1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#ifndef _LINUX_F2FS_H
9#define _LINUX_F2FS_H
10
11#include <linux/uio.h>
12#include <linux/types.h>
13#include <linux/page-flags.h>
14#include <linux/buffer_head.h>
15#include <linux/slab.h>
16#include <linux/crc32.h>
17#include <linux/magic.h>
18#include <linux/kobject.h>
19#include <linux/sched.h>
20#include <linux/cred.h>
21#include <linux/sched/mm.h>
22#include <linux/vmalloc.h>
23#include <linux/bio.h>
24#include <linux/blkdev.h>
25#include <linux/quotaops.h>
26#include <linux/part_stat.h>
27#include <linux/rw_hint.h>
28#include <crypto/hash.h>
29
30#include <linux/fscrypt.h>
31#include <linux/fsverity.h>
32
33struct pagevec;
34
35#ifdef CONFIG_F2FS_CHECK_FS
36#define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
37#else
38#define f2fs_bug_on(sbi, condition)					\
39	do {								\
40		if (WARN_ON(condition))					\
41			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
42	} while (0)
43#endif
44
45enum {
46	FAULT_KMALLOC,
47	FAULT_KVMALLOC,
48	FAULT_PAGE_ALLOC,
49	FAULT_PAGE_GET,
50	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
51	FAULT_ALLOC_NID,
52	FAULT_ORPHAN,
53	FAULT_BLOCK,
54	FAULT_DIR_DEPTH,
55	FAULT_EVICT_INODE,
56	FAULT_TRUNCATE,
57	FAULT_READ_IO,
58	FAULT_CHECKPOINT,
59	FAULT_DISCARD,
60	FAULT_WRITE_IO,
61	FAULT_SLAB_ALLOC,
62	FAULT_DQUOT_INIT,
63	FAULT_LOCK_OP,
64	FAULT_BLKADDR_VALIDITY,
65	FAULT_BLKADDR_CONSISTENCE,
66	FAULT_NO_SEGMENT,
67	FAULT_MAX,
68};
69
70#ifdef CONFIG_F2FS_FAULT_INJECTION
71#define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
72
73struct f2fs_fault_info {
74	atomic_t inject_ops;
75	unsigned int inject_rate;
76	unsigned int inject_type;
77};
78
79extern const char *f2fs_fault_name[FAULT_MAX];
80#define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
81
82/* maximum retry count for injected failure */
83#define DEFAULT_FAILURE_RETRY_COUNT		8
84#else
85#define DEFAULT_FAILURE_RETRY_COUNT		1
86#endif
87
88/*
89 * For mount options
90 */
91#define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
92#define F2FS_MOUNT_DISCARD		0x00000002
93#define F2FS_MOUNT_NOHEAP		0x00000004
94#define F2FS_MOUNT_XATTR_USER		0x00000008
95#define F2FS_MOUNT_POSIX_ACL		0x00000010
96#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
97#define F2FS_MOUNT_INLINE_XATTR		0x00000040
98#define F2FS_MOUNT_INLINE_DATA		0x00000080
99#define F2FS_MOUNT_INLINE_DENTRY	0x00000100
100#define F2FS_MOUNT_FLUSH_MERGE		0x00000200
101#define F2FS_MOUNT_NOBARRIER		0x00000400
102#define F2FS_MOUNT_FASTBOOT		0x00000800
103#define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
104#define F2FS_MOUNT_DATA_FLUSH		0x00002000
105#define F2FS_MOUNT_FAULT_INJECTION	0x00004000
106#define F2FS_MOUNT_USRQUOTA		0x00008000
107#define F2FS_MOUNT_GRPQUOTA		0x00010000
108#define F2FS_MOUNT_PRJQUOTA		0x00020000
109#define F2FS_MOUNT_QUOTA		0x00040000
110#define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
111#define F2FS_MOUNT_RESERVE_ROOT		0x00100000
112#define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
113#define F2FS_MOUNT_NORECOVERY		0x00400000
114#define F2FS_MOUNT_ATGC			0x00800000
115#define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
116#define	F2FS_MOUNT_GC_MERGE		0x02000000
117#define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
118#define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
119
120#define F2FS_OPTION(sbi)	((sbi)->mount_opt)
121#define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
122#define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
123#define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
124
125#define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
126		typecheck(unsigned long long, b) &&			\
127		((long long)((a) - (b)) > 0))
128
129typedef u32 block_t;	/*
130			 * should not change u32, since it is the on-disk block
131			 * address format, __le32.
132			 */
133typedef u32 nid_t;
134
135#define COMPRESS_EXT_NUM		16
136
137/*
138 * An implementation of an rwsem that is explicitly unfair to readers. This
139 * prevents priority inversion when a low-priority reader acquires the read lock
140 * while sleeping on the write lock but the write lock is needed by
141 * higher-priority clients.
142 */
143
144struct f2fs_rwsem {
145        struct rw_semaphore internal_rwsem;
146#ifdef CONFIG_F2FS_UNFAIR_RWSEM
147        wait_queue_head_t read_waiters;
148#endif
149};
150
151struct f2fs_mount_info {
152	unsigned int opt;
153	block_t root_reserved_blocks;	/* root reserved blocks */
154	kuid_t s_resuid;		/* reserved blocks for uid */
155	kgid_t s_resgid;		/* reserved blocks for gid */
156	int active_logs;		/* # of active logs */
157	int inline_xattr_size;		/* inline xattr size */
158#ifdef CONFIG_F2FS_FAULT_INJECTION
159	struct f2fs_fault_info fault_info;	/* For fault injection */
160#endif
161#ifdef CONFIG_QUOTA
162	/* Names of quota files with journalled quota */
163	char *s_qf_names[MAXQUOTAS];
164	int s_jquota_fmt;			/* Format of quota to use */
165#endif
166	/* For which write hints are passed down to block layer */
167	int alloc_mode;			/* segment allocation policy */
168	int fsync_mode;			/* fsync policy */
169	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
170	int bggc_mode;			/* bggc mode: off, on or sync */
171	int memory_mode;		/* memory mode */
172	int errors;			/* errors parameter */
173	int discard_unit;		/*
174					 * discard command's offset/size should
175					 * be aligned to this unit: block,
176					 * segment or section
177					 */
178	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
179	block_t unusable_cap_perc;	/* percentage for cap */
180	block_t unusable_cap;		/* Amount of space allowed to be
181					 * unusable when disabling checkpoint
182					 */
183
184	/* For compression */
185	unsigned char compress_algorithm;	/* algorithm type */
186	unsigned char compress_log_size;	/* cluster log size */
187	unsigned char compress_level;		/* compress level */
188	bool compress_chksum;			/* compressed data chksum */
189	unsigned char compress_ext_cnt;		/* extension count */
190	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
191	int compress_mode;			/* compression mode */
192	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
193	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
194};
195
196#define F2FS_FEATURE_ENCRYPT			0x00000001
197#define F2FS_FEATURE_BLKZONED			0x00000002
198#define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
199#define F2FS_FEATURE_EXTRA_ATTR			0x00000008
200#define F2FS_FEATURE_PRJQUOTA			0x00000010
201#define F2FS_FEATURE_INODE_CHKSUM		0x00000020
202#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
203#define F2FS_FEATURE_QUOTA_INO			0x00000080
204#define F2FS_FEATURE_INODE_CRTIME		0x00000100
205#define F2FS_FEATURE_LOST_FOUND			0x00000200
206#define F2FS_FEATURE_VERITY			0x00000400
207#define F2FS_FEATURE_SB_CHKSUM			0x00000800
208#define F2FS_FEATURE_CASEFOLD			0x00001000
209#define F2FS_FEATURE_COMPRESSION		0x00002000
210#define F2FS_FEATURE_RO				0x00004000
211
212#define __F2FS_HAS_FEATURE(raw_super, mask)				\
213	((raw_super->feature & cpu_to_le32(mask)) != 0)
214#define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
215
216/*
217 * Default values for user and/or group using reserved blocks
218 */
219#define	F2FS_DEF_RESUID		0
220#define	F2FS_DEF_RESGID		0
221
222/*
223 * For checkpoint manager
224 */
225enum {
226	NAT_BITMAP,
227	SIT_BITMAP
228};
229
230#define	CP_UMOUNT	0x00000001
231#define	CP_FASTBOOT	0x00000002
232#define	CP_SYNC		0x00000004
233#define	CP_RECOVERY	0x00000008
234#define	CP_DISCARD	0x00000010
235#define CP_TRIMMED	0x00000020
236#define CP_PAUSE	0x00000040
237#define CP_RESIZE 	0x00000080
238
239#define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
240#define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
241#define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
242#define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
243#define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
244#define DEF_CP_INTERVAL			60	/* 60 secs */
245#define DEF_IDLE_INTERVAL		5	/* 5 secs */
246#define DEF_DISABLE_INTERVAL		5	/* 5 secs */
247#define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
248#define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
249
250struct cp_control {
251	int reason;
252	__u64 trim_start;
253	__u64 trim_end;
254	__u64 trim_minlen;
255};
256
257/*
258 * indicate meta/data type
259 */
260enum {
261	META_CP,
262	META_NAT,
263	META_SIT,
264	META_SSA,
265	META_MAX,
266	META_POR,
267	DATA_GENERIC,		/* check range only */
268	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
269	DATA_GENERIC_ENHANCE_READ,	/*
270					 * strong check on range and segment
271					 * bitmap but no warning due to race
272					 * condition of read on truncated area
273					 * by extent_cache
274					 */
275	DATA_GENERIC_ENHANCE_UPDATE,	/*
276					 * strong check on range and segment
277					 * bitmap for update case
278					 */
279	META_GENERIC,
280};
281
282/* for the list of ino */
283enum {
284	ORPHAN_INO,		/* for orphan ino list */
285	APPEND_INO,		/* for append ino list */
286	UPDATE_INO,		/* for update ino list */
287	TRANS_DIR_INO,		/* for transactions dir ino list */
288	FLUSH_INO,		/* for multiple device flushing */
289	MAX_INO_ENTRY,		/* max. list */
290};
291
292struct ino_entry {
293	struct list_head list;		/* list head */
294	nid_t ino;			/* inode number */
295	unsigned int dirty_device;	/* dirty device bitmap */
296};
297
298/* for the list of inodes to be GCed */
299struct inode_entry {
300	struct list_head list;	/* list head */
301	struct inode *inode;	/* vfs inode pointer */
302};
303
304struct fsync_node_entry {
305	struct list_head list;	/* list head */
306	struct page *page;	/* warm node page pointer */
307	unsigned int seq_id;	/* sequence id */
308};
309
310struct ckpt_req {
311	struct completion wait;		/* completion for checkpoint done */
312	struct llist_node llnode;	/* llist_node to be linked in wait queue */
313	int ret;			/* return code of checkpoint */
314	ktime_t queue_time;		/* request queued time */
315};
316
317struct ckpt_req_control {
318	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
319	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
320	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
321	atomic_t issued_ckpt;		/* # of actually issued ckpts */
322	atomic_t total_ckpt;		/* # of total ckpts */
323	atomic_t queued_ckpt;		/* # of queued ckpts */
324	struct llist_head issue_list;	/* list for command issue */
325	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
326	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
327	unsigned int peak_time;		/* peak wait time in msec until now */
328};
329
330/* for the bitmap indicate blocks to be discarded */
331struct discard_entry {
332	struct list_head list;	/* list head */
333	block_t start_blkaddr;	/* start blockaddr of current segment */
334	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
335};
336
337/* minimum discard granularity, unit: block count */
338#define MIN_DISCARD_GRANULARITY		1
339/* default discard granularity of inner discard thread, unit: block count */
340#define DEFAULT_DISCARD_GRANULARITY		16
341/* default maximum discard granularity of ordered discard, unit: block count */
342#define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
343
344/* max discard pend list number */
345#define MAX_PLIST_NUM		512
346#define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
347					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
348
349enum {
350	D_PREP,			/* initial */
351	D_PARTIAL,		/* partially submitted */
352	D_SUBMIT,		/* all submitted */
353	D_DONE,			/* finished */
354};
355
356struct discard_info {
357	block_t lstart;			/* logical start address */
358	block_t len;			/* length */
359	block_t start;			/* actual start address in dev */
360};
361
362struct discard_cmd {
363	struct rb_node rb_node;		/* rb node located in rb-tree */
364	struct discard_info di;		/* discard info */
365	struct list_head list;		/* command list */
366	struct completion wait;		/* compleation */
367	struct block_device *bdev;	/* bdev */
368	unsigned short ref;		/* reference count */
369	unsigned char state;		/* state */
370	unsigned char queued;		/* queued discard */
371	int error;			/* bio error */
372	spinlock_t lock;		/* for state/bio_ref updating */
373	unsigned short bio_ref;		/* bio reference count */
374};
375
376enum {
377	DPOLICY_BG,
378	DPOLICY_FORCE,
379	DPOLICY_FSTRIM,
380	DPOLICY_UMOUNT,
381	MAX_DPOLICY,
382};
383
384enum {
385	DPOLICY_IO_AWARE_DISABLE,	/* force to not be aware of IO */
386	DPOLICY_IO_AWARE_ENABLE,	/* force to be aware of IO */
387	DPOLICY_IO_AWARE_MAX,
388};
389
390struct discard_policy {
391	int type;			/* type of discard */
392	unsigned int min_interval;	/* used for candidates exist */
393	unsigned int mid_interval;	/* used for device busy */
394	unsigned int max_interval;	/* used for candidates not exist */
395	unsigned int max_requests;	/* # of discards issued per round */
396	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
397	bool io_aware;			/* issue discard in idle time */
398	bool sync;			/* submit discard with REQ_SYNC flag */
399	bool ordered;			/* issue discard by lba order */
400	bool timeout;			/* discard timeout for put_super */
401	unsigned int granularity;	/* discard granularity */
402};
403
404struct discard_cmd_control {
405	struct task_struct *f2fs_issue_discard;	/* discard thread */
406	struct list_head entry_list;		/* 4KB discard entry list */
407	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
408	struct list_head wait_list;		/* store on-flushing entries */
409	struct list_head fstrim_list;		/* in-flight discard from fstrim */
410	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
411	struct mutex cmd_lock;
412	unsigned int nr_discards;		/* # of discards in the list */
413	unsigned int max_discards;		/* max. discards to be issued */
414	unsigned int max_discard_request;	/* max. discard request per round */
415	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
416	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
417	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
418	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
419	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
420	unsigned int discard_granularity;	/* discard granularity */
421	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
422	unsigned int discard_io_aware;		/* io_aware policy */
423	unsigned int undiscard_blks;		/* # of undiscard blocks */
424	unsigned int next_pos;			/* next discard position */
425	atomic_t issued_discard;		/* # of issued discard */
426	atomic_t queued_discard;		/* # of queued discard */
427	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
428	struct rb_root_cached root;		/* root of discard rb-tree */
429	bool rbtree_check;			/* config for consistence check */
430	bool discard_wake;			/* to wake up discard thread */
431};
432
433/* for the list of fsync inodes, used only during recovery */
434struct fsync_inode_entry {
435	struct list_head list;	/* list head */
436	struct inode *inode;	/* vfs inode pointer */
437	block_t blkaddr;	/* block address locating the last fsync */
438	block_t last_dentry;	/* block address locating the last dentry */
439};
440
441#define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
442#define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
443
444#define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
445#define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
446#define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
447#define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
448
449#define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
450#define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
451
452static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
453{
454	int before = nats_in_cursum(journal);
455
456	journal->n_nats = cpu_to_le16(before + i);
457	return before;
458}
459
460static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
461{
462	int before = sits_in_cursum(journal);
463
464	journal->n_sits = cpu_to_le16(before + i);
465	return before;
466}
467
468static inline bool __has_cursum_space(struct f2fs_journal *journal,
469							int size, int type)
470{
471	if (type == NAT_JOURNAL)
472		return size <= MAX_NAT_JENTRIES(journal);
473	return size <= MAX_SIT_JENTRIES(journal);
474}
475
476/* for inline stuff */
477#define DEF_INLINE_RESERVED_SIZE	1
478static inline int get_extra_isize(struct inode *inode);
479static inline int get_inline_xattr_addrs(struct inode *inode);
480#define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
481				(CUR_ADDRS_PER_INODE(inode) -		\
482				get_inline_xattr_addrs(inode) -	\
483				DEF_INLINE_RESERVED_SIZE))
484
485/* for inline dir */
486#define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
487				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
488				BITS_PER_BYTE + 1))
489#define INLINE_DENTRY_BITMAP_SIZE(inode) \
490	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
491#define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
492				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
493				NR_INLINE_DENTRY(inode) + \
494				INLINE_DENTRY_BITMAP_SIZE(inode)))
495
496/*
497 * For INODE and NODE manager
498 */
499/* for directory operations */
500
501struct f2fs_filename {
502	/*
503	 * The filename the user specified.  This is NULL for some
504	 * filesystem-internal operations, e.g. converting an inline directory
505	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
506	 */
507	const struct qstr *usr_fname;
508
509	/*
510	 * The on-disk filename.  For encrypted directories, this is encrypted.
511	 * This may be NULL for lookups in an encrypted dir without the key.
512	 */
513	struct fscrypt_str disk_name;
514
515	/* The dirhash of this filename */
516	f2fs_hash_t hash;
517
518#ifdef CONFIG_FS_ENCRYPTION
519	/*
520	 * For lookups in encrypted directories: either the buffer backing
521	 * disk_name, or a buffer that holds the decoded no-key name.
522	 */
523	struct fscrypt_str crypto_buf;
524#endif
525#if IS_ENABLED(CONFIG_UNICODE)
526	/*
527	 * For casefolded directories: the casefolded name, but it's left NULL
528	 * if the original name is not valid Unicode, if the original name is
529	 * "." or "..", if the directory is both casefolded and encrypted and
530	 * its encryption key is unavailable, or if the filesystem is doing an
531	 * internal operation where usr_fname is also NULL.  In all these cases
532	 * we fall back to treating the name as an opaque byte sequence.
533	 */
534	struct fscrypt_str cf_name;
535#endif
536};
537
538struct f2fs_dentry_ptr {
539	struct inode *inode;
540	void *bitmap;
541	struct f2fs_dir_entry *dentry;
542	__u8 (*filename)[F2FS_SLOT_LEN];
543	int max;
544	int nr_bitmap;
545};
546
547static inline void make_dentry_ptr_block(struct inode *inode,
548		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
549{
550	d->inode = inode;
551	d->max = NR_DENTRY_IN_BLOCK;
552	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
553	d->bitmap = t->dentry_bitmap;
554	d->dentry = t->dentry;
555	d->filename = t->filename;
556}
557
558static inline void make_dentry_ptr_inline(struct inode *inode,
559					struct f2fs_dentry_ptr *d, void *t)
560{
561	int entry_cnt = NR_INLINE_DENTRY(inode);
562	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
563	int reserved_size = INLINE_RESERVED_SIZE(inode);
564
565	d->inode = inode;
566	d->max = entry_cnt;
567	d->nr_bitmap = bitmap_size;
568	d->bitmap = t;
569	d->dentry = t + bitmap_size + reserved_size;
570	d->filename = t + bitmap_size + reserved_size +
571					SIZE_OF_DIR_ENTRY * entry_cnt;
572}
573
574/*
575 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
576 * as its node offset to distinguish from index node blocks.
577 * But some bits are used to mark the node block.
578 */
579#define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
580				>> OFFSET_BIT_SHIFT)
581enum {
582	ALLOC_NODE,			/* allocate a new node page if needed */
583	LOOKUP_NODE,			/* look up a node without readahead */
584	LOOKUP_NODE_RA,			/*
585					 * look up a node with readahead called
586					 * by get_data_block.
587					 */
588};
589
590#define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
591
592/* congestion wait timeout value, default: 20ms */
593#define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
594
595/* maximum retry quota flush count */
596#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
597
598/* maximum retry of EIO'ed page */
599#define MAX_RETRY_PAGE_EIO			100
600
601#define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
602
603#define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
604
605/* dirty segments threshold for triggering CP */
606#define DEFAULT_DIRTY_THRESHOLD		4
607
608#define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
609#define RECOVERY_MIN_RA_BLOCKS		1
610
611#define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
612
613/* for in-memory extent cache entry */
614#define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
615
616/* number of extent info in extent cache we try to shrink */
617#define READ_EXTENT_CACHE_SHRINK_NUMBER	128
618
619/* number of age extent info in extent cache we try to shrink */
620#define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
621#define LAST_AGE_WEIGHT			30
622#define SAME_AGE_REGION			1024
623
624/*
625 * Define data block with age less than 1GB as hot data
626 * define data block with age less than 10GB but more than 1GB as warm data
627 */
628#define DEF_HOT_DATA_AGE_THRESHOLD	262144
629#define DEF_WARM_DATA_AGE_THRESHOLD	2621440
630
631/* extent cache type */
632enum extent_type {
633	EX_READ,
634	EX_BLOCK_AGE,
635	NR_EXTENT_CACHES,
636};
637
638struct extent_info {
639	unsigned int fofs;		/* start offset in a file */
640	unsigned int len;		/* length of the extent */
641	union {
642		/* read extent_cache */
643		struct {
644			/* start block address of the extent */
645			block_t blk;
646#ifdef CONFIG_F2FS_FS_COMPRESSION
647			/* physical extent length of compressed blocks */
648			unsigned int c_len;
649#endif
650		};
651		/* block age extent_cache */
652		struct {
653			/* block age of the extent */
654			unsigned long long age;
655			/* last total blocks allocated */
656			unsigned long long last_blocks;
657		};
658	};
659};
660
661struct extent_node {
662	struct rb_node rb_node;		/* rb node located in rb-tree */
663	struct extent_info ei;		/* extent info */
664	struct list_head list;		/* node in global extent list of sbi */
665	struct extent_tree *et;		/* extent tree pointer */
666};
667
668struct extent_tree {
669	nid_t ino;			/* inode number */
670	enum extent_type type;		/* keep the extent tree type */
671	struct rb_root_cached root;	/* root of extent info rb-tree */
672	struct extent_node *cached_en;	/* recently accessed extent node */
673	struct list_head list;		/* to be used by sbi->zombie_list */
674	rwlock_t lock;			/* protect extent info rb-tree */
675	atomic_t node_cnt;		/* # of extent node in rb-tree*/
676	bool largest_updated;		/* largest extent updated */
677	struct extent_info largest;	/* largest cached extent for EX_READ */
678};
679
680struct extent_tree_info {
681	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
682	struct mutex extent_tree_lock;	/* locking extent radix tree */
683	struct list_head extent_list;		/* lru list for shrinker */
684	spinlock_t extent_lock;			/* locking extent lru list */
685	atomic_t total_ext_tree;		/* extent tree count */
686	struct list_head zombie_list;		/* extent zombie tree list */
687	atomic_t total_zombie_tree;		/* extent zombie tree count */
688	atomic_t total_ext_node;		/* extent info count */
689};
690
691/*
692 * State of block returned by f2fs_map_blocks.
693 */
694#define F2FS_MAP_NEW		(1U << 0)
695#define F2FS_MAP_MAPPED		(1U << 1)
696#define F2FS_MAP_DELALLOC	(1U << 2)
697#define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
698				F2FS_MAP_DELALLOC)
699
700struct f2fs_map_blocks {
701	struct block_device *m_bdev;	/* for multi-device dio */
702	block_t m_pblk;
703	block_t m_lblk;
704	unsigned int m_len;
705	unsigned int m_flags;
706	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
707	pgoff_t *m_next_extent;		/* point to next possible extent */
708	int m_seg_type;
709	bool m_may_create;		/* indicate it is from write path */
710	bool m_multidev_dio;		/* indicate it allows multi-device dio */
711};
712
713/* for flag in get_data_block */
714enum {
715	F2FS_GET_BLOCK_DEFAULT,
716	F2FS_GET_BLOCK_FIEMAP,
717	F2FS_GET_BLOCK_BMAP,
718	F2FS_GET_BLOCK_DIO,
719	F2FS_GET_BLOCK_PRE_DIO,
720	F2FS_GET_BLOCK_PRE_AIO,
721	F2FS_GET_BLOCK_PRECACHE,
722};
723
724/*
725 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
726 */
727#define FADVISE_COLD_BIT	0x01
728#define FADVISE_LOST_PINO_BIT	0x02
729#define FADVISE_ENCRYPT_BIT	0x04
730#define FADVISE_ENC_NAME_BIT	0x08
731#define FADVISE_KEEP_SIZE_BIT	0x10
732#define FADVISE_HOT_BIT		0x20
733#define FADVISE_VERITY_BIT	0x40
734#define FADVISE_TRUNC_BIT	0x80
735
736#define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
737
738#define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
739#define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
740#define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
741
742#define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
743#define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
744#define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
745
746#define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
747#define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
748
749#define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
750#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
751
752#define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
753#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
754
755#define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
756#define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
757#define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
758
759#define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
760#define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
761
762#define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
763#define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
764#define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
765
766#define DEF_DIR_LEVEL		0
767
768enum {
769	GC_FAILURE_PIN,
770	MAX_GC_FAILURE
771};
772
773/* used for f2fs_inode_info->flags */
774enum {
775	FI_NEW_INODE,		/* indicate newly allocated inode */
776	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
777	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
778	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
779	FI_INC_LINK,		/* need to increment i_nlink */
780	FI_ACL_MODE,		/* indicate acl mode */
781	FI_NO_ALLOC,		/* should not allocate any blocks */
782	FI_FREE_NID,		/* free allocated nide */
783	FI_NO_EXTENT,		/* not to use the extent cache */
784	FI_INLINE_XATTR,	/* used for inline xattr */
785	FI_INLINE_DATA,		/* used for inline data*/
786	FI_INLINE_DENTRY,	/* used for inline dentry */
787	FI_APPEND_WRITE,	/* inode has appended data */
788	FI_UPDATE_WRITE,	/* inode has in-place-update data */
789	FI_NEED_IPU,		/* used for ipu per file */
790	FI_ATOMIC_FILE,		/* indicate atomic file */
791	FI_DATA_EXIST,		/* indicate data exists */
792	FI_INLINE_DOTS,		/* indicate inline dot dentries */
793	FI_SKIP_WRITES,		/* should skip data page writeback */
794	FI_OPU_WRITE,		/* used for opu per file */
795	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
796	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
797	FI_HOT_DATA,		/* indicate file is hot */
798	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
799	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
800	FI_PIN_FILE,		/* indicate file should not be gced */
801	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
802	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
803	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
804	FI_MMAP_FILE,		/* indicate file was mmapped */
805	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
806	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
807	FI_ALIGNED_WRITE,	/* enable aligned write */
808	FI_COW_FILE,		/* indicate COW file */
809	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
810	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
811	FI_MAX,			/* max flag, never be used */
812};
813
814struct f2fs_inode_info {
815	struct inode vfs_inode;		/* serve a vfs inode */
816	unsigned long i_flags;		/* keep an inode flags for ioctl */
817	unsigned char i_advise;		/* use to give file attribute hints */
818	unsigned char i_dir_level;	/* use for dentry level for large dir */
819	unsigned int i_current_depth;	/* only for directory depth */
820	/* for gc failure statistic */
821	unsigned int i_gc_failures[MAX_GC_FAILURE];
822	unsigned int i_pino;		/* parent inode number */
823	umode_t i_acl_mode;		/* keep file acl mode temporarily */
824
825	/* Use below internally in f2fs*/
826	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
827	struct f2fs_rwsem i_sem;	/* protect fi info */
828	atomic_t dirty_pages;		/* # of dirty pages */
829	f2fs_hash_t chash;		/* hash value of given file name */
830	unsigned int clevel;		/* maximum level of given file name */
831	struct task_struct *task;	/* lookup and create consistency */
832	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
833	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
834	nid_t i_xattr_nid;		/* node id that contains xattrs */
835	loff_t	last_disk_size;		/* lastly written file size */
836	spinlock_t i_size_lock;		/* protect last_disk_size */
837
838#ifdef CONFIG_QUOTA
839	struct dquot __rcu *i_dquot[MAXQUOTAS];
840
841	/* quota space reservation, managed internally by quota code */
842	qsize_t i_reserved_quota;
843#endif
844	struct list_head dirty_list;	/* dirty list for dirs and files */
845	struct list_head gdirty_list;	/* linked in global dirty list */
846	struct task_struct *atomic_write_task;	/* store atomic write task */
847	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
848					/* cached extent_tree entry */
849	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
850
851	/* avoid racing between foreground op and gc */
852	struct f2fs_rwsem i_gc_rwsem[2];
853	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
854
855	int i_extra_isize;		/* size of extra space located in i_addr */
856	kprojid_t i_projid;		/* id for project quota */
857	int i_inline_xattr_size;	/* inline xattr size */
858	struct timespec64 i_crtime;	/* inode creation time */
859	struct timespec64 i_disk_time[3];/* inode disk times */
860
861	/* for file compress */
862	atomic_t i_compr_blocks;		/* # of compressed blocks */
863	unsigned char i_compress_algorithm;	/* algorithm type */
864	unsigned char i_log_cluster_size;	/* log of cluster size */
865	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
866	unsigned char i_compress_flag;		/* compress flag */
867	unsigned int i_cluster_size;		/* cluster size */
868
869	unsigned int atomic_write_cnt;
870	loff_t original_i_size;		/* original i_size before atomic write */
871};
872
873static inline void get_read_extent_info(struct extent_info *ext,
874					struct f2fs_extent *i_ext)
875{
876	ext->fofs = le32_to_cpu(i_ext->fofs);
877	ext->blk = le32_to_cpu(i_ext->blk);
878	ext->len = le32_to_cpu(i_ext->len);
879}
880
881static inline void set_raw_read_extent(struct extent_info *ext,
882					struct f2fs_extent *i_ext)
883{
884	i_ext->fofs = cpu_to_le32(ext->fofs);
885	i_ext->blk = cpu_to_le32(ext->blk);
886	i_ext->len = cpu_to_le32(ext->len);
887}
888
889static inline bool __is_discard_mergeable(struct discard_info *back,
890			struct discard_info *front, unsigned int max_len)
891{
892	return (back->lstart + back->len == front->lstart) &&
893		(back->len + front->len <= max_len);
894}
895
896static inline bool __is_discard_back_mergeable(struct discard_info *cur,
897			struct discard_info *back, unsigned int max_len)
898{
899	return __is_discard_mergeable(back, cur, max_len);
900}
901
902static inline bool __is_discard_front_mergeable(struct discard_info *cur,
903			struct discard_info *front, unsigned int max_len)
904{
905	return __is_discard_mergeable(cur, front, max_len);
906}
907
908/*
909 * For free nid management
910 */
911enum nid_state {
912	FREE_NID,		/* newly added to free nid list */
913	PREALLOC_NID,		/* it is preallocated */
914	MAX_NID_STATE,
915};
916
917enum nat_state {
918	TOTAL_NAT,
919	DIRTY_NAT,
920	RECLAIMABLE_NAT,
921	MAX_NAT_STATE,
922};
923
924struct f2fs_nm_info {
925	block_t nat_blkaddr;		/* base disk address of NAT */
926	nid_t max_nid;			/* maximum possible node ids */
927	nid_t available_nids;		/* # of available node ids */
928	nid_t next_scan_nid;		/* the next nid to be scanned */
929	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
930	unsigned int ram_thresh;	/* control the memory footprint */
931	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
932	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
933
934	/* NAT cache management */
935	struct radix_tree_root nat_root;/* root of the nat entry cache */
936	struct radix_tree_root nat_set_root;/* root of the nat set cache */
937	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
938	struct list_head nat_entries;	/* cached nat entry list (clean) */
939	spinlock_t nat_list_lock;	/* protect clean nat entry list */
940	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
941	unsigned int nat_blocks;	/* # of nat blocks */
942
943	/* free node ids management */
944	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
945	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
946	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
947	spinlock_t nid_list_lock;	/* protect nid lists ops */
948	struct mutex build_lock;	/* lock for build free nids */
949	unsigned char **free_nid_bitmap;
950	unsigned char *nat_block_bitmap;
951	unsigned short *free_nid_count;	/* free nid count of NAT block */
952
953	/* for checkpoint */
954	char *nat_bitmap;		/* NAT bitmap pointer */
955
956	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
957	unsigned char *nat_bits;	/* NAT bits blocks */
958	unsigned char *full_nat_bits;	/* full NAT pages */
959	unsigned char *empty_nat_bits;	/* empty NAT pages */
960#ifdef CONFIG_F2FS_CHECK_FS
961	char *nat_bitmap_mir;		/* NAT bitmap mirror */
962#endif
963	int bitmap_size;		/* bitmap size */
964};
965
966/*
967 * this structure is used as one of function parameters.
968 * all the information are dedicated to a given direct node block determined
969 * by the data offset in a file.
970 */
971struct dnode_of_data {
972	struct inode *inode;		/* vfs inode pointer */
973	struct page *inode_page;	/* its inode page, NULL is possible */
974	struct page *node_page;		/* cached direct node page */
975	nid_t nid;			/* node id of the direct node block */
976	unsigned int ofs_in_node;	/* data offset in the node page */
977	bool inode_page_locked;		/* inode page is locked or not */
978	bool node_changed;		/* is node block changed */
979	char cur_level;			/* level of hole node page */
980	char max_level;			/* level of current page located */
981	block_t	data_blkaddr;		/* block address of the node block */
982};
983
984static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
985		struct page *ipage, struct page *npage, nid_t nid)
986{
987	memset(dn, 0, sizeof(*dn));
988	dn->inode = inode;
989	dn->inode_page = ipage;
990	dn->node_page = npage;
991	dn->nid = nid;
992}
993
994/*
995 * For SIT manager
996 *
997 * By default, there are 6 active log areas across the whole main area.
998 * When considering hot and cold data separation to reduce cleaning overhead,
999 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1000 * respectively.
1001 * In the current design, you should not change the numbers intentionally.
1002 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1003 * logs individually according to the underlying devices. (default: 6)
1004 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1005 * data and 8 for node logs.
1006 */
1007#define	NR_CURSEG_DATA_TYPE	(3)
1008#define NR_CURSEG_NODE_TYPE	(3)
1009#define NR_CURSEG_INMEM_TYPE	(2)
1010#define NR_CURSEG_RO_TYPE	(2)
1011#define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1012#define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1013
1014enum {
1015	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1016	CURSEG_WARM_DATA,	/* data blocks */
1017	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1018	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1019	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1020	CURSEG_COLD_NODE,	/* indirect node blocks */
1021	NR_PERSISTENT_LOG,	/* number of persistent log */
1022	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1023				/* pinned file that needs consecutive block address */
1024	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1025	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1026};
1027
1028struct flush_cmd {
1029	struct completion wait;
1030	struct llist_node llnode;
1031	nid_t ino;
1032	int ret;
1033};
1034
1035struct flush_cmd_control {
1036	struct task_struct *f2fs_issue_flush;	/* flush thread */
1037	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1038	atomic_t issued_flush;			/* # of issued flushes */
1039	atomic_t queued_flush;			/* # of queued flushes */
1040	struct llist_head issue_list;		/* list for command issue */
1041	struct llist_node *dispatch_list;	/* list for command dispatch */
1042};
1043
1044struct f2fs_sm_info {
1045	struct sit_info *sit_info;		/* whole segment information */
1046	struct free_segmap_info *free_info;	/* free segment information */
1047	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1048	struct curseg_info *curseg_array;	/* active segment information */
1049
1050	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1051
1052	block_t seg0_blkaddr;		/* block address of 0'th segment */
1053	block_t main_blkaddr;		/* start block address of main area */
1054	block_t ssa_blkaddr;		/* start block address of SSA area */
1055
1056	unsigned int segment_count;	/* total # of segments */
1057	unsigned int main_segments;	/* # of segments in main area */
1058	unsigned int reserved_segments;	/* # of reserved segments */
1059	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1060	unsigned int ovp_segments;	/* # of overprovision segments */
1061
1062	/* a threshold to reclaim prefree segments */
1063	unsigned int rec_prefree_segments;
1064
1065	struct list_head sit_entry_set;	/* sit entry set list */
1066
1067	unsigned int ipu_policy;	/* in-place-update policy */
1068	unsigned int min_ipu_util;	/* in-place-update threshold */
1069	unsigned int min_fsync_blocks;	/* threshold for fsync */
1070	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1071	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1072	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1073
1074	/* for flush command control */
1075	struct flush_cmd_control *fcc_info;
1076
1077	/* for discard command control */
1078	struct discard_cmd_control *dcc_info;
1079};
1080
1081/*
1082 * For superblock
1083 */
1084/*
1085 * COUNT_TYPE for monitoring
1086 *
1087 * f2fs monitors the number of several block types such as on-writeback,
1088 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1089 */
1090#define WB_DATA_TYPE(p, f)			\
1091	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1092enum count_type {
1093	F2FS_DIRTY_DENTS,
1094	F2FS_DIRTY_DATA,
1095	F2FS_DIRTY_QDATA,
1096	F2FS_DIRTY_NODES,
1097	F2FS_DIRTY_META,
1098	F2FS_DIRTY_IMETA,
1099	F2FS_WB_CP_DATA,
1100	F2FS_WB_DATA,
1101	F2FS_RD_DATA,
1102	F2FS_RD_NODE,
1103	F2FS_RD_META,
1104	F2FS_DIO_WRITE,
1105	F2FS_DIO_READ,
1106	NR_COUNT_TYPE,
1107};
1108
1109/*
1110 * The below are the page types of bios used in submit_bio().
1111 * The available types are:
1112 * DATA			User data pages. It operates as async mode.
1113 * NODE			Node pages. It operates as async mode.
1114 * META			FS metadata pages such as SIT, NAT, CP.
1115 * NR_PAGE_TYPE		The number of page types.
1116 * META_FLUSH		Make sure the previous pages are written
1117 *			with waiting the bio's completion
1118 * ...			Only can be used with META.
1119 */
1120#define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1121#define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1122enum page_type {
1123	DATA = 0,
1124	NODE = 1,	/* should not change this */
1125	META,
1126	NR_PAGE_TYPE,
1127	META_FLUSH,
1128	IPU,		/* the below types are used by tracepoints only. */
1129	OPU,
1130};
1131
1132enum temp_type {
1133	HOT = 0,	/* must be zero for meta bio */
1134	WARM,
1135	COLD,
1136	NR_TEMP_TYPE,
1137};
1138
1139enum need_lock_type {
1140	LOCK_REQ = 0,
1141	LOCK_DONE,
1142	LOCK_RETRY,
1143};
1144
1145enum cp_reason_type {
1146	CP_NO_NEEDED,
1147	CP_NON_REGULAR,
1148	CP_COMPRESSED,
1149	CP_HARDLINK,
1150	CP_SB_NEED_CP,
1151	CP_WRONG_PINO,
1152	CP_NO_SPC_ROLL,
1153	CP_NODE_NEED_CP,
1154	CP_FASTBOOT_MODE,
1155	CP_SPEC_LOG_NUM,
1156	CP_RECOVER_DIR,
1157};
1158
1159enum iostat_type {
1160	/* WRITE IO */
1161	APP_DIRECT_IO,			/* app direct write IOs */
1162	APP_BUFFERED_IO,		/* app buffered write IOs */
1163	APP_WRITE_IO,			/* app write IOs */
1164	APP_MAPPED_IO,			/* app mapped IOs */
1165	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1166	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1167	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1168	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1169	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1170	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1171	FS_GC_DATA_IO,			/* data IOs from forground gc */
1172	FS_GC_NODE_IO,			/* node IOs from forground gc */
1173	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1174	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1175	FS_CP_META_IO,			/* meta IOs from checkpoint */
1176
1177	/* READ IO */
1178	APP_DIRECT_READ_IO,		/* app direct read IOs */
1179	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1180	APP_READ_IO,			/* app read IOs */
1181	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1182	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1183	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1184	FS_DATA_READ_IO,		/* data read IOs */
1185	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1186	FS_CDATA_READ_IO,		/* compressed data read IOs */
1187	FS_NODE_READ_IO,		/* node read IOs */
1188	FS_META_READ_IO,		/* meta read IOs */
1189
1190	/* other */
1191	FS_DISCARD_IO,			/* discard */
1192	FS_FLUSH_IO,			/* flush */
1193	FS_ZONE_RESET_IO,		/* zone reset */
1194	NR_IO_TYPE,
1195};
1196
1197struct f2fs_io_info {
1198	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1199	nid_t ino;		/* inode number */
1200	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1201	enum temp_type temp;	/* contains HOT/WARM/COLD */
1202	enum req_op op;		/* contains REQ_OP_ */
1203	blk_opf_t op_flags;	/* req_flag_bits */
1204	block_t new_blkaddr;	/* new block address to be written */
1205	block_t old_blkaddr;	/* old block address before Cow */
1206	struct page *page;	/* page to be written */
1207	struct page *encrypted_page;	/* encrypted page */
1208	struct page *compressed_page;	/* compressed page */
1209	struct list_head list;		/* serialize IOs */
1210	unsigned int compr_blocks;	/* # of compressed block addresses */
1211	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1212	unsigned int version:8;		/* version of the node */
1213	unsigned int submitted:1;	/* indicate IO submission */
1214	unsigned int in_list:1;		/* indicate fio is in io_list */
1215	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1216	unsigned int encrypted:1;	/* indicate file is encrypted */
1217	unsigned int post_read:1;	/* require post read */
1218	enum iostat_type io_type;	/* io type */
1219	struct writeback_control *io_wbc; /* writeback control */
1220	struct bio **bio;		/* bio for ipu */
1221	sector_t *last_block;		/* last block number in bio */
1222};
1223
1224struct bio_entry {
1225	struct bio *bio;
1226	struct list_head list;
1227};
1228
1229#define is_read_io(rw) ((rw) == READ)
1230struct f2fs_bio_info {
1231	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1232	struct bio *bio;		/* bios to merge */
1233	sector_t last_block_in_bio;	/* last block number */
1234	struct f2fs_io_info fio;	/* store buffered io info. */
1235#ifdef CONFIG_BLK_DEV_ZONED
1236	struct completion zone_wait;	/* condition value for the previous open zone to close */
1237	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1238	void *bi_private;		/* previous bi_private for pending bio */
1239#endif
1240	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1241	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1242	struct list_head io_list;	/* track fios */
1243	struct list_head bio_list;	/* bio entry list head */
1244	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1245};
1246
1247#define FDEV(i)				(sbi->devs[i])
1248#define RDEV(i)				(raw_super->devs[i])
1249struct f2fs_dev_info {
1250	struct file *bdev_file;
1251	struct block_device *bdev;
1252	char path[MAX_PATH_LEN];
1253	unsigned int total_segments;
1254	block_t start_blk;
1255	block_t end_blk;
1256#ifdef CONFIG_BLK_DEV_ZONED
1257	unsigned int nr_blkz;		/* Total number of zones */
1258	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1259#endif
1260};
1261
1262enum inode_type {
1263	DIR_INODE,			/* for dirty dir inode */
1264	FILE_INODE,			/* for dirty regular/symlink inode */
1265	DIRTY_META,			/* for all dirtied inode metadata */
1266	NR_INODE_TYPE,
1267};
1268
1269/* for inner inode cache management */
1270struct inode_management {
1271	struct radix_tree_root ino_root;	/* ino entry array */
1272	spinlock_t ino_lock;			/* for ino entry lock */
1273	struct list_head ino_list;		/* inode list head */
1274	unsigned long ino_num;			/* number of entries */
1275};
1276
1277/* for GC_AT */
1278struct atgc_management {
1279	bool atgc_enabled;			/* ATGC is enabled or not */
1280	struct rb_root_cached root;		/* root of victim rb-tree */
1281	struct list_head victim_list;		/* linked with all victim entries */
1282	unsigned int victim_count;		/* victim count in rb-tree */
1283	unsigned int candidate_ratio;		/* candidate ratio */
1284	unsigned int max_candidate_count;	/* max candidate count */
1285	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1286	unsigned long long age_threshold;	/* age threshold */
1287};
1288
1289struct f2fs_gc_control {
1290	unsigned int victim_segno;	/* target victim segment number */
1291	int init_gc_type;		/* FG_GC or BG_GC */
1292	bool no_bg_gc;			/* check the space and stop bg_gc */
1293	bool should_migrate_blocks;	/* should migrate blocks */
1294	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1295	unsigned int nr_free_secs;	/* # of free sections to do GC */
1296};
1297
1298/*
1299 * For s_flag in struct f2fs_sb_info
1300 * Modification on enum should be synchronized with s_flag array
1301 */
1302enum {
1303	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1304	SBI_IS_CLOSE,				/* specify unmounting */
1305	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1306	SBI_POR_DOING,				/* recovery is doing or not */
1307	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1308	SBI_NEED_CP,				/* need to checkpoint */
1309	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1310	SBI_IS_RECOVERED,			/* recovered orphan/data */
1311	SBI_CP_DISABLED,			/* CP was disabled last mount */
1312	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1313	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1314	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1315	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1316	SBI_IS_RESIZEFS,			/* resizefs is in process */
1317	SBI_IS_FREEZING,			/* freezefs is in process */
1318	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1319	MAX_SBI_FLAG,
1320};
1321
1322enum {
1323	CP_TIME,
1324	REQ_TIME,
1325	DISCARD_TIME,
1326	GC_TIME,
1327	DISABLE_TIME,
1328	UMOUNT_DISCARD_TIMEOUT,
1329	MAX_TIME,
1330};
1331
1332/* Note that you need to keep synchronization with this gc_mode_names array */
1333enum {
1334	GC_NORMAL,
1335	GC_IDLE_CB,
1336	GC_IDLE_GREEDY,
1337	GC_IDLE_AT,
1338	GC_URGENT_HIGH,
1339	GC_URGENT_LOW,
1340	GC_URGENT_MID,
1341	MAX_GC_MODE,
1342};
1343
1344enum {
1345	BGGC_MODE_ON,		/* background gc is on */
1346	BGGC_MODE_OFF,		/* background gc is off */
1347	BGGC_MODE_SYNC,		/*
1348				 * background gc is on, migrating blocks
1349				 * like foreground gc
1350				 */
1351};
1352
1353enum {
1354	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1355	FS_MODE_LFS,			/* use lfs allocation only */
1356	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1357	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1358};
1359
1360enum {
1361	ALLOC_MODE_DEFAULT,	/* stay default */
1362	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1363};
1364
1365enum fsync_mode {
1366	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1367	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1368	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1369};
1370
1371enum {
1372	COMPR_MODE_FS,		/*
1373				 * automatically compress compression
1374				 * enabled files
1375				 */
1376	COMPR_MODE_USER,	/*
1377				 * automatical compression is disabled.
1378				 * user can control the file compression
1379				 * using ioctls
1380				 */
1381};
1382
1383enum {
1384	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1385	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1386	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1387};
1388
1389enum {
1390	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1391	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1392};
1393
1394enum errors_option {
1395	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1396	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1397	MOUNT_ERRORS_PANIC,	/* panic on errors */
1398};
1399
1400enum {
1401	BACKGROUND,
1402	FOREGROUND,
1403	MAX_CALL_TYPE,
1404	TOTAL_CALL = FOREGROUND,
1405};
1406
1407static inline int f2fs_test_bit(unsigned int nr, char *addr);
1408static inline void f2fs_set_bit(unsigned int nr, char *addr);
1409static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1410
1411/*
1412 * Layout of f2fs page.private:
1413 *
1414 * Layout A: lowest bit should be 1
1415 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1416 * bit 0	PAGE_PRIVATE_NOT_POINTER
1417 * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1418 * bit 2	PAGE_PRIVATE_INLINE_INODE
1419 * bit 3	PAGE_PRIVATE_REF_RESOURCE
1420 * bit 4-	f2fs private data
1421 *
1422 * Layout B: lowest bit should be 0
1423 * page.private is a wrapped pointer.
1424 */
1425enum {
1426	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1427	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1428	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1429	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1430	PAGE_PRIVATE_MAX
1431};
1432
1433/* For compression */
1434enum compress_algorithm_type {
1435	COMPRESS_LZO,
1436	COMPRESS_LZ4,
1437	COMPRESS_ZSTD,
1438	COMPRESS_LZORLE,
1439	COMPRESS_MAX,
1440};
1441
1442enum compress_flag {
1443	COMPRESS_CHKSUM,
1444	COMPRESS_MAX_FLAG,
1445};
1446
1447#define	COMPRESS_WATERMARK			20
1448#define	COMPRESS_PERCENT			20
1449
1450#define COMPRESS_DATA_RESERVED_SIZE		4
1451struct compress_data {
1452	__le32 clen;			/* compressed data size */
1453	__le32 chksum;			/* compressed data chksum */
1454	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1455	u8 cdata[];			/* compressed data */
1456};
1457
1458#define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1459
1460#define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1461
1462#define F2FS_ZSTD_DEFAULT_CLEVEL	1
1463
1464#define	COMPRESS_LEVEL_OFFSET	8
1465
1466/* compress context */
1467struct compress_ctx {
1468	struct inode *inode;		/* inode the context belong to */
1469	pgoff_t cluster_idx;		/* cluster index number */
1470	unsigned int cluster_size;	/* page count in cluster */
1471	unsigned int log_cluster_size;	/* log of cluster size */
1472	struct page **rpages;		/* pages store raw data in cluster */
1473	unsigned int nr_rpages;		/* total page number in rpages */
1474	struct page **cpages;		/* pages store compressed data in cluster */
1475	unsigned int nr_cpages;		/* total page number in cpages */
1476	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1477	void *rbuf;			/* virtual mapped address on rpages */
1478	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1479	size_t rlen;			/* valid data length in rbuf */
1480	size_t clen;			/* valid data length in cbuf */
1481	void *private;			/* payload buffer for specified compression algorithm */
1482	void *private2;			/* extra payload buffer */
1483};
1484
1485/* compress context for write IO path */
1486struct compress_io_ctx {
1487	u32 magic;			/* magic number to indicate page is compressed */
1488	struct inode *inode;		/* inode the context belong to */
1489	struct page **rpages;		/* pages store raw data in cluster */
1490	unsigned int nr_rpages;		/* total page number in rpages */
1491	atomic_t pending_pages;		/* in-flight compressed page count */
1492};
1493
1494/* Context for decompressing one cluster on the read IO path */
1495struct decompress_io_ctx {
1496	u32 magic;			/* magic number to indicate page is compressed */
1497	struct inode *inode;		/* inode the context belong to */
1498	pgoff_t cluster_idx;		/* cluster index number */
1499	unsigned int cluster_size;	/* page count in cluster */
1500	unsigned int log_cluster_size;	/* log of cluster size */
1501	struct page **rpages;		/* pages store raw data in cluster */
1502	unsigned int nr_rpages;		/* total page number in rpages */
1503	struct page **cpages;		/* pages store compressed data in cluster */
1504	unsigned int nr_cpages;		/* total page number in cpages */
1505	struct page **tpages;		/* temp pages to pad holes in cluster */
1506	void *rbuf;			/* virtual mapped address on rpages */
1507	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1508	size_t rlen;			/* valid data length in rbuf */
1509	size_t clen;			/* valid data length in cbuf */
1510
1511	/*
1512	 * The number of compressed pages remaining to be read in this cluster.
1513	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1514	 * has been read (or failed to be read).  When it reaches 0, the cluster
1515	 * is decompressed (or an error is reported).
1516	 *
1517	 * If an error occurs before all the pages have been submitted for I/O,
1518	 * then this will never reach 0.  In this case the I/O submitter is
1519	 * responsible for calling f2fs_decompress_end_io() instead.
1520	 */
1521	atomic_t remaining_pages;
1522
1523	/*
1524	 * Number of references to this decompress_io_ctx.
1525	 *
1526	 * One reference is held for I/O completion.  This reference is dropped
1527	 * after the pagecache pages are updated and unlocked -- either after
1528	 * decompression (and verity if enabled), or after an error.
1529	 *
1530	 * In addition, each compressed page holds a reference while it is in a
1531	 * bio.  These references are necessary prevent compressed pages from
1532	 * being freed while they are still in a bio.
1533	 */
1534	refcount_t refcnt;
1535
1536	bool failed;			/* IO error occurred before decompression? */
1537	bool need_verity;		/* need fs-verity verification after decompression? */
1538	void *private;			/* payload buffer for specified decompression algorithm */
1539	void *private2;			/* extra payload buffer */
1540	struct work_struct verity_work;	/* work to verify the decompressed pages */
1541	struct work_struct free_work;	/* work for late free this structure itself */
1542};
1543
1544#define NULL_CLUSTER			((unsigned int)(~0))
1545#define MIN_COMPRESS_LOG_SIZE		2
1546#define MAX_COMPRESS_LOG_SIZE		8
1547#define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1548
1549struct f2fs_sb_info {
1550	struct super_block *sb;			/* pointer to VFS super block */
1551	struct proc_dir_entry *s_proc;		/* proc entry */
1552	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1553	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1554	int valid_super_block;			/* valid super block no */
1555	unsigned long s_flag;				/* flags for sbi */
1556	struct mutex writepages;		/* mutex for writepages() */
1557
1558#ifdef CONFIG_BLK_DEV_ZONED
1559	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1560#endif
1561
1562	/* for node-related operations */
1563	struct f2fs_nm_info *nm_info;		/* node manager */
1564	struct inode *node_inode;		/* cache node blocks */
1565
1566	/* for segment-related operations */
1567	struct f2fs_sm_info *sm_info;		/* segment manager */
1568
1569	/* for bio operations */
1570	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1571	/* keep migration IO order for LFS mode */
1572	struct f2fs_rwsem io_order_lock;
1573	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1574	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1575
1576	/* for checkpoint */
1577	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1578	int cur_cp_pack;			/* remain current cp pack */
1579	spinlock_t cp_lock;			/* for flag in ckpt */
1580	struct inode *meta_inode;		/* cache meta blocks */
1581	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1582	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1583	struct f2fs_rwsem node_write;		/* locking node writes */
1584	struct f2fs_rwsem node_change;	/* locking node change */
1585	wait_queue_head_t cp_wait;
1586	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1587	long interval_time[MAX_TIME];		/* to store thresholds */
1588	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1589
1590	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1591
1592	spinlock_t fsync_node_lock;		/* for node entry lock */
1593	struct list_head fsync_node_list;	/* node list head */
1594	unsigned int fsync_seg_id;		/* sequence id */
1595	unsigned int fsync_node_num;		/* number of node entries */
1596
1597	/* for orphan inode, use 0'th array */
1598	unsigned int max_orphans;		/* max orphan inodes */
1599
1600	/* for inode management */
1601	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1602	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1603	struct mutex flush_lock;		/* for flush exclusion */
1604
1605	/* for extent tree cache */
1606	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1607	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1608
1609	/* The threshold used for hot and warm data seperation*/
1610	unsigned int hot_data_age_threshold;
1611	unsigned int warm_data_age_threshold;
1612	unsigned int last_age_weight;
1613
1614	/* basic filesystem units */
1615	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1616	unsigned int log_blocksize;		/* log2 block size */
1617	unsigned int blocksize;			/* block size */
1618	unsigned int root_ino_num;		/* root inode number*/
1619	unsigned int node_ino_num;		/* node inode number*/
1620	unsigned int meta_ino_num;		/* meta inode number*/
1621	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1622	unsigned int blocks_per_seg;		/* blocks per segment */
1623	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1624	unsigned int segs_per_sec;		/* segments per section */
1625	unsigned int secs_per_zone;		/* sections per zone */
1626	unsigned int total_sections;		/* total section count */
1627	unsigned int total_node_count;		/* total node block count */
1628	unsigned int total_valid_node_count;	/* valid node block count */
1629	int dir_level;				/* directory level */
1630	bool readdir_ra;			/* readahead inode in readdir */
1631	u64 max_io_bytes;			/* max io bytes to merge IOs */
1632
1633	block_t user_block_count;		/* # of user blocks */
1634	block_t total_valid_block_count;	/* # of valid blocks */
1635	block_t discard_blks;			/* discard command candidats */
1636	block_t last_valid_block_count;		/* for recovery */
1637	block_t reserved_blocks;		/* configurable reserved blocks */
1638	block_t current_reserved_blocks;	/* current reserved blocks */
1639
1640	/* Additional tracking for no checkpoint mode */
1641	block_t unusable_block_count;		/* # of blocks saved by last cp */
1642
1643	unsigned int nquota_files;		/* # of quota sysfile */
1644	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1645
1646	/* # of pages, see count_type */
1647	atomic_t nr_pages[NR_COUNT_TYPE];
1648	/* # of allocated blocks */
1649	struct percpu_counter alloc_valid_block_count;
1650	/* # of node block writes as roll forward recovery */
1651	struct percpu_counter rf_node_block_count;
1652
1653	/* writeback control */
1654	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1655
1656	/* valid inode count */
1657	struct percpu_counter total_valid_inode_count;
1658
1659	struct f2fs_mount_info mount_opt;	/* mount options */
1660
1661	/* for cleaning operations */
1662	struct f2fs_rwsem gc_lock;		/*
1663						 * semaphore for GC, avoid
1664						 * race between GC and GC or CP
1665						 */
1666	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1667	struct atgc_management am;		/* atgc management */
1668	unsigned int cur_victim_sec;		/* current victim section num */
1669	unsigned int gc_mode;			/* current GC state */
1670	unsigned int next_victim_seg[2];	/* next segment in victim section */
1671	spinlock_t gc_remaining_trials_lock;
1672	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1673	unsigned int gc_remaining_trials;
1674
1675	/* for skip statistic */
1676	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1677
1678	/* threshold for gc trials on pinned files */
1679	u64 gc_pin_file_threshold;
1680	struct f2fs_rwsem pin_sem;
1681
1682	/* maximum # of trials to find a victim segment for SSR and GC */
1683	unsigned int max_victim_search;
1684	/* migration granularity of garbage collection, unit: segment */
1685	unsigned int migration_granularity;
1686
1687	/*
1688	 * for stat information.
1689	 * one is for the LFS mode, and the other is for the SSR mode.
1690	 */
1691#ifdef CONFIG_F2FS_STAT_FS
1692	struct f2fs_stat_info *stat_info;	/* FS status information */
1693	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1694	unsigned int segment_count[2];		/* # of allocated segments */
1695	unsigned int block_count[2];		/* # of allocated blocks */
1696	atomic_t inplace_count;		/* # of inplace update */
1697	/* # of lookup extent cache */
1698	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1699	/* # of hit rbtree extent node */
1700	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1701	/* # of hit cached extent node */
1702	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1703	/* # of hit largest extent node in read extent cache */
1704	atomic64_t read_hit_largest;
1705	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1706	atomic_t inline_inode;			/* # of inline_data inodes */
1707	atomic_t inline_dir;			/* # of inline_dentry inodes */
1708	atomic_t compr_inode;			/* # of compressed inodes */
1709	atomic64_t compr_blocks;		/* # of compressed blocks */
1710	atomic_t swapfile_inode;		/* # of swapfile inodes */
1711	atomic_t atomic_files;			/* # of opened atomic file */
1712	atomic_t max_aw_cnt;			/* max # of atomic writes */
1713	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1714	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1715	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1716	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1717#endif
1718	spinlock_t stat_lock;			/* lock for stat operations */
1719
1720	/* to attach REQ_META|REQ_FUA flags */
1721	unsigned int data_io_flag;
1722	unsigned int node_io_flag;
1723
1724	/* For sysfs support */
1725	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1726	struct completion s_kobj_unregister;
1727
1728	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1729	struct completion s_stat_kobj_unregister;
1730
1731	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1732	struct completion s_feature_list_kobj_unregister;
1733
1734	/* For shrinker support */
1735	struct list_head s_list;
1736	struct mutex umount_mutex;
1737	unsigned int shrinker_run_no;
1738
1739	/* For multi devices */
1740	int s_ndevs;				/* number of devices */
1741	struct f2fs_dev_info *devs;		/* for device list */
1742	unsigned int dirty_device;		/* for checkpoint data flush */
1743	spinlock_t dev_lock;			/* protect dirty_device */
1744	bool aligned_blksize;			/* all devices has the same logical blksize */
1745
1746	/* For write statistics */
1747	u64 sectors_written_start;
1748	u64 kbytes_written;
1749
1750	/* Reference to checksum algorithm driver via cryptoapi */
1751	struct crypto_shash *s_chksum_driver;
1752
1753	/* Precomputed FS UUID checksum for seeding other checksums */
1754	__u32 s_chksum_seed;
1755
1756	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1757
1758	/*
1759	 * If we are in irq context, let's update error information into
1760	 * on-disk superblock in the work.
1761	 */
1762	struct work_struct s_error_work;
1763	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1764	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1765	spinlock_t error_lock;			/* protect errors/stop_reason array */
1766	bool error_dirty;			/* errors of sb is dirty */
1767
1768	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1769	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1770
1771	/* For reclaimed segs statistics per each GC mode */
1772	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1773	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1774
1775	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1776
1777	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1778	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1779
1780	/* For atomic write statistics */
1781	atomic64_t current_atomic_write;
1782	s64 peak_atomic_write;
1783	u64 committed_atomic_block;
1784	u64 revoked_atomic_block;
1785
1786#ifdef CONFIG_F2FS_FS_COMPRESSION
1787	struct kmem_cache *page_array_slab;	/* page array entry */
1788	unsigned int page_array_slab_size;	/* default page array slab size */
1789
1790	/* For runtime compression statistics */
1791	u64 compr_written_block;
1792	u64 compr_saved_block;
1793	u32 compr_new_inode;
1794
1795	/* For compressed block cache */
1796	struct inode *compress_inode;		/* cache compressed blocks */
1797	unsigned int compress_percent;		/* cache page percentage */
1798	unsigned int compress_watermark;	/* cache page watermark */
1799	atomic_t compress_page_hit;		/* cache hit count */
1800#endif
1801
1802#ifdef CONFIG_F2FS_IOSTAT
1803	/* For app/fs IO statistics */
1804	spinlock_t iostat_lock;
1805	unsigned long long iostat_count[NR_IO_TYPE];
1806	unsigned long long iostat_bytes[NR_IO_TYPE];
1807	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1808	bool iostat_enable;
1809	unsigned long iostat_next_period;
1810	unsigned int iostat_period_ms;
1811
1812	/* For io latency related statistics info in one iostat period */
1813	spinlock_t iostat_lat_lock;
1814	struct iostat_lat_info *iostat_io_lat;
1815#endif
1816};
1817
1818/* Definitions to access f2fs_sb_info */
1819#define SEGS_TO_BLKS(sbi, segs)					\
1820		((segs) << (sbi)->log_blocks_per_seg)
1821#define BLKS_TO_SEGS(sbi, blks)					\
1822		((blks) >> (sbi)->log_blocks_per_seg)
1823
1824#define BLKS_PER_SEG(sbi)	((sbi)->blocks_per_seg)
1825#define BLKS_PER_SEC(sbi)	(SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1826#define SEGS_PER_SEC(sbi)	((sbi)->segs_per_sec)
1827
1828__printf(3, 4)
1829void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1830
1831#define f2fs_err(sbi, fmt, ...)						\
1832	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1833#define f2fs_warn(sbi, fmt, ...)					\
1834	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1835#define f2fs_notice(sbi, fmt, ...)					\
1836	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1837#define f2fs_info(sbi, fmt, ...)					\
1838	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1839#define f2fs_debug(sbi, fmt, ...)					\
1840	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1841
1842#define f2fs_err_ratelimited(sbi, fmt, ...)				\
1843	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1844#define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1845	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1846#define f2fs_info_ratelimited(sbi, fmt, ...)				\
1847	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1848
1849#ifdef CONFIG_F2FS_FAULT_INJECTION
1850#define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1851									__builtin_return_address(0))
1852static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1853				const char *func, const char *parent_func)
1854{
1855	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1856
1857	if (!ffi->inject_rate)
1858		return false;
1859
1860	if (!IS_FAULT_SET(ffi, type))
1861		return false;
1862
1863	atomic_inc(&ffi->inject_ops);
1864	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1865		atomic_set(&ffi->inject_ops, 0);
1866		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1867				f2fs_fault_name[type], func, parent_func);
1868		return true;
1869	}
1870	return false;
1871}
1872#else
1873static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1874{
1875	return false;
1876}
1877#endif
1878
1879/*
1880 * Test if the mounted volume is a multi-device volume.
1881 *   - For a single regular disk volume, sbi->s_ndevs is 0.
1882 *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1883 *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1884 */
1885static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1886{
1887	return sbi->s_ndevs > 1;
1888}
1889
1890static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1891{
1892	unsigned long now = jiffies;
1893
1894	sbi->last_time[type] = now;
1895
1896	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1897	if (type == REQ_TIME) {
1898		sbi->last_time[DISCARD_TIME] = now;
1899		sbi->last_time[GC_TIME] = now;
1900	}
1901}
1902
1903static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1904{
1905	unsigned long interval = sbi->interval_time[type] * HZ;
1906
1907	return time_after(jiffies, sbi->last_time[type] + interval);
1908}
1909
1910static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1911						int type)
1912{
1913	unsigned long interval = sbi->interval_time[type] * HZ;
1914	unsigned int wait_ms = 0;
1915	long delta;
1916
1917	delta = (sbi->last_time[type] + interval) - jiffies;
1918	if (delta > 0)
1919		wait_ms = jiffies_to_msecs(delta);
1920
1921	return wait_ms;
1922}
1923
1924/*
1925 * Inline functions
1926 */
1927static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1928			      const void *address, unsigned int length)
1929{
1930	struct {
1931		struct shash_desc shash;
1932		char ctx[4];
1933	} desc;
1934	int err;
1935
1936	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1937
1938	desc.shash.tfm = sbi->s_chksum_driver;
1939	*(u32 *)desc.ctx = crc;
1940
1941	err = crypto_shash_update(&desc.shash, address, length);
1942	BUG_ON(err);
1943
1944	return *(u32 *)desc.ctx;
1945}
1946
1947static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1948			   unsigned int length)
1949{
1950	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1951}
1952
1953static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1954				  void *buf, size_t buf_size)
1955{
1956	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1957}
1958
1959static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1960			      const void *address, unsigned int length)
1961{
1962	return __f2fs_crc32(sbi, crc, address, length);
1963}
1964
1965static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1966{
1967	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1968}
1969
1970static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1971{
1972	return sb->s_fs_info;
1973}
1974
1975static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1976{
1977	return F2FS_SB(inode->i_sb);
1978}
1979
1980static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1981{
1982	return F2FS_I_SB(mapping->host);
1983}
1984
1985static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1986{
1987	return F2FS_M_SB(page_file_mapping(page));
1988}
1989
1990static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1991{
1992	return (struct f2fs_super_block *)(sbi->raw_super);
1993}
1994
1995static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1996{
1997	return (struct f2fs_checkpoint *)(sbi->ckpt);
1998}
1999
2000static inline struct f2fs_node *F2FS_NODE(struct page *page)
2001{
2002	return (struct f2fs_node *)page_address(page);
2003}
2004
2005static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2006{
2007	return &((struct f2fs_node *)page_address(page))->i;
2008}
2009
2010static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2011{
2012	return (struct f2fs_nm_info *)(sbi->nm_info);
2013}
2014
2015static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2016{
2017	return (struct f2fs_sm_info *)(sbi->sm_info);
2018}
2019
2020static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2021{
2022	return (struct sit_info *)(SM_I(sbi)->sit_info);
2023}
2024
2025static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2026{
2027	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2028}
2029
2030static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2031{
2032	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2033}
2034
2035static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2036{
2037	return sbi->meta_inode->i_mapping;
2038}
2039
2040static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2041{
2042	return sbi->node_inode->i_mapping;
2043}
2044
2045static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2046{
2047	return test_bit(type, &sbi->s_flag);
2048}
2049
2050static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2051{
2052	set_bit(type, &sbi->s_flag);
2053}
2054
2055static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2056{
2057	clear_bit(type, &sbi->s_flag);
2058}
2059
2060static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2061{
2062	return le64_to_cpu(cp->checkpoint_ver);
2063}
2064
2065static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2066{
2067	if (type < F2FS_MAX_QUOTAS)
2068		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2069	return 0;
2070}
2071
2072static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2073{
2074	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2075	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2076}
2077
2078static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2079{
2080	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2081
2082	return ckpt_flags & f;
2083}
2084
2085static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2086{
2087	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2088}
2089
2090static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2091{
2092	unsigned int ckpt_flags;
2093
2094	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2095	ckpt_flags |= f;
2096	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2097}
2098
2099static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2100{
2101	unsigned long flags;
2102
2103	spin_lock_irqsave(&sbi->cp_lock, flags);
2104	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2105	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2106}
2107
2108static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2109{
2110	unsigned int ckpt_flags;
2111
2112	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2113	ckpt_flags &= (~f);
2114	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2115}
2116
2117static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2118{
2119	unsigned long flags;
2120
2121	spin_lock_irqsave(&sbi->cp_lock, flags);
2122	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2123	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2124}
2125
2126#define init_f2fs_rwsem(sem)					\
2127do {								\
2128	static struct lock_class_key __key;			\
2129								\
2130	__init_f2fs_rwsem((sem), #sem, &__key);			\
2131} while (0)
2132
2133static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2134		const char *sem_name, struct lock_class_key *key)
2135{
2136	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2137#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2138	init_waitqueue_head(&sem->read_waiters);
2139#endif
2140}
2141
2142static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2143{
2144	return rwsem_is_locked(&sem->internal_rwsem);
2145}
2146
2147static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2148{
2149	return rwsem_is_contended(&sem->internal_rwsem);
2150}
2151
2152static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2153{
2154#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2155	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2156#else
2157	down_read(&sem->internal_rwsem);
2158#endif
2159}
2160
2161static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2162{
2163	return down_read_trylock(&sem->internal_rwsem);
2164}
2165
2166static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2167{
2168	up_read(&sem->internal_rwsem);
2169}
2170
2171static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2172{
2173	down_write(&sem->internal_rwsem);
2174}
2175
2176#ifdef CONFIG_DEBUG_LOCK_ALLOC
2177static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2178{
2179	down_read_nested(&sem->internal_rwsem, subclass);
2180}
2181
2182static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2183{
2184	down_write_nested(&sem->internal_rwsem, subclass);
2185}
2186#else
2187#define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2188#define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2189#endif
2190
2191static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2192{
2193	return down_write_trylock(&sem->internal_rwsem);
2194}
2195
2196static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2197{
2198	up_write(&sem->internal_rwsem);
2199#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2200	wake_up_all(&sem->read_waiters);
2201#endif
2202}
2203
2204static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2205{
2206	f2fs_down_read(&sbi->cp_rwsem);
2207}
2208
2209static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2210{
2211	if (time_to_inject(sbi, FAULT_LOCK_OP))
2212		return 0;
2213	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2214}
2215
2216static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2217{
2218	f2fs_up_read(&sbi->cp_rwsem);
2219}
2220
2221static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2222{
2223	f2fs_down_write(&sbi->cp_rwsem);
2224}
2225
2226static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2227{
2228	f2fs_up_write(&sbi->cp_rwsem);
2229}
2230
2231static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2232{
2233	int reason = CP_SYNC;
2234
2235	if (test_opt(sbi, FASTBOOT))
2236		reason = CP_FASTBOOT;
2237	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2238		reason = CP_UMOUNT;
2239	return reason;
2240}
2241
2242static inline bool __remain_node_summaries(int reason)
2243{
2244	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2245}
2246
2247static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2248{
2249	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2250			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2251}
2252
2253/*
2254 * Check whether the inode has blocks or not
2255 */
2256static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2257{
2258	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2259
2260	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2261}
2262
2263static inline bool f2fs_has_xattr_block(unsigned int ofs)
2264{
2265	return ofs == XATTR_NODE_OFFSET;
2266}
2267
2268static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2269					struct inode *inode, bool cap)
2270{
2271	if (!inode)
2272		return true;
2273	if (!test_opt(sbi, RESERVE_ROOT))
2274		return false;
2275	if (IS_NOQUOTA(inode))
2276		return true;
2277	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2278		return true;
2279	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2280					in_group_p(F2FS_OPTION(sbi).s_resgid))
2281		return true;
2282	if (cap && capable(CAP_SYS_RESOURCE))
2283		return true;
2284	return false;
2285}
2286
2287static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2288						struct inode *inode, bool cap)
2289{
2290	block_t avail_user_block_count;
2291
2292	avail_user_block_count = sbi->user_block_count -
2293					sbi->current_reserved_blocks;
2294
2295	if (!__allow_reserved_blocks(sbi, inode, cap))
2296		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2297
2298	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2299		if (avail_user_block_count > sbi->unusable_block_count)
2300			avail_user_block_count -= sbi->unusable_block_count;
2301		else
2302			avail_user_block_count = 0;
2303	}
2304
2305	return avail_user_block_count;
2306}
2307
2308static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2309static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2310				 struct inode *inode, blkcnt_t *count, bool partial)
2311{
2312	blkcnt_t diff = 0, release = 0;
2313	block_t avail_user_block_count;
2314	int ret;
2315
2316	ret = dquot_reserve_block(inode, *count);
2317	if (ret)
2318		return ret;
2319
2320	if (time_to_inject(sbi, FAULT_BLOCK)) {
2321		release = *count;
2322		goto release_quota;
2323	}
2324
2325	/*
2326	 * let's increase this in prior to actual block count change in order
2327	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2328	 */
2329	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2330
2331	spin_lock(&sbi->stat_lock);
2332	sbi->total_valid_block_count += (block_t)(*count);
2333	avail_user_block_count = get_available_block_count(sbi, inode, true);
2334
2335	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2336		if (!partial) {
2337			spin_unlock(&sbi->stat_lock);
2338			goto enospc;
2339		}
2340
2341		diff = sbi->total_valid_block_count - avail_user_block_count;
2342		if (diff > *count)
2343			diff = *count;
2344		*count -= diff;
2345		release = diff;
2346		sbi->total_valid_block_count -= diff;
2347		if (!*count) {
2348			spin_unlock(&sbi->stat_lock);
2349			goto enospc;
2350		}
2351	}
2352	spin_unlock(&sbi->stat_lock);
2353
2354	if (unlikely(release)) {
2355		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2356		dquot_release_reservation_block(inode, release);
2357	}
2358	f2fs_i_blocks_write(inode, *count, true, true);
2359	return 0;
2360
2361enospc:
2362	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2363release_quota:
2364	dquot_release_reservation_block(inode, release);
2365	return -ENOSPC;
2366}
2367
2368#define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2369static inline bool page_private_##name(struct page *page) \
2370{ \
2371	return PagePrivate(page) && \
2372		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2373		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2374}
2375
2376#define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2377static inline void set_page_private_##name(struct page *page) \
2378{ \
2379	if (!PagePrivate(page)) \
2380		attach_page_private(page, (void *)0); \
2381	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2382	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2383}
2384
2385#define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2386static inline void clear_page_private_##name(struct page *page) \
2387{ \
2388	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2389	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2390		detach_page_private(page); \
2391}
2392
2393PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2394PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2395PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2396
2397PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2398PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2399PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2400
2401PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2402PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2403PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2404
2405static inline unsigned long get_page_private_data(struct page *page)
2406{
2407	unsigned long data = page_private(page);
2408
2409	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2410		return 0;
2411	return data >> PAGE_PRIVATE_MAX;
2412}
2413
2414static inline void set_page_private_data(struct page *page, unsigned long data)
2415{
2416	if (!PagePrivate(page))
2417		attach_page_private(page, (void *)0);
2418	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2419	page_private(page) |= data << PAGE_PRIVATE_MAX;
2420}
2421
2422static inline void clear_page_private_data(struct page *page)
2423{
2424	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2425	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2426		detach_page_private(page);
2427}
2428
2429static inline void clear_page_private_all(struct page *page)
2430{
2431	clear_page_private_data(page);
2432	clear_page_private_reference(page);
2433	clear_page_private_gcing(page);
2434	clear_page_private_inline(page);
2435
2436	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2437}
2438
2439static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2440						struct inode *inode,
2441						block_t count)
2442{
2443	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2444
2445	spin_lock(&sbi->stat_lock);
2446	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2447	sbi->total_valid_block_count -= (block_t)count;
2448	if (sbi->reserved_blocks &&
2449		sbi->current_reserved_blocks < sbi->reserved_blocks)
2450		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2451					sbi->current_reserved_blocks + count);
2452	spin_unlock(&sbi->stat_lock);
2453	if (unlikely(inode->i_blocks < sectors)) {
2454		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2455			  inode->i_ino,
2456			  (unsigned long long)inode->i_blocks,
2457			  (unsigned long long)sectors);
2458		set_sbi_flag(sbi, SBI_NEED_FSCK);
2459		return;
2460	}
2461	f2fs_i_blocks_write(inode, count, false, true);
2462}
2463
2464static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2465{
2466	atomic_inc(&sbi->nr_pages[count_type]);
2467
2468	if (count_type == F2FS_DIRTY_DENTS ||
2469			count_type == F2FS_DIRTY_NODES ||
2470			count_type == F2FS_DIRTY_META ||
2471			count_type == F2FS_DIRTY_QDATA ||
2472			count_type == F2FS_DIRTY_IMETA)
2473		set_sbi_flag(sbi, SBI_IS_DIRTY);
2474}
2475
2476static inline void inode_inc_dirty_pages(struct inode *inode)
2477{
2478	atomic_inc(&F2FS_I(inode)->dirty_pages);
2479	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2480				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2481	if (IS_NOQUOTA(inode))
2482		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2483}
2484
2485static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2486{
2487	atomic_dec(&sbi->nr_pages[count_type]);
2488}
2489
2490static inline void inode_dec_dirty_pages(struct inode *inode)
2491{
2492	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2493			!S_ISLNK(inode->i_mode))
2494		return;
2495
2496	atomic_dec(&F2FS_I(inode)->dirty_pages);
2497	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2498				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2499	if (IS_NOQUOTA(inode))
2500		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2501}
2502
2503static inline void inc_atomic_write_cnt(struct inode *inode)
2504{
2505	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2506	struct f2fs_inode_info *fi = F2FS_I(inode);
2507	u64 current_write;
2508
2509	fi->atomic_write_cnt++;
2510	atomic64_inc(&sbi->current_atomic_write);
2511	current_write = atomic64_read(&sbi->current_atomic_write);
2512	if (current_write > sbi->peak_atomic_write)
2513		sbi->peak_atomic_write = current_write;
2514}
2515
2516static inline void release_atomic_write_cnt(struct inode *inode)
2517{
2518	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2519	struct f2fs_inode_info *fi = F2FS_I(inode);
2520
2521	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2522	fi->atomic_write_cnt = 0;
2523}
2524
2525static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2526{
2527	return atomic_read(&sbi->nr_pages[count_type]);
2528}
2529
2530static inline int get_dirty_pages(struct inode *inode)
2531{
2532	return atomic_read(&F2FS_I(inode)->dirty_pages);
2533}
2534
2535static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2536{
2537	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2538							BLKS_PER_SEC(sbi));
2539}
2540
2541static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2542{
2543	return sbi->total_valid_block_count;
2544}
2545
2546static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2547{
2548	return sbi->discard_blks;
2549}
2550
2551static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2552{
2553	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2554
2555	/* return NAT or SIT bitmap */
2556	if (flag == NAT_BITMAP)
2557		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2558	else if (flag == SIT_BITMAP)
2559		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2560
2561	return 0;
2562}
2563
2564static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2565{
2566	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2567}
2568
2569static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2570{
2571	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2572	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2573	int offset;
2574
2575	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2576		offset = (flag == SIT_BITMAP) ?
2577			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2578		/*
2579		 * if large_nat_bitmap feature is enabled, leave checksum
2580		 * protection for all nat/sit bitmaps.
2581		 */
2582		return tmp_ptr + offset + sizeof(__le32);
2583	}
2584
2585	if (__cp_payload(sbi) > 0) {
2586		if (flag == NAT_BITMAP)
2587			return tmp_ptr;
2588		else
2589			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2590	} else {
2591		offset = (flag == NAT_BITMAP) ?
2592			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2593		return tmp_ptr + offset;
2594	}
2595}
2596
2597static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2598{
2599	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2600
2601	if (sbi->cur_cp_pack == 2)
2602		start_addr += BLKS_PER_SEG(sbi);
2603	return start_addr;
2604}
2605
2606static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2607{
2608	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2609
2610	if (sbi->cur_cp_pack == 1)
2611		start_addr += BLKS_PER_SEG(sbi);
2612	return start_addr;
2613}
2614
2615static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2616{
2617	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2618}
2619
2620static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2621{
2622	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2623}
2624
2625extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2626static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2627					struct inode *inode, bool is_inode)
2628{
2629	block_t	valid_block_count;
2630	unsigned int valid_node_count;
2631	unsigned int avail_user_block_count;
2632	int err;
2633
2634	if (is_inode) {
2635		if (inode) {
2636			err = dquot_alloc_inode(inode);
2637			if (err)
2638				return err;
2639		}
2640	} else {
2641		err = dquot_reserve_block(inode, 1);
2642		if (err)
2643			return err;
2644	}
2645
2646	if (time_to_inject(sbi, FAULT_BLOCK))
2647		goto enospc;
2648
2649	spin_lock(&sbi->stat_lock);
2650
2651	valid_block_count = sbi->total_valid_block_count + 1;
2652	avail_user_block_count = get_available_block_count(sbi, inode, false);
2653
2654	if (unlikely(valid_block_count > avail_user_block_count)) {
2655		spin_unlock(&sbi->stat_lock);
2656		goto enospc;
2657	}
2658
2659	valid_node_count = sbi->total_valid_node_count + 1;
2660	if (unlikely(valid_node_count > sbi->total_node_count)) {
2661		spin_unlock(&sbi->stat_lock);
2662		goto enospc;
2663	}
2664
2665	sbi->total_valid_node_count++;
2666	sbi->total_valid_block_count++;
2667	spin_unlock(&sbi->stat_lock);
2668
2669	if (inode) {
2670		if (is_inode)
2671			f2fs_mark_inode_dirty_sync(inode, true);
2672		else
2673			f2fs_i_blocks_write(inode, 1, true, true);
2674	}
2675
2676	percpu_counter_inc(&sbi->alloc_valid_block_count);
2677	return 0;
2678
2679enospc:
2680	if (is_inode) {
2681		if (inode)
2682			dquot_free_inode(inode);
2683	} else {
2684		dquot_release_reservation_block(inode, 1);
2685	}
2686	return -ENOSPC;
2687}
2688
2689static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2690					struct inode *inode, bool is_inode)
2691{
2692	spin_lock(&sbi->stat_lock);
2693
2694	if (unlikely(!sbi->total_valid_block_count ||
2695			!sbi->total_valid_node_count)) {
2696		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2697			  sbi->total_valid_block_count,
2698			  sbi->total_valid_node_count);
2699		set_sbi_flag(sbi, SBI_NEED_FSCK);
2700	} else {
2701		sbi->total_valid_block_count--;
2702		sbi->total_valid_node_count--;
2703	}
2704
2705	if (sbi->reserved_blocks &&
2706		sbi->current_reserved_blocks < sbi->reserved_blocks)
2707		sbi->current_reserved_blocks++;
2708
2709	spin_unlock(&sbi->stat_lock);
2710
2711	if (is_inode) {
2712		dquot_free_inode(inode);
2713	} else {
2714		if (unlikely(inode->i_blocks == 0)) {
2715			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2716				  inode->i_ino,
2717				  (unsigned long long)inode->i_blocks);
2718			set_sbi_flag(sbi, SBI_NEED_FSCK);
2719			return;
2720		}
2721		f2fs_i_blocks_write(inode, 1, false, true);
2722	}
2723}
2724
2725static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2726{
2727	return sbi->total_valid_node_count;
2728}
2729
2730static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2731{
2732	percpu_counter_inc(&sbi->total_valid_inode_count);
2733}
2734
2735static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2736{
2737	percpu_counter_dec(&sbi->total_valid_inode_count);
2738}
2739
2740static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2741{
2742	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2743}
2744
2745static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2746						pgoff_t index, bool for_write)
2747{
2748	struct page *page;
2749	unsigned int flags;
2750
2751	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2752		if (!for_write)
2753			page = find_get_page_flags(mapping, index,
2754							FGP_LOCK | FGP_ACCESSED);
2755		else
2756			page = find_lock_page(mapping, index);
2757		if (page)
2758			return page;
2759
2760		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2761			return NULL;
2762	}
2763
2764	if (!for_write)
2765		return grab_cache_page(mapping, index);
2766
2767	flags = memalloc_nofs_save();
2768	page = grab_cache_page_write_begin(mapping, index);
2769	memalloc_nofs_restore(flags);
2770
2771	return page;
2772}
2773
2774static inline struct page *f2fs_pagecache_get_page(
2775				struct address_space *mapping, pgoff_t index,
2776				fgf_t fgp_flags, gfp_t gfp_mask)
2777{
2778	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2779		return NULL;
2780
2781	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2782}
2783
2784static inline void f2fs_put_page(struct page *page, int unlock)
2785{
2786	if (!page)
2787		return;
2788
2789	if (unlock) {
2790		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2791		unlock_page(page);
2792	}
2793	put_page(page);
2794}
2795
2796static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2797{
2798	if (dn->node_page)
2799		f2fs_put_page(dn->node_page, 1);
2800	if (dn->inode_page && dn->node_page != dn->inode_page)
2801		f2fs_put_page(dn->inode_page, 0);
2802	dn->node_page = NULL;
2803	dn->inode_page = NULL;
2804}
2805
2806static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2807					size_t size)
2808{
2809	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2810}
2811
2812static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2813						gfp_t flags)
2814{
2815	void *entry;
2816
2817	entry = kmem_cache_alloc(cachep, flags);
2818	if (!entry)
2819		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2820	return entry;
2821}
2822
2823static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2824			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2825{
2826	if (nofail)
2827		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2828
2829	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2830		return NULL;
2831
2832	return kmem_cache_alloc(cachep, flags);
2833}
2834
2835static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2836{
2837	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2838		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2839		get_pages(sbi, F2FS_WB_CP_DATA) ||
2840		get_pages(sbi, F2FS_DIO_READ) ||
2841		get_pages(sbi, F2FS_DIO_WRITE))
2842		return true;
2843
2844	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2845			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2846		return true;
2847
2848	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2849			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2850		return true;
2851	return false;
2852}
2853
2854static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2855{
2856	if (sbi->gc_mode == GC_URGENT_HIGH)
2857		return true;
2858
2859	if (is_inflight_io(sbi, type))
2860		return false;
2861
2862	if (sbi->gc_mode == GC_URGENT_MID)
2863		return true;
2864
2865	if (sbi->gc_mode == GC_URGENT_LOW &&
2866			(type == DISCARD_TIME || type == GC_TIME))
2867		return true;
2868
2869	return f2fs_time_over(sbi, type);
2870}
2871
2872static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2873				unsigned long index, void *item)
2874{
2875	while (radix_tree_insert(root, index, item))
2876		cond_resched();
2877}
2878
2879#define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2880
2881static inline bool IS_INODE(struct page *page)
2882{
2883	struct f2fs_node *p = F2FS_NODE(page);
2884
2885	return RAW_IS_INODE(p);
2886}
2887
2888static inline int offset_in_addr(struct f2fs_inode *i)
2889{
2890	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2891			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2892}
2893
2894static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2895{
2896	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2897}
2898
2899static inline int f2fs_has_extra_attr(struct inode *inode);
2900static inline block_t data_blkaddr(struct inode *inode,
2901			struct page *node_page, unsigned int offset)
2902{
2903	struct f2fs_node *raw_node;
2904	__le32 *addr_array;
2905	int base = 0;
2906	bool is_inode = IS_INODE(node_page);
2907
2908	raw_node = F2FS_NODE(node_page);
2909
2910	if (is_inode) {
2911		if (!inode)
2912			/* from GC path only */
2913			base = offset_in_addr(&raw_node->i);
2914		else if (f2fs_has_extra_attr(inode))
2915			base = get_extra_isize(inode);
2916	}
2917
2918	addr_array = blkaddr_in_node(raw_node);
2919	return le32_to_cpu(addr_array[base + offset]);
2920}
2921
2922static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2923{
2924	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2925}
2926
2927static inline int f2fs_test_bit(unsigned int nr, char *addr)
2928{
2929	int mask;
2930
2931	addr += (nr >> 3);
2932	mask = BIT(7 - (nr & 0x07));
2933	return mask & *addr;
2934}
2935
2936static inline void f2fs_set_bit(unsigned int nr, char *addr)
2937{
2938	int mask;
2939
2940	addr += (nr >> 3);
2941	mask = BIT(7 - (nr & 0x07));
2942	*addr |= mask;
2943}
2944
2945static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2946{
2947	int mask;
2948
2949	addr += (nr >> 3);
2950	mask = BIT(7 - (nr & 0x07));
2951	*addr &= ~mask;
2952}
2953
2954static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2955{
2956	int mask;
2957	int ret;
2958
2959	addr += (nr >> 3);
2960	mask = BIT(7 - (nr & 0x07));
2961	ret = mask & *addr;
2962	*addr |= mask;
2963	return ret;
2964}
2965
2966static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2967{
2968	int mask;
2969	int ret;
2970
2971	addr += (nr >> 3);
2972	mask = BIT(7 - (nr & 0x07));
2973	ret = mask & *addr;
2974	*addr &= ~mask;
2975	return ret;
2976}
2977
2978static inline void f2fs_change_bit(unsigned int nr, char *addr)
2979{
2980	int mask;
2981
2982	addr += (nr >> 3);
2983	mask = BIT(7 - (nr & 0x07));
2984	*addr ^= mask;
2985}
2986
2987/*
2988 * On-disk inode flags (f2fs_inode::i_flags)
2989 */
2990#define F2FS_COMPR_FL			0x00000004 /* Compress file */
2991#define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2992#define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2993#define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2994#define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2995#define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2996#define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2997#define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2998#define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2999#define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
3000#define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
3001
3002#define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3003
3004/* Flags that should be inherited by new inodes from their parent. */
3005#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3006			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3007			   F2FS_CASEFOLD_FL)
3008
3009/* Flags that are appropriate for regular files (all but dir-specific ones). */
3010#define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3011				F2FS_CASEFOLD_FL))
3012
3013/* Flags that are appropriate for non-directories/regular files. */
3014#define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3015
3016static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3017{
3018	if (S_ISDIR(mode))
3019		return flags;
3020	else if (S_ISREG(mode))
3021		return flags & F2FS_REG_FLMASK;
3022	else
3023		return flags & F2FS_OTHER_FLMASK;
3024}
3025
3026static inline void __mark_inode_dirty_flag(struct inode *inode,
3027						int flag, bool set)
3028{
3029	switch (flag) {
3030	case FI_INLINE_XATTR:
3031	case FI_INLINE_DATA:
3032	case FI_INLINE_DENTRY:
3033	case FI_NEW_INODE:
3034		if (set)
3035			return;
3036		fallthrough;
3037	case FI_DATA_EXIST:
3038	case FI_INLINE_DOTS:
3039	case FI_PIN_FILE:
3040	case FI_COMPRESS_RELEASED:
3041	case FI_ATOMIC_COMMITTED:
3042		f2fs_mark_inode_dirty_sync(inode, true);
3043	}
3044}
3045
3046static inline void set_inode_flag(struct inode *inode, int flag)
3047{
3048	set_bit(flag, F2FS_I(inode)->flags);
3049	__mark_inode_dirty_flag(inode, flag, true);
3050}
3051
3052static inline int is_inode_flag_set(struct inode *inode, int flag)
3053{
3054	return test_bit(flag, F2FS_I(inode)->flags);
3055}
3056
3057static inline void clear_inode_flag(struct inode *inode, int flag)
3058{
3059	clear_bit(flag, F2FS_I(inode)->flags);
3060	__mark_inode_dirty_flag(inode, flag, false);
3061}
3062
3063static inline bool f2fs_verity_in_progress(struct inode *inode)
3064{
3065	return IS_ENABLED(CONFIG_FS_VERITY) &&
3066	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3067}
3068
3069static inline void set_acl_inode(struct inode *inode, umode_t mode)
3070{
3071	F2FS_I(inode)->i_acl_mode = mode;
3072	set_inode_flag(inode, FI_ACL_MODE);
3073	f2fs_mark_inode_dirty_sync(inode, false);
3074}
3075
3076static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3077{
3078	if (inc)
3079		inc_nlink(inode);
3080	else
3081		drop_nlink(inode);
3082	f2fs_mark_inode_dirty_sync(inode, true);
3083}
3084
3085static inline void f2fs_i_blocks_write(struct inode *inode,
3086					block_t diff, bool add, bool claim)
3087{
3088	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3089	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3090
3091	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3092	if (add) {
3093		if (claim)
3094			dquot_claim_block(inode, diff);
3095		else
3096			dquot_alloc_block_nofail(inode, diff);
3097	} else {
3098		dquot_free_block(inode, diff);
3099	}
3100
3101	f2fs_mark_inode_dirty_sync(inode, true);
3102	if (clean || recover)
3103		set_inode_flag(inode, FI_AUTO_RECOVER);
3104}
3105
3106static inline bool f2fs_is_atomic_file(struct inode *inode);
3107
3108static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3109{
3110	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3111	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3112
3113	if (i_size_read(inode) == i_size)
3114		return;
3115
3116	i_size_write(inode, i_size);
3117
3118	if (f2fs_is_atomic_file(inode))
3119		return;
3120
3121	f2fs_mark_inode_dirty_sync(inode, true);
3122	if (clean || recover)
3123		set_inode_flag(inode, FI_AUTO_RECOVER);
3124}
3125
3126static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3127{
3128	F2FS_I(inode)->i_current_depth = depth;
3129	f2fs_mark_inode_dirty_sync(inode, true);
3130}
3131
3132static inline void f2fs_i_gc_failures_write(struct inode *inode,
3133					unsigned int count)
3134{
3135	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3136	f2fs_mark_inode_dirty_sync(inode, true);
3137}
3138
3139static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3140{
3141	F2FS_I(inode)->i_xattr_nid = xnid;
3142	f2fs_mark_inode_dirty_sync(inode, true);
3143}
3144
3145static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3146{
3147	F2FS_I(inode)->i_pino = pino;
3148	f2fs_mark_inode_dirty_sync(inode, true);
3149}
3150
3151static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3152{
3153	struct f2fs_inode_info *fi = F2FS_I(inode);
3154
3155	if (ri->i_inline & F2FS_INLINE_XATTR)
3156		set_bit(FI_INLINE_XATTR, fi->flags);
3157	if (ri->i_inline & F2FS_INLINE_DATA)
3158		set_bit(FI_INLINE_DATA, fi->flags);
3159	if (ri->i_inline & F2FS_INLINE_DENTRY)
3160		set_bit(FI_INLINE_DENTRY, fi->flags);
3161	if (ri->i_inline & F2FS_DATA_EXIST)
3162		set_bit(FI_DATA_EXIST, fi->flags);
3163	if (ri->i_inline & F2FS_INLINE_DOTS)
3164		set_bit(FI_INLINE_DOTS, fi->flags);
3165	if (ri->i_inline & F2FS_EXTRA_ATTR)
3166		set_bit(FI_EXTRA_ATTR, fi->flags);
3167	if (ri->i_inline & F2FS_PIN_FILE)
3168		set_bit(FI_PIN_FILE, fi->flags);
3169	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3170		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3171}
3172
3173static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3174{
3175	ri->i_inline = 0;
3176
3177	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3178		ri->i_inline |= F2FS_INLINE_XATTR;
3179	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3180		ri->i_inline |= F2FS_INLINE_DATA;
3181	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3182		ri->i_inline |= F2FS_INLINE_DENTRY;
3183	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3184		ri->i_inline |= F2FS_DATA_EXIST;
3185	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3186		ri->i_inline |= F2FS_INLINE_DOTS;
3187	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3188		ri->i_inline |= F2FS_EXTRA_ATTR;
3189	if (is_inode_flag_set(inode, FI_PIN_FILE))
3190		ri->i_inline |= F2FS_PIN_FILE;
3191	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3192		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3193}
3194
3195static inline int f2fs_has_extra_attr(struct inode *inode)
3196{
3197	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3198}
3199
3200static inline int f2fs_has_inline_xattr(struct inode *inode)
3201{
3202	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3203}
3204
3205static inline int f2fs_compressed_file(struct inode *inode)
3206{
3207	return S_ISREG(inode->i_mode) &&
3208		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3209}
3210
3211static inline bool f2fs_need_compress_data(struct inode *inode)
3212{
3213	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3214
3215	if (!f2fs_compressed_file(inode))
3216		return false;
3217
3218	if (compress_mode == COMPR_MODE_FS)
3219		return true;
3220	else if (compress_mode == COMPR_MODE_USER &&
3221			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3222		return true;
3223
3224	return false;
3225}
3226
3227static inline unsigned int addrs_per_inode(struct inode *inode)
3228{
3229	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3230				get_inline_xattr_addrs(inode);
3231
3232	if (!f2fs_compressed_file(inode))
3233		return addrs;
3234	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3235}
3236
3237static inline unsigned int addrs_per_block(struct inode *inode)
3238{
3239	if (!f2fs_compressed_file(inode))
3240		return DEF_ADDRS_PER_BLOCK;
3241	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3242}
3243
3244static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3245{
3246	struct f2fs_inode *ri = F2FS_INODE(page);
3247
3248	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3249					get_inline_xattr_addrs(inode)]);
3250}
3251
3252static inline int inline_xattr_size(struct inode *inode)
3253{
3254	if (f2fs_has_inline_xattr(inode))
3255		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3256	return 0;
3257}
3258
3259/*
3260 * Notice: check inline_data flag without inode page lock is unsafe.
3261 * It could change at any time by f2fs_convert_inline_page().
3262 */
3263static inline int f2fs_has_inline_data(struct inode *inode)
3264{
3265	return is_inode_flag_set(inode, FI_INLINE_DATA);
3266}
3267
3268static inline int f2fs_exist_data(struct inode *inode)
3269{
3270	return is_inode_flag_set(inode, FI_DATA_EXIST);
3271}
3272
3273static inline int f2fs_has_inline_dots(struct inode *inode)
3274{
3275	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3276}
3277
3278static inline int f2fs_is_mmap_file(struct inode *inode)
3279{
3280	return is_inode_flag_set(inode, FI_MMAP_FILE);
3281}
3282
3283static inline bool f2fs_is_pinned_file(struct inode *inode)
3284{
3285	return is_inode_flag_set(inode, FI_PIN_FILE);
3286}
3287
3288static inline bool f2fs_is_atomic_file(struct inode *inode)
3289{
3290	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3291}
3292
3293static inline bool f2fs_is_cow_file(struct inode *inode)
3294{
3295	return is_inode_flag_set(inode, FI_COW_FILE);
3296}
3297
3298static inline __le32 *get_dnode_addr(struct inode *inode,
3299					struct page *node_page);
3300static inline void *inline_data_addr(struct inode *inode, struct page *page)
3301{
3302	__le32 *addr = get_dnode_addr(inode, page);
3303
3304	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3305}
3306
3307static inline int f2fs_has_inline_dentry(struct inode *inode)
3308{
3309	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3310}
3311
3312static inline int is_file(struct inode *inode, int type)
3313{
3314	return F2FS_I(inode)->i_advise & type;
3315}
3316
3317static inline void set_file(struct inode *inode, int type)
3318{
3319	if (is_file(inode, type))
3320		return;
3321	F2FS_I(inode)->i_advise |= type;
3322	f2fs_mark_inode_dirty_sync(inode, true);
3323}
3324
3325static inline void clear_file(struct inode *inode, int type)
3326{
3327	if (!is_file(inode, type))
3328		return;
3329	F2FS_I(inode)->i_advise &= ~type;
3330	f2fs_mark_inode_dirty_sync(inode, true);
3331}
3332
3333static inline bool f2fs_is_time_consistent(struct inode *inode)
3334{
3335	struct timespec64 ts = inode_get_atime(inode);
3336
3337	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3338		return false;
3339	ts = inode_get_ctime(inode);
3340	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3341		return false;
3342	ts = inode_get_mtime(inode);
3343	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3344		return false;
3345	return true;
3346}
3347
3348static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3349{
3350	bool ret;
3351
3352	if (dsync) {
3353		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3354
3355		spin_lock(&sbi->inode_lock[DIRTY_META]);
3356		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3357		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3358		return ret;
3359	}
3360	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3361			file_keep_isize(inode) ||
3362			i_size_read(inode) & ~PAGE_MASK)
3363		return false;
3364
3365	if (!f2fs_is_time_consistent(inode))
3366		return false;
3367
3368	spin_lock(&F2FS_I(inode)->i_size_lock);
3369	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3370	spin_unlock(&F2FS_I(inode)->i_size_lock);
3371
3372	return ret;
3373}
3374
3375static inline bool f2fs_readonly(struct super_block *sb)
3376{
3377	return sb_rdonly(sb);
3378}
3379
3380static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3381{
3382	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3383}
3384
3385static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3386					size_t size, gfp_t flags)
3387{
3388	if (time_to_inject(sbi, FAULT_KMALLOC))
3389		return NULL;
3390
3391	return kmalloc(size, flags);
3392}
3393
3394static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3395{
3396	if (time_to_inject(sbi, FAULT_KMALLOC))
3397		return NULL;
3398
3399	return __getname();
3400}
3401
3402static inline void f2fs_putname(char *buf)
3403{
3404	__putname(buf);
3405}
3406
3407static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3408					size_t size, gfp_t flags)
3409{
3410	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3411}
3412
3413static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3414					size_t size, gfp_t flags)
3415{
3416	if (time_to_inject(sbi, FAULT_KVMALLOC))
3417		return NULL;
3418
3419	return kvmalloc(size, flags);
3420}
3421
3422static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3423					size_t size, gfp_t flags)
3424{
3425	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3426}
3427
3428static inline int get_extra_isize(struct inode *inode)
3429{
3430	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3431}
3432
3433static inline int get_inline_xattr_addrs(struct inode *inode)
3434{
3435	return F2FS_I(inode)->i_inline_xattr_size;
3436}
3437
3438static inline __le32 *get_dnode_addr(struct inode *inode,
3439					struct page *node_page)
3440{
3441	int base = 0;
3442
3443	if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3444		base = get_extra_isize(inode);
3445
3446	return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3447}
3448
3449#define f2fs_get_inode_mode(i) \
3450	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3451	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3452
3453#define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3454
3455#define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3456	(offsetof(struct f2fs_inode, i_extra_end) -	\
3457	offsetof(struct f2fs_inode, i_extra_isize))	\
3458
3459#define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3460#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3461		((offsetof(typeof(*(f2fs_inode)), field) +	\
3462		sizeof((f2fs_inode)->field))			\
3463		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3464
3465#define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3466
3467#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3468
3469bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3470					block_t blkaddr, int type);
3471static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3472					block_t blkaddr, int type)
3473{
3474	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3475		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3476			 blkaddr, type);
3477}
3478
3479static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3480{
3481	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3482			blkaddr == COMPRESS_ADDR)
3483		return false;
3484	return true;
3485}
3486
3487/*
3488 * file.c
3489 */
3490int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3491int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3492int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3493int f2fs_truncate(struct inode *inode);
3494int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3495		 struct kstat *stat, u32 request_mask, unsigned int flags);
3496int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3497		 struct iattr *attr);
3498int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3499void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3500int f2fs_precache_extents(struct inode *inode);
3501int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3502int f2fs_fileattr_set(struct mnt_idmap *idmap,
3503		      struct dentry *dentry, struct fileattr *fa);
3504long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3505long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3506int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3507int f2fs_pin_file_control(struct inode *inode, bool inc);
3508
3509/*
3510 * inode.c
3511 */
3512void f2fs_set_inode_flags(struct inode *inode);
3513bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3514void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3515struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3516struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3517int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3518void f2fs_update_inode(struct inode *inode, struct page *node_page);
3519void f2fs_update_inode_page(struct inode *inode);
3520int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3521void f2fs_evict_inode(struct inode *inode);
3522void f2fs_handle_failed_inode(struct inode *inode);
3523
3524/*
3525 * namei.c
3526 */
3527int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3528							bool hot, bool set);
3529struct dentry *f2fs_get_parent(struct dentry *child);
3530int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3531		     struct inode **new_inode);
3532
3533/*
3534 * dir.c
3535 */
3536int f2fs_init_casefolded_name(const struct inode *dir,
3537			      struct f2fs_filename *fname);
3538int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3539			int lookup, struct f2fs_filename *fname);
3540int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3541			struct f2fs_filename *fname);
3542void f2fs_free_filename(struct f2fs_filename *fname);
3543struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3544			const struct f2fs_filename *fname, int *max_slots);
3545int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3546			unsigned int start_pos, struct fscrypt_str *fstr);
3547void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3548			struct f2fs_dentry_ptr *d);
3549struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3550			const struct f2fs_filename *fname, struct page *dpage);
3551void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3552			unsigned int current_depth);
3553int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3554void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3555struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3556					 const struct f2fs_filename *fname,
3557					 struct page **res_page);
3558struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3559			const struct qstr *child, struct page **res_page);
3560struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3561ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3562			struct page **page);
3563void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3564			struct page *page, struct inode *inode);
3565bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3566			  const struct f2fs_filename *fname);
3567void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3568			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3569			unsigned int bit_pos);
3570int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3571			struct inode *inode, nid_t ino, umode_t mode);
3572int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3573			struct inode *inode, nid_t ino, umode_t mode);
3574int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3575			struct inode *inode, nid_t ino, umode_t mode);
3576void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3577			struct inode *dir, struct inode *inode);
3578int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3579					struct f2fs_filename *fname);
3580bool f2fs_empty_dir(struct inode *dir);
3581
3582static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3583{
3584	if (fscrypt_is_nokey_name(dentry))
3585		return -ENOKEY;
3586	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3587				inode, inode->i_ino, inode->i_mode);
3588}
3589
3590/*
3591 * super.c
3592 */
3593int f2fs_inode_dirtied(struct inode *inode, bool sync);
3594void f2fs_inode_synced(struct inode *inode);
3595int f2fs_dquot_initialize(struct inode *inode);
3596int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3597int f2fs_quota_sync(struct super_block *sb, int type);
3598loff_t max_file_blocks(struct inode *inode);
3599void f2fs_quota_off_umount(struct super_block *sb);
3600void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3601void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3602							bool irq_context);
3603void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3604void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3605int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3606int f2fs_sync_fs(struct super_block *sb, int sync);
3607int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3608
3609/*
3610 * hash.c
3611 */
3612void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3613
3614/*
3615 * node.c
3616 */
3617struct node_info;
3618
3619int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3620bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3621bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3622void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3623void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3624void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3625int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3626bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3627bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3628int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3629				struct node_info *ni, bool checkpoint_context);
3630pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3631int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3632int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3633int f2fs_truncate_xattr_node(struct inode *inode);
3634int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3635					unsigned int seq_id);
3636bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3637int f2fs_remove_inode_page(struct inode *inode);
3638struct page *f2fs_new_inode_page(struct inode *inode);
3639struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3640void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3641struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3642struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3643int f2fs_move_node_page(struct page *node_page, int gc_type);
3644void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3645int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3646			struct writeback_control *wbc, bool atomic,
3647			unsigned int *seq_id);
3648int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3649			struct writeback_control *wbc,
3650			bool do_balance, enum iostat_type io_type);
3651int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3652bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3653void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3654void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3655int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3656int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3657int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3658int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3659int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3660			unsigned int segno, struct f2fs_summary_block *sum);
3661void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3662int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3663int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3664void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3665int __init f2fs_create_node_manager_caches(void);
3666void f2fs_destroy_node_manager_caches(void);
3667
3668/*
3669 * segment.c
3670 */
3671bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3672int f2fs_commit_atomic_write(struct inode *inode);
3673void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3674void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3675void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3676int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3677int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3678int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3679void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3680void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3681bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3682int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3683void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3684void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3685bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3686void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3687					struct cp_control *cpc);
3688void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3689block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3690int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3691void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3692int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3693bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3694int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3695void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3696void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3697int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3698					unsigned int start, unsigned int end);
3699int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3700int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3701int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3702int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3703bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3704					struct cp_control *cpc);
3705struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3706void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3707					block_t blk_addr);
3708void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3709						enum iostat_type io_type);
3710void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3711void f2fs_outplace_write_data(struct dnode_of_data *dn,
3712			struct f2fs_io_info *fio);
3713int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3714void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3715			block_t old_blkaddr, block_t new_blkaddr,
3716			bool recover_curseg, bool recover_newaddr,
3717			bool from_gc);
3718void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3719			block_t old_addr, block_t new_addr,
3720			unsigned char version, bool recover_curseg,
3721			bool recover_newaddr);
3722int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3723			block_t old_blkaddr, block_t *new_blkaddr,
3724			struct f2fs_summary *sum, int type,
3725			struct f2fs_io_info *fio);
3726void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3727					block_t blkaddr, unsigned int blkcnt);
3728void f2fs_wait_on_page_writeback(struct page *page,
3729			enum page_type type, bool ordered, bool locked);
3730void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3731void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3732								block_t len);
3733void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3734void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3735int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3736			unsigned int val, int alloc);
3737void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3738int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3739int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3740int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3741void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3742int __init f2fs_create_segment_manager_caches(void);
3743void f2fs_destroy_segment_manager_caches(void);
3744int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3745unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3746			unsigned int segno);
3747unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3748			unsigned int segno);
3749
3750#define DEF_FRAGMENT_SIZE	4
3751#define MIN_FRAGMENT_SIZE	1
3752#define MAX_FRAGMENT_SIZE	512
3753
3754static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3755{
3756	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3757		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3758}
3759
3760/*
3761 * checkpoint.c
3762 */
3763void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3764							unsigned char reason);
3765void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3766struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3767struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3768struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3769struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3770bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3771					block_t blkaddr, int type);
3772bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3773					block_t blkaddr, int type);
3774int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3775			int type, bool sync);
3776void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3777							unsigned int ra_blocks);
3778long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3779			long nr_to_write, enum iostat_type io_type);
3780void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3781void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3782void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3783bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3784void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3785					unsigned int devidx, int type);
3786bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3787					unsigned int devidx, int type);
3788int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3789void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3790void f2fs_add_orphan_inode(struct inode *inode);
3791void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3792int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3793int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3794void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3795void f2fs_remove_dirty_inode(struct inode *inode);
3796int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3797								bool from_cp);
3798void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3799u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3800int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3801void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3802int __init f2fs_create_checkpoint_caches(void);
3803void f2fs_destroy_checkpoint_caches(void);
3804int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3805int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3806void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3807void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3808
3809/*
3810 * data.c
3811 */
3812int __init f2fs_init_bioset(void);
3813void f2fs_destroy_bioset(void);
3814bool f2fs_is_cp_guaranteed(struct page *page);
3815int f2fs_init_bio_entry_cache(void);
3816void f2fs_destroy_bio_entry_cache(void);
3817void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3818			  enum page_type type);
3819int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3820void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3821void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3822				struct inode *inode, struct page *page,
3823				nid_t ino, enum page_type type);
3824void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3825					struct bio **bio, struct page *page);
3826void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3827int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3828int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3829void f2fs_submit_page_write(struct f2fs_io_info *fio);
3830struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3831		block_t blk_addr, sector_t *sector);
3832int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3833void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3834void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3835int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3836int f2fs_reserve_new_block(struct dnode_of_data *dn);
3837int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3838int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3839struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3840			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3841struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3842							pgoff_t *next_pgofs);
3843struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3844			bool for_write);
3845struct page *f2fs_get_new_data_page(struct inode *inode,
3846			struct page *ipage, pgoff_t index, bool new_i_size);
3847int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3848int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3849int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3850			u64 start, u64 len);
3851int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3852bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3853bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3854int f2fs_write_single_data_page(struct page *page, int *submitted,
3855				struct bio **bio, sector_t *last_block,
3856				struct writeback_control *wbc,
3857				enum iostat_type io_type,
3858				int compr_blocks, bool allow_balance);
3859void f2fs_write_failed(struct inode *inode, loff_t to);
3860void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3861bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3862bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3863void f2fs_clear_page_cache_dirty_tag(struct page *page);
3864int f2fs_init_post_read_processing(void);
3865void f2fs_destroy_post_read_processing(void);
3866int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3867void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3868extern const struct iomap_ops f2fs_iomap_ops;
3869
3870/*
3871 * gc.c
3872 */
3873int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3874void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3875block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3876int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3877void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3878int f2fs_gc_range(struct f2fs_sb_info *sbi,
3879		unsigned int start_seg, unsigned int end_seg,
3880		bool dry_run, unsigned int dry_run_sections);
3881int f2fs_resize_fs(struct file *filp, __u64 block_count);
3882int __init f2fs_create_garbage_collection_cache(void);
3883void f2fs_destroy_garbage_collection_cache(void);
3884/* victim selection function for cleaning and SSR */
3885int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3886			int gc_type, int type, char alloc_mode,
3887			unsigned long long age);
3888
3889/*
3890 * recovery.c
3891 */
3892int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3893bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3894int __init f2fs_create_recovery_cache(void);
3895void f2fs_destroy_recovery_cache(void);
3896
3897/*
3898 * debug.c
3899 */
3900#ifdef CONFIG_F2FS_STAT_FS
3901struct f2fs_stat_info {
3902	struct list_head stat_list;
3903	struct f2fs_sb_info *sbi;
3904	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3905	int main_area_segs, main_area_sections, main_area_zones;
3906	unsigned long long hit_cached[NR_EXTENT_CACHES];
3907	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3908	unsigned long long total_ext[NR_EXTENT_CACHES];
3909	unsigned long long hit_total[NR_EXTENT_CACHES];
3910	int ext_tree[NR_EXTENT_CACHES];
3911	int zombie_tree[NR_EXTENT_CACHES];
3912	int ext_node[NR_EXTENT_CACHES];
3913	/* to count memory footprint */
3914	unsigned long long ext_mem[NR_EXTENT_CACHES];
3915	/* for read extent cache */
3916	unsigned long long hit_largest;
3917	/* for block age extent cache */
3918	unsigned long long allocated_data_blocks;
3919	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3920	int ndirty_data, ndirty_qdata;
3921	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3922	int nats, dirty_nats, sits, dirty_sits;
3923	int free_nids, avail_nids, alloc_nids;
3924	int total_count, utilization;
3925	int nr_wb_cp_data, nr_wb_data;
3926	int nr_rd_data, nr_rd_node, nr_rd_meta;
3927	int nr_dio_read, nr_dio_write;
3928	unsigned int io_skip_bggc, other_skip_bggc;
3929	int nr_flushing, nr_flushed, flush_list_empty;
3930	int nr_discarding, nr_discarded;
3931	int nr_discard_cmd;
3932	unsigned int undiscard_blks;
3933	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3934	unsigned int cur_ckpt_time, peak_ckpt_time;
3935	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3936	int compr_inode, swapfile_inode;
3937	unsigned long long compr_blocks;
3938	int aw_cnt, max_aw_cnt;
3939	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3940	unsigned int bimodal, avg_vblocks;
3941	int util_free, util_valid, util_invalid;
3942	int rsvd_segs, overp_segs;
3943	int dirty_count, node_pages, meta_pages, compress_pages;
3944	int compress_page_hit;
3945	int prefree_count, free_segs, free_secs;
3946	int cp_call_count[MAX_CALL_TYPE], cp_count;
3947	int gc_call_count[MAX_CALL_TYPE];
3948	int gc_segs[2][2];
3949	int gc_secs[2][2];
3950	int tot_blks, data_blks, node_blks;
3951	int bg_data_blks, bg_node_blks;
3952	int curseg[NR_CURSEG_TYPE];
3953	int cursec[NR_CURSEG_TYPE];
3954	int curzone[NR_CURSEG_TYPE];
3955	unsigned int dirty_seg[NR_CURSEG_TYPE];
3956	unsigned int full_seg[NR_CURSEG_TYPE];
3957	unsigned int valid_blks[NR_CURSEG_TYPE];
3958
3959	unsigned int meta_count[META_MAX];
3960	unsigned int segment_count[2];
3961	unsigned int block_count[2];
3962	unsigned int inplace_count;
3963	unsigned long long base_mem, cache_mem, page_mem;
3964};
3965
3966static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3967{
3968	return (struct f2fs_stat_info *)sbi->stat_info;
3969}
3970
3971#define stat_inc_cp_call_count(sbi, foreground)				\
3972		atomic_inc(&sbi->cp_call_count[(foreground)])
3973#define stat_inc_cp_count(si)		(F2FS_STAT(sbi)->cp_count++)
3974#define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3975#define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3976#define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3977#define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3978#define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3979#define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3980#define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3981#define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3982#define stat_inc_inline_xattr(inode)					\
3983	do {								\
3984		if (f2fs_has_inline_xattr(inode))			\
3985			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3986	} while (0)
3987#define stat_dec_inline_xattr(inode)					\
3988	do {								\
3989		if (f2fs_has_inline_xattr(inode))			\
3990			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3991	} while (0)
3992#define stat_inc_inline_inode(inode)					\
3993	do {								\
3994		if (f2fs_has_inline_data(inode))			\
3995			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3996	} while (0)
3997#define stat_dec_inline_inode(inode)					\
3998	do {								\
3999		if (f2fs_has_inline_data(inode))			\
4000			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
4001	} while (0)
4002#define stat_inc_inline_dir(inode)					\
4003	do {								\
4004		if (f2fs_has_inline_dentry(inode))			\
4005			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
4006	} while (0)
4007#define stat_dec_inline_dir(inode)					\
4008	do {								\
4009		if (f2fs_has_inline_dentry(inode))			\
4010			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4011	} while (0)
4012#define stat_inc_compr_inode(inode)					\
4013	do {								\
4014		if (f2fs_compressed_file(inode))			\
4015			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4016	} while (0)
4017#define stat_dec_compr_inode(inode)					\
4018	do {								\
4019		if (f2fs_compressed_file(inode))			\
4020			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4021	} while (0)
4022#define stat_add_compr_blocks(inode, blocks)				\
4023		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4024#define stat_sub_compr_blocks(inode, blocks)				\
4025		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4026#define stat_inc_swapfile_inode(inode)					\
4027		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4028#define stat_dec_swapfile_inode(inode)					\
4029		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4030#define stat_inc_atomic_inode(inode)					\
4031			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4032#define stat_dec_atomic_inode(inode)					\
4033			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4034#define stat_inc_meta_count(sbi, blkaddr)				\
4035	do {								\
4036		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4037			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4038		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4039			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4040		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4041			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4042		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4043			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4044	} while (0)
4045#define stat_inc_seg_type(sbi, curseg)					\
4046		((sbi)->segment_count[(curseg)->alloc_type]++)
4047#define stat_inc_block_count(sbi, curseg)				\
4048		((sbi)->block_count[(curseg)->alloc_type]++)
4049#define stat_inc_inplace_blocks(sbi)					\
4050		(atomic_inc(&(sbi)->inplace_count))
4051#define stat_update_max_atomic_write(inode)				\
4052	do {								\
4053		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4054		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4055		if (cur > max)						\
4056			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4057	} while (0)
4058#define stat_inc_gc_call_count(sbi, foreground)				\
4059		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4060#define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4061		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4062#define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4063		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4064
4065#define stat_inc_tot_blk_count(si, blks)				\
4066	((si)->tot_blks += (blks))
4067
4068#define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4069	do {								\
4070		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4071		stat_inc_tot_blk_count(si, blks);			\
4072		si->data_blks += (blks);				\
4073		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4074	} while (0)
4075
4076#define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4077	do {								\
4078		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4079		stat_inc_tot_blk_count(si, blks);			\
4080		si->node_blks += (blks);				\
4081		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4082	} while (0)
4083
4084int f2fs_build_stats(struct f2fs_sb_info *sbi);
4085void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4086void __init f2fs_create_root_stats(void);
4087void f2fs_destroy_root_stats(void);
4088void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4089#else
4090#define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4091#define stat_inc_cp_count(sbi)				do { } while (0)
4092#define stat_io_skip_bggc_count(sbi)			do { } while (0)
4093#define stat_other_skip_bggc_count(sbi)			do { } while (0)
4094#define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4095#define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4096#define stat_inc_total_hit(sbi, type)			do { } while (0)
4097#define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4098#define stat_inc_largest_node_hit(sbi)			do { } while (0)
4099#define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4100#define stat_inc_inline_xattr(inode)			do { } while (0)
4101#define stat_dec_inline_xattr(inode)			do { } while (0)
4102#define stat_inc_inline_inode(inode)			do { } while (0)
4103#define stat_dec_inline_inode(inode)			do { } while (0)
4104#define stat_inc_inline_dir(inode)			do { } while (0)
4105#define stat_dec_inline_dir(inode)			do { } while (0)
4106#define stat_inc_compr_inode(inode)			do { } while (0)
4107#define stat_dec_compr_inode(inode)			do { } while (0)
4108#define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4109#define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4110#define stat_inc_swapfile_inode(inode)			do { } while (0)
4111#define stat_dec_swapfile_inode(inode)			do { } while (0)
4112#define stat_inc_atomic_inode(inode)			do { } while (0)
4113#define stat_dec_atomic_inode(inode)			do { } while (0)
4114#define stat_update_max_atomic_write(inode)		do { } while (0)
4115#define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4116#define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4117#define stat_inc_block_count(sbi, curseg)		do { } while (0)
4118#define stat_inc_inplace_blocks(sbi)			do { } while (0)
4119#define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4120#define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4121#define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4122#define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4123#define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4124#define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4125
4126static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4127static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4128static inline void __init f2fs_create_root_stats(void) { }
4129static inline void f2fs_destroy_root_stats(void) { }
4130static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4131#endif
4132
4133extern const struct file_operations f2fs_dir_operations;
4134extern const struct file_operations f2fs_file_operations;
4135extern const struct inode_operations f2fs_file_inode_operations;
4136extern const struct address_space_operations f2fs_dblock_aops;
4137extern const struct address_space_operations f2fs_node_aops;
4138extern const struct address_space_operations f2fs_meta_aops;
4139extern const struct inode_operations f2fs_dir_inode_operations;
4140extern const struct inode_operations f2fs_symlink_inode_operations;
4141extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4142extern const struct inode_operations f2fs_special_inode_operations;
4143extern struct kmem_cache *f2fs_inode_entry_slab;
4144
4145/*
4146 * inline.c
4147 */
4148bool f2fs_may_inline_data(struct inode *inode);
4149bool f2fs_sanity_check_inline_data(struct inode *inode);
4150bool f2fs_may_inline_dentry(struct inode *inode);
4151void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4152void f2fs_truncate_inline_inode(struct inode *inode,
4153						struct page *ipage, u64 from);
4154int f2fs_read_inline_data(struct inode *inode, struct page *page);
4155int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4156int f2fs_convert_inline_inode(struct inode *inode);
4157int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4158int f2fs_write_inline_data(struct inode *inode, struct page *page);
4159int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4160struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4161					const struct f2fs_filename *fname,
4162					struct page **res_page);
4163int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4164			struct page *ipage);
4165int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4166			struct inode *inode, nid_t ino, umode_t mode);
4167void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4168				struct page *page, struct inode *dir,
4169				struct inode *inode);
4170bool f2fs_empty_inline_dir(struct inode *dir);
4171int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4172			struct fscrypt_str *fstr);
4173int f2fs_inline_data_fiemap(struct inode *inode,
4174			struct fiemap_extent_info *fieinfo,
4175			__u64 start, __u64 len);
4176
4177/*
4178 * shrinker.c
4179 */
4180unsigned long f2fs_shrink_count(struct shrinker *shrink,
4181			struct shrink_control *sc);
4182unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4183			struct shrink_control *sc);
4184void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4185void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4186
4187/*
4188 * extent_cache.c
4189 */
4190bool sanity_check_extent_cache(struct inode *inode);
4191void f2fs_init_extent_tree(struct inode *inode);
4192void f2fs_drop_extent_tree(struct inode *inode);
4193void f2fs_destroy_extent_node(struct inode *inode);
4194void f2fs_destroy_extent_tree(struct inode *inode);
4195void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4196int __init f2fs_create_extent_cache(void);
4197void f2fs_destroy_extent_cache(void);
4198
4199/* read extent cache ops */
4200void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4201bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4202			struct extent_info *ei);
4203bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4204			block_t *blkaddr);
4205void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4206void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4207			pgoff_t fofs, block_t blkaddr, unsigned int len);
4208unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4209			int nr_shrink);
4210
4211/* block age extent cache ops */
4212void f2fs_init_age_extent_tree(struct inode *inode);
4213bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4214			struct extent_info *ei);
4215void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4216void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4217			pgoff_t fofs, unsigned int len);
4218unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4219			int nr_shrink);
4220
4221/*
4222 * sysfs.c
4223 */
4224#define MIN_RA_MUL	2
4225#define MAX_RA_MUL	256
4226
4227int __init f2fs_init_sysfs(void);
4228void f2fs_exit_sysfs(void);
4229int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4230void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4231
4232/* verity.c */
4233extern const struct fsverity_operations f2fs_verityops;
4234
4235/*
4236 * crypto support
4237 */
4238static inline bool f2fs_encrypted_file(struct inode *inode)
4239{
4240	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4241}
4242
4243static inline void f2fs_set_encrypted_inode(struct inode *inode)
4244{
4245#ifdef CONFIG_FS_ENCRYPTION
4246	file_set_encrypt(inode);
4247	f2fs_set_inode_flags(inode);
4248#endif
4249}
4250
4251/*
4252 * Returns true if the reads of the inode's data need to undergo some
4253 * postprocessing step, like decryption or authenticity verification.
4254 */
4255static inline bool f2fs_post_read_required(struct inode *inode)
4256{
4257	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4258		f2fs_compressed_file(inode);
4259}
4260
4261/*
4262 * compress.c
4263 */
4264#ifdef CONFIG_F2FS_FS_COMPRESSION
4265bool f2fs_is_compressed_page(struct page *page);
4266struct page *f2fs_compress_control_page(struct page *page);
4267int f2fs_prepare_compress_overwrite(struct inode *inode,
4268			struct page **pagep, pgoff_t index, void **fsdata);
4269bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4270					pgoff_t index, unsigned copied);
4271int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4272void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4273bool f2fs_is_compress_backend_ready(struct inode *inode);
4274bool f2fs_is_compress_level_valid(int alg, int lvl);
4275int __init f2fs_init_compress_mempool(void);
4276void f2fs_destroy_compress_mempool(void);
4277void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4278void f2fs_end_read_compressed_page(struct page *page, bool failed,
4279				block_t blkaddr, bool in_task);
4280bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4281bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4282bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4283				int index, int nr_pages, bool uptodate);
4284bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4285void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4286int f2fs_write_multi_pages(struct compress_ctx *cc,
4287						int *submitted,
4288						struct writeback_control *wbc,
4289						enum iostat_type io_type);
4290int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4291void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4292				pgoff_t fofs, block_t blkaddr,
4293				unsigned int llen, unsigned int c_len);
4294int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4295				unsigned nr_pages, sector_t *last_block_in_bio,
4296				bool is_readahead, bool for_write);
4297struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4298void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4299				bool in_task);
4300void f2fs_put_page_dic(struct page *page, bool in_task);
4301unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4302						unsigned int ofs_in_node);
4303int f2fs_init_compress_ctx(struct compress_ctx *cc);
4304void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4305void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4306int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4307void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4308int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4309void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4310int __init f2fs_init_compress_cache(void);
4311void f2fs_destroy_compress_cache(void);
4312struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4313void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4314void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4315						nid_t ino, block_t blkaddr);
4316bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4317								block_t blkaddr);
4318void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4319#define inc_compr_inode_stat(inode)					\
4320	do {								\
4321		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4322		sbi->compr_new_inode++;					\
4323	} while (0)
4324#define add_compr_block_stat(inode, blocks)				\
4325	do {								\
4326		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4327		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4328		sbi->compr_written_block += blocks;			\
4329		sbi->compr_saved_block += diff;				\
4330	} while (0)
4331#else
4332static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4333static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4334{
4335	if (!f2fs_compressed_file(inode))
4336		return true;
4337	/* not support compression */
4338	return false;
4339}
4340static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
4341static inline struct page *f2fs_compress_control_page(struct page *page)
4342{
4343	WARN_ON_ONCE(1);
4344	return ERR_PTR(-EINVAL);
4345}
4346static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4347static inline void f2fs_destroy_compress_mempool(void) { }
4348static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4349				bool in_task) { }
4350static inline void f2fs_end_read_compressed_page(struct page *page,
4351				bool failed, block_t blkaddr, bool in_task)
4352{
4353	WARN_ON_ONCE(1);
4354}
4355static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4356{
4357	WARN_ON_ONCE(1);
4358}
4359static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4360			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
4361static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4362static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4363static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4364static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4365static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4366static inline int __init f2fs_init_compress_cache(void) { return 0; }
4367static inline void f2fs_destroy_compress_cache(void) { }
4368static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4369				block_t blkaddr) { }
4370static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4371				struct page *page, nid_t ino, block_t blkaddr) { }
4372static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4373				struct page *page, block_t blkaddr) { return false; }
4374static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4375							nid_t ino) { }
4376#define inc_compr_inode_stat(inode)		do { } while (0)
4377static inline void f2fs_update_read_extent_tree_range_compressed(
4378				struct inode *inode,
4379				pgoff_t fofs, block_t blkaddr,
4380				unsigned int llen, unsigned int c_len) { }
4381#endif
4382
4383static inline int set_compress_context(struct inode *inode)
4384{
4385#ifdef CONFIG_F2FS_FS_COMPRESSION
4386	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4387
4388	F2FS_I(inode)->i_compress_algorithm =
4389			F2FS_OPTION(sbi).compress_algorithm;
4390	F2FS_I(inode)->i_log_cluster_size =
4391			F2FS_OPTION(sbi).compress_log_size;
4392	F2FS_I(inode)->i_compress_flag =
4393			F2FS_OPTION(sbi).compress_chksum ?
4394				BIT(COMPRESS_CHKSUM) : 0;
4395	F2FS_I(inode)->i_cluster_size =
4396			BIT(F2FS_I(inode)->i_log_cluster_size);
4397	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4398		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4399			F2FS_OPTION(sbi).compress_level)
4400		F2FS_I(inode)->i_compress_level =
4401				F2FS_OPTION(sbi).compress_level;
4402	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4403	set_inode_flag(inode, FI_COMPRESSED_FILE);
4404	stat_inc_compr_inode(inode);
4405	inc_compr_inode_stat(inode);
4406	f2fs_mark_inode_dirty_sync(inode, true);
4407	return 0;
4408#else
4409	return -EOPNOTSUPP;
4410#endif
4411}
4412
4413static inline bool f2fs_disable_compressed_file(struct inode *inode)
4414{
4415	struct f2fs_inode_info *fi = F2FS_I(inode);
4416
4417	f2fs_down_write(&F2FS_I(inode)->i_sem);
4418
4419	if (!f2fs_compressed_file(inode)) {
4420		f2fs_up_write(&F2FS_I(inode)->i_sem);
4421		return true;
4422	}
4423	if (f2fs_is_mmap_file(inode) ||
4424		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4425		f2fs_up_write(&F2FS_I(inode)->i_sem);
4426		return false;
4427	}
4428
4429	fi->i_flags &= ~F2FS_COMPR_FL;
4430	stat_dec_compr_inode(inode);
4431	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4432	f2fs_mark_inode_dirty_sync(inode, true);
4433
4434	f2fs_up_write(&F2FS_I(inode)->i_sem);
4435	return true;
4436}
4437
4438#define F2FS_FEATURE_FUNCS(name, flagname) \
4439static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4440{ \
4441	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4442}
4443
4444F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4445F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4446F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4447F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4448F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4449F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4450F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4451F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4452F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4453F2FS_FEATURE_FUNCS(verity, VERITY);
4454F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4455F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4456F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4457F2FS_FEATURE_FUNCS(readonly, RO);
4458
4459#ifdef CONFIG_BLK_DEV_ZONED
4460static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4461				    block_t blkaddr)
4462{
4463	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4464
4465	return test_bit(zno, FDEV(devi).blkz_seq);
4466}
4467#endif
4468
4469static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4470				  struct block_device *bdev)
4471{
4472	int i;
4473
4474	if (!f2fs_is_multi_device(sbi))
4475		return 0;
4476
4477	for (i = 0; i < sbi->s_ndevs; i++)
4478		if (FDEV(i).bdev == bdev)
4479			return i;
4480
4481	WARN_ON(1);
4482	return -1;
4483}
4484
4485static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4486{
4487	return f2fs_sb_has_blkzoned(sbi);
4488}
4489
4490static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4491{
4492	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4493}
4494
4495static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4496{
4497	int i;
4498
4499	if (!f2fs_is_multi_device(sbi))
4500		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4501
4502	for (i = 0; i < sbi->s_ndevs; i++)
4503		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4504			return true;
4505	return false;
4506}
4507
4508static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4509{
4510	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4511					f2fs_hw_should_discard(sbi);
4512}
4513
4514static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4515{
4516	int i;
4517
4518	if (!f2fs_is_multi_device(sbi))
4519		return bdev_read_only(sbi->sb->s_bdev);
4520
4521	for (i = 0; i < sbi->s_ndevs; i++)
4522		if (bdev_read_only(FDEV(i).bdev))
4523			return true;
4524	return false;
4525}
4526
4527static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4528{
4529	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4530}
4531
4532static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4533{
4534	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4535}
4536
4537static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4538					  block_t blkaddr)
4539{
4540	if (f2fs_sb_has_blkzoned(sbi)) {
4541		int devi = f2fs_target_device_index(sbi, blkaddr);
4542
4543		return !bdev_is_zoned(FDEV(devi).bdev);
4544	}
4545	return true;
4546}
4547
4548static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4549{
4550	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4551}
4552
4553static inline bool f2fs_may_compress(struct inode *inode)
4554{
4555	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4556		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4557		f2fs_is_mmap_file(inode))
4558		return false;
4559	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4560}
4561
4562static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4563						u64 blocks, bool add)
4564{
4565	struct f2fs_inode_info *fi = F2FS_I(inode);
4566	int diff = fi->i_cluster_size - blocks;
4567
4568	/* don't update i_compr_blocks if saved blocks were released */
4569	if (!add && !atomic_read(&fi->i_compr_blocks))
4570		return;
4571
4572	if (add) {
4573		atomic_add(diff, &fi->i_compr_blocks);
4574		stat_add_compr_blocks(inode, diff);
4575	} else {
4576		atomic_sub(diff, &fi->i_compr_blocks);
4577		stat_sub_compr_blocks(inode, diff);
4578	}
4579	f2fs_mark_inode_dirty_sync(inode, true);
4580}
4581
4582static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4583								int flag)
4584{
4585	if (!f2fs_is_multi_device(sbi))
4586		return false;
4587	if (flag != F2FS_GET_BLOCK_DIO)
4588		return false;
4589	return sbi->aligned_blksize;
4590}
4591
4592static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4593{
4594	return fsverity_active(inode) &&
4595	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4596}
4597
4598#ifdef CONFIG_F2FS_FAULT_INJECTION
4599extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4600							unsigned int type);
4601#else
4602#define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4603#endif
4604
4605static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4606{
4607#ifdef CONFIG_QUOTA
4608	if (f2fs_sb_has_quota_ino(sbi))
4609		return true;
4610	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4611		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4612		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4613		return true;
4614#endif
4615	return false;
4616}
4617
4618static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4619{
4620	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4621}
4622
4623static inline void f2fs_io_schedule_timeout(long timeout)
4624{
4625	set_current_state(TASK_UNINTERRUPTIBLE);
4626	io_schedule_timeout(timeout);
4627}
4628
4629static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4630					enum page_type type)
4631{
4632	if (unlikely(f2fs_cp_error(sbi)))
4633		return;
4634
4635	if (ofs == sbi->page_eio_ofs[type]) {
4636		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4637			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4638	} else {
4639		sbi->page_eio_ofs[type] = ofs;
4640		sbi->page_eio_cnt[type] = 0;
4641	}
4642}
4643
4644static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4645{
4646	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4647}
4648
4649static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4650					block_t blkaddr, unsigned int cnt)
4651{
4652	bool need_submit = false;
4653	int i = 0;
4654
4655	do {
4656		struct page *page;
4657
4658		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4659		if (page) {
4660			if (PageWriteback(page))
4661				need_submit = true;
4662			f2fs_put_page(page, 0);
4663		}
4664	} while (++i < cnt && !need_submit);
4665
4666	if (need_submit)
4667		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4668							NULL, 0, DATA);
4669
4670	truncate_inode_pages_range(META_MAPPING(sbi),
4671			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4672			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4673}
4674
4675static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4676								block_t blkaddr)
4677{
4678	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4679	f2fs_invalidate_compress_page(sbi, blkaddr);
4680}
4681
4682#define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4683#define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4684
4685#endif /* _LINUX_F2FS_H */
4686