1/*
2  FUSE: Filesystem in Userspace
3  Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4
5  This program can be distributed under the terms of the GNU GPL.
6  See the file COPYING.
7*/
8
9#include "fuse_i.h"
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/poll.h>
14#include <linux/sched/signal.h>
15#include <linux/uio.h>
16#include <linux/miscdevice.h>
17#include <linux/pagemap.h>
18#include <linux/file.h>
19#include <linux/slab.h>
20#include <linux/pipe_fs_i.h>
21#include <linux/swap.h>
22#include <linux/splice.h>
23#include <linux/sched.h>
24
25MODULE_ALIAS_MISCDEV(FUSE_MINOR);
26MODULE_ALIAS("devname:fuse");
27
28/* Ordinary requests have even IDs, while interrupts IDs are odd */
29#define FUSE_INT_REQ_BIT (1ULL << 0)
30#define FUSE_REQ_ID_STEP (1ULL << 1)
31
32static struct kmem_cache *fuse_req_cachep;
33
34static struct fuse_dev *fuse_get_dev(struct file *file)
35{
36	/*
37	 * Lockless access is OK, because file->private data is set
38	 * once during mount and is valid until the file is released.
39	 */
40	return READ_ONCE(file->private_data);
41}
42
43static void fuse_request_init(struct fuse_mount *fm, struct fuse_req *req)
44{
45	INIT_LIST_HEAD(&req->list);
46	INIT_LIST_HEAD(&req->intr_entry);
47	init_waitqueue_head(&req->waitq);
48	refcount_set(&req->count, 1);
49	__set_bit(FR_PENDING, &req->flags);
50	req->fm = fm;
51}
52
53static struct fuse_req *fuse_request_alloc(struct fuse_mount *fm, gfp_t flags)
54{
55	struct fuse_req *req = kmem_cache_zalloc(fuse_req_cachep, flags);
56	if (req)
57		fuse_request_init(fm, req);
58
59	return req;
60}
61
62static void fuse_request_free(struct fuse_req *req)
63{
64	kmem_cache_free(fuse_req_cachep, req);
65}
66
67static void __fuse_get_request(struct fuse_req *req)
68{
69	refcount_inc(&req->count);
70}
71
72/* Must be called with > 1 refcount */
73static void __fuse_put_request(struct fuse_req *req)
74{
75	refcount_dec(&req->count);
76}
77
78void fuse_set_initialized(struct fuse_conn *fc)
79{
80	/* Make sure stores before this are seen on another CPU */
81	smp_wmb();
82	fc->initialized = 1;
83}
84
85static bool fuse_block_alloc(struct fuse_conn *fc, bool for_background)
86{
87	return !fc->initialized || (for_background && fc->blocked);
88}
89
90static void fuse_drop_waiting(struct fuse_conn *fc)
91{
92	/*
93	 * lockess check of fc->connected is okay, because atomic_dec_and_test()
94	 * provides a memory barrier matched with the one in fuse_wait_aborted()
95	 * to ensure no wake-up is missed.
96	 */
97	if (atomic_dec_and_test(&fc->num_waiting) &&
98	    !READ_ONCE(fc->connected)) {
99		/* wake up aborters */
100		wake_up_all(&fc->blocked_waitq);
101	}
102}
103
104static void fuse_put_request(struct fuse_req *req);
105
106static struct fuse_req *fuse_get_req(struct fuse_mount *fm, bool for_background)
107{
108	struct fuse_conn *fc = fm->fc;
109	struct fuse_req *req;
110	int err;
111	atomic_inc(&fc->num_waiting);
112
113	if (fuse_block_alloc(fc, for_background)) {
114		err = -EINTR;
115		if (wait_event_killable_exclusive(fc->blocked_waitq,
116				!fuse_block_alloc(fc, for_background)))
117			goto out;
118	}
119	/* Matches smp_wmb() in fuse_set_initialized() */
120	smp_rmb();
121
122	err = -ENOTCONN;
123	if (!fc->connected)
124		goto out;
125
126	err = -ECONNREFUSED;
127	if (fc->conn_error)
128		goto out;
129
130	req = fuse_request_alloc(fm, GFP_KERNEL);
131	err = -ENOMEM;
132	if (!req) {
133		if (for_background)
134			wake_up(&fc->blocked_waitq);
135		goto out;
136	}
137
138	req->in.h.uid = from_kuid(fc->user_ns, current_fsuid());
139	req->in.h.gid = from_kgid(fc->user_ns, current_fsgid());
140	req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns);
141
142	__set_bit(FR_WAITING, &req->flags);
143	if (for_background)
144		__set_bit(FR_BACKGROUND, &req->flags);
145
146	if (unlikely(req->in.h.uid == ((uid_t)-1) ||
147		     req->in.h.gid == ((gid_t)-1))) {
148		fuse_put_request(req);
149		return ERR_PTR(-EOVERFLOW);
150	}
151	return req;
152
153 out:
154	fuse_drop_waiting(fc);
155	return ERR_PTR(err);
156}
157
158static void fuse_put_request(struct fuse_req *req)
159{
160	struct fuse_conn *fc = req->fm->fc;
161
162	if (refcount_dec_and_test(&req->count)) {
163		if (test_bit(FR_BACKGROUND, &req->flags)) {
164			/*
165			 * We get here in the unlikely case that a background
166			 * request was allocated but not sent
167			 */
168			spin_lock(&fc->bg_lock);
169			if (!fc->blocked)
170				wake_up(&fc->blocked_waitq);
171			spin_unlock(&fc->bg_lock);
172		}
173
174		if (test_bit(FR_WAITING, &req->flags)) {
175			__clear_bit(FR_WAITING, &req->flags);
176			fuse_drop_waiting(fc);
177		}
178
179		fuse_request_free(req);
180	}
181}
182
183unsigned int fuse_len_args(unsigned int numargs, struct fuse_arg *args)
184{
185	unsigned nbytes = 0;
186	unsigned i;
187
188	for (i = 0; i < numargs; i++)
189		nbytes += args[i].size;
190
191	return nbytes;
192}
193EXPORT_SYMBOL_GPL(fuse_len_args);
194
195u64 fuse_get_unique(struct fuse_iqueue *fiq)
196{
197	fiq->reqctr += FUSE_REQ_ID_STEP;
198	return fiq->reqctr;
199}
200EXPORT_SYMBOL_GPL(fuse_get_unique);
201
202static unsigned int fuse_req_hash(u64 unique)
203{
204	return hash_long(unique & ~FUSE_INT_REQ_BIT, FUSE_PQ_HASH_BITS);
205}
206
207/*
208 * A new request is available, wake fiq->waitq
209 */
210static void fuse_dev_wake_and_unlock(struct fuse_iqueue *fiq)
211__releases(fiq->lock)
212{
213	wake_up(&fiq->waitq);
214	kill_fasync(&fiq->fasync, SIGIO, POLL_IN);
215	spin_unlock(&fiq->lock);
216}
217
218const struct fuse_iqueue_ops fuse_dev_fiq_ops = {
219	.wake_forget_and_unlock		= fuse_dev_wake_and_unlock,
220	.wake_interrupt_and_unlock	= fuse_dev_wake_and_unlock,
221	.wake_pending_and_unlock	= fuse_dev_wake_and_unlock,
222};
223EXPORT_SYMBOL_GPL(fuse_dev_fiq_ops);
224
225static void queue_request_and_unlock(struct fuse_iqueue *fiq,
226				     struct fuse_req *req)
227__releases(fiq->lock)
228{
229	req->in.h.len = sizeof(struct fuse_in_header) +
230		fuse_len_args(req->args->in_numargs,
231			      (struct fuse_arg *) req->args->in_args);
232	list_add_tail(&req->list, &fiq->pending);
233	fiq->ops->wake_pending_and_unlock(fiq);
234}
235
236void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget,
237		       u64 nodeid, u64 nlookup)
238{
239	struct fuse_iqueue *fiq = &fc->iq;
240
241	forget->forget_one.nodeid = nodeid;
242	forget->forget_one.nlookup = nlookup;
243
244	spin_lock(&fiq->lock);
245	if (fiq->connected) {
246		fiq->forget_list_tail->next = forget;
247		fiq->forget_list_tail = forget;
248		fiq->ops->wake_forget_and_unlock(fiq);
249	} else {
250		kfree(forget);
251		spin_unlock(&fiq->lock);
252	}
253}
254
255static void flush_bg_queue(struct fuse_conn *fc)
256{
257	struct fuse_iqueue *fiq = &fc->iq;
258
259	while (fc->active_background < fc->max_background &&
260	       !list_empty(&fc->bg_queue)) {
261		struct fuse_req *req;
262
263		req = list_first_entry(&fc->bg_queue, struct fuse_req, list);
264		list_del(&req->list);
265		fc->active_background++;
266		spin_lock(&fiq->lock);
267		req->in.h.unique = fuse_get_unique(fiq);
268		queue_request_and_unlock(fiq, req);
269	}
270}
271
272/*
273 * This function is called when a request is finished.  Either a reply
274 * has arrived or it was aborted (and not yet sent) or some error
275 * occurred during communication with userspace, or the device file
276 * was closed.  The requester thread is woken up (if still waiting),
277 * the 'end' callback is called if given, else the reference to the
278 * request is released
279 */
280void fuse_request_end(struct fuse_req *req)
281{
282	struct fuse_mount *fm = req->fm;
283	struct fuse_conn *fc = fm->fc;
284	struct fuse_iqueue *fiq = &fc->iq;
285
286	if (test_and_set_bit(FR_FINISHED, &req->flags))
287		goto put_request;
288
289	/*
290	 * test_and_set_bit() implies smp_mb() between bit
291	 * changing and below FR_INTERRUPTED check. Pairs with
292	 * smp_mb() from queue_interrupt().
293	 */
294	if (test_bit(FR_INTERRUPTED, &req->flags)) {
295		spin_lock(&fiq->lock);
296		list_del_init(&req->intr_entry);
297		spin_unlock(&fiq->lock);
298	}
299	WARN_ON(test_bit(FR_PENDING, &req->flags));
300	WARN_ON(test_bit(FR_SENT, &req->flags));
301	if (test_bit(FR_BACKGROUND, &req->flags)) {
302		spin_lock(&fc->bg_lock);
303		clear_bit(FR_BACKGROUND, &req->flags);
304		if (fc->num_background == fc->max_background) {
305			fc->blocked = 0;
306			wake_up(&fc->blocked_waitq);
307		} else if (!fc->blocked) {
308			/*
309			 * Wake up next waiter, if any.  It's okay to use
310			 * waitqueue_active(), as we've already synced up
311			 * fc->blocked with waiters with the wake_up() call
312			 * above.
313			 */
314			if (waitqueue_active(&fc->blocked_waitq))
315				wake_up(&fc->blocked_waitq);
316		}
317
318		fc->num_background--;
319		fc->active_background--;
320		flush_bg_queue(fc);
321		spin_unlock(&fc->bg_lock);
322	} else {
323		/* Wake up waiter sleeping in request_wait_answer() */
324		wake_up(&req->waitq);
325	}
326
327	if (test_bit(FR_ASYNC, &req->flags))
328		req->args->end(fm, req->args, req->out.h.error);
329put_request:
330	fuse_put_request(req);
331}
332EXPORT_SYMBOL_GPL(fuse_request_end);
333
334static int queue_interrupt(struct fuse_req *req)
335{
336	struct fuse_iqueue *fiq = &req->fm->fc->iq;
337
338	spin_lock(&fiq->lock);
339	/* Check for we've sent request to interrupt this req */
340	if (unlikely(!test_bit(FR_INTERRUPTED, &req->flags))) {
341		spin_unlock(&fiq->lock);
342		return -EINVAL;
343	}
344
345	if (list_empty(&req->intr_entry)) {
346		list_add_tail(&req->intr_entry, &fiq->interrupts);
347		/*
348		 * Pairs with smp_mb() implied by test_and_set_bit()
349		 * from fuse_request_end().
350		 */
351		smp_mb();
352		if (test_bit(FR_FINISHED, &req->flags)) {
353			list_del_init(&req->intr_entry);
354			spin_unlock(&fiq->lock);
355			return 0;
356		}
357		fiq->ops->wake_interrupt_and_unlock(fiq);
358	} else {
359		spin_unlock(&fiq->lock);
360	}
361	return 0;
362}
363
364static void request_wait_answer(struct fuse_req *req)
365{
366	struct fuse_conn *fc = req->fm->fc;
367	struct fuse_iqueue *fiq = &fc->iq;
368	int err;
369
370	if (!fc->no_interrupt) {
371		/* Any signal may interrupt this */
372		err = wait_event_interruptible(req->waitq,
373					test_bit(FR_FINISHED, &req->flags));
374		if (!err)
375			return;
376
377		set_bit(FR_INTERRUPTED, &req->flags);
378		/* matches barrier in fuse_dev_do_read() */
379		smp_mb__after_atomic();
380		if (test_bit(FR_SENT, &req->flags))
381			queue_interrupt(req);
382	}
383
384	if (!test_bit(FR_FORCE, &req->flags)) {
385		/* Only fatal signals may interrupt this */
386		err = wait_event_killable(req->waitq,
387					test_bit(FR_FINISHED, &req->flags));
388		if (!err)
389			return;
390
391		spin_lock(&fiq->lock);
392		/* Request is not yet in userspace, bail out */
393		if (test_bit(FR_PENDING, &req->flags)) {
394			list_del(&req->list);
395			spin_unlock(&fiq->lock);
396			__fuse_put_request(req);
397			req->out.h.error = -EINTR;
398			return;
399		}
400		spin_unlock(&fiq->lock);
401	}
402
403	/*
404	 * Either request is already in userspace, or it was forced.
405	 * Wait it out.
406	 */
407	wait_event(req->waitq, test_bit(FR_FINISHED, &req->flags));
408}
409
410static void __fuse_request_send(struct fuse_req *req)
411{
412	struct fuse_iqueue *fiq = &req->fm->fc->iq;
413
414	BUG_ON(test_bit(FR_BACKGROUND, &req->flags));
415	spin_lock(&fiq->lock);
416	if (!fiq->connected) {
417		spin_unlock(&fiq->lock);
418		req->out.h.error = -ENOTCONN;
419	} else {
420		req->in.h.unique = fuse_get_unique(fiq);
421		/* acquire extra reference, since request is still needed
422		   after fuse_request_end() */
423		__fuse_get_request(req);
424		queue_request_and_unlock(fiq, req);
425
426		request_wait_answer(req);
427		/* Pairs with smp_wmb() in fuse_request_end() */
428		smp_rmb();
429	}
430}
431
432static void fuse_adjust_compat(struct fuse_conn *fc, struct fuse_args *args)
433{
434	if (fc->minor < 4 && args->opcode == FUSE_STATFS)
435		args->out_args[0].size = FUSE_COMPAT_STATFS_SIZE;
436
437	if (fc->minor < 9) {
438		switch (args->opcode) {
439		case FUSE_LOOKUP:
440		case FUSE_CREATE:
441		case FUSE_MKNOD:
442		case FUSE_MKDIR:
443		case FUSE_SYMLINK:
444		case FUSE_LINK:
445			args->out_args[0].size = FUSE_COMPAT_ENTRY_OUT_SIZE;
446			break;
447		case FUSE_GETATTR:
448		case FUSE_SETATTR:
449			args->out_args[0].size = FUSE_COMPAT_ATTR_OUT_SIZE;
450			break;
451		}
452	}
453	if (fc->minor < 12) {
454		switch (args->opcode) {
455		case FUSE_CREATE:
456			args->in_args[0].size = sizeof(struct fuse_open_in);
457			break;
458		case FUSE_MKNOD:
459			args->in_args[0].size = FUSE_COMPAT_MKNOD_IN_SIZE;
460			break;
461		}
462	}
463}
464
465static void fuse_force_creds(struct fuse_req *req)
466{
467	struct fuse_conn *fc = req->fm->fc;
468
469	req->in.h.uid = from_kuid_munged(fc->user_ns, current_fsuid());
470	req->in.h.gid = from_kgid_munged(fc->user_ns, current_fsgid());
471	req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns);
472}
473
474static void fuse_args_to_req(struct fuse_req *req, struct fuse_args *args)
475{
476	req->in.h.opcode = args->opcode;
477	req->in.h.nodeid = args->nodeid;
478	req->args = args;
479	if (args->is_ext)
480		req->in.h.total_extlen = args->in_args[args->ext_idx].size / 8;
481	if (args->end)
482		__set_bit(FR_ASYNC, &req->flags);
483}
484
485ssize_t fuse_simple_request(struct fuse_mount *fm, struct fuse_args *args)
486{
487	struct fuse_conn *fc = fm->fc;
488	struct fuse_req *req;
489	ssize_t ret;
490
491	if (args->force) {
492		atomic_inc(&fc->num_waiting);
493		req = fuse_request_alloc(fm, GFP_KERNEL | __GFP_NOFAIL);
494
495		if (!args->nocreds)
496			fuse_force_creds(req);
497
498		__set_bit(FR_WAITING, &req->flags);
499		__set_bit(FR_FORCE, &req->flags);
500	} else {
501		WARN_ON(args->nocreds);
502		req = fuse_get_req(fm, false);
503		if (IS_ERR(req))
504			return PTR_ERR(req);
505	}
506
507	/* Needs to be done after fuse_get_req() so that fc->minor is valid */
508	fuse_adjust_compat(fc, args);
509	fuse_args_to_req(req, args);
510
511	if (!args->noreply)
512		__set_bit(FR_ISREPLY, &req->flags);
513	__fuse_request_send(req);
514	ret = req->out.h.error;
515	if (!ret && args->out_argvar) {
516		BUG_ON(args->out_numargs == 0);
517		ret = args->out_args[args->out_numargs - 1].size;
518	}
519	fuse_put_request(req);
520
521	return ret;
522}
523
524static bool fuse_request_queue_background(struct fuse_req *req)
525{
526	struct fuse_mount *fm = req->fm;
527	struct fuse_conn *fc = fm->fc;
528	bool queued = false;
529
530	WARN_ON(!test_bit(FR_BACKGROUND, &req->flags));
531	if (!test_bit(FR_WAITING, &req->flags)) {
532		__set_bit(FR_WAITING, &req->flags);
533		atomic_inc(&fc->num_waiting);
534	}
535	__set_bit(FR_ISREPLY, &req->flags);
536	spin_lock(&fc->bg_lock);
537	if (likely(fc->connected)) {
538		fc->num_background++;
539		if (fc->num_background == fc->max_background)
540			fc->blocked = 1;
541		list_add_tail(&req->list, &fc->bg_queue);
542		flush_bg_queue(fc);
543		queued = true;
544	}
545	spin_unlock(&fc->bg_lock);
546
547	return queued;
548}
549
550int fuse_simple_background(struct fuse_mount *fm, struct fuse_args *args,
551			    gfp_t gfp_flags)
552{
553	struct fuse_req *req;
554
555	if (args->force) {
556		WARN_ON(!args->nocreds);
557		req = fuse_request_alloc(fm, gfp_flags);
558		if (!req)
559			return -ENOMEM;
560		__set_bit(FR_BACKGROUND, &req->flags);
561	} else {
562		WARN_ON(args->nocreds);
563		req = fuse_get_req(fm, true);
564		if (IS_ERR(req))
565			return PTR_ERR(req);
566	}
567
568	fuse_args_to_req(req, args);
569
570	if (!fuse_request_queue_background(req)) {
571		fuse_put_request(req);
572		return -ENOTCONN;
573	}
574
575	return 0;
576}
577EXPORT_SYMBOL_GPL(fuse_simple_background);
578
579static int fuse_simple_notify_reply(struct fuse_mount *fm,
580				    struct fuse_args *args, u64 unique)
581{
582	struct fuse_req *req;
583	struct fuse_iqueue *fiq = &fm->fc->iq;
584	int err = 0;
585
586	req = fuse_get_req(fm, false);
587	if (IS_ERR(req))
588		return PTR_ERR(req);
589
590	__clear_bit(FR_ISREPLY, &req->flags);
591	req->in.h.unique = unique;
592
593	fuse_args_to_req(req, args);
594
595	spin_lock(&fiq->lock);
596	if (fiq->connected) {
597		queue_request_and_unlock(fiq, req);
598	} else {
599		err = -ENODEV;
600		spin_unlock(&fiq->lock);
601		fuse_put_request(req);
602	}
603
604	return err;
605}
606
607/*
608 * Lock the request.  Up to the next unlock_request() there mustn't be
609 * anything that could cause a page-fault.  If the request was already
610 * aborted bail out.
611 */
612static int lock_request(struct fuse_req *req)
613{
614	int err = 0;
615	if (req) {
616		spin_lock(&req->waitq.lock);
617		if (test_bit(FR_ABORTED, &req->flags))
618			err = -ENOENT;
619		else
620			set_bit(FR_LOCKED, &req->flags);
621		spin_unlock(&req->waitq.lock);
622	}
623	return err;
624}
625
626/*
627 * Unlock request.  If it was aborted while locked, caller is responsible
628 * for unlocking and ending the request.
629 */
630static int unlock_request(struct fuse_req *req)
631{
632	int err = 0;
633	if (req) {
634		spin_lock(&req->waitq.lock);
635		if (test_bit(FR_ABORTED, &req->flags))
636			err = -ENOENT;
637		else
638			clear_bit(FR_LOCKED, &req->flags);
639		spin_unlock(&req->waitq.lock);
640	}
641	return err;
642}
643
644struct fuse_copy_state {
645	int write;
646	struct fuse_req *req;
647	struct iov_iter *iter;
648	struct pipe_buffer *pipebufs;
649	struct pipe_buffer *currbuf;
650	struct pipe_inode_info *pipe;
651	unsigned long nr_segs;
652	struct page *pg;
653	unsigned len;
654	unsigned offset;
655	unsigned move_pages:1;
656};
657
658static void fuse_copy_init(struct fuse_copy_state *cs, int write,
659			   struct iov_iter *iter)
660{
661	memset(cs, 0, sizeof(*cs));
662	cs->write = write;
663	cs->iter = iter;
664}
665
666/* Unmap and put previous page of userspace buffer */
667static void fuse_copy_finish(struct fuse_copy_state *cs)
668{
669	if (cs->currbuf) {
670		struct pipe_buffer *buf = cs->currbuf;
671
672		if (cs->write)
673			buf->len = PAGE_SIZE - cs->len;
674		cs->currbuf = NULL;
675	} else if (cs->pg) {
676		if (cs->write) {
677			flush_dcache_page(cs->pg);
678			set_page_dirty_lock(cs->pg);
679		}
680		put_page(cs->pg);
681	}
682	cs->pg = NULL;
683}
684
685/*
686 * Get another pagefull of userspace buffer, and map it to kernel
687 * address space, and lock request
688 */
689static int fuse_copy_fill(struct fuse_copy_state *cs)
690{
691	struct page *page;
692	int err;
693
694	err = unlock_request(cs->req);
695	if (err)
696		return err;
697
698	fuse_copy_finish(cs);
699	if (cs->pipebufs) {
700		struct pipe_buffer *buf = cs->pipebufs;
701
702		if (!cs->write) {
703			err = pipe_buf_confirm(cs->pipe, buf);
704			if (err)
705				return err;
706
707			BUG_ON(!cs->nr_segs);
708			cs->currbuf = buf;
709			cs->pg = buf->page;
710			cs->offset = buf->offset;
711			cs->len = buf->len;
712			cs->pipebufs++;
713			cs->nr_segs--;
714		} else {
715			if (cs->nr_segs >= cs->pipe->max_usage)
716				return -EIO;
717
718			page = alloc_page(GFP_HIGHUSER);
719			if (!page)
720				return -ENOMEM;
721
722			buf->page = page;
723			buf->offset = 0;
724			buf->len = 0;
725
726			cs->currbuf = buf;
727			cs->pg = page;
728			cs->offset = 0;
729			cs->len = PAGE_SIZE;
730			cs->pipebufs++;
731			cs->nr_segs++;
732		}
733	} else {
734		size_t off;
735		err = iov_iter_get_pages2(cs->iter, &page, PAGE_SIZE, 1, &off);
736		if (err < 0)
737			return err;
738		BUG_ON(!err);
739		cs->len = err;
740		cs->offset = off;
741		cs->pg = page;
742	}
743
744	return lock_request(cs->req);
745}
746
747/* Do as much copy to/from userspace buffer as we can */
748static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
749{
750	unsigned ncpy = min(*size, cs->len);
751	if (val) {
752		void *pgaddr = kmap_local_page(cs->pg);
753		void *buf = pgaddr + cs->offset;
754
755		if (cs->write)
756			memcpy(buf, *val, ncpy);
757		else
758			memcpy(*val, buf, ncpy);
759
760		kunmap_local(pgaddr);
761		*val += ncpy;
762	}
763	*size -= ncpy;
764	cs->len -= ncpy;
765	cs->offset += ncpy;
766	return ncpy;
767}
768
769static int fuse_check_folio(struct folio *folio)
770{
771	if (folio_mapped(folio) ||
772	    folio->mapping != NULL ||
773	    (folio->flags & PAGE_FLAGS_CHECK_AT_PREP &
774	     ~(1 << PG_locked |
775	       1 << PG_referenced |
776	       1 << PG_uptodate |
777	       1 << PG_lru |
778	       1 << PG_active |
779	       1 << PG_workingset |
780	       1 << PG_reclaim |
781	       1 << PG_waiters |
782	       LRU_GEN_MASK | LRU_REFS_MASK))) {
783		dump_page(&folio->page, "fuse: trying to steal weird page");
784		return 1;
785	}
786	return 0;
787}
788
789static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep)
790{
791	int err;
792	struct folio *oldfolio = page_folio(*pagep);
793	struct folio *newfolio;
794	struct pipe_buffer *buf = cs->pipebufs;
795
796	folio_get(oldfolio);
797	err = unlock_request(cs->req);
798	if (err)
799		goto out_put_old;
800
801	fuse_copy_finish(cs);
802
803	err = pipe_buf_confirm(cs->pipe, buf);
804	if (err)
805		goto out_put_old;
806
807	BUG_ON(!cs->nr_segs);
808	cs->currbuf = buf;
809	cs->len = buf->len;
810	cs->pipebufs++;
811	cs->nr_segs--;
812
813	if (cs->len != PAGE_SIZE)
814		goto out_fallback;
815
816	if (!pipe_buf_try_steal(cs->pipe, buf))
817		goto out_fallback;
818
819	newfolio = page_folio(buf->page);
820
821	if (!folio_test_uptodate(newfolio))
822		folio_mark_uptodate(newfolio);
823
824	folio_clear_mappedtodisk(newfolio);
825
826	if (fuse_check_folio(newfolio) != 0)
827		goto out_fallback_unlock;
828
829	/*
830	 * This is a new and locked page, it shouldn't be mapped or
831	 * have any special flags on it
832	 */
833	if (WARN_ON(folio_mapped(oldfolio)))
834		goto out_fallback_unlock;
835	if (WARN_ON(folio_has_private(oldfolio)))
836		goto out_fallback_unlock;
837	if (WARN_ON(folio_test_dirty(oldfolio) ||
838				folio_test_writeback(oldfolio)))
839		goto out_fallback_unlock;
840	if (WARN_ON(folio_test_mlocked(oldfolio)))
841		goto out_fallback_unlock;
842
843	replace_page_cache_folio(oldfolio, newfolio);
844
845	folio_get(newfolio);
846
847	if (!(buf->flags & PIPE_BUF_FLAG_LRU))
848		folio_add_lru(newfolio);
849
850	/*
851	 * Release while we have extra ref on stolen page.  Otherwise
852	 * anon_pipe_buf_release() might think the page can be reused.
853	 */
854	pipe_buf_release(cs->pipe, buf);
855
856	err = 0;
857	spin_lock(&cs->req->waitq.lock);
858	if (test_bit(FR_ABORTED, &cs->req->flags))
859		err = -ENOENT;
860	else
861		*pagep = &newfolio->page;
862	spin_unlock(&cs->req->waitq.lock);
863
864	if (err) {
865		folio_unlock(newfolio);
866		folio_put(newfolio);
867		goto out_put_old;
868	}
869
870	folio_unlock(oldfolio);
871	/* Drop ref for ap->pages[] array */
872	folio_put(oldfolio);
873	cs->len = 0;
874
875	err = 0;
876out_put_old:
877	/* Drop ref obtained in this function */
878	folio_put(oldfolio);
879	return err;
880
881out_fallback_unlock:
882	folio_unlock(newfolio);
883out_fallback:
884	cs->pg = buf->page;
885	cs->offset = buf->offset;
886
887	err = lock_request(cs->req);
888	if (!err)
889		err = 1;
890
891	goto out_put_old;
892}
893
894static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page,
895			 unsigned offset, unsigned count)
896{
897	struct pipe_buffer *buf;
898	int err;
899
900	if (cs->nr_segs >= cs->pipe->max_usage)
901		return -EIO;
902
903	get_page(page);
904	err = unlock_request(cs->req);
905	if (err) {
906		put_page(page);
907		return err;
908	}
909
910	fuse_copy_finish(cs);
911
912	buf = cs->pipebufs;
913	buf->page = page;
914	buf->offset = offset;
915	buf->len = count;
916
917	cs->pipebufs++;
918	cs->nr_segs++;
919	cs->len = 0;
920
921	return 0;
922}
923
924/*
925 * Copy a page in the request to/from the userspace buffer.  Must be
926 * done atomically
927 */
928static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep,
929			  unsigned offset, unsigned count, int zeroing)
930{
931	int err;
932	struct page *page = *pagep;
933
934	if (page && zeroing && count < PAGE_SIZE)
935		clear_highpage(page);
936
937	while (count) {
938		if (cs->write && cs->pipebufs && page) {
939			/*
940			 * Can't control lifetime of pipe buffers, so always
941			 * copy user pages.
942			 */
943			if (cs->req->args->user_pages) {
944				err = fuse_copy_fill(cs);
945				if (err)
946					return err;
947			} else {
948				return fuse_ref_page(cs, page, offset, count);
949			}
950		} else if (!cs->len) {
951			if (cs->move_pages && page &&
952			    offset == 0 && count == PAGE_SIZE) {
953				err = fuse_try_move_page(cs, pagep);
954				if (err <= 0)
955					return err;
956			} else {
957				err = fuse_copy_fill(cs);
958				if (err)
959					return err;
960			}
961		}
962		if (page) {
963			void *mapaddr = kmap_local_page(page);
964			void *buf = mapaddr + offset;
965			offset += fuse_copy_do(cs, &buf, &count);
966			kunmap_local(mapaddr);
967		} else
968			offset += fuse_copy_do(cs, NULL, &count);
969	}
970	if (page && !cs->write)
971		flush_dcache_page(page);
972	return 0;
973}
974
975/* Copy pages in the request to/from userspace buffer */
976static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
977			   int zeroing)
978{
979	unsigned i;
980	struct fuse_req *req = cs->req;
981	struct fuse_args_pages *ap = container_of(req->args, typeof(*ap), args);
982
983
984	for (i = 0; i < ap->num_pages && (nbytes || zeroing); i++) {
985		int err;
986		unsigned int offset = ap->descs[i].offset;
987		unsigned int count = min(nbytes, ap->descs[i].length);
988
989		err = fuse_copy_page(cs, &ap->pages[i], offset, count, zeroing);
990		if (err)
991			return err;
992
993		nbytes -= count;
994	}
995	return 0;
996}
997
998/* Copy a single argument in the request to/from userspace buffer */
999static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
1000{
1001	while (size) {
1002		if (!cs->len) {
1003			int err = fuse_copy_fill(cs);
1004			if (err)
1005				return err;
1006		}
1007		fuse_copy_do(cs, &val, &size);
1008	}
1009	return 0;
1010}
1011
1012/* Copy request arguments to/from userspace buffer */
1013static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
1014			  unsigned argpages, struct fuse_arg *args,
1015			  int zeroing)
1016{
1017	int err = 0;
1018	unsigned i;
1019
1020	for (i = 0; !err && i < numargs; i++)  {
1021		struct fuse_arg *arg = &args[i];
1022		if (i == numargs - 1 && argpages)
1023			err = fuse_copy_pages(cs, arg->size, zeroing);
1024		else
1025			err = fuse_copy_one(cs, arg->value, arg->size);
1026	}
1027	return err;
1028}
1029
1030static int forget_pending(struct fuse_iqueue *fiq)
1031{
1032	return fiq->forget_list_head.next != NULL;
1033}
1034
1035static int request_pending(struct fuse_iqueue *fiq)
1036{
1037	return !list_empty(&fiq->pending) || !list_empty(&fiq->interrupts) ||
1038		forget_pending(fiq);
1039}
1040
1041/*
1042 * Transfer an interrupt request to userspace
1043 *
1044 * Unlike other requests this is assembled on demand, without a need
1045 * to allocate a separate fuse_req structure.
1046 *
1047 * Called with fiq->lock held, releases it
1048 */
1049static int fuse_read_interrupt(struct fuse_iqueue *fiq,
1050			       struct fuse_copy_state *cs,
1051			       size_t nbytes, struct fuse_req *req)
1052__releases(fiq->lock)
1053{
1054	struct fuse_in_header ih;
1055	struct fuse_interrupt_in arg;
1056	unsigned reqsize = sizeof(ih) + sizeof(arg);
1057	int err;
1058
1059	list_del_init(&req->intr_entry);
1060	memset(&ih, 0, sizeof(ih));
1061	memset(&arg, 0, sizeof(arg));
1062	ih.len = reqsize;
1063	ih.opcode = FUSE_INTERRUPT;
1064	ih.unique = (req->in.h.unique | FUSE_INT_REQ_BIT);
1065	arg.unique = req->in.h.unique;
1066
1067	spin_unlock(&fiq->lock);
1068	if (nbytes < reqsize)
1069		return -EINVAL;
1070
1071	err = fuse_copy_one(cs, &ih, sizeof(ih));
1072	if (!err)
1073		err = fuse_copy_one(cs, &arg, sizeof(arg));
1074	fuse_copy_finish(cs);
1075
1076	return err ? err : reqsize;
1077}
1078
1079struct fuse_forget_link *fuse_dequeue_forget(struct fuse_iqueue *fiq,
1080					     unsigned int max,
1081					     unsigned int *countp)
1082{
1083	struct fuse_forget_link *head = fiq->forget_list_head.next;
1084	struct fuse_forget_link **newhead = &head;
1085	unsigned count;
1086
1087	for (count = 0; *newhead != NULL && count < max; count++)
1088		newhead = &(*newhead)->next;
1089
1090	fiq->forget_list_head.next = *newhead;
1091	*newhead = NULL;
1092	if (fiq->forget_list_head.next == NULL)
1093		fiq->forget_list_tail = &fiq->forget_list_head;
1094
1095	if (countp != NULL)
1096		*countp = count;
1097
1098	return head;
1099}
1100EXPORT_SYMBOL(fuse_dequeue_forget);
1101
1102static int fuse_read_single_forget(struct fuse_iqueue *fiq,
1103				   struct fuse_copy_state *cs,
1104				   size_t nbytes)
1105__releases(fiq->lock)
1106{
1107	int err;
1108	struct fuse_forget_link *forget = fuse_dequeue_forget(fiq, 1, NULL);
1109	struct fuse_forget_in arg = {
1110		.nlookup = forget->forget_one.nlookup,
1111	};
1112	struct fuse_in_header ih = {
1113		.opcode = FUSE_FORGET,
1114		.nodeid = forget->forget_one.nodeid,
1115		.unique = fuse_get_unique(fiq),
1116		.len = sizeof(ih) + sizeof(arg),
1117	};
1118
1119	spin_unlock(&fiq->lock);
1120	kfree(forget);
1121	if (nbytes < ih.len)
1122		return -EINVAL;
1123
1124	err = fuse_copy_one(cs, &ih, sizeof(ih));
1125	if (!err)
1126		err = fuse_copy_one(cs, &arg, sizeof(arg));
1127	fuse_copy_finish(cs);
1128
1129	if (err)
1130		return err;
1131
1132	return ih.len;
1133}
1134
1135static int fuse_read_batch_forget(struct fuse_iqueue *fiq,
1136				   struct fuse_copy_state *cs, size_t nbytes)
1137__releases(fiq->lock)
1138{
1139	int err;
1140	unsigned max_forgets;
1141	unsigned count;
1142	struct fuse_forget_link *head;
1143	struct fuse_batch_forget_in arg = { .count = 0 };
1144	struct fuse_in_header ih = {
1145		.opcode = FUSE_BATCH_FORGET,
1146		.unique = fuse_get_unique(fiq),
1147		.len = sizeof(ih) + sizeof(arg),
1148	};
1149
1150	if (nbytes < ih.len) {
1151		spin_unlock(&fiq->lock);
1152		return -EINVAL;
1153	}
1154
1155	max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one);
1156	head = fuse_dequeue_forget(fiq, max_forgets, &count);
1157	spin_unlock(&fiq->lock);
1158
1159	arg.count = count;
1160	ih.len += count * sizeof(struct fuse_forget_one);
1161	err = fuse_copy_one(cs, &ih, sizeof(ih));
1162	if (!err)
1163		err = fuse_copy_one(cs, &arg, sizeof(arg));
1164
1165	while (head) {
1166		struct fuse_forget_link *forget = head;
1167
1168		if (!err) {
1169			err = fuse_copy_one(cs, &forget->forget_one,
1170					    sizeof(forget->forget_one));
1171		}
1172		head = forget->next;
1173		kfree(forget);
1174	}
1175
1176	fuse_copy_finish(cs);
1177
1178	if (err)
1179		return err;
1180
1181	return ih.len;
1182}
1183
1184static int fuse_read_forget(struct fuse_conn *fc, struct fuse_iqueue *fiq,
1185			    struct fuse_copy_state *cs,
1186			    size_t nbytes)
1187__releases(fiq->lock)
1188{
1189	if (fc->minor < 16 || fiq->forget_list_head.next->next == NULL)
1190		return fuse_read_single_forget(fiq, cs, nbytes);
1191	else
1192		return fuse_read_batch_forget(fiq, cs, nbytes);
1193}
1194
1195/*
1196 * Read a single request into the userspace filesystem's buffer.  This
1197 * function waits until a request is available, then removes it from
1198 * the pending list and copies request data to userspace buffer.  If
1199 * no reply is needed (FORGET) or request has been aborted or there
1200 * was an error during the copying then it's finished by calling
1201 * fuse_request_end().  Otherwise add it to the processing list, and set
1202 * the 'sent' flag.
1203 */
1204static ssize_t fuse_dev_do_read(struct fuse_dev *fud, struct file *file,
1205				struct fuse_copy_state *cs, size_t nbytes)
1206{
1207	ssize_t err;
1208	struct fuse_conn *fc = fud->fc;
1209	struct fuse_iqueue *fiq = &fc->iq;
1210	struct fuse_pqueue *fpq = &fud->pq;
1211	struct fuse_req *req;
1212	struct fuse_args *args;
1213	unsigned reqsize;
1214	unsigned int hash;
1215
1216	/*
1217	 * Require sane minimum read buffer - that has capacity for fixed part
1218	 * of any request header + negotiated max_write room for data.
1219	 *
1220	 * Historically libfuse reserves 4K for fixed header room, but e.g.
1221	 * GlusterFS reserves only 80 bytes
1222	 *
1223	 *	= `sizeof(fuse_in_header) + sizeof(fuse_write_in)`
1224	 *
1225	 * which is the absolute minimum any sane filesystem should be using
1226	 * for header room.
1227	 */
1228	if (nbytes < max_t(size_t, FUSE_MIN_READ_BUFFER,
1229			   sizeof(struct fuse_in_header) +
1230			   sizeof(struct fuse_write_in) +
1231			   fc->max_write))
1232		return -EINVAL;
1233
1234 restart:
1235	for (;;) {
1236		spin_lock(&fiq->lock);
1237		if (!fiq->connected || request_pending(fiq))
1238			break;
1239		spin_unlock(&fiq->lock);
1240
1241		if (file->f_flags & O_NONBLOCK)
1242			return -EAGAIN;
1243		err = wait_event_interruptible_exclusive(fiq->waitq,
1244				!fiq->connected || request_pending(fiq));
1245		if (err)
1246			return err;
1247	}
1248
1249	if (!fiq->connected) {
1250		err = fc->aborted ? -ECONNABORTED : -ENODEV;
1251		goto err_unlock;
1252	}
1253
1254	if (!list_empty(&fiq->interrupts)) {
1255		req = list_entry(fiq->interrupts.next, struct fuse_req,
1256				 intr_entry);
1257		return fuse_read_interrupt(fiq, cs, nbytes, req);
1258	}
1259
1260	if (forget_pending(fiq)) {
1261		if (list_empty(&fiq->pending) || fiq->forget_batch-- > 0)
1262			return fuse_read_forget(fc, fiq, cs, nbytes);
1263
1264		if (fiq->forget_batch <= -8)
1265			fiq->forget_batch = 16;
1266	}
1267
1268	req = list_entry(fiq->pending.next, struct fuse_req, list);
1269	clear_bit(FR_PENDING, &req->flags);
1270	list_del_init(&req->list);
1271	spin_unlock(&fiq->lock);
1272
1273	args = req->args;
1274	reqsize = req->in.h.len;
1275
1276	/* If request is too large, reply with an error and restart the read */
1277	if (nbytes < reqsize) {
1278		req->out.h.error = -EIO;
1279		/* SETXATTR is special, since it may contain too large data */
1280		if (args->opcode == FUSE_SETXATTR)
1281			req->out.h.error = -E2BIG;
1282		fuse_request_end(req);
1283		goto restart;
1284	}
1285	spin_lock(&fpq->lock);
1286	/*
1287	 *  Must not put request on fpq->io queue after having been shut down by
1288	 *  fuse_abort_conn()
1289	 */
1290	if (!fpq->connected) {
1291		req->out.h.error = err = -ECONNABORTED;
1292		goto out_end;
1293
1294	}
1295	list_add(&req->list, &fpq->io);
1296	spin_unlock(&fpq->lock);
1297	cs->req = req;
1298	err = fuse_copy_one(cs, &req->in.h, sizeof(req->in.h));
1299	if (!err)
1300		err = fuse_copy_args(cs, args->in_numargs, args->in_pages,
1301				     (struct fuse_arg *) args->in_args, 0);
1302	fuse_copy_finish(cs);
1303	spin_lock(&fpq->lock);
1304	clear_bit(FR_LOCKED, &req->flags);
1305	if (!fpq->connected) {
1306		err = fc->aborted ? -ECONNABORTED : -ENODEV;
1307		goto out_end;
1308	}
1309	if (err) {
1310		req->out.h.error = -EIO;
1311		goto out_end;
1312	}
1313	if (!test_bit(FR_ISREPLY, &req->flags)) {
1314		err = reqsize;
1315		goto out_end;
1316	}
1317	hash = fuse_req_hash(req->in.h.unique);
1318	list_move_tail(&req->list, &fpq->processing[hash]);
1319	__fuse_get_request(req);
1320	set_bit(FR_SENT, &req->flags);
1321	spin_unlock(&fpq->lock);
1322	/* matches barrier in request_wait_answer() */
1323	smp_mb__after_atomic();
1324	if (test_bit(FR_INTERRUPTED, &req->flags))
1325		queue_interrupt(req);
1326	fuse_put_request(req);
1327
1328	return reqsize;
1329
1330out_end:
1331	if (!test_bit(FR_PRIVATE, &req->flags))
1332		list_del_init(&req->list);
1333	spin_unlock(&fpq->lock);
1334	fuse_request_end(req);
1335	return err;
1336
1337 err_unlock:
1338	spin_unlock(&fiq->lock);
1339	return err;
1340}
1341
1342static int fuse_dev_open(struct inode *inode, struct file *file)
1343{
1344	/*
1345	 * The fuse device's file's private_data is used to hold
1346	 * the fuse_conn(ection) when it is mounted, and is used to
1347	 * keep track of whether the file has been mounted already.
1348	 */
1349	file->private_data = NULL;
1350	return 0;
1351}
1352
1353static ssize_t fuse_dev_read(struct kiocb *iocb, struct iov_iter *to)
1354{
1355	struct fuse_copy_state cs;
1356	struct file *file = iocb->ki_filp;
1357	struct fuse_dev *fud = fuse_get_dev(file);
1358
1359	if (!fud)
1360		return -EPERM;
1361
1362	if (!user_backed_iter(to))
1363		return -EINVAL;
1364
1365	fuse_copy_init(&cs, 1, to);
1366
1367	return fuse_dev_do_read(fud, file, &cs, iov_iter_count(to));
1368}
1369
1370static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos,
1371				    struct pipe_inode_info *pipe,
1372				    size_t len, unsigned int flags)
1373{
1374	int total, ret;
1375	int page_nr = 0;
1376	struct pipe_buffer *bufs;
1377	struct fuse_copy_state cs;
1378	struct fuse_dev *fud = fuse_get_dev(in);
1379
1380	if (!fud)
1381		return -EPERM;
1382
1383	bufs = kvmalloc_array(pipe->max_usage, sizeof(struct pipe_buffer),
1384			      GFP_KERNEL);
1385	if (!bufs)
1386		return -ENOMEM;
1387
1388	fuse_copy_init(&cs, 1, NULL);
1389	cs.pipebufs = bufs;
1390	cs.pipe = pipe;
1391	ret = fuse_dev_do_read(fud, in, &cs, len);
1392	if (ret < 0)
1393		goto out;
1394
1395	if (pipe_occupancy(pipe->head, pipe->tail) + cs.nr_segs > pipe->max_usage) {
1396		ret = -EIO;
1397		goto out;
1398	}
1399
1400	for (ret = total = 0; page_nr < cs.nr_segs; total += ret) {
1401		/*
1402		 * Need to be careful about this.  Having buf->ops in module
1403		 * code can Oops if the buffer persists after module unload.
1404		 */
1405		bufs[page_nr].ops = &nosteal_pipe_buf_ops;
1406		bufs[page_nr].flags = 0;
1407		ret = add_to_pipe(pipe, &bufs[page_nr++]);
1408		if (unlikely(ret < 0))
1409			break;
1410	}
1411	if (total)
1412		ret = total;
1413out:
1414	for (; page_nr < cs.nr_segs; page_nr++)
1415		put_page(bufs[page_nr].page);
1416
1417	kvfree(bufs);
1418	return ret;
1419}
1420
1421static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
1422			    struct fuse_copy_state *cs)
1423{
1424	struct fuse_notify_poll_wakeup_out outarg;
1425	int err = -EINVAL;
1426
1427	if (size != sizeof(outarg))
1428		goto err;
1429
1430	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1431	if (err)
1432		goto err;
1433
1434	fuse_copy_finish(cs);
1435	return fuse_notify_poll_wakeup(fc, &outarg);
1436
1437err:
1438	fuse_copy_finish(cs);
1439	return err;
1440}
1441
1442static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size,
1443				   struct fuse_copy_state *cs)
1444{
1445	struct fuse_notify_inval_inode_out outarg;
1446	int err = -EINVAL;
1447
1448	if (size != sizeof(outarg))
1449		goto err;
1450
1451	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1452	if (err)
1453		goto err;
1454	fuse_copy_finish(cs);
1455
1456	down_read(&fc->killsb);
1457	err = fuse_reverse_inval_inode(fc, outarg.ino,
1458				       outarg.off, outarg.len);
1459	up_read(&fc->killsb);
1460	return err;
1461
1462err:
1463	fuse_copy_finish(cs);
1464	return err;
1465}
1466
1467static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size,
1468				   struct fuse_copy_state *cs)
1469{
1470	struct fuse_notify_inval_entry_out outarg;
1471	int err = -ENOMEM;
1472	char *buf;
1473	struct qstr name;
1474
1475	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1476	if (!buf)
1477		goto err;
1478
1479	err = -EINVAL;
1480	if (size < sizeof(outarg))
1481		goto err;
1482
1483	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1484	if (err)
1485		goto err;
1486
1487	err = -ENAMETOOLONG;
1488	if (outarg.namelen > FUSE_NAME_MAX)
1489		goto err;
1490
1491	err = -EINVAL;
1492	if (size != sizeof(outarg) + outarg.namelen + 1)
1493		goto err;
1494
1495	name.name = buf;
1496	name.len = outarg.namelen;
1497	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1498	if (err)
1499		goto err;
1500	fuse_copy_finish(cs);
1501	buf[outarg.namelen] = 0;
1502
1503	down_read(&fc->killsb);
1504	err = fuse_reverse_inval_entry(fc, outarg.parent, 0, &name, outarg.flags);
1505	up_read(&fc->killsb);
1506	kfree(buf);
1507	return err;
1508
1509err:
1510	kfree(buf);
1511	fuse_copy_finish(cs);
1512	return err;
1513}
1514
1515static int fuse_notify_delete(struct fuse_conn *fc, unsigned int size,
1516			      struct fuse_copy_state *cs)
1517{
1518	struct fuse_notify_delete_out outarg;
1519	int err = -ENOMEM;
1520	char *buf;
1521	struct qstr name;
1522
1523	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1524	if (!buf)
1525		goto err;
1526
1527	err = -EINVAL;
1528	if (size < sizeof(outarg))
1529		goto err;
1530
1531	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1532	if (err)
1533		goto err;
1534
1535	err = -ENAMETOOLONG;
1536	if (outarg.namelen > FUSE_NAME_MAX)
1537		goto err;
1538
1539	err = -EINVAL;
1540	if (size != sizeof(outarg) + outarg.namelen + 1)
1541		goto err;
1542
1543	name.name = buf;
1544	name.len = outarg.namelen;
1545	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1546	if (err)
1547		goto err;
1548	fuse_copy_finish(cs);
1549	buf[outarg.namelen] = 0;
1550
1551	down_read(&fc->killsb);
1552	err = fuse_reverse_inval_entry(fc, outarg.parent, outarg.child, &name, 0);
1553	up_read(&fc->killsb);
1554	kfree(buf);
1555	return err;
1556
1557err:
1558	kfree(buf);
1559	fuse_copy_finish(cs);
1560	return err;
1561}
1562
1563static int fuse_notify_store(struct fuse_conn *fc, unsigned int size,
1564			     struct fuse_copy_state *cs)
1565{
1566	struct fuse_notify_store_out outarg;
1567	struct inode *inode;
1568	struct address_space *mapping;
1569	u64 nodeid;
1570	int err;
1571	pgoff_t index;
1572	unsigned int offset;
1573	unsigned int num;
1574	loff_t file_size;
1575	loff_t end;
1576
1577	err = -EINVAL;
1578	if (size < sizeof(outarg))
1579		goto out_finish;
1580
1581	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1582	if (err)
1583		goto out_finish;
1584
1585	err = -EINVAL;
1586	if (size - sizeof(outarg) != outarg.size)
1587		goto out_finish;
1588
1589	nodeid = outarg.nodeid;
1590
1591	down_read(&fc->killsb);
1592
1593	err = -ENOENT;
1594	inode = fuse_ilookup(fc, nodeid,  NULL);
1595	if (!inode)
1596		goto out_up_killsb;
1597
1598	mapping = inode->i_mapping;
1599	index = outarg.offset >> PAGE_SHIFT;
1600	offset = outarg.offset & ~PAGE_MASK;
1601	file_size = i_size_read(inode);
1602	end = outarg.offset + outarg.size;
1603	if (end > file_size) {
1604		file_size = end;
1605		fuse_write_update_attr(inode, file_size, outarg.size);
1606	}
1607
1608	num = outarg.size;
1609	while (num) {
1610		struct page *page;
1611		unsigned int this_num;
1612
1613		err = -ENOMEM;
1614		page = find_or_create_page(mapping, index,
1615					   mapping_gfp_mask(mapping));
1616		if (!page)
1617			goto out_iput;
1618
1619		this_num = min_t(unsigned, num, PAGE_SIZE - offset);
1620		err = fuse_copy_page(cs, &page, offset, this_num, 0);
1621		if (!err && offset == 0 &&
1622		    (this_num == PAGE_SIZE || file_size == end))
1623			SetPageUptodate(page);
1624		unlock_page(page);
1625		put_page(page);
1626
1627		if (err)
1628			goto out_iput;
1629
1630		num -= this_num;
1631		offset = 0;
1632		index++;
1633	}
1634
1635	err = 0;
1636
1637out_iput:
1638	iput(inode);
1639out_up_killsb:
1640	up_read(&fc->killsb);
1641out_finish:
1642	fuse_copy_finish(cs);
1643	return err;
1644}
1645
1646struct fuse_retrieve_args {
1647	struct fuse_args_pages ap;
1648	struct fuse_notify_retrieve_in inarg;
1649};
1650
1651static void fuse_retrieve_end(struct fuse_mount *fm, struct fuse_args *args,
1652			      int error)
1653{
1654	struct fuse_retrieve_args *ra =
1655		container_of(args, typeof(*ra), ap.args);
1656
1657	release_pages(ra->ap.pages, ra->ap.num_pages);
1658	kfree(ra);
1659}
1660
1661static int fuse_retrieve(struct fuse_mount *fm, struct inode *inode,
1662			 struct fuse_notify_retrieve_out *outarg)
1663{
1664	int err;
1665	struct address_space *mapping = inode->i_mapping;
1666	pgoff_t index;
1667	loff_t file_size;
1668	unsigned int num;
1669	unsigned int offset;
1670	size_t total_len = 0;
1671	unsigned int num_pages;
1672	struct fuse_conn *fc = fm->fc;
1673	struct fuse_retrieve_args *ra;
1674	size_t args_size = sizeof(*ra);
1675	struct fuse_args_pages *ap;
1676	struct fuse_args *args;
1677
1678	offset = outarg->offset & ~PAGE_MASK;
1679	file_size = i_size_read(inode);
1680
1681	num = min(outarg->size, fc->max_write);
1682	if (outarg->offset > file_size)
1683		num = 0;
1684	else if (outarg->offset + num > file_size)
1685		num = file_size - outarg->offset;
1686
1687	num_pages = (num + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
1688	num_pages = min(num_pages, fc->max_pages);
1689
1690	args_size += num_pages * (sizeof(ap->pages[0]) + sizeof(ap->descs[0]));
1691
1692	ra = kzalloc(args_size, GFP_KERNEL);
1693	if (!ra)
1694		return -ENOMEM;
1695
1696	ap = &ra->ap;
1697	ap->pages = (void *) (ra + 1);
1698	ap->descs = (void *) (ap->pages + num_pages);
1699
1700	args = &ap->args;
1701	args->nodeid = outarg->nodeid;
1702	args->opcode = FUSE_NOTIFY_REPLY;
1703	args->in_numargs = 2;
1704	args->in_pages = true;
1705	args->end = fuse_retrieve_end;
1706
1707	index = outarg->offset >> PAGE_SHIFT;
1708
1709	while (num && ap->num_pages < num_pages) {
1710		struct page *page;
1711		unsigned int this_num;
1712
1713		page = find_get_page(mapping, index);
1714		if (!page)
1715			break;
1716
1717		this_num = min_t(unsigned, num, PAGE_SIZE - offset);
1718		ap->pages[ap->num_pages] = page;
1719		ap->descs[ap->num_pages].offset = offset;
1720		ap->descs[ap->num_pages].length = this_num;
1721		ap->num_pages++;
1722
1723		offset = 0;
1724		num -= this_num;
1725		total_len += this_num;
1726		index++;
1727	}
1728	ra->inarg.offset = outarg->offset;
1729	ra->inarg.size = total_len;
1730	args->in_args[0].size = sizeof(ra->inarg);
1731	args->in_args[0].value = &ra->inarg;
1732	args->in_args[1].size = total_len;
1733
1734	err = fuse_simple_notify_reply(fm, args, outarg->notify_unique);
1735	if (err)
1736		fuse_retrieve_end(fm, args, err);
1737
1738	return err;
1739}
1740
1741static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size,
1742				struct fuse_copy_state *cs)
1743{
1744	struct fuse_notify_retrieve_out outarg;
1745	struct fuse_mount *fm;
1746	struct inode *inode;
1747	u64 nodeid;
1748	int err;
1749
1750	err = -EINVAL;
1751	if (size != sizeof(outarg))
1752		goto copy_finish;
1753
1754	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1755	if (err)
1756		goto copy_finish;
1757
1758	fuse_copy_finish(cs);
1759
1760	down_read(&fc->killsb);
1761	err = -ENOENT;
1762	nodeid = outarg.nodeid;
1763
1764	inode = fuse_ilookup(fc, nodeid, &fm);
1765	if (inode) {
1766		err = fuse_retrieve(fm, inode, &outarg);
1767		iput(inode);
1768	}
1769	up_read(&fc->killsb);
1770
1771	return err;
1772
1773copy_finish:
1774	fuse_copy_finish(cs);
1775	return err;
1776}
1777
1778/*
1779 * Resending all processing queue requests.
1780 *
1781 * During a FUSE daemon panics and failover, it is possible for some inflight
1782 * requests to be lost and never returned. As a result, applications awaiting
1783 * replies would become stuck forever. To address this, we can use notification
1784 * to trigger resending of these pending requests to the FUSE daemon, ensuring
1785 * they are properly processed again.
1786 *
1787 * Please note that this strategy is applicable only to idempotent requests or
1788 * if the FUSE daemon takes careful measures to avoid processing duplicated
1789 * non-idempotent requests.
1790 */
1791static void fuse_resend(struct fuse_conn *fc)
1792{
1793	struct fuse_dev *fud;
1794	struct fuse_req *req, *next;
1795	struct fuse_iqueue *fiq = &fc->iq;
1796	LIST_HEAD(to_queue);
1797	unsigned int i;
1798
1799	spin_lock(&fc->lock);
1800	if (!fc->connected) {
1801		spin_unlock(&fc->lock);
1802		return;
1803	}
1804
1805	list_for_each_entry(fud, &fc->devices, entry) {
1806		struct fuse_pqueue *fpq = &fud->pq;
1807
1808		spin_lock(&fpq->lock);
1809		for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
1810			list_splice_tail_init(&fpq->processing[i], &to_queue);
1811		spin_unlock(&fpq->lock);
1812	}
1813	spin_unlock(&fc->lock);
1814
1815	list_for_each_entry_safe(req, next, &to_queue, list) {
1816		__set_bit(FR_PENDING, &req->flags);
1817		/* mark the request as resend request */
1818		req->in.h.unique |= FUSE_UNIQUE_RESEND;
1819	}
1820
1821	spin_lock(&fiq->lock);
1822	/* iq and pq requests are both oldest to newest */
1823	list_splice(&to_queue, &fiq->pending);
1824	fiq->ops->wake_pending_and_unlock(fiq);
1825}
1826
1827static int fuse_notify_resend(struct fuse_conn *fc)
1828{
1829	fuse_resend(fc);
1830	return 0;
1831}
1832
1833static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
1834		       unsigned int size, struct fuse_copy_state *cs)
1835{
1836	/* Don't try to move pages (yet) */
1837	cs->move_pages = 0;
1838
1839	switch (code) {
1840	case FUSE_NOTIFY_POLL:
1841		return fuse_notify_poll(fc, size, cs);
1842
1843	case FUSE_NOTIFY_INVAL_INODE:
1844		return fuse_notify_inval_inode(fc, size, cs);
1845
1846	case FUSE_NOTIFY_INVAL_ENTRY:
1847		return fuse_notify_inval_entry(fc, size, cs);
1848
1849	case FUSE_NOTIFY_STORE:
1850		return fuse_notify_store(fc, size, cs);
1851
1852	case FUSE_NOTIFY_RETRIEVE:
1853		return fuse_notify_retrieve(fc, size, cs);
1854
1855	case FUSE_NOTIFY_DELETE:
1856		return fuse_notify_delete(fc, size, cs);
1857
1858	case FUSE_NOTIFY_RESEND:
1859		return fuse_notify_resend(fc);
1860
1861	default:
1862		fuse_copy_finish(cs);
1863		return -EINVAL;
1864	}
1865}
1866
1867/* Look up request on processing list by unique ID */
1868static struct fuse_req *request_find(struct fuse_pqueue *fpq, u64 unique)
1869{
1870	unsigned int hash = fuse_req_hash(unique);
1871	struct fuse_req *req;
1872
1873	list_for_each_entry(req, &fpq->processing[hash], list) {
1874		if (req->in.h.unique == unique)
1875			return req;
1876	}
1877	return NULL;
1878}
1879
1880static int copy_out_args(struct fuse_copy_state *cs, struct fuse_args *args,
1881			 unsigned nbytes)
1882{
1883	unsigned reqsize = sizeof(struct fuse_out_header);
1884
1885	reqsize += fuse_len_args(args->out_numargs, args->out_args);
1886
1887	if (reqsize < nbytes || (reqsize > nbytes && !args->out_argvar))
1888		return -EINVAL;
1889	else if (reqsize > nbytes) {
1890		struct fuse_arg *lastarg = &args->out_args[args->out_numargs-1];
1891		unsigned diffsize = reqsize - nbytes;
1892
1893		if (diffsize > lastarg->size)
1894			return -EINVAL;
1895		lastarg->size -= diffsize;
1896	}
1897	return fuse_copy_args(cs, args->out_numargs, args->out_pages,
1898			      args->out_args, args->page_zeroing);
1899}
1900
1901/*
1902 * Write a single reply to a request.  First the header is copied from
1903 * the write buffer.  The request is then searched on the processing
1904 * list by the unique ID found in the header.  If found, then remove
1905 * it from the list and copy the rest of the buffer to the request.
1906 * The request is finished by calling fuse_request_end().
1907 */
1908static ssize_t fuse_dev_do_write(struct fuse_dev *fud,
1909				 struct fuse_copy_state *cs, size_t nbytes)
1910{
1911	int err;
1912	struct fuse_conn *fc = fud->fc;
1913	struct fuse_pqueue *fpq = &fud->pq;
1914	struct fuse_req *req;
1915	struct fuse_out_header oh;
1916
1917	err = -EINVAL;
1918	if (nbytes < sizeof(struct fuse_out_header))
1919		goto out;
1920
1921	err = fuse_copy_one(cs, &oh, sizeof(oh));
1922	if (err)
1923		goto copy_finish;
1924
1925	err = -EINVAL;
1926	if (oh.len != nbytes)
1927		goto copy_finish;
1928
1929	/*
1930	 * Zero oh.unique indicates unsolicited notification message
1931	 * and error contains notification code.
1932	 */
1933	if (!oh.unique) {
1934		err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs);
1935		goto out;
1936	}
1937
1938	err = -EINVAL;
1939	if (oh.error <= -512 || oh.error > 0)
1940		goto copy_finish;
1941
1942	spin_lock(&fpq->lock);
1943	req = NULL;
1944	if (fpq->connected)
1945		req = request_find(fpq, oh.unique & ~FUSE_INT_REQ_BIT);
1946
1947	err = -ENOENT;
1948	if (!req) {
1949		spin_unlock(&fpq->lock);
1950		goto copy_finish;
1951	}
1952
1953	/* Is it an interrupt reply ID? */
1954	if (oh.unique & FUSE_INT_REQ_BIT) {
1955		__fuse_get_request(req);
1956		spin_unlock(&fpq->lock);
1957
1958		err = 0;
1959		if (nbytes != sizeof(struct fuse_out_header))
1960			err = -EINVAL;
1961		else if (oh.error == -ENOSYS)
1962			fc->no_interrupt = 1;
1963		else if (oh.error == -EAGAIN)
1964			err = queue_interrupt(req);
1965
1966		fuse_put_request(req);
1967
1968		goto copy_finish;
1969	}
1970
1971	clear_bit(FR_SENT, &req->flags);
1972	list_move(&req->list, &fpq->io);
1973	req->out.h = oh;
1974	set_bit(FR_LOCKED, &req->flags);
1975	spin_unlock(&fpq->lock);
1976	cs->req = req;
1977	if (!req->args->page_replace)
1978		cs->move_pages = 0;
1979
1980	if (oh.error)
1981		err = nbytes != sizeof(oh) ? -EINVAL : 0;
1982	else
1983		err = copy_out_args(cs, req->args, nbytes);
1984	fuse_copy_finish(cs);
1985
1986	spin_lock(&fpq->lock);
1987	clear_bit(FR_LOCKED, &req->flags);
1988	if (!fpq->connected)
1989		err = -ENOENT;
1990	else if (err)
1991		req->out.h.error = -EIO;
1992	if (!test_bit(FR_PRIVATE, &req->flags))
1993		list_del_init(&req->list);
1994	spin_unlock(&fpq->lock);
1995
1996	fuse_request_end(req);
1997out:
1998	return err ? err : nbytes;
1999
2000copy_finish:
2001	fuse_copy_finish(cs);
2002	goto out;
2003}
2004
2005static ssize_t fuse_dev_write(struct kiocb *iocb, struct iov_iter *from)
2006{
2007	struct fuse_copy_state cs;
2008	struct fuse_dev *fud = fuse_get_dev(iocb->ki_filp);
2009
2010	if (!fud)
2011		return -EPERM;
2012
2013	if (!user_backed_iter(from))
2014		return -EINVAL;
2015
2016	fuse_copy_init(&cs, 0, from);
2017
2018	return fuse_dev_do_write(fud, &cs, iov_iter_count(from));
2019}
2020
2021static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe,
2022				     struct file *out, loff_t *ppos,
2023				     size_t len, unsigned int flags)
2024{
2025	unsigned int head, tail, mask, count;
2026	unsigned nbuf;
2027	unsigned idx;
2028	struct pipe_buffer *bufs;
2029	struct fuse_copy_state cs;
2030	struct fuse_dev *fud;
2031	size_t rem;
2032	ssize_t ret;
2033
2034	fud = fuse_get_dev(out);
2035	if (!fud)
2036		return -EPERM;
2037
2038	pipe_lock(pipe);
2039
2040	head = pipe->head;
2041	tail = pipe->tail;
2042	mask = pipe->ring_size - 1;
2043	count = head - tail;
2044
2045	bufs = kvmalloc_array(count, sizeof(struct pipe_buffer), GFP_KERNEL);
2046	if (!bufs) {
2047		pipe_unlock(pipe);
2048		return -ENOMEM;
2049	}
2050
2051	nbuf = 0;
2052	rem = 0;
2053	for (idx = tail; idx != head && rem < len; idx++)
2054		rem += pipe->bufs[idx & mask].len;
2055
2056	ret = -EINVAL;
2057	if (rem < len)
2058		goto out_free;
2059
2060	rem = len;
2061	while (rem) {
2062		struct pipe_buffer *ibuf;
2063		struct pipe_buffer *obuf;
2064
2065		if (WARN_ON(nbuf >= count || tail == head))
2066			goto out_free;
2067
2068		ibuf = &pipe->bufs[tail & mask];
2069		obuf = &bufs[nbuf];
2070
2071		if (rem >= ibuf->len) {
2072			*obuf = *ibuf;
2073			ibuf->ops = NULL;
2074			tail++;
2075			pipe->tail = tail;
2076		} else {
2077			if (!pipe_buf_get(pipe, ibuf))
2078				goto out_free;
2079
2080			*obuf = *ibuf;
2081			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2082			obuf->len = rem;
2083			ibuf->offset += obuf->len;
2084			ibuf->len -= obuf->len;
2085		}
2086		nbuf++;
2087		rem -= obuf->len;
2088	}
2089	pipe_unlock(pipe);
2090
2091	fuse_copy_init(&cs, 0, NULL);
2092	cs.pipebufs = bufs;
2093	cs.nr_segs = nbuf;
2094	cs.pipe = pipe;
2095
2096	if (flags & SPLICE_F_MOVE)
2097		cs.move_pages = 1;
2098
2099	ret = fuse_dev_do_write(fud, &cs, len);
2100
2101	pipe_lock(pipe);
2102out_free:
2103	for (idx = 0; idx < nbuf; idx++) {
2104		struct pipe_buffer *buf = &bufs[idx];
2105
2106		if (buf->ops)
2107			pipe_buf_release(pipe, buf);
2108	}
2109	pipe_unlock(pipe);
2110
2111	kvfree(bufs);
2112	return ret;
2113}
2114
2115static __poll_t fuse_dev_poll(struct file *file, poll_table *wait)
2116{
2117	__poll_t mask = EPOLLOUT | EPOLLWRNORM;
2118	struct fuse_iqueue *fiq;
2119	struct fuse_dev *fud = fuse_get_dev(file);
2120
2121	if (!fud)
2122		return EPOLLERR;
2123
2124	fiq = &fud->fc->iq;
2125	poll_wait(file, &fiq->waitq, wait);
2126
2127	spin_lock(&fiq->lock);
2128	if (!fiq->connected)
2129		mask = EPOLLERR;
2130	else if (request_pending(fiq))
2131		mask |= EPOLLIN | EPOLLRDNORM;
2132	spin_unlock(&fiq->lock);
2133
2134	return mask;
2135}
2136
2137/* Abort all requests on the given list (pending or processing) */
2138static void end_requests(struct list_head *head)
2139{
2140	while (!list_empty(head)) {
2141		struct fuse_req *req;
2142		req = list_entry(head->next, struct fuse_req, list);
2143		req->out.h.error = -ECONNABORTED;
2144		clear_bit(FR_SENT, &req->flags);
2145		list_del_init(&req->list);
2146		fuse_request_end(req);
2147	}
2148}
2149
2150static void end_polls(struct fuse_conn *fc)
2151{
2152	struct rb_node *p;
2153
2154	p = rb_first(&fc->polled_files);
2155
2156	while (p) {
2157		struct fuse_file *ff;
2158		ff = rb_entry(p, struct fuse_file, polled_node);
2159		wake_up_interruptible_all(&ff->poll_wait);
2160
2161		p = rb_next(p);
2162	}
2163}
2164
2165/*
2166 * Abort all requests.
2167 *
2168 * Emergency exit in case of a malicious or accidental deadlock, or just a hung
2169 * filesystem.
2170 *
2171 * The same effect is usually achievable through killing the filesystem daemon
2172 * and all users of the filesystem.  The exception is the combination of an
2173 * asynchronous request and the tricky deadlock (see
2174 * Documentation/filesystems/fuse.rst).
2175 *
2176 * Aborting requests under I/O goes as follows: 1: Separate out unlocked
2177 * requests, they should be finished off immediately.  Locked requests will be
2178 * finished after unlock; see unlock_request(). 2: Finish off the unlocked
2179 * requests.  It is possible that some request will finish before we can.  This
2180 * is OK, the request will in that case be removed from the list before we touch
2181 * it.
2182 */
2183void fuse_abort_conn(struct fuse_conn *fc)
2184{
2185	struct fuse_iqueue *fiq = &fc->iq;
2186
2187	spin_lock(&fc->lock);
2188	if (fc->connected) {
2189		struct fuse_dev *fud;
2190		struct fuse_req *req, *next;
2191		LIST_HEAD(to_end);
2192		unsigned int i;
2193
2194		/* Background queuing checks fc->connected under bg_lock */
2195		spin_lock(&fc->bg_lock);
2196		fc->connected = 0;
2197		spin_unlock(&fc->bg_lock);
2198
2199		fuse_set_initialized(fc);
2200		list_for_each_entry(fud, &fc->devices, entry) {
2201			struct fuse_pqueue *fpq = &fud->pq;
2202
2203			spin_lock(&fpq->lock);
2204			fpq->connected = 0;
2205			list_for_each_entry_safe(req, next, &fpq->io, list) {
2206				req->out.h.error = -ECONNABORTED;
2207				spin_lock(&req->waitq.lock);
2208				set_bit(FR_ABORTED, &req->flags);
2209				if (!test_bit(FR_LOCKED, &req->flags)) {
2210					set_bit(FR_PRIVATE, &req->flags);
2211					__fuse_get_request(req);
2212					list_move(&req->list, &to_end);
2213				}
2214				spin_unlock(&req->waitq.lock);
2215			}
2216			for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
2217				list_splice_tail_init(&fpq->processing[i],
2218						      &to_end);
2219			spin_unlock(&fpq->lock);
2220		}
2221		spin_lock(&fc->bg_lock);
2222		fc->blocked = 0;
2223		fc->max_background = UINT_MAX;
2224		flush_bg_queue(fc);
2225		spin_unlock(&fc->bg_lock);
2226
2227		spin_lock(&fiq->lock);
2228		fiq->connected = 0;
2229		list_for_each_entry(req, &fiq->pending, list)
2230			clear_bit(FR_PENDING, &req->flags);
2231		list_splice_tail_init(&fiq->pending, &to_end);
2232		while (forget_pending(fiq))
2233			kfree(fuse_dequeue_forget(fiq, 1, NULL));
2234		wake_up_all(&fiq->waitq);
2235		spin_unlock(&fiq->lock);
2236		kill_fasync(&fiq->fasync, SIGIO, POLL_IN);
2237		end_polls(fc);
2238		wake_up_all(&fc->blocked_waitq);
2239		spin_unlock(&fc->lock);
2240
2241		end_requests(&to_end);
2242	} else {
2243		spin_unlock(&fc->lock);
2244	}
2245}
2246EXPORT_SYMBOL_GPL(fuse_abort_conn);
2247
2248void fuse_wait_aborted(struct fuse_conn *fc)
2249{
2250	/* matches implicit memory barrier in fuse_drop_waiting() */
2251	smp_mb();
2252	wait_event(fc->blocked_waitq, atomic_read(&fc->num_waiting) == 0);
2253}
2254
2255int fuse_dev_release(struct inode *inode, struct file *file)
2256{
2257	struct fuse_dev *fud = fuse_get_dev(file);
2258
2259	if (fud) {
2260		struct fuse_conn *fc = fud->fc;
2261		struct fuse_pqueue *fpq = &fud->pq;
2262		LIST_HEAD(to_end);
2263		unsigned int i;
2264
2265		spin_lock(&fpq->lock);
2266		WARN_ON(!list_empty(&fpq->io));
2267		for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
2268			list_splice_init(&fpq->processing[i], &to_end);
2269		spin_unlock(&fpq->lock);
2270
2271		end_requests(&to_end);
2272
2273		/* Are we the last open device? */
2274		if (atomic_dec_and_test(&fc->dev_count)) {
2275			WARN_ON(fc->iq.fasync != NULL);
2276			fuse_abort_conn(fc);
2277		}
2278		fuse_dev_free(fud);
2279	}
2280	return 0;
2281}
2282EXPORT_SYMBOL_GPL(fuse_dev_release);
2283
2284static int fuse_dev_fasync(int fd, struct file *file, int on)
2285{
2286	struct fuse_dev *fud = fuse_get_dev(file);
2287
2288	if (!fud)
2289		return -EPERM;
2290
2291	/* No locking - fasync_helper does its own locking */
2292	return fasync_helper(fd, file, on, &fud->fc->iq.fasync);
2293}
2294
2295static int fuse_device_clone(struct fuse_conn *fc, struct file *new)
2296{
2297	struct fuse_dev *fud;
2298
2299	if (new->private_data)
2300		return -EINVAL;
2301
2302	fud = fuse_dev_alloc_install(fc);
2303	if (!fud)
2304		return -ENOMEM;
2305
2306	new->private_data = fud;
2307	atomic_inc(&fc->dev_count);
2308
2309	return 0;
2310}
2311
2312static long fuse_dev_ioctl_clone(struct file *file, __u32 __user *argp)
2313{
2314	int res;
2315	int oldfd;
2316	struct fuse_dev *fud = NULL;
2317	struct fd f;
2318
2319	if (get_user(oldfd, argp))
2320		return -EFAULT;
2321
2322	f = fdget(oldfd);
2323	if (!f.file)
2324		return -EINVAL;
2325
2326	/*
2327	 * Check against file->f_op because CUSE
2328	 * uses the same ioctl handler.
2329	 */
2330	if (f.file->f_op == file->f_op)
2331		fud = fuse_get_dev(f.file);
2332
2333	res = -EINVAL;
2334	if (fud) {
2335		mutex_lock(&fuse_mutex);
2336		res = fuse_device_clone(fud->fc, file);
2337		mutex_unlock(&fuse_mutex);
2338	}
2339
2340	fdput(f);
2341	return res;
2342}
2343
2344static long fuse_dev_ioctl_backing_open(struct file *file,
2345					struct fuse_backing_map __user *argp)
2346{
2347	struct fuse_dev *fud = fuse_get_dev(file);
2348	struct fuse_backing_map map;
2349
2350	if (!fud)
2351		return -EPERM;
2352
2353	if (!IS_ENABLED(CONFIG_FUSE_PASSTHROUGH))
2354		return -EOPNOTSUPP;
2355
2356	if (copy_from_user(&map, argp, sizeof(map)))
2357		return -EFAULT;
2358
2359	return fuse_backing_open(fud->fc, &map);
2360}
2361
2362static long fuse_dev_ioctl_backing_close(struct file *file, __u32 __user *argp)
2363{
2364	struct fuse_dev *fud = fuse_get_dev(file);
2365	int backing_id;
2366
2367	if (!fud)
2368		return -EPERM;
2369
2370	if (!IS_ENABLED(CONFIG_FUSE_PASSTHROUGH))
2371		return -EOPNOTSUPP;
2372
2373	if (get_user(backing_id, argp))
2374		return -EFAULT;
2375
2376	return fuse_backing_close(fud->fc, backing_id);
2377}
2378
2379static long fuse_dev_ioctl(struct file *file, unsigned int cmd,
2380			   unsigned long arg)
2381{
2382	void __user *argp = (void __user *)arg;
2383
2384	switch (cmd) {
2385	case FUSE_DEV_IOC_CLONE:
2386		return fuse_dev_ioctl_clone(file, argp);
2387
2388	case FUSE_DEV_IOC_BACKING_OPEN:
2389		return fuse_dev_ioctl_backing_open(file, argp);
2390
2391	case FUSE_DEV_IOC_BACKING_CLOSE:
2392		return fuse_dev_ioctl_backing_close(file, argp);
2393
2394	default:
2395		return -ENOTTY;
2396	}
2397}
2398
2399const struct file_operations fuse_dev_operations = {
2400	.owner		= THIS_MODULE,
2401	.open		= fuse_dev_open,
2402	.llseek		= no_llseek,
2403	.read_iter	= fuse_dev_read,
2404	.splice_read	= fuse_dev_splice_read,
2405	.write_iter	= fuse_dev_write,
2406	.splice_write	= fuse_dev_splice_write,
2407	.poll		= fuse_dev_poll,
2408	.release	= fuse_dev_release,
2409	.fasync		= fuse_dev_fasync,
2410	.unlocked_ioctl = fuse_dev_ioctl,
2411	.compat_ioctl   = compat_ptr_ioctl,
2412};
2413EXPORT_SYMBOL_GPL(fuse_dev_operations);
2414
2415static struct miscdevice fuse_miscdevice = {
2416	.minor = FUSE_MINOR,
2417	.name  = "fuse",
2418	.fops = &fuse_dev_operations,
2419};
2420
2421int __init fuse_dev_init(void)
2422{
2423	int err = -ENOMEM;
2424	fuse_req_cachep = kmem_cache_create("fuse_request",
2425					    sizeof(struct fuse_req),
2426					    0, 0, NULL);
2427	if (!fuse_req_cachep)
2428		goto out;
2429
2430	err = misc_register(&fuse_miscdevice);
2431	if (err)
2432		goto out_cache_clean;
2433
2434	return 0;
2435
2436 out_cache_clean:
2437	kmem_cache_destroy(fuse_req_cachep);
2438 out:
2439	return err;
2440}
2441
2442void fuse_dev_cleanup(void)
2443{
2444	misc_deregister(&fuse_miscdevice);
2445	kmem_cache_destroy(fuse_req_cachep);
2446}
2447