1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes.  ie: data writeback.  Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002	Andrew Morton
13 *		Split out of fs/inode.c
14 *		Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
18#include <linux/export.h>
19#include <linux/spinlock.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/kthread.h>
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/tracepoint.h>
30#include <linux/device.h>
31#include <linux/memcontrol.h>
32#include "internal.h"
33
34/*
35 * 4MB minimal write chunk size
36 */
37#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42struct wb_writeback_work {
43	long nr_pages;
44	struct super_block *sb;
45	enum writeback_sync_modes sync_mode;
46	unsigned int tagged_writepages:1;
47	unsigned int for_kupdate:1;
48	unsigned int range_cyclic:1;
49	unsigned int for_background:1;
50	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51	unsigned int auto_free:1;	/* free on completion */
52	enum wb_reason reason;		/* why was writeback initiated? */
53
54	struct list_head list;		/* pending work list */
55	struct wb_completion *done;	/* set if the caller waits */
56};
57
58/*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals.  We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70static inline struct inode *wb_inode(struct list_head *head)
71{
72	return list_entry(head, struct inode, i_io_list);
73}
74
75/*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80#define CREATE_TRACE_POINTS
81#include <trace/events/writeback.h>
82
83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85static bool wb_io_lists_populated(struct bdi_writeback *wb)
86{
87	if (wb_has_dirty_io(wb)) {
88		return false;
89	} else {
90		set_bit(WB_has_dirty_io, &wb->state);
91		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92		atomic_long_add(wb->avg_write_bandwidth,
93				&wb->bdi->tot_write_bandwidth);
94		return true;
95	}
96}
97
98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99{
100	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102		clear_bit(WB_has_dirty_io, &wb->state);
103		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104					&wb->bdi->tot_write_bandwidth) < 0);
105	}
106}
107
108/**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
118static bool inode_io_list_move_locked(struct inode *inode,
119				      struct bdi_writeback *wb,
120				      struct list_head *head)
121{
122	assert_spin_locked(&wb->list_lock);
123	assert_spin_locked(&inode->i_lock);
124	WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126	list_move(&inode->i_io_list, head);
127
128	/* dirty_time doesn't count as dirty_io until expiration */
129	if (head != &wb->b_dirty_time)
130		return wb_io_lists_populated(wb);
131
132	wb_io_lists_depopulated(wb);
133	return false;
134}
135
136static void wb_wakeup(struct bdi_writeback *wb)
137{
138	spin_lock_irq(&wb->work_lock);
139	if (test_bit(WB_registered, &wb->state))
140		mod_delayed_work(bdi_wq, &wb->dwork, 0);
141	spin_unlock_irq(&wb->work_lock);
142}
143
144/*
145 * This function is used when the first inode for this wb is marked dirty. It
146 * wakes-up the corresponding bdi thread which should then take care of the
147 * periodic background write-out of dirty inodes. Since the write-out would
148 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149 * set up a timer which wakes the bdi thread up later.
150 *
151 * Note, we wouldn't bother setting up the timer, but this function is on the
152 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153 * by delaying the wake-up.
154 *
155 * We have to be careful not to postpone flush work if it is scheduled for
156 * earlier. Thus we use queue_delayed_work().
157 */
158static void wb_wakeup_delayed(struct bdi_writeback *wb)
159{
160	unsigned long timeout;
161
162	timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163	spin_lock_irq(&wb->work_lock);
164	if (test_bit(WB_registered, &wb->state))
165		queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166	spin_unlock_irq(&wb->work_lock);
167}
168
169static void finish_writeback_work(struct bdi_writeback *wb,
170				  struct wb_writeback_work *work)
171{
172	struct wb_completion *done = work->done;
173
174	if (work->auto_free)
175		kfree(work);
176	if (done) {
177		wait_queue_head_t *waitq = done->waitq;
178
179		/* @done can't be accessed after the following dec */
180		if (atomic_dec_and_test(&done->cnt))
181			wake_up_all(waitq);
182	}
183}
184
185static void wb_queue_work(struct bdi_writeback *wb,
186			  struct wb_writeback_work *work)
187{
188	trace_writeback_queue(wb, work);
189
190	if (work->done)
191		atomic_inc(&work->done->cnt);
192
193	spin_lock_irq(&wb->work_lock);
194
195	if (test_bit(WB_registered, &wb->state)) {
196		list_add_tail(&work->list, &wb->work_list);
197		mod_delayed_work(bdi_wq, &wb->dwork, 0);
198	} else
199		finish_writeback_work(wb, work);
200
201	spin_unlock_irq(&wb->work_lock);
202}
203
204/**
205 * wb_wait_for_completion - wait for completion of bdi_writeback_works
206 * @done: target wb_completion
207 *
208 * Wait for one or more work items issued to @bdi with their ->done field
209 * set to @done, which should have been initialized with
210 * DEFINE_WB_COMPLETION().  This function returns after all such work items
211 * are completed.  Work items which are waited upon aren't freed
212 * automatically on completion.
213 */
214void wb_wait_for_completion(struct wb_completion *done)
215{
216	atomic_dec(&done->cnt);		/* put down the initial count */
217	wait_event(*done->waitq, !atomic_read(&done->cnt));
218}
219
220#ifdef CONFIG_CGROUP_WRITEBACK
221
222/*
223 * Parameters for foreign inode detection, see wbc_detach_inode() to see
224 * how they're used.
225 *
226 * These paramters are inherently heuristical as the detection target
227 * itself is fuzzy.  All we want to do is detaching an inode from the
228 * current owner if it's being written to by some other cgroups too much.
229 *
230 * The current cgroup writeback is built on the assumption that multiple
231 * cgroups writing to the same inode concurrently is very rare and a mode
232 * of operation which isn't well supported.  As such, the goal is not
233 * taking too long when a different cgroup takes over an inode while
234 * avoiding too aggressive flip-flops from occasional foreign writes.
235 *
236 * We record, very roughly, 2s worth of IO time history and if more than
237 * half of that is foreign, trigger the switch.  The recording is quantized
238 * to 16 slots.  To avoid tiny writes from swinging the decision too much,
239 * writes smaller than 1/8 of avg size are ignored.
240 */
241#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
242#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
243#define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
244#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
245
246#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
247#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
248					/* each slot's duration is 2s / 16 */
249#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
250					/* if foreign slots >= 8, switch */
251#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
252					/* one round can affect upto 5 slots */
253#define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
254
255/*
256 * Maximum inodes per isw.  A specific value has been chosen to make
257 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
258 */
259#define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
260                                / sizeof(struct inode *))
261
262static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
263static struct workqueue_struct *isw_wq;
264
265void __inode_attach_wb(struct inode *inode, struct folio *folio)
266{
267	struct backing_dev_info *bdi = inode_to_bdi(inode);
268	struct bdi_writeback *wb = NULL;
269
270	if (inode_cgwb_enabled(inode)) {
271		struct cgroup_subsys_state *memcg_css;
272
273		if (folio) {
274			memcg_css = mem_cgroup_css_from_folio(folio);
275			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
276		} else {
277			/* must pin memcg_css, see wb_get_create() */
278			memcg_css = task_get_css(current, memory_cgrp_id);
279			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
280			css_put(memcg_css);
281		}
282	}
283
284	if (!wb)
285		wb = &bdi->wb;
286
287	/*
288	 * There may be multiple instances of this function racing to
289	 * update the same inode.  Use cmpxchg() to tell the winner.
290	 */
291	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
292		wb_put(wb);
293}
294EXPORT_SYMBOL_GPL(__inode_attach_wb);
295
296/**
297 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
298 * @inode: inode of interest with i_lock held
299 * @wb: target bdi_writeback
300 *
301 * Remove the inode from wb's io lists and if necessarily put onto b_attached
302 * list.  Only inodes attached to cgwb's are kept on this list.
303 */
304static void inode_cgwb_move_to_attached(struct inode *inode,
305					struct bdi_writeback *wb)
306{
307	assert_spin_locked(&wb->list_lock);
308	assert_spin_locked(&inode->i_lock);
309	WARN_ON_ONCE(inode->i_state & I_FREEING);
310
311	inode->i_state &= ~I_SYNC_QUEUED;
312	if (wb != &wb->bdi->wb)
313		list_move(&inode->i_io_list, &wb->b_attached);
314	else
315		list_del_init(&inode->i_io_list);
316	wb_io_lists_depopulated(wb);
317}
318
319/**
320 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
321 * @inode: inode of interest with i_lock held
322 *
323 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
324 * held on entry and is released on return.  The returned wb is guaranteed
325 * to stay @inode's associated wb until its list_lock is released.
326 */
327static struct bdi_writeback *
328locked_inode_to_wb_and_lock_list(struct inode *inode)
329	__releases(&inode->i_lock)
330	__acquires(&wb->list_lock)
331{
332	while (true) {
333		struct bdi_writeback *wb = inode_to_wb(inode);
334
335		/*
336		 * inode_to_wb() association is protected by both
337		 * @inode->i_lock and @wb->list_lock but list_lock nests
338		 * outside i_lock.  Drop i_lock and verify that the
339		 * association hasn't changed after acquiring list_lock.
340		 */
341		wb_get(wb);
342		spin_unlock(&inode->i_lock);
343		spin_lock(&wb->list_lock);
344
345		/* i_wb may have changed inbetween, can't use inode_to_wb() */
346		if (likely(wb == inode->i_wb)) {
347			wb_put(wb);	/* @inode already has ref */
348			return wb;
349		}
350
351		spin_unlock(&wb->list_lock);
352		wb_put(wb);
353		cpu_relax();
354		spin_lock(&inode->i_lock);
355	}
356}
357
358/**
359 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
360 * @inode: inode of interest
361 *
362 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
363 * on entry.
364 */
365static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
366	__acquires(&wb->list_lock)
367{
368	spin_lock(&inode->i_lock);
369	return locked_inode_to_wb_and_lock_list(inode);
370}
371
372struct inode_switch_wbs_context {
373	struct rcu_work		work;
374
375	/*
376	 * Multiple inodes can be switched at once.  The switching procedure
377	 * consists of two parts, separated by a RCU grace period.  To make
378	 * sure that the second part is executed for each inode gone through
379	 * the first part, all inode pointers are placed into a NULL-terminated
380	 * array embedded into struct inode_switch_wbs_context.  Otherwise
381	 * an inode could be left in a non-consistent state.
382	 */
383	struct bdi_writeback	*new_wb;
384	struct inode		*inodes[];
385};
386
387static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
388{
389	down_write(&bdi->wb_switch_rwsem);
390}
391
392static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
393{
394	up_write(&bdi->wb_switch_rwsem);
395}
396
397static bool inode_do_switch_wbs(struct inode *inode,
398				struct bdi_writeback *old_wb,
399				struct bdi_writeback *new_wb)
400{
401	struct address_space *mapping = inode->i_mapping;
402	XA_STATE(xas, &mapping->i_pages, 0);
403	struct folio *folio;
404	bool switched = false;
405
406	spin_lock(&inode->i_lock);
407	xa_lock_irq(&mapping->i_pages);
408
409	/*
410	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
411	 * path owns the inode and we shouldn't modify ->i_io_list.
412	 */
413	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
414		goto skip_switch;
415
416	trace_inode_switch_wbs(inode, old_wb, new_wb);
417
418	/*
419	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
420	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
421	 * folios actually under writeback.
422	 */
423	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
424		if (folio_test_dirty(folio)) {
425			long nr = folio_nr_pages(folio);
426			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
427			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
428		}
429	}
430
431	xas_set(&xas, 0);
432	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
433		long nr = folio_nr_pages(folio);
434		WARN_ON_ONCE(!folio_test_writeback(folio));
435		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
436		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
437	}
438
439	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
440		atomic_dec(&old_wb->writeback_inodes);
441		atomic_inc(&new_wb->writeback_inodes);
442	}
443
444	wb_get(new_wb);
445
446	/*
447	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
448	 * the specific list @inode was on is ignored and the @inode is put on
449	 * ->b_dirty which is always correct including from ->b_dirty_time.
450	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
451	 * was clean, it means it was on the b_attached list, so move it onto
452	 * the b_attached list of @new_wb.
453	 */
454	if (!list_empty(&inode->i_io_list)) {
455		inode->i_wb = new_wb;
456
457		if (inode->i_state & I_DIRTY_ALL) {
458			struct inode *pos;
459
460			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
461				if (time_after_eq(inode->dirtied_when,
462						  pos->dirtied_when))
463					break;
464			inode_io_list_move_locked(inode, new_wb,
465						  pos->i_io_list.prev);
466		} else {
467			inode_cgwb_move_to_attached(inode, new_wb);
468		}
469	} else {
470		inode->i_wb = new_wb;
471	}
472
473	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
474	inode->i_wb_frn_winner = 0;
475	inode->i_wb_frn_avg_time = 0;
476	inode->i_wb_frn_history = 0;
477	switched = true;
478skip_switch:
479	/*
480	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
481	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
482	 */
483	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
484
485	xa_unlock_irq(&mapping->i_pages);
486	spin_unlock(&inode->i_lock);
487
488	return switched;
489}
490
491static void inode_switch_wbs_work_fn(struct work_struct *work)
492{
493	struct inode_switch_wbs_context *isw =
494		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
495	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
496	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
497	struct bdi_writeback *new_wb = isw->new_wb;
498	unsigned long nr_switched = 0;
499	struct inode **inodep;
500
501	/*
502	 * If @inode switches cgwb membership while sync_inodes_sb() is
503	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
504	 */
505	down_read(&bdi->wb_switch_rwsem);
506
507	/*
508	 * By the time control reaches here, RCU grace period has passed
509	 * since I_WB_SWITCH assertion and all wb stat update transactions
510	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
511	 * synchronizing against the i_pages lock.
512	 *
513	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
514	 * gives us exclusion against all wb related operations on @inode
515	 * including IO list manipulations and stat updates.
516	 */
517	if (old_wb < new_wb) {
518		spin_lock(&old_wb->list_lock);
519		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
520	} else {
521		spin_lock(&new_wb->list_lock);
522		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
523	}
524
525	for (inodep = isw->inodes; *inodep; inodep++) {
526		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
527		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
528			nr_switched++;
529	}
530
531	spin_unlock(&new_wb->list_lock);
532	spin_unlock(&old_wb->list_lock);
533
534	up_read(&bdi->wb_switch_rwsem);
535
536	if (nr_switched) {
537		wb_wakeup(new_wb);
538		wb_put_many(old_wb, nr_switched);
539	}
540
541	for (inodep = isw->inodes; *inodep; inodep++)
542		iput(*inodep);
543	wb_put(new_wb);
544	kfree(isw);
545	atomic_dec(&isw_nr_in_flight);
546}
547
548static bool inode_prepare_wbs_switch(struct inode *inode,
549				     struct bdi_writeback *new_wb)
550{
551	/*
552	 * Paired with smp_mb() in cgroup_writeback_umount().
553	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
554	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
555	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
556	 */
557	smp_mb();
558
559	if (IS_DAX(inode))
560		return false;
561
562	/* while holding I_WB_SWITCH, no one else can update the association */
563	spin_lock(&inode->i_lock);
564	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
565	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
566	    inode_to_wb(inode) == new_wb) {
567		spin_unlock(&inode->i_lock);
568		return false;
569	}
570	inode->i_state |= I_WB_SWITCH;
571	__iget(inode);
572	spin_unlock(&inode->i_lock);
573
574	return true;
575}
576
577/**
578 * inode_switch_wbs - change the wb association of an inode
579 * @inode: target inode
580 * @new_wb_id: ID of the new wb
581 *
582 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
583 * switching is performed asynchronously and may fail silently.
584 */
585static void inode_switch_wbs(struct inode *inode, int new_wb_id)
586{
587	struct backing_dev_info *bdi = inode_to_bdi(inode);
588	struct cgroup_subsys_state *memcg_css;
589	struct inode_switch_wbs_context *isw;
590
591	/* noop if seems to be already in progress */
592	if (inode->i_state & I_WB_SWITCH)
593		return;
594
595	/* avoid queueing a new switch if too many are already in flight */
596	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
597		return;
598
599	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
600	if (!isw)
601		return;
602
603	atomic_inc(&isw_nr_in_flight);
604
605	/* find and pin the new wb */
606	rcu_read_lock();
607	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
608	if (memcg_css && !css_tryget(memcg_css))
609		memcg_css = NULL;
610	rcu_read_unlock();
611	if (!memcg_css)
612		goto out_free;
613
614	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
615	css_put(memcg_css);
616	if (!isw->new_wb)
617		goto out_free;
618
619	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
620		goto out_free;
621
622	isw->inodes[0] = inode;
623
624	/*
625	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
626	 * the RCU protected stat update paths to grab the i_page
627	 * lock so that stat transfer can synchronize against them.
628	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
629	 */
630	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
631	queue_rcu_work(isw_wq, &isw->work);
632	return;
633
634out_free:
635	atomic_dec(&isw_nr_in_flight);
636	if (isw->new_wb)
637		wb_put(isw->new_wb);
638	kfree(isw);
639}
640
641static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
642				   struct list_head *list, int *nr)
643{
644	struct inode *inode;
645
646	list_for_each_entry(inode, list, i_io_list) {
647		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
648			continue;
649
650		isw->inodes[*nr] = inode;
651		(*nr)++;
652
653		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
654			return true;
655	}
656	return false;
657}
658
659/**
660 * cleanup_offline_cgwb - detach associated inodes
661 * @wb: target wb
662 *
663 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
664 * to eventually release the dying @wb.  Returns %true if not all inodes were
665 * switched and the function has to be restarted.
666 */
667bool cleanup_offline_cgwb(struct bdi_writeback *wb)
668{
669	struct cgroup_subsys_state *memcg_css;
670	struct inode_switch_wbs_context *isw;
671	int nr;
672	bool restart = false;
673
674	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
675		      GFP_KERNEL);
676	if (!isw)
677		return restart;
678
679	atomic_inc(&isw_nr_in_flight);
680
681	for (memcg_css = wb->memcg_css->parent; memcg_css;
682	     memcg_css = memcg_css->parent) {
683		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
684		if (isw->new_wb)
685			break;
686	}
687	if (unlikely(!isw->new_wb))
688		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
689
690	nr = 0;
691	spin_lock(&wb->list_lock);
692	/*
693	 * In addition to the inodes that have completed writeback, also switch
694	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
695	 * inodes won't be written back for a long time when lazytime is
696	 * enabled, and thus pinning the dying cgwbs. It won't break the
697	 * bandwidth restrictions, as writeback of inode metadata is not
698	 * accounted for.
699	 */
700	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
701	if (!restart)
702		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
703	spin_unlock(&wb->list_lock);
704
705	/* no attached inodes? bail out */
706	if (nr == 0) {
707		atomic_dec(&isw_nr_in_flight);
708		wb_put(isw->new_wb);
709		kfree(isw);
710		return restart;
711	}
712
713	/*
714	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
715	 * the RCU protected stat update paths to grab the i_page
716	 * lock so that stat transfer can synchronize against them.
717	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
718	 */
719	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
720	queue_rcu_work(isw_wq, &isw->work);
721
722	return restart;
723}
724
725/**
726 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
727 * @wbc: writeback_control of interest
728 * @inode: target inode
729 *
730 * @inode is locked and about to be written back under the control of @wbc.
731 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
732 * writeback completion, wbc_detach_inode() should be called.  This is used
733 * to track the cgroup writeback context.
734 */
735void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
736				 struct inode *inode)
737{
738	if (!inode_cgwb_enabled(inode)) {
739		spin_unlock(&inode->i_lock);
740		return;
741	}
742
743	wbc->wb = inode_to_wb(inode);
744	wbc->inode = inode;
745
746	wbc->wb_id = wbc->wb->memcg_css->id;
747	wbc->wb_lcand_id = inode->i_wb_frn_winner;
748	wbc->wb_tcand_id = 0;
749	wbc->wb_bytes = 0;
750	wbc->wb_lcand_bytes = 0;
751	wbc->wb_tcand_bytes = 0;
752
753	wb_get(wbc->wb);
754	spin_unlock(&inode->i_lock);
755
756	/*
757	 * A dying wb indicates that either the blkcg associated with the
758	 * memcg changed or the associated memcg is dying.  In the first
759	 * case, a replacement wb should already be available and we should
760	 * refresh the wb immediately.  In the second case, trying to
761	 * refresh will keep failing.
762	 */
763	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
764		inode_switch_wbs(inode, wbc->wb_id);
765}
766EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
767
768/**
769 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
770 * @wbc: writeback_control of the just finished writeback
771 *
772 * To be called after a writeback attempt of an inode finishes and undoes
773 * wbc_attach_and_unlock_inode().  Can be called under any context.
774 *
775 * As concurrent write sharing of an inode is expected to be very rare and
776 * memcg only tracks page ownership on first-use basis severely confining
777 * the usefulness of such sharing, cgroup writeback tracks ownership
778 * per-inode.  While the support for concurrent write sharing of an inode
779 * is deemed unnecessary, an inode being written to by different cgroups at
780 * different points in time is a lot more common, and, more importantly,
781 * charging only by first-use can too readily lead to grossly incorrect
782 * behaviors (single foreign page can lead to gigabytes of writeback to be
783 * incorrectly attributed).
784 *
785 * To resolve this issue, cgroup writeback detects the majority dirtier of
786 * an inode and transfers the ownership to it.  To avoid unnecessary
787 * oscillation, the detection mechanism keeps track of history and gives
788 * out the switch verdict only if the foreign usage pattern is stable over
789 * a certain amount of time and/or writeback attempts.
790 *
791 * On each writeback attempt, @wbc tries to detect the majority writer
792 * using Boyer-Moore majority vote algorithm.  In addition to the byte
793 * count from the majority voting, it also counts the bytes written for the
794 * current wb and the last round's winner wb (max of last round's current
795 * wb, the winner from two rounds ago, and the last round's majority
796 * candidate).  Keeping track of the historical winner helps the algorithm
797 * to semi-reliably detect the most active writer even when it's not the
798 * absolute majority.
799 *
800 * Once the winner of the round is determined, whether the winner is
801 * foreign or not and how much IO time the round consumed is recorded in
802 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
803 * over a certain threshold, the switch verdict is given.
804 */
805void wbc_detach_inode(struct writeback_control *wbc)
806{
807	struct bdi_writeback *wb = wbc->wb;
808	struct inode *inode = wbc->inode;
809	unsigned long avg_time, max_bytes, max_time;
810	u16 history;
811	int max_id;
812
813	if (!wb)
814		return;
815
816	history = inode->i_wb_frn_history;
817	avg_time = inode->i_wb_frn_avg_time;
818
819	/* pick the winner of this round */
820	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
821	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
822		max_id = wbc->wb_id;
823		max_bytes = wbc->wb_bytes;
824	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
825		max_id = wbc->wb_lcand_id;
826		max_bytes = wbc->wb_lcand_bytes;
827	} else {
828		max_id = wbc->wb_tcand_id;
829		max_bytes = wbc->wb_tcand_bytes;
830	}
831
832	/*
833	 * Calculate the amount of IO time the winner consumed and fold it
834	 * into the running average kept per inode.  If the consumed IO
835	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
836	 * deciding whether to switch or not.  This is to prevent one-off
837	 * small dirtiers from skewing the verdict.
838	 */
839	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
840				wb->avg_write_bandwidth);
841	if (avg_time)
842		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
843			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
844	else
845		avg_time = max_time;	/* immediate catch up on first run */
846
847	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
848		int slots;
849
850		/*
851		 * The switch verdict is reached if foreign wb's consume
852		 * more than a certain proportion of IO time in a
853		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
854		 * history mask where each bit represents one sixteenth of
855		 * the period.  Determine the number of slots to shift into
856		 * history from @max_time.
857		 */
858		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
859			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
860		history <<= slots;
861		if (wbc->wb_id != max_id)
862			history |= (1U << slots) - 1;
863
864		if (history)
865			trace_inode_foreign_history(inode, wbc, history);
866
867		/*
868		 * Switch if the current wb isn't the consistent winner.
869		 * If there are multiple closely competing dirtiers, the
870		 * inode may switch across them repeatedly over time, which
871		 * is okay.  The main goal is avoiding keeping an inode on
872		 * the wrong wb for an extended period of time.
873		 */
874		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
875			inode_switch_wbs(inode, max_id);
876	}
877
878	/*
879	 * Multiple instances of this function may race to update the
880	 * following fields but we don't mind occassional inaccuracies.
881	 */
882	inode->i_wb_frn_winner = max_id;
883	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
884	inode->i_wb_frn_history = history;
885
886	wb_put(wbc->wb);
887	wbc->wb = NULL;
888}
889EXPORT_SYMBOL_GPL(wbc_detach_inode);
890
891/**
892 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
893 * @wbc: writeback_control of the writeback in progress
894 * @page: page being written out
895 * @bytes: number of bytes being written out
896 *
897 * @bytes from @page are about to written out during the writeback
898 * controlled by @wbc.  Keep the book for foreign inode detection.  See
899 * wbc_detach_inode().
900 */
901void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
902			      size_t bytes)
903{
904	struct folio *folio;
905	struct cgroup_subsys_state *css;
906	int id;
907
908	/*
909	 * pageout() path doesn't attach @wbc to the inode being written
910	 * out.  This is intentional as we don't want the function to block
911	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
912	 * regular writeback instead of writing things out itself.
913	 */
914	if (!wbc->wb || wbc->no_cgroup_owner)
915		return;
916
917	folio = page_folio(page);
918	css = mem_cgroup_css_from_folio(folio);
919	/* dead cgroups shouldn't contribute to inode ownership arbitration */
920	if (!(css->flags & CSS_ONLINE))
921		return;
922
923	id = css->id;
924
925	if (id == wbc->wb_id) {
926		wbc->wb_bytes += bytes;
927		return;
928	}
929
930	if (id == wbc->wb_lcand_id)
931		wbc->wb_lcand_bytes += bytes;
932
933	/* Boyer-Moore majority vote algorithm */
934	if (!wbc->wb_tcand_bytes)
935		wbc->wb_tcand_id = id;
936	if (id == wbc->wb_tcand_id)
937		wbc->wb_tcand_bytes += bytes;
938	else
939		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
940}
941EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
942
943/**
944 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
945 * @wb: target bdi_writeback to split @nr_pages to
946 * @nr_pages: number of pages to write for the whole bdi
947 *
948 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
949 * relation to the total write bandwidth of all wb's w/ dirty inodes on
950 * @wb->bdi.
951 */
952static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
953{
954	unsigned long this_bw = wb->avg_write_bandwidth;
955	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
956
957	if (nr_pages == LONG_MAX)
958		return LONG_MAX;
959
960	/*
961	 * This may be called on clean wb's and proportional distribution
962	 * may not make sense, just use the original @nr_pages in those
963	 * cases.  In general, we wanna err on the side of writing more.
964	 */
965	if (!tot_bw || this_bw >= tot_bw)
966		return nr_pages;
967	else
968		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
969}
970
971/**
972 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
973 * @bdi: target backing_dev_info
974 * @base_work: wb_writeback_work to issue
975 * @skip_if_busy: skip wb's which already have writeback in progress
976 *
977 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
978 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
979 * distributed to the busy wbs according to each wb's proportion in the
980 * total active write bandwidth of @bdi.
981 */
982static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
983				  struct wb_writeback_work *base_work,
984				  bool skip_if_busy)
985{
986	struct bdi_writeback *last_wb = NULL;
987	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
988					      struct bdi_writeback, bdi_node);
989
990	might_sleep();
991restart:
992	rcu_read_lock();
993	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
994		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
995		struct wb_writeback_work fallback_work;
996		struct wb_writeback_work *work;
997		long nr_pages;
998
999		if (last_wb) {
1000			wb_put(last_wb);
1001			last_wb = NULL;
1002		}
1003
1004		/* SYNC_ALL writes out I_DIRTY_TIME too */
1005		if (!wb_has_dirty_io(wb) &&
1006		    (base_work->sync_mode == WB_SYNC_NONE ||
1007		     list_empty(&wb->b_dirty_time)))
1008			continue;
1009		if (skip_if_busy && writeback_in_progress(wb))
1010			continue;
1011
1012		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1013
1014		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1015		if (work) {
1016			*work = *base_work;
1017			work->nr_pages = nr_pages;
1018			work->auto_free = 1;
1019			wb_queue_work(wb, work);
1020			continue;
1021		}
1022
1023		/*
1024		 * If wb_tryget fails, the wb has been shutdown, skip it.
1025		 *
1026		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1027		 * continuing iteration from @wb after dropping and
1028		 * regrabbing rcu read lock.
1029		 */
1030		if (!wb_tryget(wb))
1031			continue;
1032
1033		/* alloc failed, execute synchronously using on-stack fallback */
1034		work = &fallback_work;
1035		*work = *base_work;
1036		work->nr_pages = nr_pages;
1037		work->auto_free = 0;
1038		work->done = &fallback_work_done;
1039
1040		wb_queue_work(wb, work);
1041		last_wb = wb;
1042
1043		rcu_read_unlock();
1044		wb_wait_for_completion(&fallback_work_done);
1045		goto restart;
1046	}
1047	rcu_read_unlock();
1048
1049	if (last_wb)
1050		wb_put(last_wb);
1051}
1052
1053/**
1054 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1055 * @bdi_id: target bdi id
1056 * @memcg_id: target memcg css id
1057 * @reason: reason why some writeback work initiated
1058 * @done: target wb_completion
1059 *
1060 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1061 * with the specified parameters.
1062 */
1063int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1064			   enum wb_reason reason, struct wb_completion *done)
1065{
1066	struct backing_dev_info *bdi;
1067	struct cgroup_subsys_state *memcg_css;
1068	struct bdi_writeback *wb;
1069	struct wb_writeback_work *work;
1070	unsigned long dirty;
1071	int ret;
1072
1073	/* lookup bdi and memcg */
1074	bdi = bdi_get_by_id(bdi_id);
1075	if (!bdi)
1076		return -ENOENT;
1077
1078	rcu_read_lock();
1079	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1080	if (memcg_css && !css_tryget(memcg_css))
1081		memcg_css = NULL;
1082	rcu_read_unlock();
1083	if (!memcg_css) {
1084		ret = -ENOENT;
1085		goto out_bdi_put;
1086	}
1087
1088	/*
1089	 * And find the associated wb.  If the wb isn't there already
1090	 * there's nothing to flush, don't create one.
1091	 */
1092	wb = wb_get_lookup(bdi, memcg_css);
1093	if (!wb) {
1094		ret = -ENOENT;
1095		goto out_css_put;
1096	}
1097
1098	/*
1099	 * The caller is attempting to write out most of
1100	 * the currently dirty pages.  Let's take the current dirty page
1101	 * count and inflate it by 25% which should be large enough to
1102	 * flush out most dirty pages while avoiding getting livelocked by
1103	 * concurrent dirtiers.
1104	 *
1105	 * BTW the memcg stats are flushed periodically and this is best-effort
1106	 * estimation, so some potential error is ok.
1107	 */
1108	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1109	dirty = dirty * 10 / 8;
1110
1111	/* issue the writeback work */
1112	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1113	if (work) {
1114		work->nr_pages = dirty;
1115		work->sync_mode = WB_SYNC_NONE;
1116		work->range_cyclic = 1;
1117		work->reason = reason;
1118		work->done = done;
1119		work->auto_free = 1;
1120		wb_queue_work(wb, work);
1121		ret = 0;
1122	} else {
1123		ret = -ENOMEM;
1124	}
1125
1126	wb_put(wb);
1127out_css_put:
1128	css_put(memcg_css);
1129out_bdi_put:
1130	bdi_put(bdi);
1131	return ret;
1132}
1133
1134/**
1135 * cgroup_writeback_umount - flush inode wb switches for umount
1136 *
1137 * This function is called when a super_block is about to be destroyed and
1138 * flushes in-flight inode wb switches.  An inode wb switch goes through
1139 * RCU and then workqueue, so the two need to be flushed in order to ensure
1140 * that all previously scheduled switches are finished.  As wb switches are
1141 * rare occurrences and synchronize_rcu() can take a while, perform
1142 * flushing iff wb switches are in flight.
1143 */
1144void cgroup_writeback_umount(void)
1145{
1146	/*
1147	 * SB_ACTIVE should be reliably cleared before checking
1148	 * isw_nr_in_flight, see generic_shutdown_super().
1149	 */
1150	smp_mb();
1151
1152	if (atomic_read(&isw_nr_in_flight)) {
1153		/*
1154		 * Use rcu_barrier() to wait for all pending callbacks to
1155		 * ensure that all in-flight wb switches are in the workqueue.
1156		 */
1157		rcu_barrier();
1158		flush_workqueue(isw_wq);
1159	}
1160}
1161
1162static int __init cgroup_writeback_init(void)
1163{
1164	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1165	if (!isw_wq)
1166		return -ENOMEM;
1167	return 0;
1168}
1169fs_initcall(cgroup_writeback_init);
1170
1171#else	/* CONFIG_CGROUP_WRITEBACK */
1172
1173static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1174static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1175
1176static void inode_cgwb_move_to_attached(struct inode *inode,
1177					struct bdi_writeback *wb)
1178{
1179	assert_spin_locked(&wb->list_lock);
1180	assert_spin_locked(&inode->i_lock);
1181	WARN_ON_ONCE(inode->i_state & I_FREEING);
1182
1183	inode->i_state &= ~I_SYNC_QUEUED;
1184	list_del_init(&inode->i_io_list);
1185	wb_io_lists_depopulated(wb);
1186}
1187
1188static struct bdi_writeback *
1189locked_inode_to_wb_and_lock_list(struct inode *inode)
1190	__releases(&inode->i_lock)
1191	__acquires(&wb->list_lock)
1192{
1193	struct bdi_writeback *wb = inode_to_wb(inode);
1194
1195	spin_unlock(&inode->i_lock);
1196	spin_lock(&wb->list_lock);
1197	return wb;
1198}
1199
1200static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1201	__acquires(&wb->list_lock)
1202{
1203	struct bdi_writeback *wb = inode_to_wb(inode);
1204
1205	spin_lock(&wb->list_lock);
1206	return wb;
1207}
1208
1209static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1210{
1211	return nr_pages;
1212}
1213
1214static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1215				  struct wb_writeback_work *base_work,
1216				  bool skip_if_busy)
1217{
1218	might_sleep();
1219
1220	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1221		base_work->auto_free = 0;
1222		wb_queue_work(&bdi->wb, base_work);
1223	}
1224}
1225
1226#endif	/* CONFIG_CGROUP_WRITEBACK */
1227
1228/*
1229 * Add in the number of potentially dirty inodes, because each inode
1230 * write can dirty pagecache in the underlying blockdev.
1231 */
1232static unsigned long get_nr_dirty_pages(void)
1233{
1234	return global_node_page_state(NR_FILE_DIRTY) +
1235		get_nr_dirty_inodes();
1236}
1237
1238static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1239{
1240	if (!wb_has_dirty_io(wb))
1241		return;
1242
1243	/*
1244	 * All callers of this function want to start writeback of all
1245	 * dirty pages. Places like vmscan can call this at a very
1246	 * high frequency, causing pointless allocations of tons of
1247	 * work items and keeping the flusher threads busy retrieving
1248	 * that work. Ensure that we only allow one of them pending and
1249	 * inflight at the time.
1250	 */
1251	if (test_bit(WB_start_all, &wb->state) ||
1252	    test_and_set_bit(WB_start_all, &wb->state))
1253		return;
1254
1255	wb->start_all_reason = reason;
1256	wb_wakeup(wb);
1257}
1258
1259/**
1260 * wb_start_background_writeback - start background writeback
1261 * @wb: bdi_writback to write from
1262 *
1263 * Description:
1264 *   This makes sure WB_SYNC_NONE background writeback happens. When
1265 *   this function returns, it is only guaranteed that for given wb
1266 *   some IO is happening if we are over background dirty threshold.
1267 *   Caller need not hold sb s_umount semaphore.
1268 */
1269void wb_start_background_writeback(struct bdi_writeback *wb)
1270{
1271	/*
1272	 * We just wake up the flusher thread. It will perform background
1273	 * writeback as soon as there is no other work to do.
1274	 */
1275	trace_writeback_wake_background(wb);
1276	wb_wakeup(wb);
1277}
1278
1279/*
1280 * Remove the inode from the writeback list it is on.
1281 */
1282void inode_io_list_del(struct inode *inode)
1283{
1284	struct bdi_writeback *wb;
1285
1286	wb = inode_to_wb_and_lock_list(inode);
1287	spin_lock(&inode->i_lock);
1288
1289	inode->i_state &= ~I_SYNC_QUEUED;
1290	list_del_init(&inode->i_io_list);
1291	wb_io_lists_depopulated(wb);
1292
1293	spin_unlock(&inode->i_lock);
1294	spin_unlock(&wb->list_lock);
1295}
1296EXPORT_SYMBOL(inode_io_list_del);
1297
1298/*
1299 * mark an inode as under writeback on the sb
1300 */
1301void sb_mark_inode_writeback(struct inode *inode)
1302{
1303	struct super_block *sb = inode->i_sb;
1304	unsigned long flags;
1305
1306	if (list_empty(&inode->i_wb_list)) {
1307		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1308		if (list_empty(&inode->i_wb_list)) {
1309			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1310			trace_sb_mark_inode_writeback(inode);
1311		}
1312		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1313	}
1314}
1315
1316/*
1317 * clear an inode as under writeback on the sb
1318 */
1319void sb_clear_inode_writeback(struct inode *inode)
1320{
1321	struct super_block *sb = inode->i_sb;
1322	unsigned long flags;
1323
1324	if (!list_empty(&inode->i_wb_list)) {
1325		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1326		if (!list_empty(&inode->i_wb_list)) {
1327			list_del_init(&inode->i_wb_list);
1328			trace_sb_clear_inode_writeback(inode);
1329		}
1330		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1331	}
1332}
1333
1334/*
1335 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1336 * furthest end of its superblock's dirty-inode list.
1337 *
1338 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1339 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1340 * the case then the inode must have been redirtied while it was being written
1341 * out and we don't reset its dirtied_when.
1342 */
1343static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1344{
1345	assert_spin_locked(&inode->i_lock);
1346
1347	inode->i_state &= ~I_SYNC_QUEUED;
1348	/*
1349	 * When the inode is being freed just don't bother with dirty list
1350	 * tracking. Flush worker will ignore this inode anyway and it will
1351	 * trigger assertions in inode_io_list_move_locked().
1352	 */
1353	if (inode->i_state & I_FREEING) {
1354		list_del_init(&inode->i_io_list);
1355		wb_io_lists_depopulated(wb);
1356		return;
1357	}
1358	if (!list_empty(&wb->b_dirty)) {
1359		struct inode *tail;
1360
1361		tail = wb_inode(wb->b_dirty.next);
1362		if (time_before(inode->dirtied_when, tail->dirtied_when))
1363			inode->dirtied_when = jiffies;
1364	}
1365	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1366}
1367
1368static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1369{
1370	spin_lock(&inode->i_lock);
1371	redirty_tail_locked(inode, wb);
1372	spin_unlock(&inode->i_lock);
1373}
1374
1375/*
1376 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1377 */
1378static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1379{
1380	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1381}
1382
1383static void inode_sync_complete(struct inode *inode)
1384{
1385	inode->i_state &= ~I_SYNC;
1386	/* If inode is clean an unused, put it into LRU now... */
1387	inode_add_lru(inode);
1388	/* Waiters must see I_SYNC cleared before being woken up */
1389	smp_mb();
1390	wake_up_bit(&inode->i_state, __I_SYNC);
1391}
1392
1393static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1394{
1395	bool ret = time_after(inode->dirtied_when, t);
1396#ifndef CONFIG_64BIT
1397	/*
1398	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1399	 * It _appears_ to be in the future, but is actually in distant past.
1400	 * This test is necessary to prevent such wrapped-around relative times
1401	 * from permanently stopping the whole bdi writeback.
1402	 */
1403	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1404#endif
1405	return ret;
1406}
1407
1408/*
1409 * Move expired (dirtied before dirtied_before) dirty inodes from
1410 * @delaying_queue to @dispatch_queue.
1411 */
1412static int move_expired_inodes(struct list_head *delaying_queue,
1413			       struct list_head *dispatch_queue,
1414			       unsigned long dirtied_before)
1415{
1416	LIST_HEAD(tmp);
1417	struct list_head *pos, *node;
1418	struct super_block *sb = NULL;
1419	struct inode *inode;
1420	int do_sb_sort = 0;
1421	int moved = 0;
1422
1423	while (!list_empty(delaying_queue)) {
1424		inode = wb_inode(delaying_queue->prev);
1425		if (inode_dirtied_after(inode, dirtied_before))
1426			break;
1427		spin_lock(&inode->i_lock);
1428		list_move(&inode->i_io_list, &tmp);
1429		moved++;
1430		inode->i_state |= I_SYNC_QUEUED;
1431		spin_unlock(&inode->i_lock);
1432		if (sb_is_blkdev_sb(inode->i_sb))
1433			continue;
1434		if (sb && sb != inode->i_sb)
1435			do_sb_sort = 1;
1436		sb = inode->i_sb;
1437	}
1438
1439	/* just one sb in list, splice to dispatch_queue and we're done */
1440	if (!do_sb_sort) {
1441		list_splice(&tmp, dispatch_queue);
1442		goto out;
1443	}
1444
1445	/*
1446	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1447	 * we don't take inode->i_lock here because it is just a pointless overhead.
1448	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1449	 * fully under our control.
1450	 */
1451	while (!list_empty(&tmp)) {
1452		sb = wb_inode(tmp.prev)->i_sb;
1453		list_for_each_prev_safe(pos, node, &tmp) {
1454			inode = wb_inode(pos);
1455			if (inode->i_sb == sb)
1456				list_move(&inode->i_io_list, dispatch_queue);
1457		}
1458	}
1459out:
1460	return moved;
1461}
1462
1463/*
1464 * Queue all expired dirty inodes for io, eldest first.
1465 * Before
1466 *         newly dirtied     b_dirty    b_io    b_more_io
1467 *         =============>    gf         edc     BA
1468 * After
1469 *         newly dirtied     b_dirty    b_io    b_more_io
1470 *         =============>    g          fBAedc
1471 *                                           |
1472 *                                           +--> dequeue for IO
1473 */
1474static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1475		     unsigned long dirtied_before)
1476{
1477	int moved;
1478	unsigned long time_expire_jif = dirtied_before;
1479
1480	assert_spin_locked(&wb->list_lock);
1481	list_splice_init(&wb->b_more_io, &wb->b_io);
1482	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1483	if (!work->for_sync)
1484		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1485	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1486				     time_expire_jif);
1487	if (moved)
1488		wb_io_lists_populated(wb);
1489	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1490}
1491
1492static int write_inode(struct inode *inode, struct writeback_control *wbc)
1493{
1494	int ret;
1495
1496	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1497		trace_writeback_write_inode_start(inode, wbc);
1498		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1499		trace_writeback_write_inode(inode, wbc);
1500		return ret;
1501	}
1502	return 0;
1503}
1504
1505/*
1506 * Wait for writeback on an inode to complete. Called with i_lock held.
1507 * Caller must make sure inode cannot go away when we drop i_lock.
1508 */
1509static void __inode_wait_for_writeback(struct inode *inode)
1510	__releases(inode->i_lock)
1511	__acquires(inode->i_lock)
1512{
1513	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1514	wait_queue_head_t *wqh;
1515
1516	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1517	while (inode->i_state & I_SYNC) {
1518		spin_unlock(&inode->i_lock);
1519		__wait_on_bit(wqh, &wq, bit_wait,
1520			      TASK_UNINTERRUPTIBLE);
1521		spin_lock(&inode->i_lock);
1522	}
1523}
1524
1525/*
1526 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1527 */
1528void inode_wait_for_writeback(struct inode *inode)
1529{
1530	spin_lock(&inode->i_lock);
1531	__inode_wait_for_writeback(inode);
1532	spin_unlock(&inode->i_lock);
1533}
1534
1535/*
1536 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1537 * held and drops it. It is aimed for callers not holding any inode reference
1538 * so once i_lock is dropped, inode can go away.
1539 */
1540static void inode_sleep_on_writeback(struct inode *inode)
1541	__releases(inode->i_lock)
1542{
1543	DEFINE_WAIT(wait);
1544	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1545	int sleep;
1546
1547	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1548	sleep = inode->i_state & I_SYNC;
1549	spin_unlock(&inode->i_lock);
1550	if (sleep)
1551		schedule();
1552	finish_wait(wqh, &wait);
1553}
1554
1555/*
1556 * Find proper writeback list for the inode depending on its current state and
1557 * possibly also change of its state while we were doing writeback.  Here we
1558 * handle things such as livelock prevention or fairness of writeback among
1559 * inodes. This function can be called only by flusher thread - noone else
1560 * processes all inodes in writeback lists and requeueing inodes behind flusher
1561 * thread's back can have unexpected consequences.
1562 */
1563static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1564			  struct writeback_control *wbc)
1565{
1566	if (inode->i_state & I_FREEING)
1567		return;
1568
1569	/*
1570	 * Sync livelock prevention. Each inode is tagged and synced in one
1571	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1572	 * the dirty time to prevent enqueue and sync it again.
1573	 */
1574	if ((inode->i_state & I_DIRTY) &&
1575	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1576		inode->dirtied_when = jiffies;
1577
1578	if (wbc->pages_skipped) {
1579		/*
1580		 * Writeback is not making progress due to locked buffers.
1581		 * Skip this inode for now. Although having skipped pages
1582		 * is odd for clean inodes, it can happen for some
1583		 * filesystems so handle that gracefully.
1584		 */
1585		if (inode->i_state & I_DIRTY_ALL)
1586			redirty_tail_locked(inode, wb);
1587		else
1588			inode_cgwb_move_to_attached(inode, wb);
1589		return;
1590	}
1591
1592	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1593		/*
1594		 * We didn't write back all the pages.  nfs_writepages()
1595		 * sometimes bales out without doing anything.
1596		 */
1597		if (wbc->nr_to_write <= 0) {
1598			/* Slice used up. Queue for next turn. */
1599			requeue_io(inode, wb);
1600		} else {
1601			/*
1602			 * Writeback blocked by something other than
1603			 * congestion. Delay the inode for some time to
1604			 * avoid spinning on the CPU (100% iowait)
1605			 * retrying writeback of the dirty page/inode
1606			 * that cannot be performed immediately.
1607			 */
1608			redirty_tail_locked(inode, wb);
1609		}
1610	} else if (inode->i_state & I_DIRTY) {
1611		/*
1612		 * Filesystems can dirty the inode during writeback operations,
1613		 * such as delayed allocation during submission or metadata
1614		 * updates after data IO completion.
1615		 */
1616		redirty_tail_locked(inode, wb);
1617	} else if (inode->i_state & I_DIRTY_TIME) {
1618		inode->dirtied_when = jiffies;
1619		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1620		inode->i_state &= ~I_SYNC_QUEUED;
1621	} else {
1622		/* The inode is clean. Remove from writeback lists. */
1623		inode_cgwb_move_to_attached(inode, wb);
1624	}
1625}
1626
1627/*
1628 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1629 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1630 *
1631 * This doesn't remove the inode from the writeback list it is on, except
1632 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1633 * expiration.  The caller is otherwise responsible for writeback list handling.
1634 *
1635 * The caller is also responsible for setting the I_SYNC flag beforehand and
1636 * calling inode_sync_complete() to clear it afterwards.
1637 */
1638static int
1639__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1640{
1641	struct address_space *mapping = inode->i_mapping;
1642	long nr_to_write = wbc->nr_to_write;
1643	unsigned dirty;
1644	int ret;
1645
1646	WARN_ON(!(inode->i_state & I_SYNC));
1647
1648	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1649
1650	ret = do_writepages(mapping, wbc);
1651
1652	/*
1653	 * Make sure to wait on the data before writing out the metadata.
1654	 * This is important for filesystems that modify metadata on data
1655	 * I/O completion. We don't do it for sync(2) writeback because it has a
1656	 * separate, external IO completion path and ->sync_fs for guaranteeing
1657	 * inode metadata is written back correctly.
1658	 */
1659	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1660		int err = filemap_fdatawait(mapping);
1661		if (ret == 0)
1662			ret = err;
1663	}
1664
1665	/*
1666	 * If the inode has dirty timestamps and we need to write them, call
1667	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1668	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1669	 */
1670	if ((inode->i_state & I_DIRTY_TIME) &&
1671	    (wbc->sync_mode == WB_SYNC_ALL ||
1672	     time_after(jiffies, inode->dirtied_time_when +
1673			dirtytime_expire_interval * HZ))) {
1674		trace_writeback_lazytime(inode);
1675		mark_inode_dirty_sync(inode);
1676	}
1677
1678	/*
1679	 * Get and clear the dirty flags from i_state.  This needs to be done
1680	 * after calling writepages because some filesystems may redirty the
1681	 * inode during writepages due to delalloc.  It also needs to be done
1682	 * after handling timestamp expiration, as that may dirty the inode too.
1683	 */
1684	spin_lock(&inode->i_lock);
1685	dirty = inode->i_state & I_DIRTY;
1686	inode->i_state &= ~dirty;
1687
1688	/*
1689	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1690	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1691	 * either they see the I_DIRTY bits cleared or we see the dirtied
1692	 * inode.
1693	 *
1694	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1695	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1696	 * necessary.  This guarantees that either __mark_inode_dirty()
1697	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1698	 */
1699	smp_mb();
1700
1701	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1702		inode->i_state |= I_DIRTY_PAGES;
1703	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1704		if (!(inode->i_state & I_DIRTY_PAGES)) {
1705			inode->i_state &= ~I_PINNING_NETFS_WB;
1706			wbc->unpinned_netfs_wb = true;
1707			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1708		}
1709	}
1710
1711	spin_unlock(&inode->i_lock);
1712
1713	/* Don't write the inode if only I_DIRTY_PAGES was set */
1714	if (dirty & ~I_DIRTY_PAGES) {
1715		int err = write_inode(inode, wbc);
1716		if (ret == 0)
1717			ret = err;
1718	}
1719	wbc->unpinned_netfs_wb = false;
1720	trace_writeback_single_inode(inode, wbc, nr_to_write);
1721	return ret;
1722}
1723
1724/*
1725 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1726 * the regular batched writeback done by the flusher threads in
1727 * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1728 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1729 *
1730 * To prevent the inode from going away, either the caller must have a reference
1731 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1732 */
1733static int writeback_single_inode(struct inode *inode,
1734				  struct writeback_control *wbc)
1735{
1736	struct bdi_writeback *wb;
1737	int ret = 0;
1738
1739	spin_lock(&inode->i_lock);
1740	if (!atomic_read(&inode->i_count))
1741		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1742	else
1743		WARN_ON(inode->i_state & I_WILL_FREE);
1744
1745	if (inode->i_state & I_SYNC) {
1746		/*
1747		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1748		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1749		 * must wait for the existing writeback to complete, then do
1750		 * writeback again if there's anything left.
1751		 */
1752		if (wbc->sync_mode != WB_SYNC_ALL)
1753			goto out;
1754		__inode_wait_for_writeback(inode);
1755	}
1756	WARN_ON(inode->i_state & I_SYNC);
1757	/*
1758	 * If the inode is already fully clean, then there's nothing to do.
1759	 *
1760	 * For data-integrity syncs we also need to check whether any pages are
1761	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1762	 * there are any such pages, we'll need to wait for them.
1763	 */
1764	if (!(inode->i_state & I_DIRTY_ALL) &&
1765	    (wbc->sync_mode != WB_SYNC_ALL ||
1766	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1767		goto out;
1768	inode->i_state |= I_SYNC;
1769	wbc_attach_and_unlock_inode(wbc, inode);
1770
1771	ret = __writeback_single_inode(inode, wbc);
1772
1773	wbc_detach_inode(wbc);
1774
1775	wb = inode_to_wb_and_lock_list(inode);
1776	spin_lock(&inode->i_lock);
1777	/*
1778	 * If the inode is freeing, its i_io_list shoudn't be updated
1779	 * as it can be finally deleted at this moment.
1780	 */
1781	if (!(inode->i_state & I_FREEING)) {
1782		/*
1783		 * If the inode is now fully clean, then it can be safely
1784		 * removed from its writeback list (if any). Otherwise the
1785		 * flusher threads are responsible for the writeback lists.
1786		 */
1787		if (!(inode->i_state & I_DIRTY_ALL))
1788			inode_cgwb_move_to_attached(inode, wb);
1789		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1790			if ((inode->i_state & I_DIRTY))
1791				redirty_tail_locked(inode, wb);
1792			else if (inode->i_state & I_DIRTY_TIME) {
1793				inode->dirtied_when = jiffies;
1794				inode_io_list_move_locked(inode,
1795							  wb,
1796							  &wb->b_dirty_time);
1797			}
1798		}
1799	}
1800
1801	spin_unlock(&wb->list_lock);
1802	inode_sync_complete(inode);
1803out:
1804	spin_unlock(&inode->i_lock);
1805	return ret;
1806}
1807
1808static long writeback_chunk_size(struct bdi_writeback *wb,
1809				 struct wb_writeback_work *work)
1810{
1811	long pages;
1812
1813	/*
1814	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1815	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1816	 * here avoids calling into writeback_inodes_wb() more than once.
1817	 *
1818	 * The intended call sequence for WB_SYNC_ALL writeback is:
1819	 *
1820	 *      wb_writeback()
1821	 *          writeback_sb_inodes()       <== called only once
1822	 *              write_cache_pages()     <== called once for each inode
1823	 *                   (quickly) tag currently dirty pages
1824	 *                   (maybe slowly) sync all tagged pages
1825	 */
1826	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1827		pages = LONG_MAX;
1828	else {
1829		pages = min(wb->avg_write_bandwidth / 2,
1830			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1831		pages = min(pages, work->nr_pages);
1832		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1833				   MIN_WRITEBACK_PAGES);
1834	}
1835
1836	return pages;
1837}
1838
1839/*
1840 * Write a portion of b_io inodes which belong to @sb.
1841 *
1842 * Return the number of pages and/or inodes written.
1843 *
1844 * NOTE! This is called with wb->list_lock held, and will
1845 * unlock and relock that for each inode it ends up doing
1846 * IO for.
1847 */
1848static long writeback_sb_inodes(struct super_block *sb,
1849				struct bdi_writeback *wb,
1850				struct wb_writeback_work *work)
1851{
1852	struct writeback_control wbc = {
1853		.sync_mode		= work->sync_mode,
1854		.tagged_writepages	= work->tagged_writepages,
1855		.for_kupdate		= work->for_kupdate,
1856		.for_background		= work->for_background,
1857		.for_sync		= work->for_sync,
1858		.range_cyclic		= work->range_cyclic,
1859		.range_start		= 0,
1860		.range_end		= LLONG_MAX,
1861	};
1862	unsigned long start_time = jiffies;
1863	long write_chunk;
1864	long total_wrote = 0;  /* count both pages and inodes */
1865
1866	while (!list_empty(&wb->b_io)) {
1867		struct inode *inode = wb_inode(wb->b_io.prev);
1868		struct bdi_writeback *tmp_wb;
1869		long wrote;
1870
1871		if (inode->i_sb != sb) {
1872			if (work->sb) {
1873				/*
1874				 * We only want to write back data for this
1875				 * superblock, move all inodes not belonging
1876				 * to it back onto the dirty list.
1877				 */
1878				redirty_tail(inode, wb);
1879				continue;
1880			}
1881
1882			/*
1883			 * The inode belongs to a different superblock.
1884			 * Bounce back to the caller to unpin this and
1885			 * pin the next superblock.
1886			 */
1887			break;
1888		}
1889
1890		/*
1891		 * Don't bother with new inodes or inodes being freed, first
1892		 * kind does not need periodic writeout yet, and for the latter
1893		 * kind writeout is handled by the freer.
1894		 */
1895		spin_lock(&inode->i_lock);
1896		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1897			redirty_tail_locked(inode, wb);
1898			spin_unlock(&inode->i_lock);
1899			continue;
1900		}
1901		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1902			/*
1903			 * If this inode is locked for writeback and we are not
1904			 * doing writeback-for-data-integrity, move it to
1905			 * b_more_io so that writeback can proceed with the
1906			 * other inodes on s_io.
1907			 *
1908			 * We'll have another go at writing back this inode
1909			 * when we completed a full scan of b_io.
1910			 */
1911			requeue_io(inode, wb);
1912			spin_unlock(&inode->i_lock);
1913			trace_writeback_sb_inodes_requeue(inode);
1914			continue;
1915		}
1916		spin_unlock(&wb->list_lock);
1917
1918		/*
1919		 * We already requeued the inode if it had I_SYNC set and we
1920		 * are doing WB_SYNC_NONE writeback. So this catches only the
1921		 * WB_SYNC_ALL case.
1922		 */
1923		if (inode->i_state & I_SYNC) {
1924			/* Wait for I_SYNC. This function drops i_lock... */
1925			inode_sleep_on_writeback(inode);
1926			/* Inode may be gone, start again */
1927			spin_lock(&wb->list_lock);
1928			continue;
1929		}
1930		inode->i_state |= I_SYNC;
1931		wbc_attach_and_unlock_inode(&wbc, inode);
1932
1933		write_chunk = writeback_chunk_size(wb, work);
1934		wbc.nr_to_write = write_chunk;
1935		wbc.pages_skipped = 0;
1936
1937		/*
1938		 * We use I_SYNC to pin the inode in memory. While it is set
1939		 * evict_inode() will wait so the inode cannot be freed.
1940		 */
1941		__writeback_single_inode(inode, &wbc);
1942
1943		wbc_detach_inode(&wbc);
1944		work->nr_pages -= write_chunk - wbc.nr_to_write;
1945		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1946		wrote = wrote < 0 ? 0 : wrote;
1947		total_wrote += wrote;
1948
1949		if (need_resched()) {
1950			/*
1951			 * We're trying to balance between building up a nice
1952			 * long list of IOs to improve our merge rate, and
1953			 * getting those IOs out quickly for anyone throttling
1954			 * in balance_dirty_pages().  cond_resched() doesn't
1955			 * unplug, so get our IOs out the door before we
1956			 * give up the CPU.
1957			 */
1958			blk_flush_plug(current->plug, false);
1959			cond_resched();
1960		}
1961
1962		/*
1963		 * Requeue @inode if still dirty.  Be careful as @inode may
1964		 * have been switched to another wb in the meantime.
1965		 */
1966		tmp_wb = inode_to_wb_and_lock_list(inode);
1967		spin_lock(&inode->i_lock);
1968		if (!(inode->i_state & I_DIRTY_ALL))
1969			total_wrote++;
1970		requeue_inode(inode, tmp_wb, &wbc);
1971		inode_sync_complete(inode);
1972		spin_unlock(&inode->i_lock);
1973
1974		if (unlikely(tmp_wb != wb)) {
1975			spin_unlock(&tmp_wb->list_lock);
1976			spin_lock(&wb->list_lock);
1977		}
1978
1979		/*
1980		 * bail out to wb_writeback() often enough to check
1981		 * background threshold and other termination conditions.
1982		 */
1983		if (total_wrote) {
1984			if (time_is_before_jiffies(start_time + HZ / 10UL))
1985				break;
1986			if (work->nr_pages <= 0)
1987				break;
1988		}
1989	}
1990	return total_wrote;
1991}
1992
1993static long __writeback_inodes_wb(struct bdi_writeback *wb,
1994				  struct wb_writeback_work *work)
1995{
1996	unsigned long start_time = jiffies;
1997	long wrote = 0;
1998
1999	while (!list_empty(&wb->b_io)) {
2000		struct inode *inode = wb_inode(wb->b_io.prev);
2001		struct super_block *sb = inode->i_sb;
2002
2003		if (!super_trylock_shared(sb)) {
2004			/*
2005			 * super_trylock_shared() may fail consistently due to
2006			 * s_umount being grabbed by someone else. Don't use
2007			 * requeue_io() to avoid busy retrying the inode/sb.
2008			 */
2009			redirty_tail(inode, wb);
2010			continue;
2011		}
2012		wrote += writeback_sb_inodes(sb, wb, work);
2013		up_read(&sb->s_umount);
2014
2015		/* refer to the same tests at the end of writeback_sb_inodes */
2016		if (wrote) {
2017			if (time_is_before_jiffies(start_time + HZ / 10UL))
2018				break;
2019			if (work->nr_pages <= 0)
2020				break;
2021		}
2022	}
2023	/* Leave any unwritten inodes on b_io */
2024	return wrote;
2025}
2026
2027static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2028				enum wb_reason reason)
2029{
2030	struct wb_writeback_work work = {
2031		.nr_pages	= nr_pages,
2032		.sync_mode	= WB_SYNC_NONE,
2033		.range_cyclic	= 1,
2034		.reason		= reason,
2035	};
2036	struct blk_plug plug;
2037
2038	blk_start_plug(&plug);
2039	spin_lock(&wb->list_lock);
2040	if (list_empty(&wb->b_io))
2041		queue_io(wb, &work, jiffies);
2042	__writeback_inodes_wb(wb, &work);
2043	spin_unlock(&wb->list_lock);
2044	blk_finish_plug(&plug);
2045
2046	return nr_pages - work.nr_pages;
2047}
2048
2049/*
2050 * Explicit flushing or periodic writeback of "old" data.
2051 *
2052 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2053 * dirtying-time in the inode's address_space.  So this periodic writeback code
2054 * just walks the superblock inode list, writing back any inodes which are
2055 * older than a specific point in time.
2056 *
2057 * Try to run once per dirty_writeback_interval.  But if a writeback event
2058 * takes longer than a dirty_writeback_interval interval, then leave a
2059 * one-second gap.
2060 *
2061 * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2062 * all dirty pages if they are all attached to "old" mappings.
2063 */
2064static long wb_writeback(struct bdi_writeback *wb,
2065			 struct wb_writeback_work *work)
2066{
2067	long nr_pages = work->nr_pages;
2068	unsigned long dirtied_before = jiffies;
2069	struct inode *inode;
2070	long progress;
2071	struct blk_plug plug;
2072
2073	blk_start_plug(&plug);
2074	for (;;) {
2075		/*
2076		 * Stop writeback when nr_pages has been consumed
2077		 */
2078		if (work->nr_pages <= 0)
2079			break;
2080
2081		/*
2082		 * Background writeout and kupdate-style writeback may
2083		 * run forever. Stop them if there is other work to do
2084		 * so that e.g. sync can proceed. They'll be restarted
2085		 * after the other works are all done.
2086		 */
2087		if ((work->for_background || work->for_kupdate) &&
2088		    !list_empty(&wb->work_list))
2089			break;
2090
2091		/*
2092		 * For background writeout, stop when we are below the
2093		 * background dirty threshold
2094		 */
2095		if (work->for_background && !wb_over_bg_thresh(wb))
2096			break;
2097
2098
2099		spin_lock(&wb->list_lock);
2100
2101		/*
2102		 * Kupdate and background works are special and we want to
2103		 * include all inodes that need writing. Livelock avoidance is
2104		 * handled by these works yielding to any other work so we are
2105		 * safe.
2106		 */
2107		if (work->for_kupdate) {
2108			dirtied_before = jiffies -
2109				msecs_to_jiffies(dirty_expire_interval * 10);
2110		} else if (work->for_background)
2111			dirtied_before = jiffies;
2112
2113		trace_writeback_start(wb, work);
2114		if (list_empty(&wb->b_io))
2115			queue_io(wb, work, dirtied_before);
2116		if (work->sb)
2117			progress = writeback_sb_inodes(work->sb, wb, work);
2118		else
2119			progress = __writeback_inodes_wb(wb, work);
2120		trace_writeback_written(wb, work);
2121
2122		/*
2123		 * Did we write something? Try for more
2124		 *
2125		 * Dirty inodes are moved to b_io for writeback in batches.
2126		 * The completion of the current batch does not necessarily
2127		 * mean the overall work is done. So we keep looping as long
2128		 * as made some progress on cleaning pages or inodes.
2129		 */
2130		if (progress) {
2131			spin_unlock(&wb->list_lock);
2132			continue;
2133		}
2134
2135		/*
2136		 * No more inodes for IO, bail
2137		 */
2138		if (list_empty(&wb->b_more_io)) {
2139			spin_unlock(&wb->list_lock);
2140			break;
2141		}
2142
2143		/*
2144		 * Nothing written. Wait for some inode to
2145		 * become available for writeback. Otherwise
2146		 * we'll just busyloop.
2147		 */
2148		trace_writeback_wait(wb, work);
2149		inode = wb_inode(wb->b_more_io.prev);
2150		spin_lock(&inode->i_lock);
2151		spin_unlock(&wb->list_lock);
2152		/* This function drops i_lock... */
2153		inode_sleep_on_writeback(inode);
2154	}
2155	blk_finish_plug(&plug);
2156
2157	return nr_pages - work->nr_pages;
2158}
2159
2160/*
2161 * Return the next wb_writeback_work struct that hasn't been processed yet.
2162 */
2163static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2164{
2165	struct wb_writeback_work *work = NULL;
2166
2167	spin_lock_irq(&wb->work_lock);
2168	if (!list_empty(&wb->work_list)) {
2169		work = list_entry(wb->work_list.next,
2170				  struct wb_writeback_work, list);
2171		list_del_init(&work->list);
2172	}
2173	spin_unlock_irq(&wb->work_lock);
2174	return work;
2175}
2176
2177static long wb_check_background_flush(struct bdi_writeback *wb)
2178{
2179	if (wb_over_bg_thresh(wb)) {
2180
2181		struct wb_writeback_work work = {
2182			.nr_pages	= LONG_MAX,
2183			.sync_mode	= WB_SYNC_NONE,
2184			.for_background	= 1,
2185			.range_cyclic	= 1,
2186			.reason		= WB_REASON_BACKGROUND,
2187		};
2188
2189		return wb_writeback(wb, &work);
2190	}
2191
2192	return 0;
2193}
2194
2195static long wb_check_old_data_flush(struct bdi_writeback *wb)
2196{
2197	unsigned long expired;
2198	long nr_pages;
2199
2200	/*
2201	 * When set to zero, disable periodic writeback
2202	 */
2203	if (!dirty_writeback_interval)
2204		return 0;
2205
2206	expired = wb->last_old_flush +
2207			msecs_to_jiffies(dirty_writeback_interval * 10);
2208	if (time_before(jiffies, expired))
2209		return 0;
2210
2211	wb->last_old_flush = jiffies;
2212	nr_pages = get_nr_dirty_pages();
2213
2214	if (nr_pages) {
2215		struct wb_writeback_work work = {
2216			.nr_pages	= nr_pages,
2217			.sync_mode	= WB_SYNC_NONE,
2218			.for_kupdate	= 1,
2219			.range_cyclic	= 1,
2220			.reason		= WB_REASON_PERIODIC,
2221		};
2222
2223		return wb_writeback(wb, &work);
2224	}
2225
2226	return 0;
2227}
2228
2229static long wb_check_start_all(struct bdi_writeback *wb)
2230{
2231	long nr_pages;
2232
2233	if (!test_bit(WB_start_all, &wb->state))
2234		return 0;
2235
2236	nr_pages = get_nr_dirty_pages();
2237	if (nr_pages) {
2238		struct wb_writeback_work work = {
2239			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2240			.sync_mode	= WB_SYNC_NONE,
2241			.range_cyclic	= 1,
2242			.reason		= wb->start_all_reason,
2243		};
2244
2245		nr_pages = wb_writeback(wb, &work);
2246	}
2247
2248	clear_bit(WB_start_all, &wb->state);
2249	return nr_pages;
2250}
2251
2252
2253/*
2254 * Retrieve work items and do the writeback they describe
2255 */
2256static long wb_do_writeback(struct bdi_writeback *wb)
2257{
2258	struct wb_writeback_work *work;
2259	long wrote = 0;
2260
2261	set_bit(WB_writeback_running, &wb->state);
2262	while ((work = get_next_work_item(wb)) != NULL) {
2263		trace_writeback_exec(wb, work);
2264		wrote += wb_writeback(wb, work);
2265		finish_writeback_work(wb, work);
2266	}
2267
2268	/*
2269	 * Check for a flush-everything request
2270	 */
2271	wrote += wb_check_start_all(wb);
2272
2273	/*
2274	 * Check for periodic writeback, kupdated() style
2275	 */
2276	wrote += wb_check_old_data_flush(wb);
2277	wrote += wb_check_background_flush(wb);
2278	clear_bit(WB_writeback_running, &wb->state);
2279
2280	return wrote;
2281}
2282
2283/*
2284 * Handle writeback of dirty data for the device backed by this bdi. Also
2285 * reschedules periodically and does kupdated style flushing.
2286 */
2287void wb_workfn(struct work_struct *work)
2288{
2289	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2290						struct bdi_writeback, dwork);
2291	long pages_written;
2292
2293	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2294
2295	if (likely(!current_is_workqueue_rescuer() ||
2296		   !test_bit(WB_registered, &wb->state))) {
2297		/*
2298		 * The normal path.  Keep writing back @wb until its
2299		 * work_list is empty.  Note that this path is also taken
2300		 * if @wb is shutting down even when we're running off the
2301		 * rescuer as work_list needs to be drained.
2302		 */
2303		do {
2304			pages_written = wb_do_writeback(wb);
2305			trace_writeback_pages_written(pages_written);
2306		} while (!list_empty(&wb->work_list));
2307	} else {
2308		/*
2309		 * bdi_wq can't get enough workers and we're running off
2310		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2311		 * enough for efficient IO.
2312		 */
2313		pages_written = writeback_inodes_wb(wb, 1024,
2314						    WB_REASON_FORKER_THREAD);
2315		trace_writeback_pages_written(pages_written);
2316	}
2317
2318	if (!list_empty(&wb->work_list))
2319		wb_wakeup(wb);
2320	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2321		wb_wakeup_delayed(wb);
2322}
2323
2324/*
2325 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2326 * write back the whole world.
2327 */
2328static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2329					 enum wb_reason reason)
2330{
2331	struct bdi_writeback *wb;
2332
2333	if (!bdi_has_dirty_io(bdi))
2334		return;
2335
2336	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2337		wb_start_writeback(wb, reason);
2338}
2339
2340void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2341				enum wb_reason reason)
2342{
2343	rcu_read_lock();
2344	__wakeup_flusher_threads_bdi(bdi, reason);
2345	rcu_read_unlock();
2346}
2347
2348/*
2349 * Wakeup the flusher threads to start writeback of all currently dirty pages
2350 */
2351void wakeup_flusher_threads(enum wb_reason reason)
2352{
2353	struct backing_dev_info *bdi;
2354
2355	/*
2356	 * If we are expecting writeback progress we must submit plugged IO.
2357	 */
2358	blk_flush_plug(current->plug, true);
2359
2360	rcu_read_lock();
2361	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2362		__wakeup_flusher_threads_bdi(bdi, reason);
2363	rcu_read_unlock();
2364}
2365
2366/*
2367 * Wake up bdi's periodically to make sure dirtytime inodes gets
2368 * written back periodically.  We deliberately do *not* check the
2369 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2370 * kernel to be constantly waking up once there are any dirtytime
2371 * inodes on the system.  So instead we define a separate delayed work
2372 * function which gets called much more rarely.  (By default, only
2373 * once every 12 hours.)
2374 *
2375 * If there is any other write activity going on in the file system,
2376 * this function won't be necessary.  But if the only thing that has
2377 * happened on the file system is a dirtytime inode caused by an atime
2378 * update, we need this infrastructure below to make sure that inode
2379 * eventually gets pushed out to disk.
2380 */
2381static void wakeup_dirtytime_writeback(struct work_struct *w);
2382static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2383
2384static void wakeup_dirtytime_writeback(struct work_struct *w)
2385{
2386	struct backing_dev_info *bdi;
2387
2388	rcu_read_lock();
2389	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2390		struct bdi_writeback *wb;
2391
2392		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2393			if (!list_empty(&wb->b_dirty_time))
2394				wb_wakeup(wb);
2395	}
2396	rcu_read_unlock();
2397	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2398}
2399
2400static int __init start_dirtytime_writeback(void)
2401{
2402	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2403	return 0;
2404}
2405__initcall(start_dirtytime_writeback);
2406
2407int dirtytime_interval_handler(struct ctl_table *table, int write,
2408			       void *buffer, size_t *lenp, loff_t *ppos)
2409{
2410	int ret;
2411
2412	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2413	if (ret == 0 && write)
2414		mod_delayed_work(system_wq, &dirtytime_work, 0);
2415	return ret;
2416}
2417
2418/**
2419 * __mark_inode_dirty -	internal function to mark an inode dirty
2420 *
2421 * @inode: inode to mark
2422 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2423 *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2424 *	   with I_DIRTY_PAGES.
2425 *
2426 * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2427 * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2428 *
2429 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2430 * instead of calling this directly.
2431 *
2432 * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2433 * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2434 * even if they are later hashed, as they will have been marked dirty already.
2435 *
2436 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2437 *
2438 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2439 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2440 * the kernel-internal blockdev inode represents the dirtying time of the
2441 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2442 * page->mapping->host, so the page-dirtying time is recorded in the internal
2443 * blockdev inode.
2444 */
2445void __mark_inode_dirty(struct inode *inode, int flags)
2446{
2447	struct super_block *sb = inode->i_sb;
2448	int dirtytime = 0;
2449	struct bdi_writeback *wb = NULL;
2450
2451	trace_writeback_mark_inode_dirty(inode, flags);
2452
2453	if (flags & I_DIRTY_INODE) {
2454		/*
2455		 * Inode timestamp update will piggback on this dirtying.
2456		 * We tell ->dirty_inode callback that timestamps need to
2457		 * be updated by setting I_DIRTY_TIME in flags.
2458		 */
2459		if (inode->i_state & I_DIRTY_TIME) {
2460			spin_lock(&inode->i_lock);
2461			if (inode->i_state & I_DIRTY_TIME) {
2462				inode->i_state &= ~I_DIRTY_TIME;
2463				flags |= I_DIRTY_TIME;
2464			}
2465			spin_unlock(&inode->i_lock);
2466		}
2467
2468		/*
2469		 * Notify the filesystem about the inode being dirtied, so that
2470		 * (if needed) it can update on-disk fields and journal the
2471		 * inode.  This is only needed when the inode itself is being
2472		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2473		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2474		 */
2475		trace_writeback_dirty_inode_start(inode, flags);
2476		if (sb->s_op->dirty_inode)
2477			sb->s_op->dirty_inode(inode,
2478				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2479		trace_writeback_dirty_inode(inode, flags);
2480
2481		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2482		flags &= ~I_DIRTY_TIME;
2483	} else {
2484		/*
2485		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2486		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2487		 * in one call to __mark_inode_dirty().)
2488		 */
2489		dirtytime = flags & I_DIRTY_TIME;
2490		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2491	}
2492
2493	/*
2494	 * Paired with smp_mb() in __writeback_single_inode() for the
2495	 * following lockless i_state test.  See there for details.
2496	 */
2497	smp_mb();
2498
2499	if ((inode->i_state & flags) == flags)
2500		return;
2501
2502	spin_lock(&inode->i_lock);
2503	if ((inode->i_state & flags) != flags) {
2504		const int was_dirty = inode->i_state & I_DIRTY;
2505
2506		inode_attach_wb(inode, NULL);
2507
2508		inode->i_state |= flags;
2509
2510		/*
2511		 * Grab inode's wb early because it requires dropping i_lock and we
2512		 * need to make sure following checks happen atomically with dirty
2513		 * list handling so that we don't move inodes under flush worker's
2514		 * hands.
2515		 */
2516		if (!was_dirty) {
2517			wb = locked_inode_to_wb_and_lock_list(inode);
2518			spin_lock(&inode->i_lock);
2519		}
2520
2521		/*
2522		 * If the inode is queued for writeback by flush worker, just
2523		 * update its dirty state. Once the flush worker is done with
2524		 * the inode it will place it on the appropriate superblock
2525		 * list, based upon its state.
2526		 */
2527		if (inode->i_state & I_SYNC_QUEUED)
2528			goto out_unlock;
2529
2530		/*
2531		 * Only add valid (hashed) inodes to the superblock's
2532		 * dirty list.  Add blockdev inodes as well.
2533		 */
2534		if (!S_ISBLK(inode->i_mode)) {
2535			if (inode_unhashed(inode))
2536				goto out_unlock;
2537		}
2538		if (inode->i_state & I_FREEING)
2539			goto out_unlock;
2540
2541		/*
2542		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2543		 * reposition it (that would break b_dirty time-ordering).
2544		 */
2545		if (!was_dirty) {
2546			struct list_head *dirty_list;
2547			bool wakeup_bdi = false;
2548
2549			inode->dirtied_when = jiffies;
2550			if (dirtytime)
2551				inode->dirtied_time_when = jiffies;
2552
2553			if (inode->i_state & I_DIRTY)
2554				dirty_list = &wb->b_dirty;
2555			else
2556				dirty_list = &wb->b_dirty_time;
2557
2558			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2559							       dirty_list);
2560
2561			spin_unlock(&wb->list_lock);
2562			spin_unlock(&inode->i_lock);
2563			trace_writeback_dirty_inode_enqueue(inode);
2564
2565			/*
2566			 * If this is the first dirty inode for this bdi,
2567			 * we have to wake-up the corresponding bdi thread
2568			 * to make sure background write-back happens
2569			 * later.
2570			 */
2571			if (wakeup_bdi &&
2572			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2573				wb_wakeup_delayed(wb);
2574			return;
2575		}
2576	}
2577out_unlock:
2578	if (wb)
2579		spin_unlock(&wb->list_lock);
2580	spin_unlock(&inode->i_lock);
2581}
2582EXPORT_SYMBOL(__mark_inode_dirty);
2583
2584/*
2585 * The @s_sync_lock is used to serialise concurrent sync operations
2586 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2587 * Concurrent callers will block on the s_sync_lock rather than doing contending
2588 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2589 * has been issued up to the time this function is enter is guaranteed to be
2590 * completed by the time we have gained the lock and waited for all IO that is
2591 * in progress regardless of the order callers are granted the lock.
2592 */
2593static void wait_sb_inodes(struct super_block *sb)
2594{
2595	LIST_HEAD(sync_list);
2596
2597	/*
2598	 * We need to be protected against the filesystem going from
2599	 * r/o to r/w or vice versa.
2600	 */
2601	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2602
2603	mutex_lock(&sb->s_sync_lock);
2604
2605	/*
2606	 * Splice the writeback list onto a temporary list to avoid waiting on
2607	 * inodes that have started writeback after this point.
2608	 *
2609	 * Use rcu_read_lock() to keep the inodes around until we have a
2610	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2611	 * the local list because inodes can be dropped from either by writeback
2612	 * completion.
2613	 */
2614	rcu_read_lock();
2615	spin_lock_irq(&sb->s_inode_wblist_lock);
2616	list_splice_init(&sb->s_inodes_wb, &sync_list);
2617
2618	/*
2619	 * Data integrity sync. Must wait for all pages under writeback, because
2620	 * there may have been pages dirtied before our sync call, but which had
2621	 * writeout started before we write it out.  In which case, the inode
2622	 * may not be on the dirty list, but we still have to wait for that
2623	 * writeout.
2624	 */
2625	while (!list_empty(&sync_list)) {
2626		struct inode *inode = list_first_entry(&sync_list, struct inode,
2627						       i_wb_list);
2628		struct address_space *mapping = inode->i_mapping;
2629
2630		/*
2631		 * Move each inode back to the wb list before we drop the lock
2632		 * to preserve consistency between i_wb_list and the mapping
2633		 * writeback tag. Writeback completion is responsible to remove
2634		 * the inode from either list once the writeback tag is cleared.
2635		 */
2636		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2637
2638		/*
2639		 * The mapping can appear untagged while still on-list since we
2640		 * do not have the mapping lock. Skip it here, wb completion
2641		 * will remove it.
2642		 */
2643		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2644			continue;
2645
2646		spin_unlock_irq(&sb->s_inode_wblist_lock);
2647
2648		spin_lock(&inode->i_lock);
2649		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2650			spin_unlock(&inode->i_lock);
2651
2652			spin_lock_irq(&sb->s_inode_wblist_lock);
2653			continue;
2654		}
2655		__iget(inode);
2656		spin_unlock(&inode->i_lock);
2657		rcu_read_unlock();
2658
2659		/*
2660		 * We keep the error status of individual mapping so that
2661		 * applications can catch the writeback error using fsync(2).
2662		 * See filemap_fdatawait_keep_errors() for details.
2663		 */
2664		filemap_fdatawait_keep_errors(mapping);
2665
2666		cond_resched();
2667
2668		iput(inode);
2669
2670		rcu_read_lock();
2671		spin_lock_irq(&sb->s_inode_wblist_lock);
2672	}
2673	spin_unlock_irq(&sb->s_inode_wblist_lock);
2674	rcu_read_unlock();
2675	mutex_unlock(&sb->s_sync_lock);
2676}
2677
2678static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2679				     enum wb_reason reason, bool skip_if_busy)
2680{
2681	struct backing_dev_info *bdi = sb->s_bdi;
2682	DEFINE_WB_COMPLETION(done, bdi);
2683	struct wb_writeback_work work = {
2684		.sb			= sb,
2685		.sync_mode		= WB_SYNC_NONE,
2686		.tagged_writepages	= 1,
2687		.done			= &done,
2688		.nr_pages		= nr,
2689		.reason			= reason,
2690	};
2691
2692	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2693		return;
2694	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2695
2696	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2697	wb_wait_for_completion(&done);
2698}
2699
2700/**
2701 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2702 * @sb: the superblock
2703 * @nr: the number of pages to write
2704 * @reason: reason why some writeback work initiated
2705 *
2706 * Start writeback on some inodes on this super_block. No guarantees are made
2707 * on how many (if any) will be written, and this function does not wait
2708 * for IO completion of submitted IO.
2709 */
2710void writeback_inodes_sb_nr(struct super_block *sb,
2711			    unsigned long nr,
2712			    enum wb_reason reason)
2713{
2714	__writeback_inodes_sb_nr(sb, nr, reason, false);
2715}
2716EXPORT_SYMBOL(writeback_inodes_sb_nr);
2717
2718/**
2719 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2720 * @sb: the superblock
2721 * @reason: reason why some writeback work was initiated
2722 *
2723 * Start writeback on some inodes on this super_block. No guarantees are made
2724 * on how many (if any) will be written, and this function does not wait
2725 * for IO completion of submitted IO.
2726 */
2727void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2728{
2729	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2730}
2731EXPORT_SYMBOL(writeback_inodes_sb);
2732
2733/**
2734 * try_to_writeback_inodes_sb - try to start writeback if none underway
2735 * @sb: the superblock
2736 * @reason: reason why some writeback work was initiated
2737 *
2738 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2739 */
2740void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2741{
2742	if (!down_read_trylock(&sb->s_umount))
2743		return;
2744
2745	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2746	up_read(&sb->s_umount);
2747}
2748EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2749
2750/**
2751 * sync_inodes_sb	-	sync sb inode pages
2752 * @sb: the superblock
2753 *
2754 * This function writes and waits on any dirty inode belonging to this
2755 * super_block.
2756 */
2757void sync_inodes_sb(struct super_block *sb)
2758{
2759	struct backing_dev_info *bdi = sb->s_bdi;
2760	DEFINE_WB_COMPLETION(done, bdi);
2761	struct wb_writeback_work work = {
2762		.sb		= sb,
2763		.sync_mode	= WB_SYNC_ALL,
2764		.nr_pages	= LONG_MAX,
2765		.range_cyclic	= 0,
2766		.done		= &done,
2767		.reason		= WB_REASON_SYNC,
2768		.for_sync	= 1,
2769	};
2770
2771	/*
2772	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2773	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2774	 * bdi_has_dirty() need to be written out too.
2775	 */
2776	if (bdi == &noop_backing_dev_info)
2777		return;
2778	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2779
2780	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2781	bdi_down_write_wb_switch_rwsem(bdi);
2782	bdi_split_work_to_wbs(bdi, &work, false);
2783	wb_wait_for_completion(&done);
2784	bdi_up_write_wb_switch_rwsem(bdi);
2785
2786	wait_sb_inodes(sb);
2787}
2788EXPORT_SYMBOL(sync_inodes_sb);
2789
2790/**
2791 * write_inode_now	-	write an inode to disk
2792 * @inode: inode to write to disk
2793 * @sync: whether the write should be synchronous or not
2794 *
2795 * This function commits an inode to disk immediately if it is dirty. This is
2796 * primarily needed by knfsd.
2797 *
2798 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2799 */
2800int write_inode_now(struct inode *inode, int sync)
2801{
2802	struct writeback_control wbc = {
2803		.nr_to_write = LONG_MAX,
2804		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2805		.range_start = 0,
2806		.range_end = LLONG_MAX,
2807	};
2808
2809	if (!mapping_can_writeback(inode->i_mapping))
2810		wbc.nr_to_write = 0;
2811
2812	might_sleep();
2813	return writeback_single_inode(inode, &wbc);
2814}
2815EXPORT_SYMBOL(write_inode_now);
2816
2817/**
2818 * sync_inode_metadata - write an inode to disk
2819 * @inode: the inode to sync
2820 * @wait: wait for I/O to complete.
2821 *
2822 * Write an inode to disk and adjust its dirty state after completion.
2823 *
2824 * Note: only writes the actual inode, no associated data or other metadata.
2825 */
2826int sync_inode_metadata(struct inode *inode, int wait)
2827{
2828	struct writeback_control wbc = {
2829		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2830		.nr_to_write = 0, /* metadata-only */
2831	};
2832
2833	return writeback_single_inode(inode, &wbc);
2834}
2835EXPORT_SYMBOL(sync_inode_metadata);
2836