1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5 */
6
7#include <linux/slab.h>
8#include <linux/spinlock.h>
9#include <linux/compat.h>
10#include <linux/completion.h>
11#include <linux/buffer_head.h>
12#include <linux/pagemap.h>
13#include <linux/uio.h>
14#include <linux/blkdev.h>
15#include <linux/mm.h>
16#include <linux/mount.h>
17#include <linux/fs.h>
18#include <linux/filelock.h>
19#include <linux/gfs2_ondisk.h>
20#include <linux/falloc.h>
21#include <linux/swap.h>
22#include <linux/crc32.h>
23#include <linux/writeback.h>
24#include <linux/uaccess.h>
25#include <linux/dlm.h>
26#include <linux/dlm_plock.h>
27#include <linux/delay.h>
28#include <linux/backing-dev.h>
29#include <linux/fileattr.h>
30
31#include "gfs2.h"
32#include "incore.h"
33#include "bmap.h"
34#include "aops.h"
35#include "dir.h"
36#include "glock.h"
37#include "glops.h"
38#include "inode.h"
39#include "log.h"
40#include "meta_io.h"
41#include "quota.h"
42#include "rgrp.h"
43#include "trans.h"
44#include "util.h"
45
46/**
47 * gfs2_llseek - seek to a location in a file
48 * @file: the file
49 * @offset: the offset
50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
51 *
52 * SEEK_END requires the glock for the file because it references the
53 * file's size.
54 *
55 * Returns: The new offset, or errno
56 */
57
58static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
59{
60	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
61	struct gfs2_holder i_gh;
62	loff_t error;
63
64	switch (whence) {
65	case SEEK_END:
66		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
67					   &i_gh);
68		if (!error) {
69			error = generic_file_llseek(file, offset, whence);
70			gfs2_glock_dq_uninit(&i_gh);
71		}
72		break;
73
74	case SEEK_DATA:
75		error = gfs2_seek_data(file, offset);
76		break;
77
78	case SEEK_HOLE:
79		error = gfs2_seek_hole(file, offset);
80		break;
81
82	case SEEK_CUR:
83	case SEEK_SET:
84		/*
85		 * These don't reference inode->i_size and don't depend on the
86		 * block mapping, so we don't need the glock.
87		 */
88		error = generic_file_llseek(file, offset, whence);
89		break;
90	default:
91		error = -EINVAL;
92	}
93
94	return error;
95}
96
97/**
98 * gfs2_readdir - Iterator for a directory
99 * @file: The directory to read from
100 * @ctx: What to feed directory entries to
101 *
102 * Returns: errno
103 */
104
105static int gfs2_readdir(struct file *file, struct dir_context *ctx)
106{
107	struct inode *dir = file->f_mapping->host;
108	struct gfs2_inode *dip = GFS2_I(dir);
109	struct gfs2_holder d_gh;
110	int error;
111
112	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
113	if (error)
114		return error;
115
116	error = gfs2_dir_read(dir, ctx, &file->f_ra);
117
118	gfs2_glock_dq_uninit(&d_gh);
119
120	return error;
121}
122
123/*
124 * struct fsflag_gfs2flag
125 *
126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
127 * and to GFS2_DIF_JDATA for non-directories.
128 */
129static struct {
130	u32 fsflag;
131	u32 gfsflag;
132} fsflag_gfs2flag[] = {
133	{FS_SYNC_FL, GFS2_DIF_SYNC},
134	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
135	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
136	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
137	{FS_INDEX_FL, GFS2_DIF_EXHASH},
138	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
139	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
140};
141
142static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
143{
144	int i;
145	u32 fsflags = 0;
146
147	if (S_ISDIR(inode->i_mode))
148		gfsflags &= ~GFS2_DIF_JDATA;
149	else
150		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
151
152	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
153		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
154			fsflags |= fsflag_gfs2flag[i].fsflag;
155	return fsflags;
156}
157
158int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
159{
160	struct inode *inode = d_inode(dentry);
161	struct gfs2_inode *ip = GFS2_I(inode);
162	struct gfs2_holder gh;
163	int error;
164	u32 fsflags;
165
166	if (d_is_special(dentry))
167		return -ENOTTY;
168
169	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
170	error = gfs2_glock_nq(&gh);
171	if (error)
172		goto out_uninit;
173
174	fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
175
176	fileattr_fill_flags(fa, fsflags);
177
178	gfs2_glock_dq(&gh);
179out_uninit:
180	gfs2_holder_uninit(&gh);
181	return error;
182}
183
184void gfs2_set_inode_flags(struct inode *inode)
185{
186	struct gfs2_inode *ip = GFS2_I(inode);
187	unsigned int flags = inode->i_flags;
188
189	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
190	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
191		flags |= S_NOSEC;
192	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
193		flags |= S_IMMUTABLE;
194	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
195		flags |= S_APPEND;
196	if (ip->i_diskflags & GFS2_DIF_NOATIME)
197		flags |= S_NOATIME;
198	if (ip->i_diskflags & GFS2_DIF_SYNC)
199		flags |= S_SYNC;
200	inode->i_flags = flags;
201}
202
203/* Flags that can be set by user space */
204#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
205			     GFS2_DIF_IMMUTABLE|		\
206			     GFS2_DIF_APPENDONLY|		\
207			     GFS2_DIF_NOATIME|			\
208			     GFS2_DIF_SYNC|			\
209			     GFS2_DIF_TOPDIR|			\
210			     GFS2_DIF_INHERIT_JDATA)
211
212/**
213 * do_gfs2_set_flags - set flags on an inode
214 * @inode: The inode
215 * @reqflags: The flags to set
216 * @mask: Indicates which flags are valid
217 *
218 */
219static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask)
220{
221	struct gfs2_inode *ip = GFS2_I(inode);
222	struct gfs2_sbd *sdp = GFS2_SB(inode);
223	struct buffer_head *bh;
224	struct gfs2_holder gh;
225	int error;
226	u32 new_flags, flags;
227
228	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
229	if (error)
230		return error;
231
232	error = 0;
233	flags = ip->i_diskflags;
234	new_flags = (flags & ~mask) | (reqflags & mask);
235	if ((new_flags ^ flags) == 0)
236		goto out;
237
238	if (!IS_IMMUTABLE(inode)) {
239		error = gfs2_permission(&nop_mnt_idmap, inode, MAY_WRITE);
240		if (error)
241			goto out;
242	}
243	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
244		if (new_flags & GFS2_DIF_JDATA)
245			gfs2_log_flush(sdp, ip->i_gl,
246				       GFS2_LOG_HEAD_FLUSH_NORMAL |
247				       GFS2_LFC_SET_FLAGS);
248		error = filemap_fdatawrite(inode->i_mapping);
249		if (error)
250			goto out;
251		error = filemap_fdatawait(inode->i_mapping);
252		if (error)
253			goto out;
254		if (new_flags & GFS2_DIF_JDATA)
255			gfs2_ordered_del_inode(ip);
256	}
257	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
258	if (error)
259		goto out;
260	error = gfs2_meta_inode_buffer(ip, &bh);
261	if (error)
262		goto out_trans_end;
263	inode_set_ctime_current(inode);
264	gfs2_trans_add_meta(ip->i_gl, bh);
265	ip->i_diskflags = new_flags;
266	gfs2_dinode_out(ip, bh->b_data);
267	brelse(bh);
268	gfs2_set_inode_flags(inode);
269	gfs2_set_aops(inode);
270out_trans_end:
271	gfs2_trans_end(sdp);
272out:
273	gfs2_glock_dq_uninit(&gh);
274	return error;
275}
276
277int gfs2_fileattr_set(struct mnt_idmap *idmap,
278		      struct dentry *dentry, struct fileattr *fa)
279{
280	struct inode *inode = d_inode(dentry);
281	u32 fsflags = fa->flags, gfsflags = 0;
282	u32 mask;
283	int i;
284
285	if (d_is_special(dentry))
286		return -ENOTTY;
287
288	if (fileattr_has_fsx(fa))
289		return -EOPNOTSUPP;
290
291	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
292		if (fsflags & fsflag_gfs2flag[i].fsflag) {
293			fsflags &= ~fsflag_gfs2flag[i].fsflag;
294			gfsflags |= fsflag_gfs2flag[i].gfsflag;
295		}
296	}
297	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
298		return -EINVAL;
299
300	mask = GFS2_FLAGS_USER_SET;
301	if (S_ISDIR(inode->i_mode)) {
302		mask &= ~GFS2_DIF_JDATA;
303	} else {
304		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
305		if (gfsflags & GFS2_DIF_TOPDIR)
306			return -EINVAL;
307		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
308	}
309
310	return do_gfs2_set_flags(inode, gfsflags, mask);
311}
312
313static int gfs2_getlabel(struct file *filp, char __user *label)
314{
315	struct inode *inode = file_inode(filp);
316	struct gfs2_sbd *sdp = GFS2_SB(inode);
317
318	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
319		return -EFAULT;
320
321	return 0;
322}
323
324static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
325{
326	switch(cmd) {
327	case FITRIM:
328		return gfs2_fitrim(filp, (void __user *)arg);
329	case FS_IOC_GETFSLABEL:
330		return gfs2_getlabel(filp, (char __user *)arg);
331	}
332
333	return -ENOTTY;
334}
335
336#ifdef CONFIG_COMPAT
337static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
338{
339	switch(cmd) {
340	/* Keep this list in sync with gfs2_ioctl */
341	case FITRIM:
342	case FS_IOC_GETFSLABEL:
343		break;
344	default:
345		return -ENOIOCTLCMD;
346	}
347
348	return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
349}
350#else
351#define gfs2_compat_ioctl NULL
352#endif
353
354/**
355 * gfs2_size_hint - Give a hint to the size of a write request
356 * @filep: The struct file
357 * @offset: The file offset of the write
358 * @size: The length of the write
359 *
360 * When we are about to do a write, this function records the total
361 * write size in order to provide a suitable hint to the lower layers
362 * about how many blocks will be required.
363 *
364 */
365
366static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
367{
368	struct inode *inode = file_inode(filep);
369	struct gfs2_sbd *sdp = GFS2_SB(inode);
370	struct gfs2_inode *ip = GFS2_I(inode);
371	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
372	int hint = min_t(size_t, INT_MAX, blks);
373
374	if (hint > atomic_read(&ip->i_sizehint))
375		atomic_set(&ip->i_sizehint, hint);
376}
377
378/**
379 * gfs2_allocate_page_backing - Allocate blocks for a write fault
380 * @page: The (locked) page to allocate backing for
381 * @length: Size of the allocation
382 *
383 * We try to allocate all the blocks required for the page in one go.  This
384 * might fail for various reasons, so we keep trying until all the blocks to
385 * back this page are allocated.  If some of the blocks are already allocated,
386 * that is ok too.
387 */
388static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
389{
390	u64 pos = page_offset(page);
391
392	do {
393		struct iomap iomap = { };
394
395		if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap))
396			return -EIO;
397
398		if (length < iomap.length)
399			iomap.length = length;
400		length -= iomap.length;
401		pos += iomap.length;
402	} while (length > 0);
403
404	return 0;
405}
406
407/**
408 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
409 * @vmf: The virtual memory fault containing the page to become writable
410 *
411 * When the page becomes writable, we need to ensure that we have
412 * blocks allocated on disk to back that page.
413 */
414
415static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
416{
417	struct page *page = vmf->page;
418	struct inode *inode = file_inode(vmf->vma->vm_file);
419	struct gfs2_inode *ip = GFS2_I(inode);
420	struct gfs2_sbd *sdp = GFS2_SB(inode);
421	struct gfs2_alloc_parms ap = {};
422	u64 offset = page_offset(page);
423	unsigned int data_blocks, ind_blocks, rblocks;
424	vm_fault_t ret = VM_FAULT_LOCKED;
425	struct gfs2_holder gh;
426	unsigned int length;
427	loff_t size;
428	int err;
429
430	sb_start_pagefault(inode->i_sb);
431
432	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
433	err = gfs2_glock_nq(&gh);
434	if (err) {
435		ret = vmf_fs_error(err);
436		goto out_uninit;
437	}
438
439	/* Check page index against inode size */
440	size = i_size_read(inode);
441	if (offset >= size) {
442		ret = VM_FAULT_SIGBUS;
443		goto out_unlock;
444	}
445
446	/* Update file times before taking page lock */
447	file_update_time(vmf->vma->vm_file);
448
449	/* page is wholly or partially inside EOF */
450	if (size - offset < PAGE_SIZE)
451		length = size - offset;
452	else
453		length = PAGE_SIZE;
454
455	gfs2_size_hint(vmf->vma->vm_file, offset, length);
456
457	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
458	set_bit(GIF_SW_PAGED, &ip->i_flags);
459
460	/*
461	 * iomap_writepage / iomap_writepages currently don't support inline
462	 * files, so always unstuff here.
463	 */
464
465	if (!gfs2_is_stuffed(ip) &&
466	    !gfs2_write_alloc_required(ip, offset, length)) {
467		lock_page(page);
468		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
469			ret = VM_FAULT_NOPAGE;
470			unlock_page(page);
471		}
472		goto out_unlock;
473	}
474
475	err = gfs2_rindex_update(sdp);
476	if (err) {
477		ret = vmf_fs_error(err);
478		goto out_unlock;
479	}
480
481	gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
482	ap.target = data_blocks + ind_blocks;
483	err = gfs2_quota_lock_check(ip, &ap);
484	if (err) {
485		ret = vmf_fs_error(err);
486		goto out_unlock;
487	}
488	err = gfs2_inplace_reserve(ip, &ap);
489	if (err) {
490		ret = vmf_fs_error(err);
491		goto out_quota_unlock;
492	}
493
494	rblocks = RES_DINODE + ind_blocks;
495	if (gfs2_is_jdata(ip))
496		rblocks += data_blocks ? data_blocks : 1;
497	if (ind_blocks || data_blocks) {
498		rblocks += RES_STATFS + RES_QUOTA;
499		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
500	}
501	err = gfs2_trans_begin(sdp, rblocks, 0);
502	if (err) {
503		ret = vmf_fs_error(err);
504		goto out_trans_fail;
505	}
506
507	/* Unstuff, if required, and allocate backing blocks for page */
508	if (gfs2_is_stuffed(ip)) {
509		err = gfs2_unstuff_dinode(ip);
510		if (err) {
511			ret = vmf_fs_error(err);
512			goto out_trans_end;
513		}
514	}
515
516	lock_page(page);
517	/* If truncated, we must retry the operation, we may have raced
518	 * with the glock demotion code.
519	 */
520	if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
521		ret = VM_FAULT_NOPAGE;
522		goto out_page_locked;
523	}
524
525	err = gfs2_allocate_page_backing(page, length);
526	if (err)
527		ret = vmf_fs_error(err);
528
529out_page_locked:
530	if (ret != VM_FAULT_LOCKED)
531		unlock_page(page);
532out_trans_end:
533	gfs2_trans_end(sdp);
534out_trans_fail:
535	gfs2_inplace_release(ip);
536out_quota_unlock:
537	gfs2_quota_unlock(ip);
538out_unlock:
539	gfs2_glock_dq(&gh);
540out_uninit:
541	gfs2_holder_uninit(&gh);
542	if (ret == VM_FAULT_LOCKED) {
543		set_page_dirty(page);
544		wait_for_stable_page(page);
545	}
546	sb_end_pagefault(inode->i_sb);
547	return ret;
548}
549
550static vm_fault_t gfs2_fault(struct vm_fault *vmf)
551{
552	struct inode *inode = file_inode(vmf->vma->vm_file);
553	struct gfs2_inode *ip = GFS2_I(inode);
554	struct gfs2_holder gh;
555	vm_fault_t ret;
556	int err;
557
558	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
559	err = gfs2_glock_nq(&gh);
560	if (err) {
561		ret = vmf_fs_error(err);
562		goto out_uninit;
563	}
564	ret = filemap_fault(vmf);
565	gfs2_glock_dq(&gh);
566out_uninit:
567	gfs2_holder_uninit(&gh);
568	return ret;
569}
570
571static const struct vm_operations_struct gfs2_vm_ops = {
572	.fault = gfs2_fault,
573	.map_pages = filemap_map_pages,
574	.page_mkwrite = gfs2_page_mkwrite,
575};
576
577/**
578 * gfs2_mmap
579 * @file: The file to map
580 * @vma: The VMA which described the mapping
581 *
582 * There is no need to get a lock here unless we should be updating
583 * atime. We ignore any locking errors since the only consequence is
584 * a missed atime update (which will just be deferred until later).
585 *
586 * Returns: 0
587 */
588
589static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
590{
591	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
592
593	if (!(file->f_flags & O_NOATIME) &&
594	    !IS_NOATIME(&ip->i_inode)) {
595		struct gfs2_holder i_gh;
596		int error;
597
598		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
599					   &i_gh);
600		if (error)
601			return error;
602		/* grab lock to update inode */
603		gfs2_glock_dq_uninit(&i_gh);
604		file_accessed(file);
605	}
606	vma->vm_ops = &gfs2_vm_ops;
607
608	return 0;
609}
610
611/**
612 * gfs2_open_common - This is common to open and atomic_open
613 * @inode: The inode being opened
614 * @file: The file being opened
615 *
616 * This maybe called under a glock or not depending upon how it has
617 * been called. We must always be called under a glock for regular
618 * files, however. For other file types, it does not matter whether
619 * we hold the glock or not.
620 *
621 * Returns: Error code or 0 for success
622 */
623
624int gfs2_open_common(struct inode *inode, struct file *file)
625{
626	struct gfs2_file *fp;
627	int ret;
628
629	if (S_ISREG(inode->i_mode)) {
630		ret = generic_file_open(inode, file);
631		if (ret)
632			return ret;
633
634		if (!gfs2_is_jdata(GFS2_I(inode)))
635			file->f_mode |= FMODE_CAN_ODIRECT;
636	}
637
638	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
639	if (!fp)
640		return -ENOMEM;
641
642	mutex_init(&fp->f_fl_mutex);
643
644	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
645	file->private_data = fp;
646	if (file->f_mode & FMODE_WRITE) {
647		ret = gfs2_qa_get(GFS2_I(inode));
648		if (ret)
649			goto fail;
650	}
651	return 0;
652
653fail:
654	kfree(file->private_data);
655	file->private_data = NULL;
656	return ret;
657}
658
659/**
660 * gfs2_open - open a file
661 * @inode: the inode to open
662 * @file: the struct file for this opening
663 *
664 * After atomic_open, this function is only used for opening files
665 * which are already cached. We must still get the glock for regular
666 * files to ensure that we have the file size uptodate for the large
667 * file check which is in the common code. That is only an issue for
668 * regular files though.
669 *
670 * Returns: errno
671 */
672
673static int gfs2_open(struct inode *inode, struct file *file)
674{
675	struct gfs2_inode *ip = GFS2_I(inode);
676	struct gfs2_holder i_gh;
677	int error;
678	bool need_unlock = false;
679
680	if (S_ISREG(ip->i_inode.i_mode)) {
681		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
682					   &i_gh);
683		if (error)
684			return error;
685		need_unlock = true;
686	}
687
688	error = gfs2_open_common(inode, file);
689
690	if (need_unlock)
691		gfs2_glock_dq_uninit(&i_gh);
692
693	return error;
694}
695
696/**
697 * gfs2_release - called to close a struct file
698 * @inode: the inode the struct file belongs to
699 * @file: the struct file being closed
700 *
701 * Returns: errno
702 */
703
704static int gfs2_release(struct inode *inode, struct file *file)
705{
706	struct gfs2_inode *ip = GFS2_I(inode);
707
708	kfree(file->private_data);
709	file->private_data = NULL;
710
711	if (file->f_mode & FMODE_WRITE) {
712		if (gfs2_rs_active(&ip->i_res))
713			gfs2_rs_delete(ip);
714		gfs2_qa_put(ip);
715	}
716	return 0;
717}
718
719/**
720 * gfs2_fsync - sync the dirty data for a file (across the cluster)
721 * @file: the file that points to the dentry
722 * @start: the start position in the file to sync
723 * @end: the end position in the file to sync
724 * @datasync: set if we can ignore timestamp changes
725 *
726 * We split the data flushing here so that we don't wait for the data
727 * until after we've also sent the metadata to disk. Note that for
728 * data=ordered, we will write & wait for the data at the log flush
729 * stage anyway, so this is unlikely to make much of a difference
730 * except in the data=writeback case.
731 *
732 * If the fdatawrite fails due to any reason except -EIO, we will
733 * continue the remainder of the fsync, although we'll still report
734 * the error at the end. This is to match filemap_write_and_wait_range()
735 * behaviour.
736 *
737 * Returns: errno
738 */
739
740static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
741		      int datasync)
742{
743	struct address_space *mapping = file->f_mapping;
744	struct inode *inode = mapping->host;
745	int sync_state = inode->i_state & I_DIRTY;
746	struct gfs2_inode *ip = GFS2_I(inode);
747	int ret = 0, ret1 = 0;
748
749	if (mapping->nrpages) {
750		ret1 = filemap_fdatawrite_range(mapping, start, end);
751		if (ret1 == -EIO)
752			return ret1;
753	}
754
755	if (!gfs2_is_jdata(ip))
756		sync_state &= ~I_DIRTY_PAGES;
757	if (datasync)
758		sync_state &= ~I_DIRTY_SYNC;
759
760	if (sync_state) {
761		ret = sync_inode_metadata(inode, 1);
762		if (ret)
763			return ret;
764		if (gfs2_is_jdata(ip))
765			ret = file_write_and_wait(file);
766		if (ret)
767			return ret;
768		gfs2_ail_flush(ip->i_gl, 1);
769	}
770
771	if (mapping->nrpages)
772		ret = file_fdatawait_range(file, start, end);
773
774	return ret ? ret : ret1;
775}
776
777static inline bool should_fault_in_pages(struct iov_iter *i,
778					 struct kiocb *iocb,
779					 size_t *prev_count,
780					 size_t *window_size)
781{
782	size_t count = iov_iter_count(i);
783	size_t size, offs;
784
785	if (!count)
786		return false;
787	if (!user_backed_iter(i))
788		return false;
789
790	/*
791	 * Try to fault in multiple pages initially.  When that doesn't result
792	 * in any progress, fall back to a single page.
793	 */
794	size = PAGE_SIZE;
795	offs = offset_in_page(iocb->ki_pos);
796	if (*prev_count != count) {
797		size_t nr_dirtied;
798
799		nr_dirtied = max(current->nr_dirtied_pause -
800				 current->nr_dirtied, 8);
801		size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT);
802	}
803
804	*prev_count = count;
805	*window_size = size - offs;
806	return true;
807}
808
809static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
810				     struct gfs2_holder *gh)
811{
812	struct file *file = iocb->ki_filp;
813	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
814	size_t prev_count = 0, window_size = 0;
815	size_t read = 0;
816	ssize_t ret;
817
818	/*
819	 * In this function, we disable page faults when we're holding the
820	 * inode glock while doing I/O.  If a page fault occurs, we indicate
821	 * that the inode glock may be dropped, fault in the pages manually,
822	 * and retry.
823	 *
824	 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
825	 * physical as well as manual page faults, and we need to disable both
826	 * kinds.
827	 *
828	 * For direct I/O, gfs2 takes the inode glock in deferred mode.  This
829	 * locking mode is compatible with other deferred holders, so multiple
830	 * processes and nodes can do direct I/O to a file at the same time.
831	 * There's no guarantee that reads or writes will be atomic.  Any
832	 * coordination among readers and writers needs to happen externally.
833	 */
834
835	if (!iov_iter_count(to))
836		return 0; /* skip atime */
837
838	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
839retry:
840	ret = gfs2_glock_nq(gh);
841	if (ret)
842		goto out_uninit;
843	pagefault_disable();
844	to->nofault = true;
845	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
846			   IOMAP_DIO_PARTIAL, NULL, read);
847	to->nofault = false;
848	pagefault_enable();
849	if (ret <= 0 && ret != -EFAULT)
850		goto out_unlock;
851	/* No increment (+=) because iomap_dio_rw returns a cumulative value. */
852	if (ret > 0)
853		read = ret;
854
855	if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
856		gfs2_glock_dq(gh);
857		window_size -= fault_in_iov_iter_writeable(to, window_size);
858		if (window_size)
859			goto retry;
860	}
861out_unlock:
862	if (gfs2_holder_queued(gh))
863		gfs2_glock_dq(gh);
864out_uninit:
865	gfs2_holder_uninit(gh);
866	/* User space doesn't expect partial success. */
867	if (ret < 0)
868		return ret;
869	return read;
870}
871
872static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
873				      struct gfs2_holder *gh)
874{
875	struct file *file = iocb->ki_filp;
876	struct inode *inode = file->f_mapping->host;
877	struct gfs2_inode *ip = GFS2_I(inode);
878	size_t prev_count = 0, window_size = 0;
879	size_t written = 0;
880	bool enough_retries;
881	ssize_t ret;
882
883	/*
884	 * In this function, we disable page faults when we're holding the
885	 * inode glock while doing I/O.  If a page fault occurs, we indicate
886	 * that the inode glock may be dropped, fault in the pages manually,
887	 * and retry.
888	 *
889	 * For writes, iomap_dio_rw only triggers manual page faults, so we
890	 * don't need to disable physical ones.
891	 */
892
893	/*
894	 * Deferred lock, even if its a write, since we do no allocation on
895	 * this path. All we need to change is the atime, and this lock mode
896	 * ensures that other nodes have flushed their buffered read caches
897	 * (i.e. their page cache entries for this inode). We do not,
898	 * unfortunately, have the option of only flushing a range like the
899	 * VFS does.
900	 */
901	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
902retry:
903	ret = gfs2_glock_nq(gh);
904	if (ret)
905		goto out_uninit;
906	/* Silently fall back to buffered I/O when writing beyond EOF */
907	if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
908		goto out_unlock;
909
910	from->nofault = true;
911	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
912			   IOMAP_DIO_PARTIAL, NULL, written);
913	from->nofault = false;
914	if (ret <= 0) {
915		if (ret == -ENOTBLK)
916			ret = 0;
917		if (ret != -EFAULT)
918			goto out_unlock;
919	}
920	/* No increment (+=) because iomap_dio_rw returns a cumulative value. */
921	if (ret > 0)
922		written = ret;
923
924	enough_retries = prev_count == iov_iter_count(from) &&
925			 window_size <= PAGE_SIZE;
926	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
927		gfs2_glock_dq(gh);
928		window_size -= fault_in_iov_iter_readable(from, window_size);
929		if (window_size) {
930			if (!enough_retries)
931				goto retry;
932			/* fall back to buffered I/O */
933			ret = 0;
934		}
935	}
936out_unlock:
937	if (gfs2_holder_queued(gh))
938		gfs2_glock_dq(gh);
939out_uninit:
940	gfs2_holder_uninit(gh);
941	/* User space doesn't expect partial success. */
942	if (ret < 0)
943		return ret;
944	return written;
945}
946
947static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
948{
949	struct gfs2_inode *ip;
950	struct gfs2_holder gh;
951	size_t prev_count = 0, window_size = 0;
952	size_t read = 0;
953	ssize_t ret;
954
955	/*
956	 * In this function, we disable page faults when we're holding the
957	 * inode glock while doing I/O.  If a page fault occurs, we indicate
958	 * that the inode glock may be dropped, fault in the pages manually,
959	 * and retry.
960	 */
961
962	if (iocb->ki_flags & IOCB_DIRECT)
963		return gfs2_file_direct_read(iocb, to, &gh);
964
965	pagefault_disable();
966	iocb->ki_flags |= IOCB_NOIO;
967	ret = generic_file_read_iter(iocb, to);
968	iocb->ki_flags &= ~IOCB_NOIO;
969	pagefault_enable();
970	if (ret >= 0) {
971		if (!iov_iter_count(to))
972			return ret;
973		read = ret;
974	} else if (ret != -EFAULT) {
975		if (ret != -EAGAIN)
976			return ret;
977		if (iocb->ki_flags & IOCB_NOWAIT)
978			return ret;
979	}
980	ip = GFS2_I(iocb->ki_filp->f_mapping->host);
981	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
982retry:
983	ret = gfs2_glock_nq(&gh);
984	if (ret)
985		goto out_uninit;
986	pagefault_disable();
987	ret = generic_file_read_iter(iocb, to);
988	pagefault_enable();
989	if (ret <= 0 && ret != -EFAULT)
990		goto out_unlock;
991	if (ret > 0)
992		read += ret;
993
994	if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
995		gfs2_glock_dq(&gh);
996		window_size -= fault_in_iov_iter_writeable(to, window_size);
997		if (window_size)
998			goto retry;
999	}
1000out_unlock:
1001	if (gfs2_holder_queued(&gh))
1002		gfs2_glock_dq(&gh);
1003out_uninit:
1004	gfs2_holder_uninit(&gh);
1005	return read ? read : ret;
1006}
1007
1008static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
1009					struct iov_iter *from,
1010					struct gfs2_holder *gh)
1011{
1012	struct file *file = iocb->ki_filp;
1013	struct inode *inode = file_inode(file);
1014	struct gfs2_inode *ip = GFS2_I(inode);
1015	struct gfs2_sbd *sdp = GFS2_SB(inode);
1016	struct gfs2_holder *statfs_gh = NULL;
1017	size_t prev_count = 0, window_size = 0;
1018	size_t orig_count = iov_iter_count(from);
1019	size_t written = 0;
1020	ssize_t ret;
1021
1022	/*
1023	 * In this function, we disable page faults when we're holding the
1024	 * inode glock while doing I/O.  If a page fault occurs, we indicate
1025	 * that the inode glock may be dropped, fault in the pages manually,
1026	 * and retry.
1027	 */
1028
1029	if (inode == sdp->sd_rindex) {
1030		statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
1031		if (!statfs_gh)
1032			return -ENOMEM;
1033	}
1034
1035	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
1036	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1037retry:
1038		window_size -= fault_in_iov_iter_readable(from, window_size);
1039		if (!window_size) {
1040			ret = -EFAULT;
1041			goto out_uninit;
1042		}
1043		from->count = min(from->count, window_size);
1044	}
1045	ret = gfs2_glock_nq(gh);
1046	if (ret)
1047		goto out_uninit;
1048
1049	if (inode == sdp->sd_rindex) {
1050		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1051
1052		ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1053					 GL_NOCACHE, statfs_gh);
1054		if (ret)
1055			goto out_unlock;
1056	}
1057
1058	pagefault_disable();
1059	ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
1060	pagefault_enable();
1061	if (ret > 0)
1062		written += ret;
1063
1064	if (inode == sdp->sd_rindex)
1065		gfs2_glock_dq_uninit(statfs_gh);
1066
1067	if (ret <= 0 && ret != -EFAULT)
1068		goto out_unlock;
1069
1070	from->count = orig_count - written;
1071	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1072		gfs2_glock_dq(gh);
1073		goto retry;
1074	}
1075out_unlock:
1076	if (gfs2_holder_queued(gh))
1077		gfs2_glock_dq(gh);
1078out_uninit:
1079	gfs2_holder_uninit(gh);
1080	kfree(statfs_gh);
1081	from->count = orig_count - written;
1082	return written ? written : ret;
1083}
1084
1085/**
1086 * gfs2_file_write_iter - Perform a write to a file
1087 * @iocb: The io context
1088 * @from: The data to write
1089 *
1090 * We have to do a lock/unlock here to refresh the inode size for
1091 * O_APPEND writes, otherwise we can land up writing at the wrong
1092 * offset. There is still a race, but provided the app is using its
1093 * own file locking, this will make O_APPEND work as expected.
1094 *
1095 */
1096
1097static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1098{
1099	struct file *file = iocb->ki_filp;
1100	struct inode *inode = file_inode(file);
1101	struct gfs2_inode *ip = GFS2_I(inode);
1102	struct gfs2_holder gh;
1103	ssize_t ret;
1104
1105	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
1106
1107	if (iocb->ki_flags & IOCB_APPEND) {
1108		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
1109		if (ret)
1110			return ret;
1111		gfs2_glock_dq_uninit(&gh);
1112	}
1113
1114	inode_lock(inode);
1115	ret = generic_write_checks(iocb, from);
1116	if (ret <= 0)
1117		goto out_unlock;
1118
1119	ret = file_remove_privs(file);
1120	if (ret)
1121		goto out_unlock;
1122
1123	if (iocb->ki_flags & IOCB_DIRECT) {
1124		struct address_space *mapping = file->f_mapping;
1125		ssize_t buffered, ret2;
1126
1127		/*
1128		 * Note that under direct I/O, we don't allow and inode
1129		 * timestamp updates, so we're not calling file_update_time()
1130		 * here.
1131		 */
1132
1133		ret = gfs2_file_direct_write(iocb, from, &gh);
1134		if (ret < 0 || !iov_iter_count(from))
1135			goto out_unlock;
1136
1137		iocb->ki_flags |= IOCB_DSYNC;
1138		buffered = gfs2_file_buffered_write(iocb, from, &gh);
1139		if (unlikely(buffered <= 0)) {
1140			if (!ret)
1141				ret = buffered;
1142			goto out_unlock;
1143		}
1144
1145		/*
1146		 * We need to ensure that the page cache pages are written to
1147		 * disk and invalidated to preserve the expected O_DIRECT
1148		 * semantics.  If the writeback or invalidate fails, only report
1149		 * the direct I/O range as we don't know if the buffered pages
1150		 * made it to disk.
1151		 */
1152		ret2 = generic_write_sync(iocb, buffered);
1153		invalidate_mapping_pages(mapping,
1154				(iocb->ki_pos - buffered) >> PAGE_SHIFT,
1155				(iocb->ki_pos - 1) >> PAGE_SHIFT);
1156		if (!ret || ret2 > 0)
1157			ret += ret2;
1158	} else {
1159		ret = file_update_time(file);
1160		if (ret)
1161			goto out_unlock;
1162
1163		ret = gfs2_file_buffered_write(iocb, from, &gh);
1164		if (likely(ret > 0))
1165			ret = generic_write_sync(iocb, ret);
1166	}
1167
1168out_unlock:
1169	inode_unlock(inode);
1170	return ret;
1171}
1172
1173static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
1174			   int mode)
1175{
1176	struct super_block *sb = inode->i_sb;
1177	struct gfs2_inode *ip = GFS2_I(inode);
1178	loff_t end = offset + len;
1179	struct buffer_head *dibh;
1180	int error;
1181
1182	error = gfs2_meta_inode_buffer(ip, &dibh);
1183	if (unlikely(error))
1184		return error;
1185
1186	gfs2_trans_add_meta(ip->i_gl, dibh);
1187
1188	if (gfs2_is_stuffed(ip)) {
1189		error = gfs2_unstuff_dinode(ip);
1190		if (unlikely(error))
1191			goto out;
1192	}
1193
1194	while (offset < end) {
1195		struct iomap iomap = { };
1196
1197		error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
1198		if (error)
1199			goto out;
1200		offset = iomap.offset + iomap.length;
1201		if (!(iomap.flags & IOMAP_F_NEW))
1202			continue;
1203		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1204					 iomap.length >> inode->i_blkbits,
1205					 GFP_NOFS);
1206		if (error) {
1207			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1208			goto out;
1209		}
1210	}
1211out:
1212	brelse(dibh);
1213	return error;
1214}
1215
1216/**
1217 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1218 *                     blocks, determine how many bytes can be written.
1219 * @ip:          The inode in question.
1220 * @len:         Max cap of bytes. What we return in *len must be <= this.
1221 * @data_blocks: Compute and return the number of data blocks needed
1222 * @ind_blocks:  Compute and return the number of indirect blocks needed
1223 * @max_blocks:  The total blocks available to work with.
1224 *
1225 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1226 */
1227static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1228			    unsigned int *data_blocks, unsigned int *ind_blocks,
1229			    unsigned int max_blocks)
1230{
1231	loff_t max = *len;
1232	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1233	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1234
1235	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1236		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1237		max_data -= tmp;
1238	}
1239
1240	*data_blocks = max_data;
1241	*ind_blocks = max_blocks - max_data;
1242	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1243	if (*len > max) {
1244		*len = max;
1245		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1246	}
1247}
1248
1249static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1250{
1251	struct inode *inode = file_inode(file);
1252	struct gfs2_sbd *sdp = GFS2_SB(inode);
1253	struct gfs2_inode *ip = GFS2_I(inode);
1254	struct gfs2_alloc_parms ap = {};
1255	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1256	loff_t bytes, max_bytes, max_blks;
1257	int error;
1258	const loff_t pos = offset;
1259	const loff_t count = len;
1260	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1261	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1262	loff_t max_chunk_size = UINT_MAX & bsize_mask;
1263
1264	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1265
1266	offset &= bsize_mask;
1267
1268	len = next - offset;
1269	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1270	if (!bytes)
1271		bytes = UINT_MAX;
1272	bytes &= bsize_mask;
1273	if (bytes == 0)
1274		bytes = sdp->sd_sb.sb_bsize;
1275
1276	gfs2_size_hint(file, offset, len);
1277
1278	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1279	ap.min_target = data_blocks + ind_blocks;
1280
1281	while (len > 0) {
1282		if (len < bytes)
1283			bytes = len;
1284		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1285			len -= bytes;
1286			offset += bytes;
1287			continue;
1288		}
1289
1290		/* We need to determine how many bytes we can actually
1291		 * fallocate without exceeding quota or going over the
1292		 * end of the fs. We start off optimistically by assuming
1293		 * we can write max_bytes */
1294		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1295
1296		/* Since max_bytes is most likely a theoretical max, we
1297		 * calculate a more realistic 'bytes' to serve as a good
1298		 * starting point for the number of bytes we may be able
1299		 * to write */
1300		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1301		ap.target = data_blocks + ind_blocks;
1302
1303		error = gfs2_quota_lock_check(ip, &ap);
1304		if (error)
1305			return error;
1306		/* ap.allowed tells us how many blocks quota will allow
1307		 * us to write. Check if this reduces max_blks */
1308		max_blks = UINT_MAX;
1309		if (ap.allowed)
1310			max_blks = ap.allowed;
1311
1312		error = gfs2_inplace_reserve(ip, &ap);
1313		if (error)
1314			goto out_qunlock;
1315
1316		/* check if the selected rgrp limits our max_blks further */
1317		if (ip->i_res.rs_reserved < max_blks)
1318			max_blks = ip->i_res.rs_reserved;
1319
1320		/* Almost done. Calculate bytes that can be written using
1321		 * max_blks. We also recompute max_bytes, data_blocks and
1322		 * ind_blocks */
1323		calc_max_reserv(ip, &max_bytes, &data_blocks,
1324				&ind_blocks, max_blks);
1325
1326		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1327			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1328		if (gfs2_is_jdata(ip))
1329			rblocks += data_blocks ? data_blocks : 1;
1330
1331		error = gfs2_trans_begin(sdp, rblocks,
1332					 PAGE_SIZE >> inode->i_blkbits);
1333		if (error)
1334			goto out_trans_fail;
1335
1336		error = fallocate_chunk(inode, offset, max_bytes, mode);
1337		gfs2_trans_end(sdp);
1338
1339		if (error)
1340			goto out_trans_fail;
1341
1342		len -= max_bytes;
1343		offset += max_bytes;
1344		gfs2_inplace_release(ip);
1345		gfs2_quota_unlock(ip);
1346	}
1347
1348	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1349		i_size_write(inode, pos + count);
1350	file_update_time(file);
1351	mark_inode_dirty(inode);
1352
1353	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1354		return vfs_fsync_range(file, pos, pos + count - 1,
1355			       (file->f_flags & __O_SYNC) ? 0 : 1);
1356	return 0;
1357
1358out_trans_fail:
1359	gfs2_inplace_release(ip);
1360out_qunlock:
1361	gfs2_quota_unlock(ip);
1362	return error;
1363}
1364
1365static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1366{
1367	struct inode *inode = file_inode(file);
1368	struct gfs2_sbd *sdp = GFS2_SB(inode);
1369	struct gfs2_inode *ip = GFS2_I(inode);
1370	struct gfs2_holder gh;
1371	int ret;
1372
1373	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1374		return -EOPNOTSUPP;
1375	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
1376	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1377		return -EOPNOTSUPP;
1378
1379	inode_lock(inode);
1380
1381	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1382	ret = gfs2_glock_nq(&gh);
1383	if (ret)
1384		goto out_uninit;
1385
1386	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1387	    (offset + len) > inode->i_size) {
1388		ret = inode_newsize_ok(inode, offset + len);
1389		if (ret)
1390			goto out_unlock;
1391	}
1392
1393	ret = get_write_access(inode);
1394	if (ret)
1395		goto out_unlock;
1396
1397	if (mode & FALLOC_FL_PUNCH_HOLE) {
1398		ret = __gfs2_punch_hole(file, offset, len);
1399	} else {
1400		ret = __gfs2_fallocate(file, mode, offset, len);
1401		if (ret)
1402			gfs2_rs_deltree(&ip->i_res);
1403	}
1404
1405	put_write_access(inode);
1406out_unlock:
1407	gfs2_glock_dq(&gh);
1408out_uninit:
1409	gfs2_holder_uninit(&gh);
1410	inode_unlock(inode);
1411	return ret;
1412}
1413
1414static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1415				      struct file *out, loff_t *ppos,
1416				      size_t len, unsigned int flags)
1417{
1418	ssize_t ret;
1419
1420	gfs2_size_hint(out, *ppos, len);
1421
1422	ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1423	return ret;
1424}
1425
1426#ifdef CONFIG_GFS2_FS_LOCKING_DLM
1427
1428/**
1429 * gfs2_lock - acquire/release a posix lock on a file
1430 * @file: the file pointer
1431 * @cmd: either modify or retrieve lock state, possibly wait
1432 * @fl: type and range of lock
1433 *
1434 * Returns: errno
1435 */
1436
1437static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1438{
1439	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1440	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1441	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1442
1443	if (!(fl->c.flc_flags & FL_POSIX))
1444		return -ENOLCK;
1445	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1446		if (lock_is_unlock(fl))
1447			locks_lock_file_wait(file, fl);
1448		return -EIO;
1449	}
1450	if (cmd == F_CANCELLK)
1451		return dlm_posix_cancel(ls->ls_dlm, ip->i_no_addr, file, fl);
1452	else if (IS_GETLK(cmd))
1453		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1454	else if (lock_is_unlock(fl))
1455		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1456	else
1457		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1458}
1459
1460static void __flock_holder_uninit(struct file *file, struct gfs2_holder *fl_gh)
1461{
1462	struct gfs2_glock *gl = gfs2_glock_hold(fl_gh->gh_gl);
1463
1464	/*
1465	 * Make sure gfs2_glock_put() won't sleep under the file->f_lock
1466	 * spinlock.
1467	 */
1468
1469	spin_lock(&file->f_lock);
1470	gfs2_holder_uninit(fl_gh);
1471	spin_unlock(&file->f_lock);
1472	gfs2_glock_put(gl);
1473}
1474
1475static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1476{
1477	struct gfs2_file *fp = file->private_data;
1478	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1479	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1480	struct gfs2_glock *gl;
1481	unsigned int state;
1482	u16 flags;
1483	int error = 0;
1484	int sleeptime;
1485
1486	state = lock_is_write(fl) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1487	flags = GL_EXACT | GL_NOPID;
1488	if (!IS_SETLKW(cmd))
1489		flags |= LM_FLAG_TRY_1CB;
1490
1491	mutex_lock(&fp->f_fl_mutex);
1492
1493	if (gfs2_holder_initialized(fl_gh)) {
1494		struct file_lock request;
1495		if (fl_gh->gh_state == state)
1496			goto out;
1497		locks_init_lock(&request);
1498		request.c.flc_type = F_UNLCK;
1499		request.c.flc_flags = FL_FLOCK;
1500		locks_lock_file_wait(file, &request);
1501		gfs2_glock_dq(fl_gh);
1502		gfs2_holder_reinit(state, flags, fl_gh);
1503	} else {
1504		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1505				       &gfs2_flock_glops, CREATE, &gl);
1506		if (error)
1507			goto out;
1508		spin_lock(&file->f_lock);
1509		gfs2_holder_init(gl, state, flags, fl_gh);
1510		spin_unlock(&file->f_lock);
1511		gfs2_glock_put(gl);
1512	}
1513	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1514		error = gfs2_glock_nq(fl_gh);
1515		if (error != GLR_TRYFAILED)
1516			break;
1517		fl_gh->gh_flags &= ~LM_FLAG_TRY_1CB;
1518		fl_gh->gh_flags |= LM_FLAG_TRY;
1519		msleep(sleeptime);
1520	}
1521	if (error) {
1522		__flock_holder_uninit(file, fl_gh);
1523		if (error == GLR_TRYFAILED)
1524			error = -EAGAIN;
1525	} else {
1526		error = locks_lock_file_wait(file, fl);
1527		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1528	}
1529
1530out:
1531	mutex_unlock(&fp->f_fl_mutex);
1532	return error;
1533}
1534
1535static void do_unflock(struct file *file, struct file_lock *fl)
1536{
1537	struct gfs2_file *fp = file->private_data;
1538	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1539
1540	mutex_lock(&fp->f_fl_mutex);
1541	locks_lock_file_wait(file, fl);
1542	if (gfs2_holder_initialized(fl_gh)) {
1543		gfs2_glock_dq(fl_gh);
1544		__flock_holder_uninit(file, fl_gh);
1545	}
1546	mutex_unlock(&fp->f_fl_mutex);
1547}
1548
1549/**
1550 * gfs2_flock - acquire/release a flock lock on a file
1551 * @file: the file pointer
1552 * @cmd: either modify or retrieve lock state, possibly wait
1553 * @fl: type and range of lock
1554 *
1555 * Returns: errno
1556 */
1557
1558static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1559{
1560	if (!(fl->c.flc_flags & FL_FLOCK))
1561		return -ENOLCK;
1562
1563	if (lock_is_unlock(fl)) {
1564		do_unflock(file, fl);
1565		return 0;
1566	} else {
1567		return do_flock(file, cmd, fl);
1568	}
1569}
1570
1571const struct file_operations gfs2_file_fops = {
1572	.llseek		= gfs2_llseek,
1573	.read_iter	= gfs2_file_read_iter,
1574	.write_iter	= gfs2_file_write_iter,
1575	.iopoll		= iocb_bio_iopoll,
1576	.unlocked_ioctl	= gfs2_ioctl,
1577	.compat_ioctl	= gfs2_compat_ioctl,
1578	.mmap		= gfs2_mmap,
1579	.open		= gfs2_open,
1580	.release	= gfs2_release,
1581	.fsync		= gfs2_fsync,
1582	.lock		= gfs2_lock,
1583	.flock		= gfs2_flock,
1584	.splice_read	= copy_splice_read,
1585	.splice_write	= gfs2_file_splice_write,
1586	.setlease	= simple_nosetlease,
1587	.fallocate	= gfs2_fallocate,
1588};
1589
1590const struct file_operations gfs2_dir_fops = {
1591	.iterate_shared	= gfs2_readdir,
1592	.unlocked_ioctl	= gfs2_ioctl,
1593	.compat_ioctl	= gfs2_compat_ioctl,
1594	.open		= gfs2_open,
1595	.release	= gfs2_release,
1596	.fsync		= gfs2_fsync,
1597	.lock		= gfs2_lock,
1598	.flock		= gfs2_flock,
1599	.llseek		= default_llseek,
1600};
1601
1602#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1603
1604const struct file_operations gfs2_file_fops_nolock = {
1605	.llseek		= gfs2_llseek,
1606	.read_iter	= gfs2_file_read_iter,
1607	.write_iter	= gfs2_file_write_iter,
1608	.iopoll		= iocb_bio_iopoll,
1609	.unlocked_ioctl	= gfs2_ioctl,
1610	.compat_ioctl	= gfs2_compat_ioctl,
1611	.mmap		= gfs2_mmap,
1612	.open		= gfs2_open,
1613	.release	= gfs2_release,
1614	.fsync		= gfs2_fsync,
1615	.splice_read	= copy_splice_read,
1616	.splice_write	= gfs2_file_splice_write,
1617	.setlease	= generic_setlease,
1618	.fallocate	= gfs2_fallocate,
1619};
1620
1621const struct file_operations gfs2_dir_fops_nolock = {
1622	.iterate_shared	= gfs2_readdir,
1623	.unlocked_ioctl	= gfs2_ioctl,
1624	.compat_ioctl	= gfs2_compat_ioctl,
1625	.open		= gfs2_open,
1626	.release	= gfs2_release,
1627	.fsync		= gfs2_fsync,
1628	.llseek		= default_llseek,
1629};
1630
1631