1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/fs.h>
10#include <linux/dlm.h>
11#include <linux/slab.h>
12#include <linux/types.h>
13#include <linux/delay.h>
14#include <linux/gfs2_ondisk.h>
15#include <linux/sched/signal.h>
16
17#include "incore.h"
18#include "glock.h"
19#include "glops.h"
20#include "recovery.h"
21#include "util.h"
22#include "sys.h"
23#include "trace_gfs2.h"
24
25/**
26 * gfs2_update_stats - Update time based stats
27 * @s: The stats to update (local or global)
28 * @index: The index inside @s
29 * @sample: New data to include
30 */
31static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32				     s64 sample)
33{
34	/*
35	 * @delta is the difference between the current rtt sample and the
36	 * running average srtt. We add 1/8 of that to the srtt in order to
37	 * update the current srtt estimate. The variance estimate is a bit
38	 * more complicated. We subtract the current variance estimate from
39	 * the abs value of the @delta and add 1/4 of that to the running
40	 * total.  That's equivalent to 3/4 of the current variance
41	 * estimate plus 1/4 of the abs of @delta.
42	 *
43	 * Note that the index points at the array entry containing the
44	 * smoothed mean value, and the variance is always in the following
45	 * entry
46	 *
47	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49	 * case, they are not scaled fixed point.
50	 */
51
52	s64 delta = sample - s->stats[index];
53	s->stats[index] += (delta >> 3);
54	index++;
55	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56}
57
58/**
59 * gfs2_update_reply_times - Update locking statistics
60 * @gl: The glock to update
61 *
62 * This assumes that gl->gl_dstamp has been set earlier.
63 *
64 * The rtt (lock round trip time) is an estimate of the time
65 * taken to perform a dlm lock request. We update it on each
66 * reply from the dlm.
67 *
68 * The blocking flag is set on the glock for all dlm requests
69 * which may potentially block due to lock requests from other nodes.
70 * DLM requests where the current lock state is exclusive, the
71 * requested state is null (or unlocked) or where the TRY or
72 * TRY_1CB flags are set are classified as non-blocking. All
73 * other DLM requests are counted as (potentially) blocking.
74 */
75static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76{
77	struct gfs2_pcpu_lkstats *lks;
78	const unsigned gltype = gl->gl_name.ln_type;
79	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81	s64 rtt;
82
83	preempt_disable();
84	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
87	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
88	preempt_enable();
89
90	trace_gfs2_glock_lock_time(gl, rtt);
91}
92
93/**
94 * gfs2_update_request_times - Update locking statistics
95 * @gl: The glock to update
96 *
97 * The irt (lock inter-request times) measures the average time
98 * between requests to the dlm. It is updated immediately before
99 * each dlm call.
100 */
101
102static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103{
104	struct gfs2_pcpu_lkstats *lks;
105	const unsigned gltype = gl->gl_name.ln_type;
106	ktime_t dstamp;
107	s64 irt;
108
109	preempt_disable();
110	dstamp = gl->gl_dstamp;
111	gl->gl_dstamp = ktime_get_real();
112	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
115	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
116	preempt_enable();
117}
118
119static void gdlm_ast(void *arg)
120{
121	struct gfs2_glock *gl = arg;
122	unsigned ret = gl->gl_state;
123
124	/* If the glock is dead, we only react to a dlm_unlock() reply. */
125	if (__lockref_is_dead(&gl->gl_lockref) &&
126	    gl->gl_lksb.sb_status != -DLM_EUNLOCK)
127		return;
128
129	gfs2_update_reply_times(gl);
130	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
131
132	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
133		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
134
135	switch (gl->gl_lksb.sb_status) {
136	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
137		if (gl->gl_ops->go_free)
138			gl->gl_ops->go_free(gl);
139		gfs2_glock_free(gl);
140		return;
141	case -DLM_ECANCEL: /* Cancel while getting lock */
142		ret |= LM_OUT_CANCELED;
143		goto out;
144	case -EAGAIN: /* Try lock fails */
145	case -EDEADLK: /* Deadlock detected */
146		goto out;
147	case -ETIMEDOUT: /* Canceled due to timeout */
148		ret |= LM_OUT_ERROR;
149		goto out;
150	case 0: /* Success */
151		break;
152	default: /* Something unexpected */
153		BUG();
154	}
155
156	ret = gl->gl_req;
157	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
158		if (gl->gl_req == LM_ST_SHARED)
159			ret = LM_ST_DEFERRED;
160		else if (gl->gl_req == LM_ST_DEFERRED)
161			ret = LM_ST_SHARED;
162		else
163			BUG();
164	}
165
166	set_bit(GLF_INITIAL, &gl->gl_flags);
167	gfs2_glock_complete(gl, ret);
168	return;
169out:
170	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
171		gl->gl_lksb.sb_lkid = 0;
172	gfs2_glock_complete(gl, ret);
173}
174
175static void gdlm_bast(void *arg, int mode)
176{
177	struct gfs2_glock *gl = arg;
178
179	if (__lockref_is_dead(&gl->gl_lockref))
180		return;
181
182	switch (mode) {
183	case DLM_LOCK_EX:
184		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
185		break;
186	case DLM_LOCK_CW:
187		gfs2_glock_cb(gl, LM_ST_DEFERRED);
188		break;
189	case DLM_LOCK_PR:
190		gfs2_glock_cb(gl, LM_ST_SHARED);
191		break;
192	default:
193		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
194		BUG();
195	}
196}
197
198/* convert gfs lock-state to dlm lock-mode */
199
200static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
201{
202	switch (lmstate) {
203	case LM_ST_UNLOCKED:
204		return DLM_LOCK_NL;
205	case LM_ST_EXCLUSIVE:
206		return DLM_LOCK_EX;
207	case LM_ST_DEFERRED:
208		return DLM_LOCK_CW;
209	case LM_ST_SHARED:
210		return DLM_LOCK_PR;
211	}
212	fs_err(sdp, "unknown LM state %d\n", lmstate);
213	BUG();
214	return -1;
215}
216
217static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
218		      const int req)
219{
220	u32 lkf = 0;
221
222	if (gl->gl_lksb.sb_lvbptr)
223		lkf |= DLM_LKF_VALBLK;
224
225	if (gfs_flags & LM_FLAG_TRY)
226		lkf |= DLM_LKF_NOQUEUE;
227
228	if (gfs_flags & LM_FLAG_TRY_1CB) {
229		lkf |= DLM_LKF_NOQUEUE;
230		lkf |= DLM_LKF_NOQUEUEBAST;
231	}
232
233	if (gfs_flags & LM_FLAG_ANY) {
234		if (req == DLM_LOCK_PR)
235			lkf |= DLM_LKF_ALTCW;
236		else if (req == DLM_LOCK_CW)
237			lkf |= DLM_LKF_ALTPR;
238		else
239			BUG();
240	}
241
242	if (gl->gl_lksb.sb_lkid != 0) {
243		lkf |= DLM_LKF_CONVERT;
244		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
245			lkf |= DLM_LKF_QUECVT;
246	}
247
248	return lkf;
249}
250
251static void gfs2_reverse_hex(char *c, u64 value)
252{
253	*c = '0';
254	while (value) {
255		*c-- = hex_asc[value & 0x0f];
256		value >>= 4;
257	}
258}
259
260static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
261		     unsigned int flags)
262{
263	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
264	int req;
265	u32 lkf;
266	char strname[GDLM_STRNAME_BYTES] = "";
267	int error;
268
269	req = make_mode(gl->gl_name.ln_sbd, req_state);
270	lkf = make_flags(gl, flags, req);
271	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
272	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
273	if (gl->gl_lksb.sb_lkid) {
274		gfs2_update_request_times(gl);
275	} else {
276		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
277		strname[GDLM_STRNAME_BYTES - 1] = '\0';
278		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
279		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
280		gl->gl_dstamp = ktime_get_real();
281	}
282	/*
283	 * Submit the actual lock request.
284	 */
285
286again:
287	error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
288			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
289	if (error == -EBUSY) {
290		msleep(20);
291		goto again;
292	}
293	return error;
294}
295
296static void gdlm_put_lock(struct gfs2_glock *gl)
297{
298	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
299	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
300	int error;
301
302	BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
303
304	if (gl->gl_lksb.sb_lkid == 0) {
305		gfs2_glock_free(gl);
306		return;
307	}
308
309	clear_bit(GLF_BLOCKING, &gl->gl_flags);
310	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
311	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
312	gfs2_update_request_times(gl);
313
314	/* don't want to call dlm if we've unmounted the lock protocol */
315	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
316		gfs2_glock_free(gl);
317		return;
318	}
319
320	/*
321	 * When the lockspace is released, all remaining glocks will be
322	 * unlocked automatically.  This is more efficient than unlocking them
323	 * individually, but when the lock is held in DLM_LOCK_EX or
324	 * DLM_LOCK_PW mode, the lock value block (LVB) will be lost.
325	 */
326
327	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
328	    (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
329		gfs2_glock_free_later(gl);
330		return;
331	}
332
333again:
334	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
335			   NULL, gl);
336	if (error == -EBUSY) {
337		msleep(20);
338		goto again;
339	}
340
341	if (error) {
342		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
343		       gl->gl_name.ln_type,
344		       (unsigned long long)gl->gl_name.ln_number, error);
345	}
346}
347
348static void gdlm_cancel(struct gfs2_glock *gl)
349{
350	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
351	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
352}
353
354/*
355 * dlm/gfs2 recovery coordination using dlm_recover callbacks
356 *
357 *  0. gfs2 checks for another cluster node withdraw, needing journal replay
358 *  1. dlm_controld sees lockspace members change
359 *  2. dlm_controld blocks dlm-kernel locking activity
360 *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
361 *  4. dlm_controld starts and finishes its own user level recovery
362 *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
363 *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
364 *  7. dlm_recoverd does its own lock recovery
365 *  8. dlm_recoverd unblocks dlm-kernel locking activity
366 *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
367 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
368 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
369 * 12. gfs2_recover dequeues and recovers journals of failed nodes
370 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
371 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
372 * 15. gfs2_control unblocks normal locking when all journals are recovered
373 *
374 * - failures during recovery
375 *
376 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
377 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
378 * recovering for a prior failure.  gfs2_control needs a way to detect
379 * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
380 * the recover_block and recover_start values.
381 *
382 * recover_done() provides a new lockspace generation number each time it
383 * is called (step 9).  This generation number is saved as recover_start.
384 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
385 * recover_block = recover_start.  So, while recover_block is equal to
386 * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
387 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
388 *
389 * - more specific gfs2 steps in sequence above
390 *
391 *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
392 *  6. recover_slot records any failed jids (maybe none)
393 *  9. recover_done sets recover_start = new generation number
394 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
395 * 12. gfs2_recover does journal recoveries for failed jids identified above
396 * 14. gfs2_control clears control_lock lvb bits for recovered jids
397 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
398 *     again) then do nothing, otherwise if recover_start > recover_block
399 *     then clear BLOCK_LOCKS.
400 *
401 * - parallel recovery steps across all nodes
402 *
403 * All nodes attempt to update the control_lock lvb with the new generation
404 * number and jid bits, but only the first to get the control_lock EX will
405 * do so; others will see that it's already done (lvb already contains new
406 * generation number.)
407 *
408 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
409 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
410 * . One node gets control_lock first and writes the lvb, others see it's done
411 * . All nodes attempt to recover jids for which they see control_lock bits set
412 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
413 * . All nodes will eventually see all lvb bits clear and unblock locks
414 *
415 * - is there a problem with clearing an lvb bit that should be set
416 *   and missing a journal recovery?
417 *
418 * 1. jid fails
419 * 2. lvb bit set for step 1
420 * 3. jid recovered for step 1
421 * 4. jid taken again (new mount)
422 * 5. jid fails (for step 4)
423 * 6. lvb bit set for step 5 (will already be set)
424 * 7. lvb bit cleared for step 3
425 *
426 * This is not a problem because the failure in step 5 does not
427 * require recovery, because the mount in step 4 could not have
428 * progressed far enough to unblock locks and access the fs.  The
429 * control_mount() function waits for all recoveries to be complete
430 * for the latest lockspace generation before ever unblocking locks
431 * and returning.  The mount in step 4 waits until the recovery in
432 * step 1 is done.
433 *
434 * - special case of first mounter: first node to mount the fs
435 *
436 * The first node to mount a gfs2 fs needs to check all the journals
437 * and recover any that need recovery before other nodes are allowed
438 * to mount the fs.  (Others may begin mounting, but they must wait
439 * for the first mounter to be done before taking locks on the fs
440 * or accessing the fs.)  This has two parts:
441 *
442 * 1. The mounted_lock tells a node it's the first to mount the fs.
443 * Each node holds the mounted_lock in PR while it's mounted.
444 * Each node tries to acquire the mounted_lock in EX when it mounts.
445 * If a node is granted the mounted_lock EX it means there are no
446 * other mounted nodes (no PR locks exist), and it is the first mounter.
447 * The mounted_lock is demoted to PR when first recovery is done, so
448 * others will fail to get an EX lock, but will get a PR lock.
449 *
450 * 2. The control_lock blocks others in control_mount() while the first
451 * mounter is doing first mount recovery of all journals.
452 * A mounting node needs to acquire control_lock in EX mode before
453 * it can proceed.  The first mounter holds control_lock in EX while doing
454 * the first mount recovery, blocking mounts from other nodes, then demotes
455 * control_lock to NL when it's done (others_may_mount/first_done),
456 * allowing other nodes to continue mounting.
457 *
458 * first mounter:
459 * control_lock EX/NOQUEUE success
460 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
461 * set first=1
462 * do first mounter recovery
463 * mounted_lock EX->PR
464 * control_lock EX->NL, write lvb generation
465 *
466 * other mounter:
467 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
468 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
469 * mounted_lock PR/NOQUEUE success
470 * read lvb generation
471 * control_lock EX->NL
472 * set first=0
473 *
474 * - mount during recovery
475 *
476 * If a node mounts while others are doing recovery (not first mounter),
477 * the mounting node will get its initial recover_done() callback without
478 * having seen any previous failures/callbacks.
479 *
480 * It must wait for all recoveries preceding its mount to be finished
481 * before it unblocks locks.  It does this by repeating the "other mounter"
482 * steps above until the lvb generation number is >= its mount generation
483 * number (from initial recover_done) and all lvb bits are clear.
484 *
485 * - control_lock lvb format
486 *
487 * 4 bytes generation number: the latest dlm lockspace generation number
488 * from recover_done callback.  Indicates the jid bitmap has been updated
489 * to reflect all slot failures through that generation.
490 * 4 bytes unused.
491 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
492 * that jid N needs recovery.
493 */
494
495#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
496
497static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
498			     char *lvb_bits)
499{
500	__le32 gen;
501	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
502	memcpy(&gen, lvb_bits, sizeof(__le32));
503	*lvb_gen = le32_to_cpu(gen);
504}
505
506static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
507			      char *lvb_bits)
508{
509	__le32 gen;
510	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
511	gen = cpu_to_le32(lvb_gen);
512	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
513}
514
515static int all_jid_bits_clear(char *lvb)
516{
517	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
518			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
519}
520
521static void sync_wait_cb(void *arg)
522{
523	struct lm_lockstruct *ls = arg;
524	complete(&ls->ls_sync_wait);
525}
526
527static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
528{
529	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
530	int error;
531
532	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
533	if (error) {
534		fs_err(sdp, "%s lkid %x error %d\n",
535		       name, lksb->sb_lkid, error);
536		return error;
537	}
538
539	wait_for_completion(&ls->ls_sync_wait);
540
541	if (lksb->sb_status != -DLM_EUNLOCK) {
542		fs_err(sdp, "%s lkid %x status %d\n",
543		       name, lksb->sb_lkid, lksb->sb_status);
544		return -1;
545	}
546	return 0;
547}
548
549static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
550		     unsigned int num, struct dlm_lksb *lksb, char *name)
551{
552	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
553	char strname[GDLM_STRNAME_BYTES];
554	int error, status;
555
556	memset(strname, 0, GDLM_STRNAME_BYTES);
557	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
558
559	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
560			 strname, GDLM_STRNAME_BYTES - 1,
561			 0, sync_wait_cb, ls, NULL);
562	if (error) {
563		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
564		       name, lksb->sb_lkid, flags, mode, error);
565		return error;
566	}
567
568	wait_for_completion(&ls->ls_sync_wait);
569
570	status = lksb->sb_status;
571
572	if (status && status != -EAGAIN) {
573		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
574		       name, lksb->sb_lkid, flags, mode, status);
575	}
576
577	return status;
578}
579
580static int mounted_unlock(struct gfs2_sbd *sdp)
581{
582	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
583	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
584}
585
586static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
587{
588	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
589	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
590			 &ls->ls_mounted_lksb, "mounted_lock");
591}
592
593static int control_unlock(struct gfs2_sbd *sdp)
594{
595	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
596	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
597}
598
599static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
600{
601	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
602	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
603			 &ls->ls_control_lksb, "control_lock");
604}
605
606/**
607 * remote_withdraw - react to a node withdrawing from the file system
608 * @sdp: The superblock
609 */
610static void remote_withdraw(struct gfs2_sbd *sdp)
611{
612	struct gfs2_jdesc *jd;
613	int ret = 0, count = 0;
614
615	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
616		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
617			continue;
618		ret = gfs2_recover_journal(jd, true);
619		if (ret)
620			break;
621		count++;
622	}
623
624	/* Now drop the additional reference we acquired */
625	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
626}
627
628static void gfs2_control_func(struct work_struct *work)
629{
630	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
631	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
632	uint32_t block_gen, start_gen, lvb_gen, flags;
633	int recover_set = 0;
634	int write_lvb = 0;
635	int recover_size;
636	int i, error;
637
638	/* First check for other nodes that may have done a withdraw. */
639	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
640		remote_withdraw(sdp);
641		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
642		return;
643	}
644
645	spin_lock(&ls->ls_recover_spin);
646	/*
647	 * No MOUNT_DONE means we're still mounting; control_mount()
648	 * will set this flag, after which this thread will take over
649	 * all further clearing of BLOCK_LOCKS.
650	 *
651	 * FIRST_MOUNT means this node is doing first mounter recovery,
652	 * for which recovery control is handled by
653	 * control_mount()/control_first_done(), not this thread.
654	 */
655	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
656	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
657		spin_unlock(&ls->ls_recover_spin);
658		return;
659	}
660	block_gen = ls->ls_recover_block;
661	start_gen = ls->ls_recover_start;
662	spin_unlock(&ls->ls_recover_spin);
663
664	/*
665	 * Equal block_gen and start_gen implies we are between
666	 * recover_prep and recover_done callbacks, which means
667	 * dlm recovery is in progress and dlm locking is blocked.
668	 * There's no point trying to do any work until recover_done.
669	 */
670
671	if (block_gen == start_gen)
672		return;
673
674	/*
675	 * Propagate recover_submit[] and recover_result[] to lvb:
676	 * dlm_recoverd adds to recover_submit[] jids needing recovery
677	 * gfs2_recover adds to recover_result[] journal recovery results
678	 *
679	 * set lvb bit for jids in recover_submit[] if the lvb has not
680	 * yet been updated for the generation of the failure
681	 *
682	 * clear lvb bit for jids in recover_result[] if the result of
683	 * the journal recovery is SUCCESS
684	 */
685
686	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
687	if (error) {
688		fs_err(sdp, "control lock EX error %d\n", error);
689		return;
690	}
691
692	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
693
694	spin_lock(&ls->ls_recover_spin);
695	if (block_gen != ls->ls_recover_block ||
696	    start_gen != ls->ls_recover_start) {
697		fs_info(sdp, "recover generation %u block1 %u %u\n",
698			start_gen, block_gen, ls->ls_recover_block);
699		spin_unlock(&ls->ls_recover_spin);
700		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
701		return;
702	}
703
704	recover_size = ls->ls_recover_size;
705
706	if (lvb_gen <= start_gen) {
707		/*
708		 * Clear lvb bits for jids we've successfully recovered.
709		 * Because all nodes attempt to recover failed journals,
710		 * a journal can be recovered multiple times successfully
711		 * in succession.  Only the first will really do recovery,
712		 * the others find it clean, but still report a successful
713		 * recovery.  So, another node may have already recovered
714		 * the jid and cleared the lvb bit for it.
715		 */
716		for (i = 0; i < recover_size; i++) {
717			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
718				continue;
719
720			ls->ls_recover_result[i] = 0;
721
722			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
723				continue;
724
725			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
726			write_lvb = 1;
727		}
728	}
729
730	if (lvb_gen == start_gen) {
731		/*
732		 * Failed slots before start_gen are already set in lvb.
733		 */
734		for (i = 0; i < recover_size; i++) {
735			if (!ls->ls_recover_submit[i])
736				continue;
737			if (ls->ls_recover_submit[i] < lvb_gen)
738				ls->ls_recover_submit[i] = 0;
739		}
740	} else if (lvb_gen < start_gen) {
741		/*
742		 * Failed slots before start_gen are not yet set in lvb.
743		 */
744		for (i = 0; i < recover_size; i++) {
745			if (!ls->ls_recover_submit[i])
746				continue;
747			if (ls->ls_recover_submit[i] < start_gen) {
748				ls->ls_recover_submit[i] = 0;
749				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
750			}
751		}
752		/* even if there are no bits to set, we need to write the
753		   latest generation to the lvb */
754		write_lvb = 1;
755	} else {
756		/*
757		 * we should be getting a recover_done() for lvb_gen soon
758		 */
759	}
760	spin_unlock(&ls->ls_recover_spin);
761
762	if (write_lvb) {
763		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
764		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
765	} else {
766		flags = DLM_LKF_CONVERT;
767	}
768
769	error = control_lock(sdp, DLM_LOCK_NL, flags);
770	if (error) {
771		fs_err(sdp, "control lock NL error %d\n", error);
772		return;
773	}
774
775	/*
776	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
777	 * and clear a jid bit in the lvb if the recovery is a success.
778	 * Eventually all journals will be recovered, all jid bits will
779	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
780	 */
781
782	for (i = 0; i < recover_size; i++) {
783		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
784			fs_info(sdp, "recover generation %u jid %d\n",
785				start_gen, i);
786			gfs2_recover_set(sdp, i);
787			recover_set++;
788		}
789	}
790	if (recover_set)
791		return;
792
793	/*
794	 * No more jid bits set in lvb, all recovery is done, unblock locks
795	 * (unless a new recover_prep callback has occured blocking locks
796	 * again while working above)
797	 */
798
799	spin_lock(&ls->ls_recover_spin);
800	if (ls->ls_recover_block == block_gen &&
801	    ls->ls_recover_start == start_gen) {
802		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
803		spin_unlock(&ls->ls_recover_spin);
804		fs_info(sdp, "recover generation %u done\n", start_gen);
805		gfs2_glock_thaw(sdp);
806	} else {
807		fs_info(sdp, "recover generation %u block2 %u %u\n",
808			start_gen, block_gen, ls->ls_recover_block);
809		spin_unlock(&ls->ls_recover_spin);
810	}
811}
812
813static int control_mount(struct gfs2_sbd *sdp)
814{
815	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
816	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
817	int mounted_mode;
818	int retries = 0;
819	int error;
820
821	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
822	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
823	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
824	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
825	init_completion(&ls->ls_sync_wait);
826
827	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
828
829	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
830	if (error) {
831		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
832		return error;
833	}
834
835	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
836	if (error) {
837		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
838		control_unlock(sdp);
839		return error;
840	}
841	mounted_mode = DLM_LOCK_NL;
842
843restart:
844	if (retries++ && signal_pending(current)) {
845		error = -EINTR;
846		goto fail;
847	}
848
849	/*
850	 * We always start with both locks in NL. control_lock is
851	 * demoted to NL below so we don't need to do it here.
852	 */
853
854	if (mounted_mode != DLM_LOCK_NL) {
855		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
856		if (error)
857			goto fail;
858		mounted_mode = DLM_LOCK_NL;
859	}
860
861	/*
862	 * Other nodes need to do some work in dlm recovery and gfs2_control
863	 * before the recover_done and control_lock will be ready for us below.
864	 * A delay here is not required but often avoids having to retry.
865	 */
866
867	msleep_interruptible(500);
868
869	/*
870	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
871	 * control_lock lvb keeps track of any pending journal recoveries.
872	 * mounted_lock indicates if any other nodes have the fs mounted.
873	 */
874
875	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
876	if (error == -EAGAIN) {
877		goto restart;
878	} else if (error) {
879		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
880		goto fail;
881	}
882
883	/**
884	 * If we're a spectator, we don't want to take the lock in EX because
885	 * we cannot do the first-mount responsibility it implies: recovery.
886	 */
887	if (sdp->sd_args.ar_spectator)
888		goto locks_done;
889
890	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
891	if (!error) {
892		mounted_mode = DLM_LOCK_EX;
893		goto locks_done;
894	} else if (error != -EAGAIN) {
895		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
896		goto fail;
897	}
898
899	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
900	if (!error) {
901		mounted_mode = DLM_LOCK_PR;
902		goto locks_done;
903	} else {
904		/* not even -EAGAIN should happen here */
905		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
906		goto fail;
907	}
908
909locks_done:
910	/*
911	 * If we got both locks above in EX, then we're the first mounter.
912	 * If not, then we need to wait for the control_lock lvb to be
913	 * updated by other mounted nodes to reflect our mount generation.
914	 *
915	 * In simple first mounter cases, first mounter will see zero lvb_gen,
916	 * but in cases where all existing nodes leave/fail before mounting
917	 * nodes finish control_mount, then all nodes will be mounting and
918	 * lvb_gen will be non-zero.
919	 */
920
921	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
922
923	if (lvb_gen == 0xFFFFFFFF) {
924		/* special value to force mount attempts to fail */
925		fs_err(sdp, "control_mount control_lock disabled\n");
926		error = -EINVAL;
927		goto fail;
928	}
929
930	if (mounted_mode == DLM_LOCK_EX) {
931		/* first mounter, keep both EX while doing first recovery */
932		spin_lock(&ls->ls_recover_spin);
933		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
934		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
935		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
936		spin_unlock(&ls->ls_recover_spin);
937		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
938		return 0;
939	}
940
941	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
942	if (error)
943		goto fail;
944
945	/*
946	 * We are not first mounter, now we need to wait for the control_lock
947	 * lvb generation to be >= the generation from our first recover_done
948	 * and all lvb bits to be clear (no pending journal recoveries.)
949	 */
950
951	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
952		/* journals need recovery, wait until all are clear */
953		fs_info(sdp, "control_mount wait for journal recovery\n");
954		goto restart;
955	}
956
957	spin_lock(&ls->ls_recover_spin);
958	block_gen = ls->ls_recover_block;
959	start_gen = ls->ls_recover_start;
960	mount_gen = ls->ls_recover_mount;
961
962	if (lvb_gen < mount_gen) {
963		/* wait for mounted nodes to update control_lock lvb to our
964		   generation, which might include new recovery bits set */
965		if (sdp->sd_args.ar_spectator) {
966			fs_info(sdp, "Recovery is required. Waiting for a "
967				"non-spectator to mount.\n");
968			msleep_interruptible(1000);
969		} else {
970			fs_info(sdp, "control_mount wait1 block %u start %u "
971				"mount %u lvb %u flags %lx\n", block_gen,
972				start_gen, mount_gen, lvb_gen,
973				ls->ls_recover_flags);
974		}
975		spin_unlock(&ls->ls_recover_spin);
976		goto restart;
977	}
978
979	if (lvb_gen != start_gen) {
980		/* wait for mounted nodes to update control_lock lvb to the
981		   latest recovery generation */
982		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
983			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
984			lvb_gen, ls->ls_recover_flags);
985		spin_unlock(&ls->ls_recover_spin);
986		goto restart;
987	}
988
989	if (block_gen == start_gen) {
990		/* dlm recovery in progress, wait for it to finish */
991		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
992			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
993			lvb_gen, ls->ls_recover_flags);
994		spin_unlock(&ls->ls_recover_spin);
995		goto restart;
996	}
997
998	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
999	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1000	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1001	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1002	spin_unlock(&ls->ls_recover_spin);
1003	return 0;
1004
1005fail:
1006	mounted_unlock(sdp);
1007	control_unlock(sdp);
1008	return error;
1009}
1010
1011static int control_first_done(struct gfs2_sbd *sdp)
1012{
1013	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1014	uint32_t start_gen, block_gen;
1015	int error;
1016
1017restart:
1018	spin_lock(&ls->ls_recover_spin);
1019	start_gen = ls->ls_recover_start;
1020	block_gen = ls->ls_recover_block;
1021
1022	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1023	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1024	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1025		/* sanity check, should not happen */
1026		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1027		       start_gen, block_gen, ls->ls_recover_flags);
1028		spin_unlock(&ls->ls_recover_spin);
1029		control_unlock(sdp);
1030		return -1;
1031	}
1032
1033	if (start_gen == block_gen) {
1034		/*
1035		 * Wait for the end of a dlm recovery cycle to switch from
1036		 * first mounter recovery.  We can ignore any recover_slot
1037		 * callbacks between the recover_prep and next recover_done
1038		 * because we are still the first mounter and any failed nodes
1039		 * have not fully mounted, so they don't need recovery.
1040		 */
1041		spin_unlock(&ls->ls_recover_spin);
1042		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1043
1044		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1045			    TASK_UNINTERRUPTIBLE);
1046		goto restart;
1047	}
1048
1049	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1050	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1051	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1052	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1053	spin_unlock(&ls->ls_recover_spin);
1054
1055	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1056	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1057
1058	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1059	if (error)
1060		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1061
1062	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1063	if (error)
1064		fs_err(sdp, "control_first_done control NL error %d\n", error);
1065
1066	return error;
1067}
1068
1069/*
1070 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1071 * to accommodate the largest slot number.  (NB dlm slot numbers start at 1,
1072 * gfs2 jids start at 0, so jid = slot - 1)
1073 */
1074
1075#define RECOVER_SIZE_INC 16
1076
1077static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1078			    int num_slots)
1079{
1080	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1081	uint32_t *submit = NULL;
1082	uint32_t *result = NULL;
1083	uint32_t old_size, new_size;
1084	int i, max_jid;
1085
1086	if (!ls->ls_lvb_bits) {
1087		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1088		if (!ls->ls_lvb_bits)
1089			return -ENOMEM;
1090	}
1091
1092	max_jid = 0;
1093	for (i = 0; i < num_slots; i++) {
1094		if (max_jid < slots[i].slot - 1)
1095			max_jid = slots[i].slot - 1;
1096	}
1097
1098	old_size = ls->ls_recover_size;
1099	new_size = old_size;
1100	while (new_size < max_jid + 1)
1101		new_size += RECOVER_SIZE_INC;
1102	if (new_size == old_size)
1103		return 0;
1104
1105	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1106	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1107	if (!submit || !result) {
1108		kfree(submit);
1109		kfree(result);
1110		return -ENOMEM;
1111	}
1112
1113	spin_lock(&ls->ls_recover_spin);
1114	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1115	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1116	kfree(ls->ls_recover_submit);
1117	kfree(ls->ls_recover_result);
1118	ls->ls_recover_submit = submit;
1119	ls->ls_recover_result = result;
1120	ls->ls_recover_size = new_size;
1121	spin_unlock(&ls->ls_recover_spin);
1122	return 0;
1123}
1124
1125static void free_recover_size(struct lm_lockstruct *ls)
1126{
1127	kfree(ls->ls_lvb_bits);
1128	kfree(ls->ls_recover_submit);
1129	kfree(ls->ls_recover_result);
1130	ls->ls_recover_submit = NULL;
1131	ls->ls_recover_result = NULL;
1132	ls->ls_recover_size = 0;
1133	ls->ls_lvb_bits = NULL;
1134}
1135
1136/* dlm calls before it does lock recovery */
1137
1138static void gdlm_recover_prep(void *arg)
1139{
1140	struct gfs2_sbd *sdp = arg;
1141	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1142
1143	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1144		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1145		return;
1146	}
1147	spin_lock(&ls->ls_recover_spin);
1148	ls->ls_recover_block = ls->ls_recover_start;
1149	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1150
1151	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1152	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1153		spin_unlock(&ls->ls_recover_spin);
1154		return;
1155	}
1156	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1157	spin_unlock(&ls->ls_recover_spin);
1158}
1159
1160/* dlm calls after recover_prep has been completed on all lockspace members;
1161   identifies slot/jid of failed member */
1162
1163static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1164{
1165	struct gfs2_sbd *sdp = arg;
1166	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1167	int jid = slot->slot - 1;
1168
1169	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1170		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1171		       jid);
1172		return;
1173	}
1174	spin_lock(&ls->ls_recover_spin);
1175	if (ls->ls_recover_size < jid + 1) {
1176		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1177		       jid, ls->ls_recover_block, ls->ls_recover_size);
1178		spin_unlock(&ls->ls_recover_spin);
1179		return;
1180	}
1181
1182	if (ls->ls_recover_submit[jid]) {
1183		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1184			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1185	}
1186	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1187	spin_unlock(&ls->ls_recover_spin);
1188}
1189
1190/* dlm calls after recover_slot and after it completes lock recovery */
1191
1192static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1193			      int our_slot, uint32_t generation)
1194{
1195	struct gfs2_sbd *sdp = arg;
1196	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1197
1198	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1199		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1200		return;
1201	}
1202	/* ensure the ls jid arrays are large enough */
1203	set_recover_size(sdp, slots, num_slots);
1204
1205	spin_lock(&ls->ls_recover_spin);
1206	ls->ls_recover_start = generation;
1207
1208	if (!ls->ls_recover_mount) {
1209		ls->ls_recover_mount = generation;
1210		ls->ls_jid = our_slot - 1;
1211	}
1212
1213	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1214		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1215
1216	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1217	smp_mb__after_atomic();
1218	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1219	spin_unlock(&ls->ls_recover_spin);
1220}
1221
1222/* gfs2_recover thread has a journal recovery result */
1223
1224static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1225				 unsigned int result)
1226{
1227	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1228
1229	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1230		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1231		       jid);
1232		return;
1233	}
1234	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1235		return;
1236
1237	/* don't care about the recovery of own journal during mount */
1238	if (jid == ls->ls_jid)
1239		return;
1240
1241	spin_lock(&ls->ls_recover_spin);
1242	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1243		spin_unlock(&ls->ls_recover_spin);
1244		return;
1245	}
1246	if (ls->ls_recover_size < jid + 1) {
1247		fs_err(sdp, "recovery_result jid %d short size %d\n",
1248		       jid, ls->ls_recover_size);
1249		spin_unlock(&ls->ls_recover_spin);
1250		return;
1251	}
1252
1253	fs_info(sdp, "recover jid %d result %s\n", jid,
1254		result == LM_RD_GAVEUP ? "busy" : "success");
1255
1256	ls->ls_recover_result[jid] = result;
1257
1258	/* GAVEUP means another node is recovering the journal; delay our
1259	   next attempt to recover it, to give the other node a chance to
1260	   finish before trying again */
1261
1262	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1263		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1264				   result == LM_RD_GAVEUP ? HZ : 0);
1265	spin_unlock(&ls->ls_recover_spin);
1266}
1267
1268static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1269	.recover_prep = gdlm_recover_prep,
1270	.recover_slot = gdlm_recover_slot,
1271	.recover_done = gdlm_recover_done,
1272};
1273
1274static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1275{
1276	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1277	char cluster[GFS2_LOCKNAME_LEN];
1278	const char *fsname;
1279	uint32_t flags;
1280	int error, ops_result;
1281
1282	/*
1283	 * initialize everything
1284	 */
1285
1286	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1287	spin_lock_init(&ls->ls_recover_spin);
1288	ls->ls_recover_flags = 0;
1289	ls->ls_recover_mount = 0;
1290	ls->ls_recover_start = 0;
1291	ls->ls_recover_block = 0;
1292	ls->ls_recover_size = 0;
1293	ls->ls_recover_submit = NULL;
1294	ls->ls_recover_result = NULL;
1295	ls->ls_lvb_bits = NULL;
1296
1297	error = set_recover_size(sdp, NULL, 0);
1298	if (error)
1299		goto fail;
1300
1301	/*
1302	 * prepare dlm_new_lockspace args
1303	 */
1304
1305	fsname = strchr(table, ':');
1306	if (!fsname) {
1307		fs_info(sdp, "no fsname found\n");
1308		error = -EINVAL;
1309		goto fail_free;
1310	}
1311	memset(cluster, 0, sizeof(cluster));
1312	memcpy(cluster, table, strlen(table) - strlen(fsname));
1313	fsname++;
1314
1315	flags = DLM_LSFL_NEWEXCL;
1316
1317	/*
1318	 * create/join lockspace
1319	 */
1320
1321	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1322				  &gdlm_lockspace_ops, sdp, &ops_result,
1323				  &ls->ls_dlm);
1324	if (error) {
1325		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1326		goto fail_free;
1327	}
1328
1329	if (ops_result < 0) {
1330		/*
1331		 * dlm does not support ops callbacks,
1332		 * old dlm_controld/gfs_controld are used, try without ops.
1333		 */
1334		fs_info(sdp, "dlm lockspace ops not used\n");
1335		free_recover_size(ls);
1336		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1337		return 0;
1338	}
1339
1340	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1341		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1342		error = -EINVAL;
1343		goto fail_release;
1344	}
1345
1346	/*
1347	 * control_mount() uses control_lock to determine first mounter,
1348	 * and for later mounts, waits for any recoveries to be cleared.
1349	 */
1350
1351	error = control_mount(sdp);
1352	if (error) {
1353		fs_err(sdp, "mount control error %d\n", error);
1354		goto fail_release;
1355	}
1356
1357	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1358	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1359	smp_mb__after_atomic();
1360	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1361	return 0;
1362
1363fail_release:
1364	dlm_release_lockspace(ls->ls_dlm, 2);
1365fail_free:
1366	free_recover_size(ls);
1367fail:
1368	return error;
1369}
1370
1371static void gdlm_first_done(struct gfs2_sbd *sdp)
1372{
1373	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1374	int error;
1375
1376	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1377		return;
1378
1379	error = control_first_done(sdp);
1380	if (error)
1381		fs_err(sdp, "mount first_done error %d\n", error);
1382}
1383
1384static void gdlm_unmount(struct gfs2_sbd *sdp)
1385{
1386	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1387
1388	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1389		goto release;
1390
1391	/* wait for gfs2_control_wq to be done with this mount */
1392
1393	spin_lock(&ls->ls_recover_spin);
1394	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1395	spin_unlock(&ls->ls_recover_spin);
1396	flush_delayed_work(&sdp->sd_control_work);
1397
1398	/* mounted_lock and control_lock will be purged in dlm recovery */
1399release:
1400	if (ls->ls_dlm) {
1401		dlm_release_lockspace(ls->ls_dlm, 2);
1402		ls->ls_dlm = NULL;
1403	}
1404
1405	free_recover_size(ls);
1406}
1407
1408static const match_table_t dlm_tokens = {
1409	{ Opt_jid, "jid=%d"},
1410	{ Opt_id, "id=%d"},
1411	{ Opt_first, "first=%d"},
1412	{ Opt_nodir, "nodir=%d"},
1413	{ Opt_err, NULL },
1414};
1415
1416const struct lm_lockops gfs2_dlm_ops = {
1417	.lm_proto_name = "lock_dlm",
1418	.lm_mount = gdlm_mount,
1419	.lm_first_done = gdlm_first_done,
1420	.lm_recovery_result = gdlm_recovery_result,
1421	.lm_unmount = gdlm_unmount,
1422	.lm_put_lock = gdlm_put_lock,
1423	.lm_lock = gdlm_lock,
1424	.lm_cancel = gdlm_cancel,
1425	.lm_tokens = &dlm_tokens,
1426};
1427
1428