1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#include <linux/blkdev.h>
9#include <linux/backing-dev.h>
10
11/* constant macro */
12#define NULL_SEGNO			((unsigned int)(~0))
13#define NULL_SECNO			((unsigned int)(~0))
14
15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17
18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19#define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21/* L: Logical segment # in volume, R: Relative segment # in main area */
22#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24
25#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27
28static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
29						unsigned short seg_type)
30{
31	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
32}
33
34#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
35#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
36#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
37
38#define IS_CURSEG(sbi, seg)						\
39	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
40	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
41	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
42	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
43	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
44	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
45	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
46	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
47
48#define IS_CURSEC(sbi, secno)						\
49	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
50	  (sbi)->segs_per_sec) ||	\
51	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
52	  (sbi)->segs_per_sec) ||	\
53	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
54	  (sbi)->segs_per_sec) ||	\
55	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
56	  (sbi)->segs_per_sec) ||	\
57	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
58	  (sbi)->segs_per_sec) ||	\
59	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
60	  (sbi)->segs_per_sec) ||	\
61	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
62	  (sbi)->segs_per_sec) ||	\
63	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
64	  (sbi)->segs_per_sec))
65
66#define MAIN_BLKADDR(sbi)						\
67	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
68		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
69#define SEG0_BLKADDR(sbi)						\
70	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
71		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
72
73#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
74#define MAIN_SECS(sbi)	((sbi)->total_sections)
75
76#define TOTAL_SEGS(sbi)							\
77	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
78		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
79#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
80
81#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
82#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
83					(sbi)->log_blocks_per_seg))
84
85#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
86	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
87
88#define NEXT_FREE_BLKADDR(sbi, curseg)					\
89	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
90
91#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
92#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
93	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
94#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
95	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
96
97#define GET_SEGNO(sbi, blk_addr)					\
98	((!__is_valid_data_blkaddr(blk_addr)) ?			\
99	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
100		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
101#define BLKS_PER_SEC(sbi)					\
102	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
103#define GET_SEC_FROM_SEG(sbi, segno)				\
104	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
105#define GET_SEG_FROM_SEC(sbi, secno)				\
106	((secno) * (sbi)->segs_per_sec)
107#define GET_ZONE_FROM_SEC(sbi, secno)				\
108	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
109#define GET_ZONE_FROM_SEG(sbi, segno)				\
110	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
111
112#define GET_SUM_BLOCK(sbi, segno)				\
113	((sbi)->sm_info->ssa_blkaddr + (segno))
114
115#define GET_SUM_TYPE(footer) ((footer)->entry_type)
116#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
117
118#define SIT_ENTRY_OFFSET(sit_i, segno)					\
119	((segno) % (sit_i)->sents_per_block)
120#define SIT_BLOCK_OFFSET(segno)					\
121	((segno) / SIT_ENTRY_PER_BLOCK)
122#define	START_SEGNO(segno)		\
123	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
124#define SIT_BLK_CNT(sbi)			\
125	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
126#define f2fs_bitmap_size(nr)			\
127	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
128
129#define SECTOR_FROM_BLOCK(blk_addr)					\
130	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
131#define SECTOR_TO_BLOCK(sectors)					\
132	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
133
134/*
135 * indicate a block allocation direction: RIGHT and LEFT.
136 * RIGHT means allocating new sections towards the end of volume.
137 * LEFT means the opposite direction.
138 */
139enum {
140	ALLOC_RIGHT = 0,
141	ALLOC_LEFT
142};
143
144/*
145 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
146 * LFS writes data sequentially with cleaning operations.
147 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
148 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
149 * fragmented segment which has similar aging degree.
150 */
151enum {
152	LFS = 0,
153	SSR,
154	AT_SSR,
155};
156
157/*
158 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
159 * GC_CB is based on cost-benefit algorithm.
160 * GC_GREEDY is based on greedy algorithm.
161 * GC_AT is based on age-threshold algorithm.
162 */
163enum {
164	GC_CB = 0,
165	GC_GREEDY,
166	GC_AT,
167	ALLOC_NEXT,
168	FLUSH_DEVICE,
169	MAX_GC_POLICY,
170};
171
172/*
173 * BG_GC means the background cleaning job.
174 * FG_GC means the on-demand cleaning job.
175 */
176enum {
177	BG_GC = 0,
178	FG_GC,
179};
180
181/* for a function parameter to select a victim segment */
182struct victim_sel_policy {
183	int alloc_mode;			/* LFS or SSR */
184	int gc_mode;			/* GC_CB or GC_GREEDY */
185	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
186	unsigned int max_search;	/*
187					 * maximum # of segments/sections
188					 * to search
189					 */
190	unsigned int offset;		/* last scanned bitmap offset */
191	unsigned int ofs_unit;		/* bitmap search unit */
192	unsigned int min_cost;		/* minimum cost */
193	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
194	unsigned int min_segno;		/* segment # having min. cost */
195	unsigned long long age;		/* mtime of GCed section*/
196	unsigned long long age_threshold;/* age threshold */
197};
198
199struct seg_entry {
200	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
201	unsigned int valid_blocks:10;	/* # of valid blocks */
202	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
203	unsigned int padding:6;		/* padding */
204	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
205#ifdef CONFIG_F2FS_CHECK_FS
206	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
207#endif
208	/*
209	 * # of valid blocks and the validity bitmap stored in the last
210	 * checkpoint pack. This information is used by the SSR mode.
211	 */
212	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
213	unsigned char *discard_map;
214	unsigned long long mtime;	/* modification time of the segment */
215};
216
217struct sec_entry {
218	unsigned int valid_blocks;	/* # of valid blocks in a section */
219};
220
221struct segment_allocation {
222	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
223};
224
225#define MAX_SKIP_GC_COUNT			16
226
227struct inmem_pages {
228	struct list_head list;
229	struct page *page;
230	block_t old_addr;		/* for revoking when fail to commit */
231};
232
233struct sit_info {
234	const struct segment_allocation *s_ops;
235
236	block_t sit_base_addr;		/* start block address of SIT area */
237	block_t sit_blocks;		/* # of blocks used by SIT area */
238	block_t written_valid_blocks;	/* # of valid blocks in main area */
239	char *bitmap;			/* all bitmaps pointer */
240	char *sit_bitmap;		/* SIT bitmap pointer */
241#ifdef CONFIG_F2FS_CHECK_FS
242	char *sit_bitmap_mir;		/* SIT bitmap mirror */
243
244	/* bitmap of segments to be ignored by GC in case of errors */
245	unsigned long *invalid_segmap;
246#endif
247	unsigned int bitmap_size;	/* SIT bitmap size */
248
249	unsigned long *tmp_map;			/* bitmap for temporal use */
250	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
251	unsigned int dirty_sentries;		/* # of dirty sentries */
252	unsigned int sents_per_block;		/* # of SIT entries per block */
253	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
254	struct seg_entry *sentries;		/* SIT segment-level cache */
255	struct sec_entry *sec_entries;		/* SIT section-level cache */
256
257	/* for cost-benefit algorithm in cleaning procedure */
258	unsigned long long elapsed_time;	/* elapsed time after mount */
259	unsigned long long mounted_time;	/* mount time */
260	unsigned long long min_mtime;		/* min. modification time */
261	unsigned long long max_mtime;		/* max. modification time */
262	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
263	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
264
265	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
266};
267
268struct free_segmap_info {
269	unsigned int start_segno;	/* start segment number logically */
270	unsigned int free_segments;	/* # of free segments */
271	unsigned int free_sections;	/* # of free sections */
272	spinlock_t segmap_lock;		/* free segmap lock */
273	unsigned long *free_segmap;	/* free segment bitmap */
274	unsigned long *free_secmap;	/* free section bitmap */
275};
276
277/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
278enum dirty_type {
279	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
280	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
281	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
282	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
283	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
284	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
285	DIRTY,			/* to count # of dirty segments */
286	PRE,			/* to count # of entirely obsolete segments */
287	NR_DIRTY_TYPE
288};
289
290struct dirty_seglist_info {
291	const struct victim_selection *v_ops;	/* victim selction operation */
292	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
293	unsigned long *dirty_secmap;
294	struct mutex seglist_lock;		/* lock for segment bitmaps */
295	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
296	unsigned long *victim_secmap;		/* background GC victims */
297};
298
299/* victim selection function for cleaning and SSR */
300struct victim_selection {
301	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
302					int, int, char, unsigned long long);
303};
304
305/* for active log information */
306struct curseg_info {
307	struct mutex curseg_mutex;		/* lock for consistency */
308	struct f2fs_summary_block *sum_blk;	/* cached summary block */
309	struct rw_semaphore journal_rwsem;	/* protect journal area */
310	struct f2fs_journal *journal;		/* cached journal info */
311	unsigned char alloc_type;		/* current allocation type */
312	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
313	unsigned int segno;			/* current segment number */
314	unsigned short next_blkoff;		/* next block offset to write */
315	unsigned int zone;			/* current zone number */
316	unsigned int next_segno;		/* preallocated segment */
317	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
318	bool inited;				/* indicate inmem log is inited */
319};
320
321struct sit_entry_set {
322	struct list_head set_list;	/* link with all sit sets */
323	unsigned int start_segno;	/* start segno of sits in set */
324	unsigned int entry_cnt;		/* the # of sit entries in set */
325};
326
327/*
328 * inline functions
329 */
330static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
331{
332	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
333}
334
335static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
336						unsigned int segno)
337{
338	struct sit_info *sit_i = SIT_I(sbi);
339	return &sit_i->sentries[segno];
340}
341
342static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
343						unsigned int segno)
344{
345	struct sit_info *sit_i = SIT_I(sbi);
346	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
347}
348
349static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
350				unsigned int segno, bool use_section)
351{
352	/*
353	 * In order to get # of valid blocks in a section instantly from many
354	 * segments, f2fs manages two counting structures separately.
355	 */
356	if (use_section && __is_large_section(sbi))
357		return get_sec_entry(sbi, segno)->valid_blocks;
358	else
359		return get_seg_entry(sbi, segno)->valid_blocks;
360}
361
362static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
363				unsigned int segno, bool use_section)
364{
365	if (use_section && __is_large_section(sbi)) {
366		unsigned int start_segno = START_SEGNO(segno);
367		unsigned int blocks = 0;
368		int i;
369
370		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
371			struct seg_entry *se = get_seg_entry(sbi, start_segno);
372
373			blocks += se->ckpt_valid_blocks;
374		}
375		return blocks;
376	}
377	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
378}
379
380static inline void seg_info_from_raw_sit(struct seg_entry *se,
381					struct f2fs_sit_entry *rs)
382{
383	se->valid_blocks = GET_SIT_VBLOCKS(rs);
384	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
385	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
386	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
387#ifdef CONFIG_F2FS_CHECK_FS
388	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
389#endif
390	se->type = GET_SIT_TYPE(rs);
391	se->mtime = le64_to_cpu(rs->mtime);
392}
393
394static inline void __seg_info_to_raw_sit(struct seg_entry *se,
395					struct f2fs_sit_entry *rs)
396{
397	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
398					se->valid_blocks;
399	rs->vblocks = cpu_to_le16(raw_vblocks);
400	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
401	rs->mtime = cpu_to_le64(se->mtime);
402}
403
404static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
405				struct page *page, unsigned int start)
406{
407	struct f2fs_sit_block *raw_sit;
408	struct seg_entry *se;
409	struct f2fs_sit_entry *rs;
410	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
411					(unsigned long)MAIN_SEGS(sbi));
412	int i;
413
414	raw_sit = (struct f2fs_sit_block *)page_address(page);
415	memset(raw_sit, 0, PAGE_SIZE);
416	for (i = 0; i < end - start; i++) {
417		rs = &raw_sit->entries[i];
418		se = get_seg_entry(sbi, start + i);
419		__seg_info_to_raw_sit(se, rs);
420	}
421}
422
423static inline void seg_info_to_raw_sit(struct seg_entry *se,
424					struct f2fs_sit_entry *rs)
425{
426	__seg_info_to_raw_sit(se, rs);
427
428	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
429	se->ckpt_valid_blocks = se->valid_blocks;
430}
431
432static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
433		unsigned int max, unsigned int segno)
434{
435	unsigned int ret;
436	spin_lock(&free_i->segmap_lock);
437	ret = find_next_bit(free_i->free_segmap, max, segno);
438	spin_unlock(&free_i->segmap_lock);
439	return ret;
440}
441
442static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
443{
444	struct free_segmap_info *free_i = FREE_I(sbi);
445	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
446	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
447	unsigned int next;
448	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
449
450	spin_lock(&free_i->segmap_lock);
451	clear_bit(segno, free_i->free_segmap);
452	free_i->free_segments++;
453
454	next = find_next_bit(free_i->free_segmap,
455			start_segno + sbi->segs_per_sec, start_segno);
456	if (next >= start_segno + usable_segs) {
457		clear_bit(secno, free_i->free_secmap);
458		free_i->free_sections++;
459	}
460	spin_unlock(&free_i->segmap_lock);
461}
462
463static inline void __set_inuse(struct f2fs_sb_info *sbi,
464		unsigned int segno)
465{
466	struct free_segmap_info *free_i = FREE_I(sbi);
467	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
468
469	set_bit(segno, free_i->free_segmap);
470	free_i->free_segments--;
471	if (!test_and_set_bit(secno, free_i->free_secmap))
472		free_i->free_sections--;
473}
474
475static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
476		unsigned int segno, bool inmem)
477{
478	struct free_segmap_info *free_i = FREE_I(sbi);
479	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
480	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
481	unsigned int next;
482	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
483
484	spin_lock(&free_i->segmap_lock);
485	if (test_and_clear_bit(segno, free_i->free_segmap)) {
486		free_i->free_segments++;
487
488		if (!inmem && IS_CURSEC(sbi, secno))
489			goto skip_free;
490		next = find_next_bit(free_i->free_segmap,
491				start_segno + sbi->segs_per_sec, start_segno);
492		if (next >= start_segno + usable_segs) {
493			if (test_and_clear_bit(secno, free_i->free_secmap))
494				free_i->free_sections++;
495		}
496	}
497skip_free:
498	spin_unlock(&free_i->segmap_lock);
499}
500
501static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
502		unsigned int segno)
503{
504	struct free_segmap_info *free_i = FREE_I(sbi);
505	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
506
507	spin_lock(&free_i->segmap_lock);
508	if (!test_and_set_bit(segno, free_i->free_segmap)) {
509		free_i->free_segments--;
510		if (!test_and_set_bit(secno, free_i->free_secmap))
511			free_i->free_sections--;
512	}
513	spin_unlock(&free_i->segmap_lock);
514}
515
516static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
517		void *dst_addr)
518{
519	struct sit_info *sit_i = SIT_I(sbi);
520
521#ifdef CONFIG_F2FS_CHECK_FS
522	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
523						sit_i->bitmap_size))
524		f2fs_bug_on(sbi, 1);
525#endif
526	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
527}
528
529static inline block_t written_block_count(struct f2fs_sb_info *sbi)
530{
531	return SIT_I(sbi)->written_valid_blocks;
532}
533
534static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
535{
536	return FREE_I(sbi)->free_segments;
537}
538
539static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
540{
541	return SM_I(sbi)->reserved_segments +
542			SM_I(sbi)->additional_reserved_segments;
543}
544
545static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
546{
547	return FREE_I(sbi)->free_sections;
548}
549
550static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
551{
552	return DIRTY_I(sbi)->nr_dirty[PRE];
553}
554
555static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
556{
557	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
558		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
559		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
560		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
561		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
562		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
563}
564
565static inline int overprovision_segments(struct f2fs_sb_info *sbi)
566{
567	return SM_I(sbi)->ovp_segments;
568}
569
570static inline int reserved_sections(struct f2fs_sb_info *sbi)
571{
572	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
573}
574
575static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
576{
577	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
578					get_pages(sbi, F2FS_DIRTY_DENTS);
579	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
580	unsigned int segno, left_blocks;
581	int i;
582
583	/* check current node segment */
584	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
585		segno = CURSEG_I(sbi, i)->segno;
586		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
587				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
588
589		if (node_blocks > left_blocks)
590			return false;
591	}
592
593	/* check current data segment */
594	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
595	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
596			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
597	if (dent_blocks > left_blocks)
598		return false;
599	return true;
600}
601
602static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
603					int freed, int needed)
604{
605	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
606	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
607	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
608
609	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
610		return false;
611
612	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
613			has_curseg_enough_space(sbi))
614		return false;
615	return (free_sections(sbi) + freed) <=
616		(node_secs + 2 * dent_secs + imeta_secs +
617		reserved_sections(sbi) + needed);
618}
619
620static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
621{
622	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
623		return true;
624	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
625		return true;
626	return false;
627}
628
629static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
630{
631	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
632}
633
634static inline int utilization(struct f2fs_sb_info *sbi)
635{
636	return div_u64((u64)valid_user_blocks(sbi) * 100,
637					sbi->user_block_count);
638}
639
640/*
641 * Sometimes f2fs may be better to drop out-of-place update policy.
642 * And, users can control the policy through sysfs entries.
643 * There are five policies with triggering conditions as follows.
644 * F2FS_IPU_FORCE - all the time,
645 * F2FS_IPU_SSR - if SSR mode is activated,
646 * F2FS_IPU_UTIL - if FS utilization is over threashold,
647 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
648 *                     threashold,
649 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
650 *                     storages. IPU will be triggered only if the # of dirty
651 *                     pages over min_fsync_blocks. (=default option)
652 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
653 * F2FS_IPU_NOCACHE - disable IPU bio cache.
654 * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
655 */
656#define DEF_MIN_IPU_UTIL	70
657#define DEF_MIN_FSYNC_BLOCKS	8
658#define DEF_MIN_HOT_BLOCKS	16
659
660#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
661
662enum {
663	F2FS_IPU_FORCE,
664	F2FS_IPU_SSR,
665	F2FS_IPU_UTIL,
666	F2FS_IPU_SSR_UTIL,
667	F2FS_IPU_FSYNC,
668	F2FS_IPU_ASYNC,
669	F2FS_IPU_NOCACHE,
670};
671
672static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
673		int type)
674{
675	struct curseg_info *curseg = CURSEG_I(sbi, type);
676	return curseg->segno;
677}
678
679static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
680		int type)
681{
682	struct curseg_info *curseg = CURSEG_I(sbi, type);
683	return curseg->alloc_type;
684}
685
686static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
687{
688	struct curseg_info *curseg = CURSEG_I(sbi, type);
689	return curseg->next_blkoff;
690}
691
692static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
693{
694	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
695}
696
697static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
698{
699	struct f2fs_sb_info *sbi = fio->sbi;
700
701	if (__is_valid_data_blkaddr(fio->old_blkaddr))
702		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
703					META_GENERIC : DATA_GENERIC);
704	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
705					META_GENERIC : DATA_GENERIC_ENHANCE);
706}
707
708/*
709 * Summary block is always treated as an invalid block
710 */
711static inline int check_block_count(struct f2fs_sb_info *sbi,
712		int segno, struct f2fs_sit_entry *raw_sit)
713{
714	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
715	int valid_blocks = 0;
716	int cur_pos = 0, next_pos;
717	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
718
719	/* check bitmap with valid block count */
720	do {
721		if (is_valid) {
722			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
723					usable_blks_per_seg,
724					cur_pos);
725			valid_blocks += next_pos - cur_pos;
726		} else
727			next_pos = find_next_bit_le(&raw_sit->valid_map,
728					usable_blks_per_seg,
729					cur_pos);
730		cur_pos = next_pos;
731		is_valid = !is_valid;
732	} while (cur_pos < usable_blks_per_seg);
733
734	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
735		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
736			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
737		set_sbi_flag(sbi, SBI_NEED_FSCK);
738		return -EFSCORRUPTED;
739	}
740
741	if (usable_blks_per_seg < sbi->blocks_per_seg)
742		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
743				sbi->blocks_per_seg,
744				usable_blks_per_seg) != sbi->blocks_per_seg);
745
746	/* check segment usage, and check boundary of a given segment number */
747	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
748					|| segno > TOTAL_SEGS(sbi) - 1)) {
749		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
750			 GET_SIT_VBLOCKS(raw_sit), segno);
751		set_sbi_flag(sbi, SBI_NEED_FSCK);
752		return -EFSCORRUPTED;
753	}
754	return 0;
755}
756
757static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
758						unsigned int start)
759{
760	struct sit_info *sit_i = SIT_I(sbi);
761	unsigned int offset = SIT_BLOCK_OFFSET(start);
762	block_t blk_addr = sit_i->sit_base_addr + offset;
763
764	check_seg_range(sbi, start);
765
766#ifdef CONFIG_F2FS_CHECK_FS
767	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
768			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
769		f2fs_bug_on(sbi, 1);
770#endif
771
772	/* calculate sit block address */
773	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
774		blk_addr += sit_i->sit_blocks;
775
776	return blk_addr;
777}
778
779static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
780						pgoff_t block_addr)
781{
782	struct sit_info *sit_i = SIT_I(sbi);
783	block_addr -= sit_i->sit_base_addr;
784	if (block_addr < sit_i->sit_blocks)
785		block_addr += sit_i->sit_blocks;
786	else
787		block_addr -= sit_i->sit_blocks;
788
789	return block_addr + sit_i->sit_base_addr;
790}
791
792static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
793{
794	unsigned int block_off = SIT_BLOCK_OFFSET(start);
795
796	f2fs_change_bit(block_off, sit_i->sit_bitmap);
797#ifdef CONFIG_F2FS_CHECK_FS
798	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
799#endif
800}
801
802static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
803						bool base_time)
804{
805	struct sit_info *sit_i = SIT_I(sbi);
806	time64_t diff, now = ktime_get_boottime_seconds();
807
808	if (now >= sit_i->mounted_time)
809		return sit_i->elapsed_time + now - sit_i->mounted_time;
810
811	/* system time is set to the past */
812	if (!base_time) {
813		diff = sit_i->mounted_time - now;
814		if (sit_i->elapsed_time >= diff)
815			return sit_i->elapsed_time - diff;
816		return 0;
817	}
818	return sit_i->elapsed_time;
819}
820
821static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
822			unsigned int ofs_in_node, unsigned char version)
823{
824	sum->nid = cpu_to_le32(nid);
825	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
826	sum->version = version;
827}
828
829static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
830{
831	return __start_cp_addr(sbi) +
832		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
833}
834
835static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
836{
837	return __start_cp_addr(sbi) +
838		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
839				- (base + 1) + type;
840}
841
842static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
843{
844	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
845		return true;
846	return false;
847}
848
849/*
850 * It is very important to gather dirty pages and write at once, so that we can
851 * submit a big bio without interfering other data writes.
852 * By default, 512 pages for directory data,
853 * 512 pages (2MB) * 8 for nodes, and
854 * 256 pages * 8 for meta are set.
855 */
856static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
857{
858	if (sbi->sb->s_bdi->wb.dirty_exceeded)
859		return 0;
860
861	if (type == DATA)
862		return sbi->blocks_per_seg;
863	else if (type == NODE)
864		return 8 * sbi->blocks_per_seg;
865	else if (type == META)
866		return 8 * BIO_MAX_VECS;
867	else
868		return 0;
869}
870
871/*
872 * When writing pages, it'd better align nr_to_write for segment size.
873 */
874static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
875					struct writeback_control *wbc)
876{
877	long nr_to_write, desired;
878
879	if (wbc->sync_mode != WB_SYNC_NONE)
880		return 0;
881
882	nr_to_write = wbc->nr_to_write;
883	desired = BIO_MAX_VECS;
884	if (type == NODE)
885		desired <<= 1;
886
887	wbc->nr_to_write = desired;
888	return desired - nr_to_write;
889}
890
891static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
892{
893	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
894	bool wakeup = false;
895	int i;
896
897	if (force)
898		goto wake_up;
899
900	mutex_lock(&dcc->cmd_lock);
901	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
902		if (i + 1 < dcc->discard_granularity)
903			break;
904		if (!list_empty(&dcc->pend_list[i])) {
905			wakeup = true;
906			break;
907		}
908	}
909	mutex_unlock(&dcc->cmd_lock);
910	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
911		return;
912wake_up:
913	dcc->discard_wake = 1;
914	wake_up_interruptible_all(&dcc->discard_wait_queue);
915}
916