr_unused);
73
74static struct kmem_cache *inode_cachep __ro_after_init;
75
76static long get_nr_inodes(void)
77{
78	int i;
79	long sum = 0;
80	for_each_possible_cpu(i)
81		sum += per_cpu(nr_inodes, i);
82	return sum < 0 ? 0 : sum;
83}
84
85static inline long get_nr_inodes_unused(void)
86{
87	int i;
88	long sum = 0;
89	for_each_possible_cpu(i)
90		sum += per_cpu(nr_unused, i);
91	return sum < 0 ? 0 : sum;
92}
93
94long get_nr_dirty_inodes(void)
95{
96	/* not actually dirty inodes, but a wild approximation */
97	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
98	return nr_dirty > 0 ? nr_dirty : 0;
99}
100
101/*
102 * Handle nr_inode sysctl
103 */
104#ifdef CONFIG_SYSCTL
105/*
106 * Statistics gathering..
107 */
108static struct inodes_stat_t inodes_stat;
109
110static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
111			  size_t *lenp, loff_t *ppos)
112{
113	inodes_stat.nr_inodes = get_nr_inodes();
114	inodes_stat.nr_unused = get_nr_inodes_unused();
115	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116}
117
118static struct ctl_table inodes_sysctls[] = {
119	{
120		.procname	= "inode-nr",
121		.data		= &inodes_stat,
122		.maxlen		= 2*sizeof(long),
123		.mode		= 0444,
124		.proc_handler	= proc_nr_inodes,
125	},
126	{
127		.procname	= "inode-state",
128		.data		= &inodes_stat,
129		.maxlen		= 7*sizeof(long),
130		.mode		= 0444,
131		.proc_handler	= proc_nr_inodes,
132	},
133};
134
135static int __init init_fs_inode_sysctls(void)
136{
137	register_sysctl_init("fs", inodes_sysctls);
138	return 0;
139}
140early_initcall(init_fs_inode_sysctls);
141#endif
142
143static int no_open(struct inode *inode, struct file *file)
144{
145	return -ENXIO;
146}
147
148/**
149 * inode_init_always - perform inode structure initialisation
150 * @sb: superblock inode belongs to
151 * @inode: inode to initialise
152 *
153 * These are initializations that need to be done on every inode
154 * allocation as the fields are not initialised by slab allocation.
155 */
156int inode_init_always(struct super_block *sb, struct inode *inode)
157{
158	static const struct inode_operations empty_iops;
159	static const struct file_operations no_open_fops = {.open = no_open};
160	struct address_space *const mapping = &inode->i_data;
161
162	inode->i_sb = sb;
163	inode->i_blkbits = sb->s_blocksize_bits;
164	inode->i_flags = 0;
165	atomic64_set(&inode->i_sequence, 0);
166	atomic_set(&inode->i_count, 1);
167	inode->i_op = &empty_iops;
168	inode->i_fop = &no_open_fops;
169	inode->i_ino = 0;
170	inode->__i_nlink = 1;
171	inode->i_opflags = 0;
172	if (sb->s_xattr)
173		inode->i_opflags |= IOP_XATTR;
174	i_uid_write(inode, 0);
175	i_gid_write(inode, 0);
176	atomic_set(&inode->i_writecount, 0);
177	inode->i_size = 0;
178	inode->i_write_hint = WRITE_LIFE_NOT_SET;
179	inode->i_blocks = 0;
180	inode->i_bytes = 0;
181	inode->i_generation = 0;
182	inode->i_pipe = NULL;
183	inode->i_cdev = NULL;
184	inode->i_link = NULL;
185	inode->i_dir_seq = 0;
186	inode->i_rdev = 0;
187	inode->dirtied_when = 0;
188
189#ifdef CONFIG_CGROUP_WRITEBACK
190	inode->i_wb_frn_winner = 0;
191	inode->i_wb_frn_avg_time = 0;
192	inode->i_wb_frn_history = 0;
193#endif
194
195	spin_lock_init(&inode->i_lock);
196	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197
198	init_rwsem(&inode->i_rwsem);
199	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200
201	atomic_set(&inode->i_dio_count, 0);
202
203	mapping->a_ops = &empty_aops;
204	mapping->host = inode;
205	mapping->flags = 0;
206	mapping->wb_err = 0;
207	atomic_set(&mapping->i_mmap_writable, 0);
208#ifdef CONFIG_READ_ONLY_THP_FOR_FS
209	atomic_set(&mapping->nr_thps, 0);
210#endif
211	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
212	mapping->i_private_data = NULL;
213	mapping->writeback_index = 0;
214	init_rwsem(&mapping->invalidate_lock);
215	lockdep_set_class_and_name(&mapping->invalidate_lock,
216				   &sb->s_type->invalidate_lock_key,
217				   "mapping.invalidate_lock");
218	if (sb->s_iflags & SB_I_STABLE_WRITES)
219		mapping_set_stable_writes(mapping);
220	inode->i_private = NULL;
221	inode->i_mapping = mapping;
222	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
223#ifdef CONFIG_FS_POSIX_ACL
224	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
225#endif
226
227#ifdef CONFIG_FSNOTIFY
228	inode->i_fsnotify_mask = 0;
229#endif
230	inode->i_flctx = NULL;
231
232	if (unlikely(security_inode_alloc(inode)))
233		return -ENOMEM;
234	this_cpu_inc(nr_inodes);
235
236	return 0;
237}
238EXPORT_SYMBOL(inode_init_always);
239
240void free_inode_nonrcu(struct inode *inode)
241{
242	kmem_cache_free(inode_cachep, inode);
243}
244EXPORT_SYMBOL(free_inode_nonrcu);
245
246static void i_callback(struct rcu_head *head)
247{
248	struct inode *inode = container_of(head, struct inode, i_rcu);
249	if (inode->free_inode)
250		inode->free_inode(inode);
251	else
252		free_inode_nonrcu(inode);
253}
254
255static struct inode *alloc_inode(struct super_block *sb)
256{
257	const struct super_operations *ops = sb->s_op;
258	struct inode *inode;
259
260	if (ops->alloc_inode)
261		inode = ops->alloc_inode(sb);
262	else
263		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
264
265	if (!inode)
266		return NULL;
267
268	if (unlikely(inode_init_always(sb, inode))) {
269		if (ops->destroy_inode) {
270			ops->destroy_inode(inode);
271			if (!ops->free_inode)
272				return NULL;
273		}
274		inode->free_inode = ops->free_inode;
275		i_callback(&inode->i_rcu);
276		return NULL;
277	}
278
279	return inode;
280}
281
282void __destroy_inode(struct inode *inode)
283{
284	BUG_ON(inode_has_buffers(inode));
285	inode_detach_wb(inode);
286	security_inode_free(inode);
287	fsnotify_inode_delete(inode);
288	locks_free_lock_context(inode);
289	if (!inode->i_nlink) {
290		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
291		atomic_long_dec(&inode->i_sb->s_remove_count);
292	}
293
294#ifdef CONFIG_FS_POSIX_ACL
295	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
296		posix_acl_release(inode->i_acl);
297	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
298		posix_acl_release(inode->i_default_acl);
299#endif
300	this_cpu_dec(nr_inodes);
301}
302EXPORT_SYMBOL(__destroy_inode);
303
304static void destroy_inode(struct inode *inode)
305{
306	const struct super_operations *ops = inode->i_sb->s_op;
307
308	BUG_ON(!list_empty(&inode->i_lru));
309	__destroy_inode(inode);
310	if (ops->destroy_inode) {
311		ops->destroy_inode(inode);
312		if (!ops->free_inode)
313			return;
314	}
315	inode->free_inode = ops->free_inode;
316	call_rcu(&inode->i_rcu, i_callback);
317}
318
319/**
320 * drop_nlink - directly drop an inode's link count
321 * @inode: inode
322 *
323 * This is a low-level filesystem helper to replace any
324 * direct filesystem manipulation of i_nlink.  In cases
325 * where we are attempting to track writes to the
326 * filesystem, a decrement to zero means an imminent
327 * write when the file is truncated and actually unlinked
328 * on the filesystem.
329 */
330void drop_nlink(struct inode *inode)
331{
332	WARN_ON(inode->i_nlink == 0);
333	inode->__i_nlink--;
334	if (!inode->i_nlink)
335		atomic_long_inc(&inode->i_sb->s_remove_count);
336}
337EXPORT_SYMBOL(drop_nlink);
338
339/**
340 * clear_nlink - directly zero an inode's link count
341 * @inode: inode
342 *
343 * This is a low-level filesystem helper to replace any
344 * direct filesystem manipulation of i_nlink.  See
345 * drop_nlink() for why we care about i_nlink hitting zero.
346 */
347void clear_nlink(struct inode *inode)
348{
349	if (inode->i_nlink) {
350		inode->__i_nlink = 0;
351		atomic_long_inc(&inode->i_sb->s_remove_count);
352	}
353}
354EXPORT_SYMBOL(clear_nlink);
355
356/**
357 * set_nlink - directly set an inode's link count
358 * @inode: inode
359 * @nlink: new nlink (should be non-zero)
360 *
361 * This is a low-level filesystem helper to replace any
362 * direct filesystem manipulation of i_nlink.
363 */
364void set_nlink(struct inode *inode, unsigned int nlink)
365{
366	if (!nlink) {
367		clear_nlink(inode);
368	} else {
369		/* Yes, some filesystems do change nlink from zero to one */
370		if (inode->i_nlink == 0)
371			atomic_long_dec(&inode->i_sb->s_remove_count);
372
373		inode->__i_nlink = nlink;
374	}
375}
376EXPORT_SYMBOL(set_nlink);
377
378/**
379 * inc_nlink - directly increment an inode's link count
380 * @inode: inode
381 *
382 * This is a low-level filesystem helper to replace any
383 * direct filesystem manipulation of i_nlink.  Currently,
384 * it is only here for parity with dec_nlink().
385 */
386void inc_nlink(struct inode *inode)
387{
388	if (unlikely(inode->i_nlink == 0)) {
389		WARN_ON(!(inode->i_state & I_LINKABLE));
390		atomic_long_dec(&inode->i_sb->s_remove_count);
391	}
392
393	inode->__i_nlink++;
394}
395EXPORT_SYMBOL(inc_nlink);
396
397static void __address_space_init_once(struct address_space *mapping)
398{
399	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
400	init_rwsem(&mapping->i_mmap_rwsem);
401	INIT_LIST_HEAD(&mapping->i_private_list);
402	spin_lock_init(&mapping->i_private_lock);
403	mapping->i_mmap = RB_ROOT_CACHED;
404}
405
406void address_space_init_once(struct address_space *mapping)
407{
408	memset(mapping, 0, sizeof(*mapping));
409	__address_space_init_once(mapping);
410}
411EXPORT_SYMBOL(address_space_init_once);
412
413/*
414 * These are initializations that only need to be done
415 * once, because the fields are idempotent across use
416 * of the inode, so let the slab aware of that.
417 */
418void inode_init_once(struct inode *inode)
419{
420	memset(inode, 0, sizeof(*inode));
421	INIT_HLIST_NODE(&inode->i_hash);
422	INIT_LIST_HEAD(&inode->i_devices);
423	INIT_LIST_HEAD(&inode->i_io_list);
424	INIT_LIST_HEAD(&inode->i_wb_list);
425	INIT_LIST_HEAD(&inode->i_lru);
426	INIT_LIST_HEAD(&inode->i_sb_list);
427	__address_space_init_once(&inode->i_data);
428	i_size_ordered_init(inode);
429}
430EXPORT_SYMBOL(inode_init_once);
431
432static void init_once(void *foo)
433{
434	struct inode *inode = (struct inode *) foo;
435
436	inode_init_once(inode);
437}
438
439/*
440 * inode->i_lock must be held
441 */
442void __iget(struct inode *inode)
443{
444	atomic_inc(&inode->i_count);
445}
446
447/*
448 * get additional reference to inode; caller must already hold one.
449 */
450void ihold(struct inode *inode)
451{
452	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
453}
454EXPORT_SYMBOL(ihold);
455
456static void __inode_add_lru(struct inode *inode, bool rotate)
457{
458	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
459		return;
460	if (atomic_read(&inode->i_count))
461		return;
462	if (!(inode->i_sb->s_flags & SB_ACTIVE))
463		return;
464	if (!mapping_shrinkable(&inode->i_data))
465		return;
466
467	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
468		this_cpu_inc(nr_unused);
469	else if (rotate)
470		inode->i_state |= I_REFERENCED;
471}
472
473/*
474 * Add inode to LRU if needed (inode is unused and clean).
475 *
476 * Needs inode->i_lock held.
477 */
478void inode_add_lru(struct inode *inode)
479{
480	__inode_add_lru(inode, false);
481}
482
483static void inode_lru_list_del(struct inode *inode)
484{
485	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
486		this_cpu_dec(nr_unused);
487}
488
489/**
490 * inode_sb_list_add - add inode to the superblock list of inodes
491 * @inode: inode to add
492 */
493void inode_sb_list_add(struct inode *inode)
494{
495	spin_lock(&inode->i_sb->s_inode_list_lock);
496	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
497	spin_unlock(&inode->i_sb->s_inode_list_lock);
498}
499EXPORT_SYMBOL_GPL(inode_sb_list_add);
500
501static inline void inode_sb_list_del(struct inode *inode)
502{
503	if (!list_empty(&inode->i_sb_list)) {
504		spin_lock(&inode->i_sb->s_inode_list_lock);
505		list_del_init(&inode->i_sb_list);
506		spin_unlock(&inode->i_sb->s_inode_list_lock);
507	}
508}
509
510static unsigned long hash(struct super_block *sb, unsigned long hashval)
511{
512	unsigned long tmp;
513
514	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
515			L1_CACHE_BYTES;
516	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
517	return tmp & i_hash_mask;
518}
519
520/**
521 *	__insert_inode_hash - hash an inode
522 *	@inode: unhashed inode
523 *	@hashval: unsigned long value used to locate this object in the
524 *		inode_hashtable.
525 *
526 *	Add an inode to the inode hash for this superblock.
527 */
528void __insert_inode_hash(struct inode *inode, unsigned long hashval)
529{
530	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
531
532	spin_lock(&inode_hash_lock);
533	spin_lock(&inode->i_lock);
534	hlist_add_head_rcu(&inode->i_hash, b);
535	spin_unlock(&inode->i_lock);
536	spin_unlock(&inode_hash_lock);
537}
538EXPORT_SYMBOL(__insert_inode_hash);
539
540/**
541 *	__remove_inode_hash - remove an inode from the hash
542 *	@inode: inode to unhash
543 *
544 *	Remove an inode from the superblock.
545 */
546void __remove_inode_hash(struct inode *inode)
547{
548	spin_lock(&inode_hash_lock);
549	spin_lock(&inode->i_lock);
550	hlist_del_init_rcu(&inode->i_hash);
551	spin_unlock(&inode->i_lock);
552	spin_unlock(&inode_hash_lock);
553}
554EXPORT_SYMBOL(__remove_inode_hash);
555
556void dump_mapping(const struct address_space *mapping)
557{
558	struct inode *host;
559	const struct address_space_operations *a_ops;
560	struct hlist_node *dentry_first;
561	struct dentry *dentry_ptr;
562	struct dentry dentry;
563	unsigned long ino;
564
565	/*
566	 * If mapping is an invalid pointer, we don't want to crash
567	 * accessing it, so probe everything depending on it carefully.
568	 */
569	if (get_kernel_nofault(host, &mapping->host) ||
570	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
571		pr_warn("invalid mapping:%px\n", mapping);
572		return;
573	}
574
575	if (!host) {
576		pr_warn("aops:%ps\n", a_ops);
577		return;
578	}
579
580	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
581	    get_kernel_nofault(ino, &host->i_ino)) {
582		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
583		return;
584	}
585
586	if (!dentry_first) {
587		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
588		return;
589	}
590
591	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
592	if (get_kernel_nofault(dentry, dentry_ptr) ||
593	    !dentry.d_parent || !dentry.d_name.name) {
594		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
595				a_ops, ino, dentry_ptr);
596		return;
597	}
598
599	/*
600	 * if dentry is corrupted, the %pd handler may still crash,
601	 * but it's unlikely that we reach here with a corrupt mapping
602	 */
603	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
604}
605
606void clear_inode(struct inode *inode)
607{
608	/*
609	 * We have to cycle the i_pages lock here because reclaim can be in the
610	 * process of removing the last page (in __filemap_remove_folio())
611	 * and we must not free the mapping under it.
612	 */
613	xa_lock_irq(&inode->i_data.i_pages);
614	BUG_ON(inode->i_data.nrpages);
615	/*
616	 * Almost always, mapping_empty(&inode->i_data) here; but there are
617	 * two known and long-standing ways in which nodes may get left behind
618	 * (when deep radix-tree node allocation failed partway; or when THP
619	 * collapse_file() failed). Until those two known cases are cleaned up,
620	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
621	 * nor even WARN_ON(!mapping_empty).
622	 */
623	xa_unlock_irq(&inode->i_data.i_pages);
624	BUG_ON(!list_empty(&inode->i_data.i_private_list));
625	BUG_ON(!(inode->i_state & I_FREEING));
626	BUG_ON(inode->i_state & I_CLEAR);
627	BUG_ON(!list_empty(&inode->i_wb_list));
628	/* don't need i_lock here, no concurrent mods to i_state */
629	inode->i_state = I_FREEING | I_CLEAR;
630}
631EXPORT_SYMBOL(clear_inode);
632
633/*
634 * Free the inode passed in, removing it from the lists it is still connected
635 * to. We remove any pages still attached to the inode and wait for any IO that
636 * is still in progress before finally destroying the inode.
637 *
638 * An inode must already be marked I_FREEING so that we avoid the inode being
639 * moved back onto lists if we race with other code that manipulates the lists
640 * (e.g. writeback_single_inode). The caller is responsible for setting this.
641 *
642 * An inode must already be removed from the LRU list before being evicted from
643 * the cache. This should occur atomically with setting the I_FREEING state
644 * flag, so no inodes here should ever be on the LRU when being evicted.
645 */
646static void evict(struct inode *inode)
647{
648	const struct super_operations *op = inode->i_sb->s_op;
649
650	BUG_ON(!(inode->i_state & I_FREEING));
651	BUG_ON(!list_empty(&inode->i_lru));
652
653	if (!list_empty(&inode->i_io_list))
654		inode_io_list_del(inode);
655
656	inode_sb_list_del(inode);
657
658	/*
659	 * Wait for flusher thread to be done with the inode so that filesystem
660	 * does not start destroying it while writeback is still running. Since
661	 * the inode has I_FREEING set, flusher thread won't start new work on
662	 * the inode.  We just have to wait for running writeback to finish.
663	 */
664	inode_wait_for_writeback(inode);
665
666	if (op->evict_inode) {
667		op->evict_inode(inode);
668	} else {
669		truncate_inode_pages_final(&inode->i_data);
670		clear_inode(inode);
671	}
672	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
673		cd_forget(inode);
674
675	remove_inode_hash(inode);
676
677	spin_lock(&inode->i_lock);
678	wake_up_bit(&inode->i_state, __I_NEW);
679	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
680	spin_unlock(&inode->i_lock);
681
682	destroy_inode(inode);
683}
684
685/*
686 * dispose_list - dispose of the contents of a local list
687 * @head: the head of the list to free
688 *
689 * Dispose-list gets a local list with local inodes in it, so it doesn't
690 * need to worry about list corruption and SMP locks.
691 */
692static void dispose_list(struct list_head *head)
693{
694	while (!list_empty(head)) {
695		struct inode *inode;
696
697		inode = list_first_entry(head, struct inode, i_lru);
698		list_del_init(&inode->i_lru);
699
700		evict(inode);
701		cond_resched();
702	}
703}
704
705/**
706 * evict_inodes	- evict all evictable inodes for a superblock
707 * @sb:		superblock to operate on
708 *
709 * Make sure that no inodes with zero refcount are retained.  This is
710 * called by superblock shutdown after having SB_ACTIVE flag removed,
711 * so any inode reaching zero refcount during or after that call will
712 * be immediately evicted.
713 */
714void evict_inodes(struct super_block *sb)
715{
716	struct inode *inode, *next;
717	LIST_HEAD(dispose);
718
719again:
720	spin_lock(&sb->s_inode_list_lock);
721	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
722		if (atomic_read(&inode->i_count))
723			continue;
724
725		spin_lock(&inode->i_lock);
726		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
727			spin_unlock(&inode->i_lock);
728			continue;
729		}
730
731		inode->i_state |= I_FREEING;
732		inode_lru_list_del(inode);
733		spin_unlock(&inode->i_lock);
734		list_add(&inode->i_lru, &dispose);
735
736		/*
737		 * We can have a ton of inodes to evict at unmount time given
738		 * enough memory, check to see if we need to go to sleep for a
739		 * bit so we don't livelock.
740		 */
741		if (need_resched()) {
742			spin_unlock(&sb->s_inode_list_lock);
743			cond_resched();
744			dispose_list(&dispose);
745			goto again;
746		}
747	}
748	spin_unlock(&sb->s_inode_list_lock);
749
750	dispose_list(&dispose);
751}
752EXPORT_SYMBOL_GPL(evict_inodes);
753
754/**
755 * invalidate_inodes	- attempt to free all inodes on a superblock
756 * @sb:		superblock to operate on
757 *
758 * Attempts to free all inodes (including dirty inodes) for a given superblock.
759 */
760void invalidate_inodes(struct super_block *sb)
761{
762	struct inode *inode, *next;
763	LIST_HEAD(dispose);
764
765again:
766	spin_lock(&sb->s_inode_list_lock);
767	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
768		spin_lock(&inode->i_lock);
769		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
770			spin_unlock(&inode->i_lock);
771			continue;
772		}
773		if (atomic_read(&inode->i_count)) {
774			spin_unlock(&inode->i_lock);
775			continue;
776		}
777
778		inode->i_state |= I_FREEING;
779		inode_lru_list_del(inode);
780		spin_unlock(&inode->i_lock);
781		list_add(&inode->i_lru, &dispose);
782		if (need_resched()) {
783			spin_unlock(&sb->s_inode_list_lock);
784			cond_resched();
785			dispose_list(&dispose);
786			goto again;
787		}
788	}
789	spin_unlock(&sb->s_inode_list_lock);
790
791	dispose_list(&dispose);
792}
793
794/*
795 * Isolate the inode from the LRU in preparation for freeing it.
796 *
797 * If the inode has the I_REFERENCED flag set, then it means that it has been
798 * used recently - the flag is set in iput_final(). When we encounter such an
799 * inode, clear the flag and move it to the back of the LRU so it gets another
800 * pass through the LRU before it gets reclaimed. This is necessary because of
801 * the fact we are doing lazy LRU updates to minimise lock contention so the
802 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
803 * with this flag set because they are the inodes that are out of order.
804 */
805static enum lru_status inode_lru_isolate(struct list_head *item,
806		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
807{
808	struct list_head *freeable = arg;
809	struct inode	*inode = container_of(item, struct inode, i_lru);
810
811	/*
812	 * We are inverting the lru lock/inode->i_lock here, so use a
813	 * trylock. If we fail to get the lock, just skip it.
814	 */
815	if (!spin_trylock(&inode->i_lock))
816		return LRU_SKIP;
817
818	/*
819	 * Inodes can get referenced, redirtied, or repopulated while
820	 * they're already on the LRU, and this can make them
821	 * unreclaimable for a while. Remove them lazily here; iput,
822	 * sync, or the last page cache deletion will requeue them.
823	 */
824	if (atomic_read(&inode->i_count) ||
825	    (inode->i_state & ~I_REFERENCED) ||
826	    !mapping_shrinkable(&inode->i_data)) {
827		list_lru_isolate(lru, &inode->i_lru);
828		spin_unlock(&inode->i_lock);
829		this_cpu_dec(nr_unused);
830		return LRU_REMOVED;
831	}
832
833	/* Recently referenced inodes get one more pass */
834	if (inode->i_state & I_REFERENCED) {
835		inode->i_state &= ~I_REFERENCED;
836		spin_unlock(&inode->i_lock);
837		return LRU_ROTATE;
838	}
839
840	/*
841	 * On highmem systems, mapping_shrinkable() permits dropping
842	 * page cache in order to free up struct inodes: lowmem might
843	 * be under pressure before the cache inside the highmem zone.
844	 */
845	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
846		__iget(inode);
847		spin_unlock(&inode->i_lock);
848		spin_unlock(lru_lock);
849		if (remove_inode_buffers(inode)) {
850			unsigned long reap;
851			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
852			if (current_is_kswapd())
853				__count_vm_events(KSWAPD_INODESTEAL, reap);
854			else
855				__count_vm_events(PGINODESTEAL, reap);
856			mm_account_reclaimed_pages(reap);
857		}
858		iput(inode);
859		spin_lock(lru_lock);
860		return LRU_RETRY;
861	}
862
863	WARN_ON(inode->i_state & I_NEW);
864	inode->i_state |= I_FREEING;
865	list_lru_isolate_move(lru, &inode->i_lru, freeable);
866	spin_unlock(&inode->i_lock);
867
868	this_cpu_dec(nr_unused);
869	return LRU_REMOVED;
870}
871
872/*
873 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
874 * This is called from the superblock shrinker function with a number of inodes
875 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
876 * then are freed outside inode_lock by dispose_list().
877 */
878long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
879{
880	LIST_HEAD(freeable);
881	long freed;
882
883	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
884				     inode_lru_isolate, &freeable);
885	dispose_list(&freeable);
886	return freed;
887}
888
889static void __wait_on_freeing_inode(struct inode *inode);
890/*
891 * Called with the inode lock held.
892 */
893static struct inode *find_inode(struct super_block *sb,
894				struct hlist_head *head,
895				int (*test)(struct inode *, void *),
896				void *data)
897{
898	struct inode *inode = NULL;
899
900repeat:
901	hlist_for_each_entry(inode, head, i_hash) {
902		if (inode->i_sb != sb)
903			continue;
904		if (!test(inode, data))
905			continue;
906		spin_lock(&inode->i_lock);
907		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
908			__wait_on_freeing_inode(inode);
909			goto repeat;
910		}
911		if (unlikely(inode->i_state & I_CREATING)) {
912			spin_unlock(&inode->i_lock);
913			return ERR_PTR(-ESTALE);
914		}
915		__iget(inode);
916		spin_unlock(&inode->i_lock);
917		return inode;
918	}
919	return NULL;
920}
921
922/*
923 * find_inode_fast is the fast path version of find_inode, see the comment at
924 * iget_locked for details.
925 */
926static struct inode *find_inode_fast(struct super_block *sb,
927				struct hlist_head *head, unsigned long ino)
928{
929	struct inode *inode = NULL;
930
931repeat:
932	hlist_for_each_entry(inode, head, i_hash) {
933		if (inode->i_ino != ino)
934			continue;
935		if (inode->i_sb != sb)
936			continue;
937		spin_lock(&inode->i_lock);
938		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
939			__wait_on_freeing_inode(inode);
940			goto repeat;
941		}
942		if (unlikely(inode->i_state & I_CREATING)) {
943			spin_unlock(&inode->i_lock);
944			return ERR_PTR(-ESTALE);
945		}
946		__iget(inode);
947		spin_unlock(&inode->i_lock);
948		return inode;
949	}
950	return NULL;
951}
952
953/*
954 * Each cpu owns a range of LAST_INO_BATCH numbers.
955 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
956 * to renew the exhausted range.
957 *
958 * This does not significantly increase overflow rate because every CPU can
959 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
960 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
961 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
962 * overflow rate by 2x, which does not seem too significant.
963 *
964 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
965 * error if st_ino won't fit in target struct field. Use 32bit counter
966 * here to attempt to avoid that.
967 */
968#define LAST_INO_BATCH 1024
969static DEFINE_PER_CPU(unsigned int, last_ino);
970
971unsigned int get_next_ino(void)
972{
973	unsigned int *p = &get_cpu_var(last_ino);
974	unsigned int res = *p;
975
976#ifdef CONFIG_SMP
977	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
978		static atomic_t shared_last_ino;
979		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
980
981		res = next - LAST_INO_BATCH;
982	}
983#endif
984
985	res++;
986	/* get_next_ino should not provide a 0 inode number */
987	if (unlikely(!res))
988		res++;
989	*p = res;
990	put_cpu_var(last_ino);
991	return res;
992}
993EXPORT_SYMBOL(get_next_ino);
994
995/**
996 *	new_inode_pseudo 	- obtain an inode
997 *	@sb: superblock
998 *
999 *	Allocates a new inode for given superblock.
1000 *	Inode wont be chained in superblock s_inodes list
1001 *	This means :
1002 *	- fs can't be unmount
1003 *	- quotas, fsnotify, writeback can't work
1004 */
1005struct inode *new_inode_pseudo(struct super_block *sb)
1006{
1007	struct inode *inode = alloc_inode(sb);
1008
1009	if (inode) {
1010		spin_lock(&inode->i_lock);
1011		inode->i_state = 0;
1012		spin_unlock(&inode->i_lock);
1013	}
1014	return inode;
1015}
1016
1017/**
1018 *	new_inode 	- obtain an inode
1019 *	@sb: superblock
1020 *
1021 *	Allocates a new inode for given superblock. The default gfp_mask
1022 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1023 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1024 *	for the page cache are not reclaimable or migratable,
1025 *	mapping_set_gfp_mask() must be called with suitable flags on the
1026 *	newly created inode's mapping
1027 *
1028 */
1029struct inode *new_inode(struct super_block *sb)
1030{
1031	struct inode *inode;
1032
1033	inode = new_inode_pseudo(sb);
1034	if (inode)
1035		inode_sb_list_add(inode);
1036	return inode;
1037}
1038EXPORT_SYMBOL(new_inode);
1039
1040#ifdef CONFIG_DEBUG_LOCK_ALLOC
1041void lockdep_annotate_inode_mutex_key(struct inode *inode)
1042{
1043	if (S_ISDIR(inode->i_mode)) {
1044		struct file_system_type *type = inode->i_sb->s_type;
1045
1046		/* Set new key only if filesystem hasn't already changed it */
1047		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1048			/*
1049			 * ensure nobody is actually holding i_mutex
1050			 */
1051			// mutex_destroy(&inode->i_mutex);
1052			init_rwsem(&inode->i_rwsem);
1053			lockdep_set_class(&inode->i_rwsem,
1054					  &type->i_mutex_dir_key);
1055		}
1056	}
1057}
1058EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1059#endif
1060
1061/**
1062 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1063 * @inode:	new inode to unlock
1064 *
1065 * Called when the inode is fully initialised to clear the new state of the
1066 * inode and wake up anyone waiting for the inode to finish initialisation.
1067 */
1068void unlock_new_inode(struct inode *inode)
1069{
1070	lockdep_annotate_inode_mutex_key(inode);
1071	spin_lock(&inode->i_lock);
1072	WARN_ON(!(inode->i_state & I_NEW));
1073	inode->i_state &= ~I_NEW & ~I_CREATING;
1074	smp_mb();
1075	wake_up_bit(&inode->i_state, __I_NEW);
1076	spin_unlock(&inode->i_lock);
1077}
1078EXPORT_SYMBOL(unlock_new_inode);
1079
1080void discard_new_inode(struct inode *inode)
1081{
1082	lockdep_annotate_inode_mutex_key(inode);
1083	spin_lock(&inode->i_lock);
1084	WARN_ON(!(inode->i_state & I_NEW));
1085	inode->i_state &= ~I_NEW;
1086	smp_mb();
1087	wake_up_bit(&inode->i_state, __I_NEW);
1088	spin_unlock(&inode->i_lock);
1089	iput(inode);
1090}
1091EXPORT_SYMBOL(discard_new_inode);
1092
1093/**
1094 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1095 *
1096 * Lock any non-NULL argument. Passed objects must not be directories.
1097 * Zero, one or two objects may be locked by this function.
1098 *
1099 * @inode1: first inode to lock
1100 * @inode2: second inode to lock
1101 */
1102void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1103{
1104	if (inode1)
1105		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1106	if (inode2)
1107		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1108	if (inode1 > inode2)
1109		swap(inode1, inode2);
1110	if (inode1)
1111		inode_lock(inode1);
1112	if (inode2 && inode2 != inode1)
1113		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1114}
1115EXPORT_SYMBOL(lock_two_nondirectories);
1116
1117/**
1118 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1119 * @inode1: first inode to unlock
1120 * @inode2: second inode to unlock
1121 */
1122void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1123{
1124	if (inode1) {
1125		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1126		inode_unlock(inode1);
1127	}
1128	if (inode2 && inode2 != inode1) {
1129		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1130		inode_unlock(inode2);
1131	}
1132}
1133EXPORT_SYMBOL(unlock_two_nondirectories);
1134
1135/**
1136 * inode_insert5 - obtain an inode from a mounted file system
1137 * @inode:	pre-allocated inode to use for insert to cache
1138 * @hashval:	hash value (usually inode number) to get
1139 * @test:	callback used for comparisons between inodes
1140 * @set:	callback used to initialize a new struct inode
1141 * @data:	opaque data pointer to pass to @test and @set
1142 *
1143 * Search for the inode specified by @hashval and @data in the inode cache,
1144 * and if present it is return it with an increased reference count. This is
1145 * a variant of iget5_locked() for callers that don't want to fail on memory
1146 * allocation of inode.
1147 *
1148 * If the inode is not in cache, insert the pre-allocated inode to cache and
1149 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1150 * to fill it in before unlocking it via unlock_new_inode().
1151 *
1152 * Note both @test and @set are called with the inode_hash_lock held, so can't
1153 * sleep.
1154 */
1155struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1156			    int (*test)(struct inode *, void *),
1157			    int (*set)(struct inode *, void *), void *data)
1158{
1159	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1160	struct inode *old;
1161
1162again:
1163	spin_lock(&inode_hash_lock);
1164	old = find_inode(inode->i_sb, head, test, data);
1165	if (unlikely(old)) {
1166		/*
1167		 * Uhhuh, somebody else created the same inode under us.
1168		 * Use the old inode instead of the preallocated one.
1169		 */
1170		spin_unlock(&inode_hash_lock);
1171		if (IS_ERR(old))
1172			return NULL;
1173		wait_on_inode(old);
1174		if (unlikely(inode_unhashed(old))) {
1175			iput(old);
1176			goto again;
1177		}
1178		return old;
1179	}
1180
1181	if (set && unlikely(set(inode, data))) {
1182		inode = NULL;
1183		goto unlock;
1184	}
1185
1186	/*
1187	 * Return the locked inode with I_NEW set, the
1188	 * caller is responsible for filling in the contents
1189	 */
1190	spin_lock(&inode->i_lock);
1191	inode->i_state |= I_NEW;
1192	hlist_add_head_rcu(&inode->i_hash, head);
1193	spin_unlock(&inode->i_lock);
1194
1195	/*
1196	 * Add inode to the sb list if it's not already. It has I_NEW at this
1197	 * point, so it should be safe to test i_sb_list locklessly.
1198	 */
1199	if (list_empty(&inode->i_sb_list))
1200		inode_sb_list_add(inode);
1201unlock:
1202	spin_unlock(&inode_hash_lock);
1203
1204	return inode;
1205}
1206EXPORT_SYMBOL(inode_insert5);
1207
1208/**
1209 * iget5_locked - obtain an inode from a mounted file system
1210 * @sb:		super block of file system
1211 * @hashval:	hash value (usually inode number) to get
1212 * @test:	callback used for comparisons between inodes
1213 * @set:	callback used to initialize a new struct inode
1214 * @data:	opaque data pointer to pass to @test and @set
1215 *
1216 * Search for the inode specified by @hashval and @data in the inode cache,
1217 * and if present it is return it with an increased reference count. This is
1218 * a generalized version of iget_locked() for file systems where the inode
1219 * number is not sufficient for unique identification of an inode.
1220 *
1221 * If the inode is not in cache, allocate a new inode and return it locked,
1222 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1223 * before unlocking it via unlock_new_inode().
1224 *
1225 * Note both @test and @set are called with the inode_hash_lock held, so can't
1226 * sleep.
1227 */
1228struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1229		int (*test)(struct inode *, void *),
1230		int (*set)(struct inode *, void *), void *data)
1231{
1232	struct inode *inode = ilookup5(sb, hashval, test, data);
1233
1234	if (!inode) {
1235		struct inode *new = alloc_inode(sb);
1236
1237		if (new) {
1238			new->i_state = 0;
1239			inode = inode_insert5(new, hashval, test, set, data);
1240			if (unlikely(inode != new))
1241				destroy_inode(new);
1242		}
1243	}
1244	return inode;
1245}
1246EXPORT_SYMBOL(iget5_locked);
1247
1248/**
1249 * iget_locked - obtain an inode from a mounted file system
1250 * @sb:		super block of file system
1251 * @ino:	inode number to get
1252 *
1253 * Search for the inode specified by @ino in the inode cache and if present
1254 * return it with an increased reference count. This is for file systems
1255 * where the inode number is sufficient for unique identification of an inode.
1256 *
1257 * If the inode is not in cache, allocate a new inode and return it locked,
1258 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1259 * before unlocking it via unlock_new_inode().
1260 */
1261struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1262{
1263	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1264	struct inode *inode;
1265again:
1266	spin_lock(&inode_hash_lock);
1267	inode = find_inode_fast(sb, head, ino);
1268	spin_unlock(&inode_hash_lock);
1269	if (inode) {
1270		if (IS_ERR(inode))
1271			return NULL;
1272		wait_on_inode(inode);
1273		if (unlikely(inode_unhashed(inode))) {
1274			iput(inode);
1275			goto again;
1276		}
1277		return inode;
1278	}
1279
1280	inode = alloc_inode(sb);
1281	if (inode) {
1282		struct inode *old;
1283
1284		spin_lock(&inode_hash_lock);
1285		/* We released the lock, so.. */
1286		old = find_inode_fast(sb, head, ino);
1287		if (!old) {
1288			inode->i_ino = ino;
1289			spin_lock(&inode->i_lock);
1290			inode->i_state = I_NEW;
1291			hlist_add_head_rcu(&inode->i_hash, head);
1292			spin_unlock(&inode->i_lock);
1293			inode_sb_list_add(inode);
1294			spin_unlock(&inode_hash_lock);
1295
1296			/* Return the locked inode with I_NEW set, the
1297			 * caller is responsible for filling in the contents
1298			 */
1299			return inode;
1300		}
1301
1302		/*
1303		 * Uhhuh, somebody else created the same inode under
1304		 * us. Use the old inode instead of the one we just
1305		 * allocated.
1306		 */
1307		spin_unlock(&inode_hash_lock);
1308		destroy_inode(inode);
1309		if (IS_ERR(old))
1310			return NULL;
1311		inode = old;
1312		wait_on_inode(inode);
1313		if (unlikely(inode_unhashed(inode))) {
1314			iput(inode);
1315			goto again;
1316		}
1317	}
1318	return inode;
1319}
1320EXPORT_SYMBOL(iget_locked);
1321
1322/*
1323 * search the inode cache for a matching inode number.
1324 * If we find one, then the inode number we are trying to
1325 * allocate is not unique and so we should not use it.
1326 *
1327 * Returns 1 if the inode number is unique, 0 if it is not.
1328 */
1329static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1330{
1331	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1332	struct inode *inode;
1333
1334	hlist_for_each_entry_rcu(inode, b, i_hash) {
1335		if (inode->i_ino == ino && inode->i_sb == sb)
1336			return 0;
1337	}
1338	return 1;
1339}
1340
1341/**
1342 *	iunique - get a unique inode number
1343 *	@sb: superblock
1344 *	@max_reserved: highest reserved inode number
1345 *
1346 *	Obtain an inode number that is unique on the system for a given
1347 *	superblock. This is used by file systems that have no natural
1348 *	permanent inode numbering system. An inode number is returned that
1349 *	is higher than the reserved limit but unique.
1350 *
1351 *	BUGS:
1352 *	With a large number of inodes live on the file system this function
1353 *	currently becomes quite slow.
1354 */
1355ino_t iunique(struct super_block *sb, ino_t max_reserved)
1356{
1357	/*
1358	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1359	 * error if st_ino won't fit in target struct field. Use 32bit counter
1360	 * here to attempt to avoid that.
1361	 */
1362	static DEFINE_SPINLOCK(iunique_lock);
1363	static unsigned int counter;
1364	ino_t res;
1365
1366	rcu_read_lock();
1367	spin_lock(&iunique_lock);
1368	do {
1369		if (counter <= max_reserved)
1370			counter = max_reserved + 1;
1371		res = counter++;
1372	} while (!test_inode_iunique(sb, res));
1373	spin_unlock(&iunique_lock);
1374	rcu_read_unlock();
1375
1376	return res;
1377}
1378EXPORT_SYMBOL(iunique);
1379
1380struct inode *igrab(struct inode *inode)
1381{
1382	spin_lock(&inode->i_lock);
1383	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1384		__iget(inode);
1385		spin_unlock(&inode->i_lock);
1386	} else {
1387		spin_unlock(&inode->i_lock);
1388		/*
1389		 * Handle the case where s_op->clear_inode is not been
1390		 * called yet, and somebody is calling igrab
1391		 * while the inode is getting freed.
1392		 */
1393		inode = NULL;
1394	}
1395	return inode;
1396}
1397EXPORT_SYMBOL(igrab);
1398
1399/**
1400 * ilookup5_nowait - search for an inode in the inode cache
1401 * @sb:		super block of file system to search
1402 * @hashval:	hash value (usually inode number) to search for
1403 * @test:	callback used for comparisons between inodes
1404 * @data:	opaque data pointer to pass to @test
1405 *
1406 * Search for the inode specified by @hashval and @data in the inode cache.
1407 * If the inode is in the cache, the inode is returned with an incremented
1408 * reference count.
1409 *
1410 * Note: I_NEW is not waited upon so you have to be very careful what you do
1411 * with the returned inode.  You probably should be using ilookup5() instead.
1412 *
1413 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1414 */
1415struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1416		int (*test)(struct inode *, void *), void *data)
1417{
1418	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1419	struct inode *inode;
1420
1421	spin_lock(&inode_hash_lock);
1422	inode = find_inode(sb, head, test, data);
1423	spin_unlock(&inode_hash_lock);
1424
1425	return IS_ERR(inode) ? NULL : inode;
1426}
1427EXPORT_SYMBOL(ilookup5_nowait);
1428
1429/**
1430 * ilookup5 - search for an inode in the inode cache
1431 * @sb:		super block of file system to search
1432 * @hashval:	hash value (usually inode number) to search for
1433 * @test:	callback used for comparisons between inodes
1434 * @data:	opaque data pointer to pass to @test
1435 *
1436 * Search for the inode specified by @hashval and @data in the inode cache,
1437 * and if the inode is in the cache, return the inode with an incremented
1438 * reference count.  Waits on I_NEW before returning the inode.
1439 * returned with an incremented reference count.
1440 *
1441 * This is a generalized version of ilookup() for file systems where the
1442 * inode number is not sufficient for unique identification of an inode.
1443 *
1444 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1445 */
1446struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1447		int (*test)(struct inode *, void *), void *data)
1448{
1449	struct inode *inode;
1450again:
1451	inode = ilookup5_nowait(sb, hashval, test, data);
1452	if (inode) {
1453		wait_on_inode(inode);
1454		if (unlikely(inode_unhashed(inode))) {
1455			iput(inode);
1456			goto again;
1457		}
1458	}
1459	return inode;
1460}
1461EXPORT_SYMBOL(ilookup5);
1462
1463/**
1464 * ilookup - search for an inode in the inode cache
1465 * @sb:		super block of file system to search
1466 * @ino:	inode number to search for
1467 *
1468 * Search for the inode @ino in the inode cache, and if the inode is in the
1469 * cache, the inode is returned with an incremented reference count.
1470 */
1471struct inode *ilookup(struct super_block *sb, unsigned long ino)
1472{
1473	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1474	struct inode *inode;
1475again:
1476	spin_lock(&inode_hash_lock);
1477	inode = find_inode_fast(sb, head, ino);
1478	spin_unlock(&inode_hash_lock);
1479
1480	if (inode) {
1481		if (IS_ERR(inode))
1482			return NULL;
1483		wait_on_inode(inode);
1484		if (unlikely(inode_unhashed(inode))) {
1485			iput(inode);
1486			goto again;
1487		}
1488	}
1489	return inode;
1490}
1491EXPORT_SYMBOL(ilookup);
1492
1493/**
1494 * find_inode_nowait - find an inode in the inode cache
1495 * @sb:		super block of file system to search
1496 * @hashval:	hash value (usually inode number) to search for
1497 * @match:	callback used for comparisons between inodes
1498 * @data:	opaque data pointer to pass to @match
1499 *
1500 * Search for the inode specified by @hashval and @data in the inode
1501 * cache, where the helper function @match will return 0 if the inode
1502 * does not match, 1 if the inode does match, and -1 if the search
1503 * should be stopped.  The @match function must be responsible for
1504 * taking the i_lock spin_lock and checking i_state for an inode being
1505 * freed or being initialized, and incrementing the reference count
1506 * before returning 1.  It also must not sleep, since it is called with
1507 * the inode_hash_lock spinlock held.
1508 *
1509 * This is a even more generalized version of ilookup5() when the
1510 * function must never block --- find_inode() can block in
1511 * __wait_on_freeing_inode() --- or when the caller can not increment
1512 * the reference count because the resulting iput() might cause an
1513 * inode eviction.  The tradeoff is that the @match funtion must be
1514 * very carefully implemented.
1515 */
1516struct inode *find_inode_nowait(struct super_block *sb,
1517				unsigned long hashval,
1518				int (*match)(struct inode *, unsigned long,
1519					     void *),
1520				void *data)
1521{
1522	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1523	struct inode *inode, *ret_inode = NULL;
1524	int mval;
1525
1526	spin_lock(&inode_hash_lock);
1527	hlist_for_each_entry(inode, head, i_hash) {
1528		if (inode->i_sb != sb)
1529			continue;
1530		mval = match(inode, hashval, data);
1531		if (mval == 0)
1532			continue;
1533		if (mval == 1)
1534			ret_inode = inode;
1535		goto out;
1536	}
1537out:
1538	spin_unlock(&inode_hash_lock);
1539	return ret_inode;
1540}
1541EXPORT_SYMBOL(find_inode_nowait);
1542
1543/**
1544 * find_inode_rcu - find an inode in the inode cache
1545 * @sb:		Super block of file system to search
1546 * @hashval:	Key to hash
1547 * @test:	Function to test match on an inode
1548 * @data:	Data for test function
1549 *
1550 * Search for the inode specified by @hashval and @data in the inode cache,
1551 * where the helper function @test will return 0 if the inode does not match
1552 * and 1 if it does.  The @test function must be responsible for taking the
1553 * i_lock spin_lock and checking i_state for an inode being freed or being
1554 * initialized.
1555 *
1556 * If successful, this will return the inode for which the @test function
1557 * returned 1 and NULL otherwise.
1558 *
1559 * The @test function is not permitted to take a ref on any inode presented.
1560 * It is also not permitted to sleep.
1561 *
1562 * The caller must hold the RCU read lock.
1563 */
1564struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1565			     int (*test)(struct inode *, void *), void *data)
1566{
1567	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1568	struct inode *inode;
1569
1570	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1571			 "suspicious find_inode_rcu() usage");
1572
1573	hlist_for_each_entry_rcu(inode, head, i_hash) {
1574		if (inode->i_sb == sb &&
1575		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1576		    test(inode, data))
1577			return inode;
1578	}
1579	return NULL;
1580}
1581EXPORT_SYMBOL(find_inode_rcu);
1582
1583/**
1584 * find_inode_by_ino_rcu - Find an inode in the inode cache
1585 * @sb:		Super block of file system to search
1586 * @ino:	The inode number to match
1587 *
1588 * Search for the inode specified by @hashval and @data in the inode cache,
1589 * where the helper function @test will return 0 if the inode does not match
1590 * and 1 if it does.  The @test function must be responsible for taking the
1591 * i_lock spin_lock and checking i_state for an inode being freed or being
1592 * initialized.
1593 *
1594 * If successful, this will return the inode for which the @test function
1595 * returned 1 and NULL otherwise.
1596 *
1597 * The @test function is not permitted to take a ref on any inode presented.
1598 * It is also not permitted to sleep.
1599 *
1600 * The caller must hold the RCU read lock.
1601 */
1602struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1603				    unsigned long ino)
1604{
1605	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1606	struct inode *inode;
1607
1608	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1609			 "suspicious find_inode_by_ino_rcu() usage");
1610
1611	hlist_for_each_entry_rcu(inode, head, i_hash) {
1612		if (inode->i_ino == ino &&
1613		    inode->i_sb == sb &&
1614		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1615		    return inode;
1616	}
1617	return NULL;
1618}
1619EXPORT_SYMBOL(find_inode_by_ino_rcu);
1620
1621int insert_inode_locked(struct inode *inode)
1622{
1623	struct super_block *sb = inode->i_sb;
1624	ino_t ino = inode->i_ino;
1625	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1626
1627	while (1) {
1628		struct inode *old = NULL;
1629		spin_lock(&inode_hash_lock);
1630		hlist_for_each_entry(old, head, i_hash) {
1631			if (old->i_ino != ino)
1632				continue;
1633			if (old->i_sb != sb)
1634				continue;
1635			spin_lock(&old->i_lock);
1636			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1637				spin_unlock(&old->i_lock);
1638				continue;
1639			}
1640			break;
1641		}
1642		if (likely(!old)) {
1643			spin_lock(&inode->i_lock);
1644			inode->i_state |= I_NEW | I_CREATING;
1645			hlist_add_head_rcu(&inode->i_hash, head);
1646			spin_unlock(&inode->i_lock);
1647			spin_unlock(&inode_hash_lock);
1648			return 0;
1649		}
1650		if (unlikely(old->i_state & I_CREATING)) {
1651			spin_unlock(&old->i_lock);
1652			spin_unlock(&inode_hash_lock);
1653			return -EBUSY;
1654		}
1655		__iget(old);
1656		spin_unlock(&old->i_lock);
1657		spin_unlock(&inode_hash_lock);
1658		wait_on_inode(old);
1659		if (unlikely(!inode_unhashed(old))) {
1660			iput(old);
1661			return -EBUSY;
1662		}
1663		iput(old);
1664	}
1665}
1666EXPORT_SYMBOL(insert_inode_locked);
1667
1668int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1669		int (*test)(struct inode *, void *), void *data)
1670{
1671	struct inode *old;
1672
1673	inode->i_state |= I_CREATING;
1674	old = inode_insert5(inode, hashval, test, NULL, data);
1675
1676	if (old != inode) {
1677		iput(old);
1678		return -EBUSY;
1679	}
1680	return 0;
1681}
1682EXPORT_SYMBOL(insert_inode_locked4);
1683
1684
1685int generic_delete_inode(struct inode *inode)
1686{
1687	return 1;
1688}
1689EXPORT_SYMBOL(generic_delete_inode);
1690
1691/*
1692 * Called when we're dropping the last reference
1693 * to an inode.
1694 *
1695 * Call the FS "drop_inode()" function, defaulting to
1696 * the legacy UNIX filesystem behaviour.  If it tells
1697 * us to evict inode, do so.  Otherwise, retain inode
1698 * in cache if fs is alive, sync and evict if fs is
1699 * shutting down.
1700 */
1701static void iput_final(struct inode *inode)
1702{
1703	struct super_block *sb = inode->i_sb;
1704	const struct super_operations *op = inode->i_sb->s_op;
1705	unsigned long state;
1706	int drop;
1707
1708	WARN_ON(inode->i_state & I_NEW);
1709
1710	if (op->drop_inode)
1711		drop = op->drop_inode(inode);
1712	else
1713		drop = generic_drop_inode(inode);
1714
1715	if (!drop &&
1716	    !(inode->i_state & I_DONTCACHE) &&
1717	    (sb->s_flags & SB_ACTIVE)) {
1718		__inode_add_lru(inode, true);
1719		spin_unlock(&inode->i_lock);
1720		return;
1721	}
1722
1723	state = inode->i_state;
1724	if (!drop) {
1725		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1726		spin_unlock(&inode->i_lock);
1727
1728		write_inode_now(inode, 1);
1729
1730		spin_lock(&inode->i_lock);
1731		state = inode->i_state;
1732		WARN_ON(state & I_NEW);
1733		state &= ~I_WILL_FREE;
1734	}
1735
1736	WRITE_ONCE(inode->i_state, state | I_FREEING);
1737	if (!list_empty(&inode->i_lru))
1738		inode_lru_list_del(inode);
1739	spin_unlock(&inode->i_lock);
1740
1741	evict(inode);
1742}
1743
1744/**
1745 *	iput	- put an inode
1746 *	@inode: inode to put
1747 *
1748 *	Puts an inode, dropping its usage count. If the inode use count hits
1749 *	zero, the inode is then freed and may also be destroyed.
1750 *
1751 *	Consequently, iput() can sleep.
1752 */
1753void iput(struct inode *inode)
1754{
1755	if (!inode)
1756		return;
1757	BUG_ON(inode->i_state & I_CLEAR);
1758retry:
1759	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1760		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1761			atomic_inc(&inode->i_count);
1762			spin_unlock(&inode->i_lock);
1763			trace_writeback_lazytime_iput(inode);
1764			mark_inode_dirty_sync(inode);
1765			goto retry;
1766		}
1767		iput_final(inode);
1768	}
1769}
1770EXPORT_SYMBOL(iput);
1771
1772#ifdef CONFIG_BLOCK
1773/**
1774 *	bmap	- find a block number in a file
1775 *	@inode:  inode owning the block number being requested
1776 *	@block: pointer containing the block to find
1777 *
1778 *	Replaces the value in ``*block`` with the block number on the device holding
1779 *	corresponding to the requested block number in the file.
1780 *	That is, asked for block 4 of inode 1 the function will replace the
1781 *	4 in ``*block``, with disk block relative to the disk start that holds that
1782 *	block of the file.
1783 *
1784 *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1785 *	hole, returns 0 and ``*block`` is also set to 0.
1786 */
1787int bmap(struct inode *inode, sector_t *block)
1788{
1789	if (!inode->i_mapping->a_ops->bmap)
1790		return -EINVAL;
1791
1792	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1793	return 0;
1794}
1795EXPORT_SYMBOL(bmap);
1796#endif
1797
1798/*
1799 * With relative atime, only update atime if the previous atime is
1800 * earlier than or equal to either the ctime or mtime,
1801 * or if at least a day has passed since the last atime update.
1802 */
1803static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1804			     struct timespec64 now)
1805{
1806	struct timespec64 atime, mtime, ctime;
1807
1808	if (!(mnt->mnt_flags & MNT_RELATIME))
1809		return true;
1810	/*
1811	 * Is mtime younger than or equal to atime? If yes, update atime:
1812	 */
1813	atime = inode_get_atime(inode);
1814	mtime = inode_get_mtime(inode);
1815	if (timespec64_compare(&mtime, &atime) >= 0)
1816		return true;
1817	/*
1818	 * Is ctime younger than or equal to atime? If yes, update atime:
1819	 */
1820	ctime = inode_get_ctime(inode);
1821	if (timespec64_compare(&ctime, &atime) >= 0)
1822		return true;
1823
1824	/*
1825	 * Is the previous atime value older than a day? If yes,
1826	 * update atime:
1827	 */
1828	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1829		return true;
1830	/*
1831	 * Good, we can skip the atime update:
1832	 */
1833	return false;
1834}
1835
1836/**
1837 * inode_update_timestamps - update the timestamps on the inode
1838 * @inode: inode to be updated
1839 * @flags: S_* flags that needed to be updated
1840 *
1841 * The update_time function is called when an inode's timestamps need to be
1842 * updated for a read or write operation. This function handles updating the
1843 * actual timestamps. It's up to the caller to ensure that the inode is marked
1844 * dirty appropriately.
1845 *
1846 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1847 * attempt to update all three of them. S_ATIME updates can be handled
1848 * independently of the rest.
1849 *
1850 * Returns a set of S_* flags indicating which values changed.
1851 */
1852int inode_update_timestamps(struct inode *inode, int flags)
1853{
1854	int updated = 0;
1855	struct timespec64 now;
1856
1857	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1858		struct timespec64 ctime = inode_get_ctime(inode);
1859		struct timespec64 mtime = inode_get_mtime(inode);
1860
1861		now = inode_set_ctime_current(inode);
1862		if (!timespec64_equal(&now, &ctime))
1863			updated |= S_CTIME;
1864		if (!timespec64_equal(&now, &mtime)) {
1865			inode_set_mtime_to_ts(inode, now);
1866			updated |= S_MTIME;
1867		}
1868		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1869			updated |= S_VERSION;
1870	} else {
1871		now = current_time(inode);
1872	}
1873
1874	if (flags & S_ATIME) {
1875		struct timespec64 atime = inode_get_atime(inode);
1876
1877		if (!timespec64_equal(&now, &atime)) {
1878			inode_set_atime_to_ts(inode, now);
1879			updated |= S_ATIME;
1880		}
1881	}
1882	return updated;
1883}
1884EXPORT_SYMBOL(inode_update_timestamps);
1885
1886/**
1887 * generic_update_time - update the timestamps on the inode
1888 * @inode: inode to be updated
1889 * @flags: S_* flags that needed to be updated
1890 *
1891 * The update_time function is called when an inode's timestamps need to be
1892 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1893 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1894 * updates can be handled done independently of the rest.
1895 *
1896 * Returns a S_* mask indicating which fields were updated.
1897 */
1898int generic_update_time(struct inode *inode, int flags)
1899{
1900	int updated = inode_update_timestamps(inode, flags);
1901	int dirty_flags = 0;
1902
1903	if (updated & (S_ATIME|S_MTIME|S_CTIME))
1904		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1905	if (updated & S_VERSION)
1906		dirty_flags |= I_DIRTY_SYNC;
1907	__mark_inode_dirty(inode, dirty_flags);
1908	return updated;
1909}
1910EXPORT_SYMBOL(generic_update_time);
1911
1912/*
1913 * This does the actual work of updating an inodes time or version.  Must have
1914 * had called mnt_want_write() before calling this.
1915 */
1916int inode_update_time(struct inode *inode, int flags)
1917{
1918	if (inode->i_op->update_time)
1919		return inode->i_op->update_time(inode, flags);
1920	generic_update_time(inode, flags);
1921	return 0;
1922}
1923EXPORT_SYMBOL(inode_update_time);
1924
1925/**
1926 *	atime_needs_update	-	update the access time
1927 *	@path: the &struct path to update
1928 *	@inode: inode to update
1929 *
1930 *	Update the accessed time on an inode and mark it for writeback.
1931 *	This function automatically handles read only file systems and media,
1932 *	as well as the "noatime" flag and inode specific "noatime" markers.
1933 */
1934bool atime_needs_update(const struct path *path, struct inode *inode)
1935{
1936	struct vfsmount *mnt = path->mnt;
1937	struct timespec64 now, atime;
1938
1939	if (inode->i_flags & S_NOATIME)
1940		return false;
1941
1942	/* Atime updates will likely cause i_uid and i_gid to be written
1943	 * back improprely if their true value is unknown to the vfs.
1944	 */
1945	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
1946		return false;
1947
1948	if (IS_NOATIME(inode))
1949		return false;
1950	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1951		return false;
1952
1953	if (mnt->mnt_flags & MNT_NOATIME)
1954		return false;
1955	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1956		return false;
1957
1958	now = current_time(inode);
1959
1960	if (!relatime_need_update(mnt, inode, now))
1961		return false;
1962
1963	atime = inode_get_atime(inode);
1964	if (timespec64_equal(&atime, &now))
1965		return false;
1966
1967	return true;
1968}
1969
1970void touch_atime(const struct path *path)
1971{
1972	struct vfsmount *mnt = path->mnt;
1973	struct inode *inode = d_inode(path->dentry);
1974
1975	if (!atime_needs_update(path, inode))
1976		return;
1977
1978	if (!sb_start_write_trylock(inode->i_sb))
1979		return;
1980
1981	if (mnt_get_write_access(mnt) != 0)
1982		goto skip_update;
1983	/*
1984	 * File systems can error out when updating inodes if they need to
1985	 * allocate new space to modify an inode (such is the case for
1986	 * Btrfs), but since we touch atime while walking down the path we
1987	 * really don't care if we failed to update the atime of the file,
1988	 * so just ignore the return value.
1989	 * We may also fail on filesystems that have the ability to make parts
1990	 * of the fs read only, e.g. subvolumes in Btrfs.
1991	 */
1992	inode_update_time(inode, S_ATIME);
1993	mnt_put_write_access(mnt);
1994skip_update:
1995	sb_end_write(inode->i_sb);
1996}
1997EXPORT_SYMBOL(touch_atime);
1998
1999/*
2000 * Return mask of changes for notify_change() that need to be done as a
2001 * response to write or truncate. Return 0 if nothing has to be changed.
2002 * Negative value on error (change should be denied).
2003 */
2004int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2005			      struct dentry *dentry)
2006{
2007	struct inode *inode = d_inode(dentry);
2008	int mask = 0;
2009	int ret;
2010
2011	if (IS_NOSEC(inode))
2012		return 0;
2013
2014	mask = setattr_should_drop_suidgid(idmap, inode);
2015	ret = security_inode_need_killpriv(dentry);
2016	if (ret < 0)
2017		return ret;
2018	if (ret)
2019		mask |= ATTR_KILL_PRIV;
2020	return mask;
2021}
2022
2023static int __remove_privs(struct mnt_idmap *idmap,
2024			  struct dentry *dentry, int kill)
2025{
2026	struct iattr newattrs;
2027
2028	newattrs.ia_valid = ATTR_FORCE | kill;
2029	/*
2030	 * Note we call this on write, so notify_change will not
2031	 * encounter any conflicting delegations:
2032	 */
2033	return notify_change(idmap, dentry, &newattrs, NULL);
2034}
2035
2036int file_remove_privs_flags(struct file *file, unsigned int flags)
2037{
2038	struct dentry *dentry = file_dentry(file);
2039	struct inode *inode = file_inode(file);
2040	int error = 0;
2041	int kill;
2042
2043	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2044		return 0;
2045
2046	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2047	if (kill < 0)
2048		return kill;
2049
2050	if (kill) {
2051		if (flags & IOCB_NOWAIT)
2052			return -EAGAIN;
2053
2054		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2055	}
2056
2057	if (!error)
2058		inode_has_no_xattr(inode);
2059	return error;
2060}
2061EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2062
2063/**
2064 * file_remove_privs - remove special file privileges (suid, capabilities)
2065 * @file: file to remove privileges from
2066 *
2067 * When file is modified by a write or truncation ensure that special
2068 * file privileges are removed.
2069 *
2070 * Return: 0 on success, negative errno on failure.
2071 */
2072int file_remove_privs(struct file *file)
2073{
2074	return file_remove_privs_flags(file, 0);
2075}
2076EXPORT_SYMBOL(file_remove_privs);
2077
2078static int inode_needs_update_time(struct inode *inode)
2079{
2080	int sync_it = 0;
2081	struct timespec64 now = current_time(inode);
2082	struct timespec64 ts;
2083
2084	/* First try to exhaust all avenues to not sync */
2085	if (IS_NOCMTIME(inode))
2086		return 0;
2087
2088	ts = inode_get_mtime(inode);
2089	if (!timespec64_equal(&ts, &now))
2090		sync_it = S_MTIME;
2091
2092	ts = inode_get_ctime(inode);
2093	if (!timespec64_equal(&ts, &now))
2094		sync_it |= S_CTIME;
2095
2096	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2097		sync_it |= S_VERSION;
2098
2099	return sync_it;
2100}
2101
2102static int __file_update_time(struct file *file, int sync_mode)
2103{
2104	int ret = 0;
2105	struct inode *inode = file_inode(file);
2106
2107	/* try to update time settings */
2108	if (!mnt_get_write_access_file(file)) {
2109		ret = inode_update_time(inode, sync_mode);
2110		mnt_put_write_access_file(file);
2111	}
2112
2113	return ret;
2114}
2115
2116/**
2117 * file_update_time - update mtime and ctime time
2118 * @file: file accessed
2119 *
2120 * Update the mtime and ctime members of an inode and mark the inode for
2121 * writeback. Note that this function is meant exclusively for usage in
2122 * the file write path of filesystems, and filesystems may choose to
2123 * explicitly ignore updates via this function with the _NOCMTIME inode
2124 * flag, e.g. for network filesystem where these imestamps are handled
2125 * by the server. This can return an error for file systems who need to
2126 * allocate space in order to update an inode.
2127 *
2128 * Return: 0 on success, negative errno on failure.
2129 */
2130int file_update_time(struct file *file)
2131{
2132	int ret;
2133	struct inode *inode = file_inode(file);
2134
2135	ret = inode_needs_update_time(inode);
2136	if (ret <= 0)
2137		return ret;
2138
2139	return __file_update_time(file, ret);
2140}
2141EXPORT_SYMBOL(file_update_time);
2142
2143/**
2144 * file_modified_flags - handle mandated vfs changes when modifying a file
2145 * @file: file that was modified
2146 * @flags: kiocb flags
2147 *
2148 * When file has been modified ensure that special
2149 * file privileges are removed and time settings are updated.
2150 *
2151 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2152 * time settings will not be updated. It will return -EAGAIN.
2153 *
2154 * Context: Caller must hold the file's inode lock.
2155 *
2156 * Return: 0 on success, negative errno on failure.
2157 */
2158static int file_modified_flags(struct file *file, int flags)
2159{
2160	int ret;
2161	struct inode *inode = file_inode(file);
2162
2163	/*
2164	 * Clear the security bits if the process is not being run by root.
2165	 * This keeps people from modifying setuid and setgid binaries.
2166	 */
2167	ret = file_remove_privs_flags(file, flags);
2168	if (ret)
2169		return ret;
2170
2171	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2172		return 0;
2173
2174	ret = inode_needs_update_time(inode);
2175	if (ret <= 0)
2176		return ret;
2177	if (flags & IOCB_NOWAIT)
2178		return -EAGAIN;
2179
2180	return __file_update_time(file, ret);
2181}
2182
2183/**
2184 * file_modified - handle mandated vfs changes when modifying a file
2185 * @file: file that was modified
2186 *
2187 * When file has been modified ensure that special
2188 * file privileges are removed and time settings are updated.
2189 *
2190 * Context: Caller must hold the file's inode lock.
2191 *
2192 * Return: 0 on success, negative errno on failure.
2193 */
2194int file_modified(struct file *file)
2195{
2196	return file_modified_flags(file, 0);
2197}
2198EXPORT_SYMBOL(file_modified);
2199
2200/**
2201 * kiocb_modified - handle mandated vfs changes when modifying a file
2202 * @iocb: iocb that was modified
2203 *
2204 * When file has been modified ensure that special
2205 * file privileges are removed and time settings are updated.
2206 *
2207 * Context: Caller must hold the file's inode lock.
2208 *
2209 * Return: 0 on success, negative errno on failure.
2210 */
2211int kiocb_modified(struct kiocb *iocb)
2212{
2213	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2214}
2215EXPORT_SYMBOL_GPL(kiocb_modified);
2216
2217int inode_needs_sync(struct inode *inode)
2218{
2219	if (IS_SYNC(inode))
2220		return 1;
2221	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2222		return 1;
2223	return 0;
2224}
2225EXPORT_SYMBOL(inode_needs_sync);
2226
2227/*
2228 * If we try to find an inode in the inode hash while it is being
2229 * deleted, we have to wait until the filesystem completes its
2230 * deletion before reporting that it isn't found.  This function waits
2231 * until the deletion _might_ have completed.  Callers are responsible
2232 * to recheck inode state.
2233 *
2234 * It doesn't matter if I_NEW is not set initially, a call to
2235 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2236 * will DTRT.
2237 */
2238static void __wait_on_freeing_inode(struct inode *inode)
2239{
2240	wait_queue_head_t *wq;
2241	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2242	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2243	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2244	spin_unlock(&inode->i_lock);
2245	spin_unlock(&inode_hash_lock);
2246	schedule();
2247	finish_wait(wq, &wait.wq_entry);
2248	spin_lock(&inode_hash_lock);
2249}
2250
2251static __initdata unsigned long ihash_entries;
2252static int __init set_ihash_entries(char *str)
2253{
2254	if (!str)
2255		return 0;
2256	ihash_entries = simple_strtoul(str, &str, 0);
2257	return 1;
2258}
2259__setup("ihash_entries=", set_ihash_entries);
2260
2261/*
2262 * Initialize the waitqueues and inode hash table.
2263 */
2264void __init inode_init_early(void)
2265{
2266	/* If hashes are distributed across NUMA nodes, defer
2267	 * hash allocation until vmalloc space is available.
2268	 */
2269	if (hashdist)
2270		return;
2271
2272	inode_hashtable =
2273		alloc_large_system_hash("Inode-cache",
2274					sizeof(struct hlist_head),
2275					ihash_entries,
2276					14,
2277					HASH_EARLY | HASH_ZERO,
2278					&i_hash_shift,
2279					&i_hash_mask,
2280					0,
2281					0);
2282}
2283
2284void __init inode_init(void)
2285{
2286	/* inode slab cache */
2287	inode_cachep = kmem_cache_create("inode_cache",
2288					 sizeof(struct inode),
2289					 0,
2290					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2291					 SLAB_ACCOUNT),
2292					 init_once);
2293
2294	/* Hash may have been set up in inode_init_early */
2295	if (!hashdist)
2296		return;
2297
2298	inode_hashtable =
2299		alloc_large_system_hash("Inode-cache",
2300					sizeof(struct hlist_head),
2301					ihash_entries,
2302					14,
2303					HASH_ZERO,
2304					&i_hash_shift,
2305					&i_hash_mask,
2306					0,
2307					0);
2308}
2309
2310void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2311{
2312	inode->i_mode = mode;
2313	if (S_ISCHR(mode)) {
2314		inode->i_fop = &def_chr_fops;
2315		inode->i_rdev = rdev;
2316	} else if (S_ISBLK(mode)) {
2317		if (IS_ENABLED(CONFIG_BLOCK))
2318			inode->i_fop = &def_blk_fops;
2319		inode->i_rdev = rdev;
2320	} else if (S_ISFIFO(mode))
2321		inode->i_fop = &pipefifo_fops;
2322	else if (S_ISSOCK(mode))
2323		;	/* leave it no_open_fops */
2324	else
2325		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2326				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2327				  inode->i_ino);
2328}
2329EXPORT_SYMBOL(init_special_inode);
2330
2331/**
2332 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2333 * @idmap: idmap of the mount the inode was created from
2334 * @inode: New inode
2335 * @dir: Directory inode
2336 * @mode: mode of the new inode
2337 *
2338 * If the inode has been created through an idmapped mount the idmap of
2339 * the vfsmount must be passed through @idmap. This function will then take
2340 * care to map the inode according to @idmap before checking permissions
2341 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2342 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2343 */
2344void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2345		      const struct inode *dir, umode_t mode)
2346{
2347	inode_fsuid_set(inode, idmap);
2348	if (dir && dir->i_mode & S_ISGID) {
2349		inode->i_gid = dir->i_gid;
2350
2351		/* Directories are special, and always inherit S_ISGID */
2352		if (S_ISDIR(mode))
2353			mode |= S_ISGID;
2354	} else
2355		inode_fsgid_set(inode, idmap);
2356	inode->i_mode = mode;
2357}
2358EXPORT_SYMBOL(inode_init_owner);
2359
2360/**
2361 * inode_owner_or_capable - check current task permissions to inode
2362 * @idmap: idmap of the mount the inode was found from
2363 * @inode: inode being checked
2364 *
2365 * Return true if current either has CAP_FOWNER in a namespace with the
2366 * inode owner uid mapped, or owns the file.
2367 *
2368 * If the inode has been found through an idmapped mount the idmap of
2369 * the vfsmount must be passed through @idmap. This function will then take
2370 * care to map the inode according to @idmap before checking permissions.
2371 * On non-idmapped mounts or if permission checking is to be performed on the
2372 * raw inode simply pass @nop_mnt_idmap.
2373 */
2374bool inode_owner_or_capable(struct mnt_idmap *idmap,
2375			    const struct inode *inode)
2376{
2377	vfsuid_t vfsuid;
2378	struct user_namespace *ns;
2379
2380	vfsuid = i_uid_into_vfsuid(idmap, inode);
2381	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2382		return true;
2383
2384	ns = current_user_ns();
2385	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2386		return true;
2387	return false;
2388}
2389EXPORT_SYMBOL(inode_owner_or_capable);
2390
2391/*
2392 * Direct i/o helper functions
2393 */
2394static void __inode_dio_wait(struct inode *inode)
2395{
2396	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2397	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2398
2399	do {
2400		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2401		if (atomic_read(&inode->i_dio_count))
2402			schedule();
2403	} while (atomic_read(&inode->i_dio_count));
2404	finish_wait(wq, &q.wq_entry);
2405}
2406
2407/**
2408 * inode_dio_wait - wait for outstanding DIO requests to finish
2409 * @inode: inode to wait for
2410 *
2411 * Waits for all pending direct I/O requests to finish so that we can
2412 * proceed with a truncate or equivalent operation.
2413 *
2414 * Must be called under a lock that serializes taking new references
2415 * to i_dio_count, usually by inode->i_mutex.
2416 */
2417void inode_dio_wait(struct inode *inode)
2418{
2419	if (atomic_read(&inode->i_dio_count))
2420		__inode_dio_wait(inode);
2421}
2422EXPORT_SYMBOL(inode_dio_wait);
2423
2424/*
2425 * inode_set_flags - atomically set some inode flags
2426 *
2427 * Note: the caller should be holding i_mutex, or else be sure that
2428 * they have exclusive access to the inode structure (i.e., while the
2429 * inode is being instantiated).  The reason for the cmpxchg() loop
2430 * --- which wouldn't be necessary if all code paths which modify
2431 * i_flags actually followed this rule, is that there is at least one
2432 * code path which doesn't today so we use cmpxchg() out of an abundance
2433 * of caution.
2434 *
2435 * In the long run, i_mutex is overkill, and we should probably look
2436 * at using the i_lock spinlock to protect i_flags, and then make sure
2437 * it is so documented in include/linux/fs.h and that all code follows
2438 * the locking convention!!
2439 */
2440void inode_set_flags(struct inode *inode, unsigned int flags,
2441		     unsigned int mask)
2442{
2443	WARN_ON_ONCE(flags & ~mask);
2444	set_mask_bits(&inode->i_flags, mask, flags);
2445}
2446EXPORT_SYMBOL(inode_set_flags);
2447
2448void inode_nohighmem(struct inode *inode)
2449{
2450	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2451}
2452EXPORT_SYMBOL(inode_nohighmem);
2453
2454/**
2455 * timestamp_truncate - Truncate timespec to a granularity
2456 * @t: Timespec
2457 * @inode: inode being updated
2458 *
2459 * Truncate a timespec to the granularity supported by the fs
2460 * containing the inode. Always rounds down. gran must
2461 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2462 */
2463struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2464{
2465	struct super_block *sb = inode->i_sb;
2466	unsigned int gran = sb->s_time_gran;
2467
2468	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2469	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2470		t.tv_nsec = 0;
2471
2472	/* Avoid division in the common cases 1 ns and 1 s. */
2473	if (gran == 1)
2474		; /* nothing */
2475	else if (gran == NSEC_PER_SEC)
2476		t.tv_nsec = 0;
2477	else if (gran > 1 && gran < NSEC_PER_SEC)
2478		t.tv_nsec -= t.tv_nsec % gran;
2479	else
2480		WARN(1, "invalid file time granularity: %u", gran);
2481	return t;
2482}
2483EXPORT_SYMBOL(timestamp_truncate);
2484
2485/**
2486 * current_time - Return FS time
2487 * @inode: inode.
2488 *
2489 * Return the current time truncated to the time granularity supported by
2490 * the fs.
2491 *
2492 * Note that inode and inode->sb cannot be NULL.
2493 * Otherwise, the function warns and returns time without truncation.
2494 */
2495struct timespec64 current_time(struct inode *inode)
2496{
2497	struct timespec64 now;
2498
2499	ktime_get_coarse_real_ts64(&now);
2500	return timestamp_truncate(now, inode);
2501}
2502EXPORT_SYMBOL(current_time);
2503
2504/**
2505 * inode_set_ctime_current - set the ctime to current_time
2506 * @inode: inode
2507 *
2508 * Set the inode->i_ctime to the current value for the inode. Returns
2509 * the current value that was assigned to i_ctime.
2510 */
2511struct timespec64 inode_set_ctime_current(struct inode *inode)
2512{
2513	struct timespec64 now = current_time(inode);
2514
2515	inode_set_ctime_to_ts(inode, now);
2516	return now;
2517}
2518EXPORT_SYMBOL(inode_set_ctime_current);
2519
2520/**
2521 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2522 * @idmap:	idmap of the mount @inode was found from
2523 * @inode:	inode to check
2524 * @vfsgid:	the new/current vfsgid of @inode
2525 *
2526 * Check wether @vfsgid is in the caller's group list or if the caller is
2527 * privileged with CAP_FSETID over @inode. This can be used to determine
2528 * whether the setgid bit can be kept or must be dropped.
2529 *
2530 * Return: true if the caller is sufficiently privileged, false if not.
2531 */
2532bool in_group_or_capable(struct mnt_idmap *idmap,
2533			 const struct inode *inode, vfsgid_t vfsgid)
2534{
2535	if (vfsgid_in_group_p(vfsgid))
2536		return true;
2537	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2538		return true;
2539	return false;
2540}
2541
2542/**
2543 * mode_strip_sgid - handle the sgid bit for non-directories
2544 * @idmap: idmap of the mount the inode was created from
2545 * @dir: parent directory inode
2546 * @mode: mode of the file to be created in @dir
2547 *
2548 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2549 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2550 * either in the group of the parent directory or they have CAP_FSETID
2551 * in their user namespace and are privileged over the parent directory.
2552 * In all other cases, strip the S_ISGID bit from @mode.
2553 *
2554 * Return: the new mode to use for the file
2555 */
2556umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2557			const struct inode *dir, umode_t mode)
2558{
2559	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2560		return mode;
2561	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2562		return mode;
2563	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2564		return mode;
2565	return mode & ~S_ISGID;
2566}
2567EXPORT_SYMBOL(mode_strip_sgid);
2568