1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/buffer_head.h>
11#include <linux/sched/mm.h>
12#include <linux/mpage.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/blkdev.h>
16#include <linux/bio.h>
17#include <linux/blk-crypto.h>
18#include <linux/swap.h>
19#include <linux/prefetch.h>
20#include <linux/uio.h>
21#include <linux/sched/signal.h>
22#include <linux/fiemap.h>
23#include <linux/iomap.h>
24
25#include "f2fs.h"
26#include "node.h"
27#include "segment.h"
28#include "iostat.h"
29#include <trace/events/f2fs.h>
30
31#define NUM_PREALLOC_POST_READ_CTXS	128
32
33static struct kmem_cache *bio_post_read_ctx_cache;
34static struct kmem_cache *bio_entry_slab;
35static mempool_t *bio_post_read_ctx_pool;
36static struct bio_set f2fs_bioset;
37
38#define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39
40int __init f2fs_init_bioset(void)
41{
42	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43					0, BIOSET_NEED_BVECS);
44}
45
46void f2fs_destroy_bioset(void)
47{
48	bioset_exit(&f2fs_bioset);
49}
50
51bool f2fs_is_cp_guaranteed(struct page *page)
52{
53	struct address_space *mapping = page->mapping;
54	struct inode *inode;
55	struct f2fs_sb_info *sbi;
56
57	if (!mapping)
58		return false;
59
60	inode = mapping->host;
61	sbi = F2FS_I_SB(inode);
62
63	if (inode->i_ino == F2FS_META_INO(sbi) ||
64			inode->i_ino == F2FS_NODE_INO(sbi) ||
65			S_ISDIR(inode->i_mode))
66		return true;
67
68	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
69			page_private_gcing(page))
70		return true;
71	return false;
72}
73
74static enum count_type __read_io_type(struct page *page)
75{
76	struct address_space *mapping = page_file_mapping(page);
77
78	if (mapping) {
79		struct inode *inode = mapping->host;
80		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
81
82		if (inode->i_ino == F2FS_META_INO(sbi))
83			return F2FS_RD_META;
84
85		if (inode->i_ino == F2FS_NODE_INO(sbi))
86			return F2FS_RD_NODE;
87	}
88	return F2FS_RD_DATA;
89}
90
91/* postprocessing steps for read bios */
92enum bio_post_read_step {
93#ifdef CONFIG_FS_ENCRYPTION
94	STEP_DECRYPT	= BIT(0),
95#else
96	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
97#endif
98#ifdef CONFIG_F2FS_FS_COMPRESSION
99	STEP_DECOMPRESS	= BIT(1),
100#else
101	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
102#endif
103#ifdef CONFIG_FS_VERITY
104	STEP_VERITY	= BIT(2),
105#else
106	STEP_VERITY	= 0,	/* compile out the verity-related code */
107#endif
108};
109
110struct bio_post_read_ctx {
111	struct bio *bio;
112	struct f2fs_sb_info *sbi;
113	struct work_struct work;
114	unsigned int enabled_steps;
115	/*
116	 * decompression_attempted keeps track of whether
117	 * f2fs_end_read_compressed_page() has been called on the pages in the
118	 * bio that belong to a compressed cluster yet.
119	 */
120	bool decompression_attempted;
121	block_t fs_blkaddr;
122};
123
124/*
125 * Update and unlock a bio's pages, and free the bio.
126 *
127 * This marks pages up-to-date only if there was no error in the bio (I/O error,
128 * decryption error, or verity error), as indicated by bio->bi_status.
129 *
130 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
131 * aren't marked up-to-date here, as decompression is done on a per-compression-
132 * cluster basis rather than a per-bio basis.  Instead, we only must do two
133 * things for each compressed page here: call f2fs_end_read_compressed_page()
134 * with failed=true if an error occurred before it would have normally gotten
135 * called (i.e., I/O error or decryption error, but *not* verity error), and
136 * release the bio's reference to the decompress_io_ctx of the page's cluster.
137 */
138static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
139{
140	struct bio_vec *bv;
141	struct bvec_iter_all iter_all;
142	struct bio_post_read_ctx *ctx = bio->bi_private;
143
144	bio_for_each_segment_all(bv, bio, iter_all) {
145		struct page *page = bv->bv_page;
146
147		if (f2fs_is_compressed_page(page)) {
148			if (ctx && !ctx->decompression_attempted)
149				f2fs_end_read_compressed_page(page, true, 0,
150							in_task);
151			f2fs_put_page_dic(page, in_task);
152			continue;
153		}
154
155		if (bio->bi_status)
156			ClearPageUptodate(page);
157		else
158			SetPageUptodate(page);
159		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
160		unlock_page(page);
161	}
162
163	if (ctx)
164		mempool_free(ctx, bio_post_read_ctx_pool);
165	bio_put(bio);
166}
167
168static void f2fs_verify_bio(struct work_struct *work)
169{
170	struct bio_post_read_ctx *ctx =
171		container_of(work, struct bio_post_read_ctx, work);
172	struct bio *bio = ctx->bio;
173	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
174
175	/*
176	 * fsverity_verify_bio() may call readahead() again, and while verity
177	 * will be disabled for this, decryption and/or decompression may still
178	 * be needed, resulting in another bio_post_read_ctx being allocated.
179	 * So to prevent deadlocks we need to release the current ctx to the
180	 * mempool first.  This assumes that verity is the last post-read step.
181	 */
182	mempool_free(ctx, bio_post_read_ctx_pool);
183	bio->bi_private = NULL;
184
185	/*
186	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
187	 * as those were handled separately by f2fs_end_read_compressed_page().
188	 */
189	if (may_have_compressed_pages) {
190		struct bio_vec *bv;
191		struct bvec_iter_all iter_all;
192
193		bio_for_each_segment_all(bv, bio, iter_all) {
194			struct page *page = bv->bv_page;
195
196			if (!f2fs_is_compressed_page(page) &&
197			    !fsverity_verify_page(page)) {
198				bio->bi_status = BLK_STS_IOERR;
199				break;
200			}
201		}
202	} else {
203		fsverity_verify_bio(bio);
204	}
205
206	f2fs_finish_read_bio(bio, true);
207}
208
209/*
210 * If the bio's data needs to be verified with fs-verity, then enqueue the
211 * verity work for the bio.  Otherwise finish the bio now.
212 *
213 * Note that to avoid deadlocks, the verity work can't be done on the
214 * decryption/decompression workqueue.  This is because verifying the data pages
215 * can involve reading verity metadata pages from the file, and these verity
216 * metadata pages may be encrypted and/or compressed.
217 */
218static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
219{
220	struct bio_post_read_ctx *ctx = bio->bi_private;
221
222	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
223		INIT_WORK(&ctx->work, f2fs_verify_bio);
224		fsverity_enqueue_verify_work(&ctx->work);
225	} else {
226		f2fs_finish_read_bio(bio, in_task);
227	}
228}
229
230/*
231 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
232 * remaining page was read by @ctx->bio.
233 *
234 * Note that a bio may span clusters (even a mix of compressed and uncompressed
235 * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
236 * that the bio includes at least one compressed page.  The actual decompression
237 * is done on a per-cluster basis, not a per-bio basis.
238 */
239static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
240		bool in_task)
241{
242	struct bio_vec *bv;
243	struct bvec_iter_all iter_all;
244	bool all_compressed = true;
245	block_t blkaddr = ctx->fs_blkaddr;
246
247	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
248		struct page *page = bv->bv_page;
249
250		if (f2fs_is_compressed_page(page))
251			f2fs_end_read_compressed_page(page, false, blkaddr,
252						      in_task);
253		else
254			all_compressed = false;
255
256		blkaddr++;
257	}
258
259	ctx->decompression_attempted = true;
260
261	/*
262	 * Optimization: if all the bio's pages are compressed, then scheduling
263	 * the per-bio verity work is unnecessary, as verity will be fully
264	 * handled at the compression cluster level.
265	 */
266	if (all_compressed)
267		ctx->enabled_steps &= ~STEP_VERITY;
268}
269
270static void f2fs_post_read_work(struct work_struct *work)
271{
272	struct bio_post_read_ctx *ctx =
273		container_of(work, struct bio_post_read_ctx, work);
274	struct bio *bio = ctx->bio;
275
276	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
277		f2fs_finish_read_bio(bio, true);
278		return;
279	}
280
281	if (ctx->enabled_steps & STEP_DECOMPRESS)
282		f2fs_handle_step_decompress(ctx, true);
283
284	f2fs_verify_and_finish_bio(bio, true);
285}
286
287static void f2fs_read_end_io(struct bio *bio)
288{
289	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
290	struct bio_post_read_ctx *ctx;
291	bool intask = in_task();
292
293	iostat_update_and_unbind_ctx(bio);
294	ctx = bio->bi_private;
295
296	if (time_to_inject(sbi, FAULT_READ_IO))
297		bio->bi_status = BLK_STS_IOERR;
298
299	if (bio->bi_status) {
300		f2fs_finish_read_bio(bio, intask);
301		return;
302	}
303
304	if (ctx) {
305		unsigned int enabled_steps = ctx->enabled_steps &
306					(STEP_DECRYPT | STEP_DECOMPRESS);
307
308		/*
309		 * If we have only decompression step between decompression and
310		 * decrypt, we don't need post processing for this.
311		 */
312		if (enabled_steps == STEP_DECOMPRESS &&
313				!f2fs_low_mem_mode(sbi)) {
314			f2fs_handle_step_decompress(ctx, intask);
315		} else if (enabled_steps) {
316			INIT_WORK(&ctx->work, f2fs_post_read_work);
317			queue_work(ctx->sbi->post_read_wq, &ctx->work);
318			return;
319		}
320	}
321
322	f2fs_verify_and_finish_bio(bio, intask);
323}
324
325static void f2fs_write_end_io(struct bio *bio)
326{
327	struct f2fs_sb_info *sbi;
328	struct bio_vec *bvec;
329	struct bvec_iter_all iter_all;
330
331	iostat_update_and_unbind_ctx(bio);
332	sbi = bio->bi_private;
333
334	if (time_to_inject(sbi, FAULT_WRITE_IO))
335		bio->bi_status = BLK_STS_IOERR;
336
337	bio_for_each_segment_all(bvec, bio, iter_all) {
338		struct page *page = bvec->bv_page;
339		enum count_type type = WB_DATA_TYPE(page, false);
340
341		fscrypt_finalize_bounce_page(&page);
342
343#ifdef CONFIG_F2FS_FS_COMPRESSION
344		if (f2fs_is_compressed_page(page)) {
345			f2fs_compress_write_end_io(bio, page);
346			continue;
347		}
348#endif
349
350		if (unlikely(bio->bi_status)) {
351			mapping_set_error(page->mapping, -EIO);
352			if (type == F2FS_WB_CP_DATA)
353				f2fs_stop_checkpoint(sbi, true,
354						STOP_CP_REASON_WRITE_FAIL);
355		}
356
357		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
358					page->index != nid_of_node(page));
359
360		dec_page_count(sbi, type);
361		if (f2fs_in_warm_node_list(sbi, page))
362			f2fs_del_fsync_node_entry(sbi, page);
363		clear_page_private_gcing(page);
364		end_page_writeback(page);
365	}
366	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367				wq_has_sleeper(&sbi->cp_wait))
368		wake_up(&sbi->cp_wait);
369
370	bio_put(bio);
371}
372
373#ifdef CONFIG_BLK_DEV_ZONED
374static void f2fs_zone_write_end_io(struct bio *bio)
375{
376	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377
378	bio->bi_private = io->bi_private;
379	complete(&io->zone_wait);
380	f2fs_write_end_io(bio);
381}
382#endif
383
384struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385		block_t blk_addr, sector_t *sector)
386{
387	struct block_device *bdev = sbi->sb->s_bdev;
388	int i;
389
390	if (f2fs_is_multi_device(sbi)) {
391		for (i = 0; i < sbi->s_ndevs; i++) {
392			if (FDEV(i).start_blk <= blk_addr &&
393			    FDEV(i).end_blk >= blk_addr) {
394				blk_addr -= FDEV(i).start_blk;
395				bdev = FDEV(i).bdev;
396				break;
397			}
398		}
399	}
400
401	if (sector)
402		*sector = SECTOR_FROM_BLOCK(blk_addr);
403	return bdev;
404}
405
406int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407{
408	int i;
409
410	if (!f2fs_is_multi_device(sbi))
411		return 0;
412
413	for (i = 0; i < sbi->s_ndevs; i++)
414		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415			return i;
416	return 0;
417}
418
419static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420{
421	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422	unsigned int fua_flag, meta_flag, io_flag;
423	blk_opf_t op_flags = 0;
424
425	if (fio->op != REQ_OP_WRITE)
426		return 0;
427	if (fio->type == DATA)
428		io_flag = fio->sbi->data_io_flag;
429	else if (fio->type == NODE)
430		io_flag = fio->sbi->node_io_flag;
431	else
432		return 0;
433
434	fua_flag = io_flag & temp_mask;
435	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
436
437	/*
438	 * data/node io flag bits per temp:
439	 *      REQ_META     |      REQ_FUA      |
440	 *    5 |    4 |   3 |    2 |    1 |   0 |
441	 * Cold | Warm | Hot | Cold | Warm | Hot |
442	 */
443	if (BIT(fio->temp) & meta_flag)
444		op_flags |= REQ_META;
445	if (BIT(fio->temp) & fua_flag)
446		op_flags |= REQ_FUA;
447	return op_flags;
448}
449
450static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
451{
452	struct f2fs_sb_info *sbi = fio->sbi;
453	struct block_device *bdev;
454	sector_t sector;
455	struct bio *bio;
456
457	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
458	bio = bio_alloc_bioset(bdev, npages,
459				fio->op | fio->op_flags | f2fs_io_flags(fio),
460				GFP_NOIO, &f2fs_bioset);
461	bio->bi_iter.bi_sector = sector;
462	if (is_read_io(fio->op)) {
463		bio->bi_end_io = f2fs_read_end_io;
464		bio->bi_private = NULL;
465	} else {
466		bio->bi_end_io = f2fs_write_end_io;
467		bio->bi_private = sbi;
468	}
469	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
470
471	if (fio->io_wbc)
472		wbc_init_bio(fio->io_wbc, bio);
473
474	return bio;
475}
476
477static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
478				  pgoff_t first_idx,
479				  const struct f2fs_io_info *fio,
480				  gfp_t gfp_mask)
481{
482	/*
483	 * The f2fs garbage collector sets ->encrypted_page when it wants to
484	 * read/write raw data without encryption.
485	 */
486	if (!fio || !fio->encrypted_page)
487		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
488}
489
490static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
491				     pgoff_t next_idx,
492				     const struct f2fs_io_info *fio)
493{
494	/*
495	 * The f2fs garbage collector sets ->encrypted_page when it wants to
496	 * read/write raw data without encryption.
497	 */
498	if (fio && fio->encrypted_page)
499		return !bio_has_crypt_ctx(bio);
500
501	return fscrypt_mergeable_bio(bio, inode, next_idx);
502}
503
504void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
505				 enum page_type type)
506{
507	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
508	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
509
510	iostat_update_submit_ctx(bio, type);
511	submit_bio(bio);
512}
513
514static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
515				  enum page_type type)
516{
517	WARN_ON_ONCE(is_read_io(bio_op(bio)));
518
519	if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
520		blk_finish_plug(current->plug);
521
522	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
523	iostat_update_submit_ctx(bio, type);
524	submit_bio(bio);
525}
526
527static void __submit_merged_bio(struct f2fs_bio_info *io)
528{
529	struct f2fs_io_info *fio = &io->fio;
530
531	if (!io->bio)
532		return;
533
534	if (is_read_io(fio->op)) {
535		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
536		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
537	} else {
538		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
539		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
540	}
541	io->bio = NULL;
542}
543
544static bool __has_merged_page(struct bio *bio, struct inode *inode,
545						struct page *page, nid_t ino)
546{
547	struct bio_vec *bvec;
548	struct bvec_iter_all iter_all;
549
550	if (!bio)
551		return false;
552
553	if (!inode && !page && !ino)
554		return true;
555
556	bio_for_each_segment_all(bvec, bio, iter_all) {
557		struct page *target = bvec->bv_page;
558
559		if (fscrypt_is_bounce_page(target)) {
560			target = fscrypt_pagecache_page(target);
561			if (IS_ERR(target))
562				continue;
563		}
564		if (f2fs_is_compressed_page(target)) {
565			target = f2fs_compress_control_page(target);
566			if (IS_ERR(target))
567				continue;
568		}
569
570		if (inode && inode == target->mapping->host)
571			return true;
572		if (page && page == target)
573			return true;
574		if (ino && ino == ino_of_node(target))
575			return true;
576	}
577
578	return false;
579}
580
581int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
582{
583	int i;
584
585	for (i = 0; i < NR_PAGE_TYPE; i++) {
586		int n = (i == META) ? 1 : NR_TEMP_TYPE;
587		int j;
588
589		sbi->write_io[i] = f2fs_kmalloc(sbi,
590				array_size(n, sizeof(struct f2fs_bio_info)),
591				GFP_KERNEL);
592		if (!sbi->write_io[i])
593			return -ENOMEM;
594
595		for (j = HOT; j < n; j++) {
596			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
597			sbi->write_io[i][j].sbi = sbi;
598			sbi->write_io[i][j].bio = NULL;
599			spin_lock_init(&sbi->write_io[i][j].io_lock);
600			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
601			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
602			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
603#ifdef CONFIG_BLK_DEV_ZONED
604			init_completion(&sbi->write_io[i][j].zone_wait);
605			sbi->write_io[i][j].zone_pending_bio = NULL;
606			sbi->write_io[i][j].bi_private = NULL;
607#endif
608		}
609	}
610
611	return 0;
612}
613
614static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
615				enum page_type type, enum temp_type temp)
616{
617	enum page_type btype = PAGE_TYPE_OF_BIO(type);
618	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
619
620	f2fs_down_write(&io->io_rwsem);
621
622	if (!io->bio)
623		goto unlock_out;
624
625	/* change META to META_FLUSH in the checkpoint procedure */
626	if (type >= META_FLUSH) {
627		io->fio.type = META_FLUSH;
628		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
629		if (!test_opt(sbi, NOBARRIER))
630			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
631	}
632	__submit_merged_bio(io);
633unlock_out:
634	f2fs_up_write(&io->io_rwsem);
635}
636
637static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
638				struct inode *inode, struct page *page,
639				nid_t ino, enum page_type type, bool force)
640{
641	enum temp_type temp;
642	bool ret = true;
643
644	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
645		if (!force)	{
646			enum page_type btype = PAGE_TYPE_OF_BIO(type);
647			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
648
649			f2fs_down_read(&io->io_rwsem);
650			ret = __has_merged_page(io->bio, inode, page, ino);
651			f2fs_up_read(&io->io_rwsem);
652		}
653		if (ret)
654			__f2fs_submit_merged_write(sbi, type, temp);
655
656		/* TODO: use HOT temp only for meta pages now. */
657		if (type >= META)
658			break;
659	}
660}
661
662void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
663{
664	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
665}
666
667void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
668				struct inode *inode, struct page *page,
669				nid_t ino, enum page_type type)
670{
671	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
672}
673
674void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
675{
676	f2fs_submit_merged_write(sbi, DATA);
677	f2fs_submit_merged_write(sbi, NODE);
678	f2fs_submit_merged_write(sbi, META);
679}
680
681/*
682 * Fill the locked page with data located in the block address.
683 * A caller needs to unlock the page on failure.
684 */
685int f2fs_submit_page_bio(struct f2fs_io_info *fio)
686{
687	struct bio *bio;
688	struct page *page = fio->encrypted_page ?
689			fio->encrypted_page : fio->page;
690
691	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
692			fio->is_por ? META_POR : (__is_meta_io(fio) ?
693			META_GENERIC : DATA_GENERIC_ENHANCE)))
694		return -EFSCORRUPTED;
695
696	trace_f2fs_submit_page_bio(page, fio);
697
698	/* Allocate a new bio */
699	bio = __bio_alloc(fio, 1);
700
701	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
702			       fio->page->index, fio, GFP_NOIO);
703
704	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
705		bio_put(bio);
706		return -EFAULT;
707	}
708
709	if (fio->io_wbc && !is_read_io(fio->op))
710		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
711
712	inc_page_count(fio->sbi, is_read_io(fio->op) ?
713			__read_io_type(page) : WB_DATA_TYPE(fio->page, false));
714
715	if (is_read_io(bio_op(bio)))
716		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
717	else
718		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
719	return 0;
720}
721
722static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
723				block_t last_blkaddr, block_t cur_blkaddr)
724{
725	if (unlikely(sbi->max_io_bytes &&
726			bio->bi_iter.bi_size >= sbi->max_io_bytes))
727		return false;
728	if (last_blkaddr + 1 != cur_blkaddr)
729		return false;
730	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
731}
732
733static bool io_type_is_mergeable(struct f2fs_bio_info *io,
734						struct f2fs_io_info *fio)
735{
736	if (io->fio.op != fio->op)
737		return false;
738	return io->fio.op_flags == fio->op_flags;
739}
740
741static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
742					struct f2fs_bio_info *io,
743					struct f2fs_io_info *fio,
744					block_t last_blkaddr,
745					block_t cur_blkaddr)
746{
747	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
748		return false;
749	return io_type_is_mergeable(io, fio);
750}
751
752static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
753				struct page *page, enum temp_type temp)
754{
755	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
756	struct bio_entry *be;
757
758	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
759	be->bio = bio;
760	bio_get(bio);
761
762	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
763		f2fs_bug_on(sbi, 1);
764
765	f2fs_down_write(&io->bio_list_lock);
766	list_add_tail(&be->list, &io->bio_list);
767	f2fs_up_write(&io->bio_list_lock);
768}
769
770static void del_bio_entry(struct bio_entry *be)
771{
772	list_del(&be->list);
773	kmem_cache_free(bio_entry_slab, be);
774}
775
776static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
777							struct page *page)
778{
779	struct f2fs_sb_info *sbi = fio->sbi;
780	enum temp_type temp;
781	bool found = false;
782	int ret = -EAGAIN;
783
784	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
785		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
786		struct list_head *head = &io->bio_list;
787		struct bio_entry *be;
788
789		f2fs_down_write(&io->bio_list_lock);
790		list_for_each_entry(be, head, list) {
791			if (be->bio != *bio)
792				continue;
793
794			found = true;
795
796			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
797							    *fio->last_block,
798							    fio->new_blkaddr));
799			if (f2fs_crypt_mergeable_bio(*bio,
800					fio->page->mapping->host,
801					fio->page->index, fio) &&
802			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
803					PAGE_SIZE) {
804				ret = 0;
805				break;
806			}
807
808			/* page can't be merged into bio; submit the bio */
809			del_bio_entry(be);
810			f2fs_submit_write_bio(sbi, *bio, DATA);
811			break;
812		}
813		f2fs_up_write(&io->bio_list_lock);
814	}
815
816	if (ret) {
817		bio_put(*bio);
818		*bio = NULL;
819	}
820
821	return ret;
822}
823
824void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
825					struct bio **bio, struct page *page)
826{
827	enum temp_type temp;
828	bool found = false;
829	struct bio *target = bio ? *bio : NULL;
830
831	f2fs_bug_on(sbi, !target && !page);
832
833	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
834		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
835		struct list_head *head = &io->bio_list;
836		struct bio_entry *be;
837
838		if (list_empty(head))
839			continue;
840
841		f2fs_down_read(&io->bio_list_lock);
842		list_for_each_entry(be, head, list) {
843			if (target)
844				found = (target == be->bio);
845			else
846				found = __has_merged_page(be->bio, NULL,
847								page, 0);
848			if (found)
849				break;
850		}
851		f2fs_up_read(&io->bio_list_lock);
852
853		if (!found)
854			continue;
855
856		found = false;
857
858		f2fs_down_write(&io->bio_list_lock);
859		list_for_each_entry(be, head, list) {
860			if (target)
861				found = (target == be->bio);
862			else
863				found = __has_merged_page(be->bio, NULL,
864								page, 0);
865			if (found) {
866				target = be->bio;
867				del_bio_entry(be);
868				break;
869			}
870		}
871		f2fs_up_write(&io->bio_list_lock);
872	}
873
874	if (found)
875		f2fs_submit_write_bio(sbi, target, DATA);
876	if (bio && *bio) {
877		bio_put(*bio);
878		*bio = NULL;
879	}
880}
881
882int f2fs_merge_page_bio(struct f2fs_io_info *fio)
883{
884	struct bio *bio = *fio->bio;
885	struct page *page = fio->encrypted_page ?
886			fio->encrypted_page : fio->page;
887
888	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
889			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
890		return -EFSCORRUPTED;
891
892	trace_f2fs_submit_page_bio(page, fio);
893
894	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
895						fio->new_blkaddr))
896		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
897alloc_new:
898	if (!bio) {
899		bio = __bio_alloc(fio, BIO_MAX_VECS);
900		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
901				       fio->page->index, fio, GFP_NOIO);
902
903		add_bio_entry(fio->sbi, bio, page, fio->temp);
904	} else {
905		if (add_ipu_page(fio, &bio, page))
906			goto alloc_new;
907	}
908
909	if (fio->io_wbc)
910		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
911
912	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
913
914	*fio->last_block = fio->new_blkaddr;
915	*fio->bio = bio;
916
917	return 0;
918}
919
920#ifdef CONFIG_BLK_DEV_ZONED
921static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
922{
923	int devi = 0;
924
925	if (f2fs_is_multi_device(sbi)) {
926		devi = f2fs_target_device_index(sbi, blkaddr);
927		if (blkaddr < FDEV(devi).start_blk ||
928		    blkaddr > FDEV(devi).end_blk) {
929			f2fs_err(sbi, "Invalid block %x", blkaddr);
930			return false;
931		}
932		blkaddr -= FDEV(devi).start_blk;
933	}
934	return bdev_is_zoned(FDEV(devi).bdev) &&
935		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
936		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
937}
938#endif
939
940void f2fs_submit_page_write(struct f2fs_io_info *fio)
941{
942	struct f2fs_sb_info *sbi = fio->sbi;
943	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
944	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
945	struct page *bio_page;
946	enum count_type type;
947
948	f2fs_bug_on(sbi, is_read_io(fio->op));
949
950	f2fs_down_write(&io->io_rwsem);
951next:
952#ifdef CONFIG_BLK_DEV_ZONED
953	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
954		wait_for_completion_io(&io->zone_wait);
955		bio_put(io->zone_pending_bio);
956		io->zone_pending_bio = NULL;
957		io->bi_private = NULL;
958	}
959#endif
960
961	if (fio->in_list) {
962		spin_lock(&io->io_lock);
963		if (list_empty(&io->io_list)) {
964			spin_unlock(&io->io_lock);
965			goto out;
966		}
967		fio = list_first_entry(&io->io_list,
968						struct f2fs_io_info, list);
969		list_del(&fio->list);
970		spin_unlock(&io->io_lock);
971	}
972
973	verify_fio_blkaddr(fio);
974
975	if (fio->encrypted_page)
976		bio_page = fio->encrypted_page;
977	else if (fio->compressed_page)
978		bio_page = fio->compressed_page;
979	else
980		bio_page = fio->page;
981
982	/* set submitted = true as a return value */
983	fio->submitted = 1;
984
985	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
986	inc_page_count(sbi, type);
987
988	if (io->bio &&
989	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
990			      fio->new_blkaddr) ||
991	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
992				       bio_page->index, fio)))
993		__submit_merged_bio(io);
994alloc_new:
995	if (io->bio == NULL) {
996		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
997		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
998				       bio_page->index, fio, GFP_NOIO);
999		io->fio = *fio;
1000	}
1001
1002	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1003		__submit_merged_bio(io);
1004		goto alloc_new;
1005	}
1006
1007	if (fio->io_wbc)
1008		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1009
1010	io->last_block_in_bio = fio->new_blkaddr;
1011
1012	trace_f2fs_submit_page_write(fio->page, fio);
1013#ifdef CONFIG_BLK_DEV_ZONED
1014	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1015			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1016		bio_get(io->bio);
1017		reinit_completion(&io->zone_wait);
1018		io->bi_private = io->bio->bi_private;
1019		io->bio->bi_private = io;
1020		io->bio->bi_end_io = f2fs_zone_write_end_io;
1021		io->zone_pending_bio = io->bio;
1022		__submit_merged_bio(io);
1023	}
1024#endif
1025	if (fio->in_list)
1026		goto next;
1027out:
1028	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1029				!f2fs_is_checkpoint_ready(sbi))
1030		__submit_merged_bio(io);
1031	f2fs_up_write(&io->io_rwsem);
1032}
1033
1034static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1035				      unsigned nr_pages, blk_opf_t op_flag,
1036				      pgoff_t first_idx, bool for_write)
1037{
1038	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039	struct bio *bio;
1040	struct bio_post_read_ctx *ctx = NULL;
1041	unsigned int post_read_steps = 0;
1042	sector_t sector;
1043	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1044
1045	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1046			       REQ_OP_READ | op_flag,
1047			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1048	if (!bio)
1049		return ERR_PTR(-ENOMEM);
1050	bio->bi_iter.bi_sector = sector;
1051	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1052	bio->bi_end_io = f2fs_read_end_io;
1053
1054	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1055		post_read_steps |= STEP_DECRYPT;
1056
1057	if (f2fs_need_verity(inode, first_idx))
1058		post_read_steps |= STEP_VERITY;
1059
1060	/*
1061	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1062	 * contain both compressed and uncompressed clusters.  We'll allocate a
1063	 * bio_post_read_ctx if the file is compressed, but the caller is
1064	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1065	 */
1066
1067	if (post_read_steps || f2fs_compressed_file(inode)) {
1068		/* Due to the mempool, this never fails. */
1069		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1070		ctx->bio = bio;
1071		ctx->sbi = sbi;
1072		ctx->enabled_steps = post_read_steps;
1073		ctx->fs_blkaddr = blkaddr;
1074		ctx->decompression_attempted = false;
1075		bio->bi_private = ctx;
1076	}
1077	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1078
1079	return bio;
1080}
1081
1082/* This can handle encryption stuffs */
1083static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1084				 block_t blkaddr, blk_opf_t op_flags,
1085				 bool for_write)
1086{
1087	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1088	struct bio *bio;
1089
1090	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1091					page->index, for_write);
1092	if (IS_ERR(bio))
1093		return PTR_ERR(bio);
1094
1095	/* wait for GCed page writeback via META_MAPPING */
1096	f2fs_wait_on_block_writeback(inode, blkaddr);
1097
1098	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1099		iostat_update_and_unbind_ctx(bio);
1100		if (bio->bi_private)
1101			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1102		bio_put(bio);
1103		return -EFAULT;
1104	}
1105	inc_page_count(sbi, F2FS_RD_DATA);
1106	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1107	f2fs_submit_read_bio(sbi, bio, DATA);
1108	return 0;
1109}
1110
1111static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1112{
1113	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1114
1115	dn->data_blkaddr = blkaddr;
1116	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1117}
1118
1119/*
1120 * Lock ordering for the change of data block address:
1121 * ->data_page
1122 *  ->node_page
1123 *    update block addresses in the node page
1124 */
1125void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1126{
1127	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1128	__set_data_blkaddr(dn, blkaddr);
1129	if (set_page_dirty(dn->node_page))
1130		dn->node_changed = true;
1131}
1132
1133void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1134{
1135	f2fs_set_data_blkaddr(dn, blkaddr);
1136	f2fs_update_read_extent_cache(dn);
1137}
1138
1139/* dn->ofs_in_node will be returned with up-to-date last block pointer */
1140int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1141{
1142	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1143	int err;
1144
1145	if (!count)
1146		return 0;
1147
1148	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1149		return -EPERM;
1150	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1151	if (unlikely(err))
1152		return err;
1153
1154	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1155						dn->ofs_in_node, count);
1156
1157	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1158
1159	for (; count > 0; dn->ofs_in_node++) {
1160		block_t blkaddr = f2fs_data_blkaddr(dn);
1161
1162		if (blkaddr == NULL_ADDR) {
1163			__set_data_blkaddr(dn, NEW_ADDR);
1164			count--;
1165		}
1166	}
1167
1168	if (set_page_dirty(dn->node_page))
1169		dn->node_changed = true;
1170	return 0;
1171}
1172
1173/* Should keep dn->ofs_in_node unchanged */
1174int f2fs_reserve_new_block(struct dnode_of_data *dn)
1175{
1176	unsigned int ofs_in_node = dn->ofs_in_node;
1177	int ret;
1178
1179	ret = f2fs_reserve_new_blocks(dn, 1);
1180	dn->ofs_in_node = ofs_in_node;
1181	return ret;
1182}
1183
1184int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1185{
1186	bool need_put = dn->inode_page ? false : true;
1187	int err;
1188
1189	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1190	if (err)
1191		return err;
1192
1193	if (dn->data_blkaddr == NULL_ADDR)
1194		err = f2fs_reserve_new_block(dn);
1195	if (err || need_put)
1196		f2fs_put_dnode(dn);
1197	return err;
1198}
1199
1200struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1201				     blk_opf_t op_flags, bool for_write,
1202				     pgoff_t *next_pgofs)
1203{
1204	struct address_space *mapping = inode->i_mapping;
1205	struct dnode_of_data dn;
1206	struct page *page;
1207	int err;
1208
1209	page = f2fs_grab_cache_page(mapping, index, for_write);
1210	if (!page)
1211		return ERR_PTR(-ENOMEM);
1212
1213	if (f2fs_lookup_read_extent_cache_block(inode, index,
1214						&dn.data_blkaddr)) {
1215		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1216						DATA_GENERIC_ENHANCE_READ)) {
1217			err = -EFSCORRUPTED;
1218			goto put_err;
1219		}
1220		goto got_it;
1221	}
1222
1223	set_new_dnode(&dn, inode, NULL, NULL, 0);
1224	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1225	if (err) {
1226		if (err == -ENOENT && next_pgofs)
1227			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1228		goto put_err;
1229	}
1230	f2fs_put_dnode(&dn);
1231
1232	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1233		err = -ENOENT;
1234		if (next_pgofs)
1235			*next_pgofs = index + 1;
1236		goto put_err;
1237	}
1238	if (dn.data_blkaddr != NEW_ADDR &&
1239			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1240						dn.data_blkaddr,
1241						DATA_GENERIC_ENHANCE)) {
1242		err = -EFSCORRUPTED;
1243		goto put_err;
1244	}
1245got_it:
1246	if (PageUptodate(page)) {
1247		unlock_page(page);
1248		return page;
1249	}
1250
1251	/*
1252	 * A new dentry page is allocated but not able to be written, since its
1253	 * new inode page couldn't be allocated due to -ENOSPC.
1254	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1255	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1256	 * f2fs_init_inode_metadata.
1257	 */
1258	if (dn.data_blkaddr == NEW_ADDR) {
1259		zero_user_segment(page, 0, PAGE_SIZE);
1260		if (!PageUptodate(page))
1261			SetPageUptodate(page);
1262		unlock_page(page);
1263		return page;
1264	}
1265
1266	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1267						op_flags, for_write);
1268	if (err)
1269		goto put_err;
1270	return page;
1271
1272put_err:
1273	f2fs_put_page(page, 1);
1274	return ERR_PTR(err);
1275}
1276
1277struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1278					pgoff_t *next_pgofs)
1279{
1280	struct address_space *mapping = inode->i_mapping;
1281	struct page *page;
1282
1283	page = find_get_page(mapping, index);
1284	if (page && PageUptodate(page))
1285		return page;
1286	f2fs_put_page(page, 0);
1287
1288	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1289	if (IS_ERR(page))
1290		return page;
1291
1292	if (PageUptodate(page))
1293		return page;
1294
1295	wait_on_page_locked(page);
1296	if (unlikely(!PageUptodate(page))) {
1297		f2fs_put_page(page, 0);
1298		return ERR_PTR(-EIO);
1299	}
1300	return page;
1301}
1302
1303/*
1304 * If it tries to access a hole, return an error.
1305 * Because, the callers, functions in dir.c and GC, should be able to know
1306 * whether this page exists or not.
1307 */
1308struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1309							bool for_write)
1310{
1311	struct address_space *mapping = inode->i_mapping;
1312	struct page *page;
1313
1314	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1315	if (IS_ERR(page))
1316		return page;
1317
1318	/* wait for read completion */
1319	lock_page(page);
1320	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1321		f2fs_put_page(page, 1);
1322		return ERR_PTR(-EIO);
1323	}
1324	return page;
1325}
1326
1327/*
1328 * Caller ensures that this data page is never allocated.
1329 * A new zero-filled data page is allocated in the page cache.
1330 *
1331 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1332 * f2fs_unlock_op().
1333 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1334 * ipage should be released by this function.
1335 */
1336struct page *f2fs_get_new_data_page(struct inode *inode,
1337		struct page *ipage, pgoff_t index, bool new_i_size)
1338{
1339	struct address_space *mapping = inode->i_mapping;
1340	struct page *page;
1341	struct dnode_of_data dn;
1342	int err;
1343
1344	page = f2fs_grab_cache_page(mapping, index, true);
1345	if (!page) {
1346		/*
1347		 * before exiting, we should make sure ipage will be released
1348		 * if any error occur.
1349		 */
1350		f2fs_put_page(ipage, 1);
1351		return ERR_PTR(-ENOMEM);
1352	}
1353
1354	set_new_dnode(&dn, inode, ipage, NULL, 0);
1355	err = f2fs_reserve_block(&dn, index);
1356	if (err) {
1357		f2fs_put_page(page, 1);
1358		return ERR_PTR(err);
1359	}
1360	if (!ipage)
1361		f2fs_put_dnode(&dn);
1362
1363	if (PageUptodate(page))
1364		goto got_it;
1365
1366	if (dn.data_blkaddr == NEW_ADDR) {
1367		zero_user_segment(page, 0, PAGE_SIZE);
1368		if (!PageUptodate(page))
1369			SetPageUptodate(page);
1370	} else {
1371		f2fs_put_page(page, 1);
1372
1373		/* if ipage exists, blkaddr should be NEW_ADDR */
1374		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1375		page = f2fs_get_lock_data_page(inode, index, true);
1376		if (IS_ERR(page))
1377			return page;
1378	}
1379got_it:
1380	if (new_i_size && i_size_read(inode) <
1381				((loff_t)(index + 1) << PAGE_SHIFT))
1382		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1383	return page;
1384}
1385
1386static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1387{
1388	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1389	struct f2fs_summary sum;
1390	struct node_info ni;
1391	block_t old_blkaddr;
1392	blkcnt_t count = 1;
1393	int err;
1394
1395	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1396		return -EPERM;
1397
1398	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1399	if (err)
1400		return err;
1401
1402	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1403	if (dn->data_blkaddr == NULL_ADDR) {
1404		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1405		if (unlikely(err))
1406			return err;
1407	}
1408
1409	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1410	old_blkaddr = dn->data_blkaddr;
1411	err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1412				&dn->data_blkaddr, &sum, seg_type, NULL);
1413	if (err)
1414		return err;
1415
1416	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1417		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1418
1419	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1420	return 0;
1421}
1422
1423static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1424{
1425	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1426		f2fs_down_read(&sbi->node_change);
1427	else
1428		f2fs_lock_op(sbi);
1429}
1430
1431static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1432{
1433	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1434		f2fs_up_read(&sbi->node_change);
1435	else
1436		f2fs_unlock_op(sbi);
1437}
1438
1439int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1440{
1441	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1442	int err = 0;
1443
1444	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1445	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1446						&dn->data_blkaddr))
1447		err = f2fs_reserve_block(dn, index);
1448	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1449
1450	return err;
1451}
1452
1453static int f2fs_map_no_dnode(struct inode *inode,
1454		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1455		pgoff_t pgoff)
1456{
1457	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1458
1459	/*
1460	 * There is one exceptional case that read_node_page() may return
1461	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1462	 * -EIO in that case.
1463	 */
1464	if (map->m_may_create &&
1465	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1466		return -EIO;
1467
1468	if (map->m_next_pgofs)
1469		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1470	if (map->m_next_extent)
1471		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1472	return 0;
1473}
1474
1475static bool f2fs_map_blocks_cached(struct inode *inode,
1476		struct f2fs_map_blocks *map, int flag)
1477{
1478	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1479	unsigned int maxblocks = map->m_len;
1480	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1481	struct extent_info ei = {};
1482
1483	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1484		return false;
1485
1486	map->m_pblk = ei.blk + pgoff - ei.fofs;
1487	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1488	map->m_flags = F2FS_MAP_MAPPED;
1489	if (map->m_next_extent)
1490		*map->m_next_extent = pgoff + map->m_len;
1491
1492	/* for hardware encryption, but to avoid potential issue in future */
1493	if (flag == F2FS_GET_BLOCK_DIO)
1494		f2fs_wait_on_block_writeback_range(inode,
1495					map->m_pblk, map->m_len);
1496
1497	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1498		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1499		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1500
1501		map->m_bdev = dev->bdev;
1502		map->m_pblk -= dev->start_blk;
1503		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1504	} else {
1505		map->m_bdev = inode->i_sb->s_bdev;
1506	}
1507	return true;
1508}
1509
1510/*
1511 * f2fs_map_blocks() tries to find or build mapping relationship which
1512 * maps continuous logical blocks to physical blocks, and return such
1513 * info via f2fs_map_blocks structure.
1514 */
1515int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1516{
1517	unsigned int maxblocks = map->m_len;
1518	struct dnode_of_data dn;
1519	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1520	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1521	pgoff_t pgofs, end_offset, end;
1522	int err = 0, ofs = 1;
1523	unsigned int ofs_in_node, last_ofs_in_node;
1524	blkcnt_t prealloc;
1525	block_t blkaddr;
1526	unsigned int start_pgofs;
1527	int bidx = 0;
1528	bool is_hole;
1529
1530	if (!maxblocks)
1531		return 0;
1532
1533	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1534		goto out;
1535
1536	map->m_bdev = inode->i_sb->s_bdev;
1537	map->m_multidev_dio =
1538		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1539
1540	map->m_len = 0;
1541	map->m_flags = 0;
1542
1543	/* it only supports block size == page size */
1544	pgofs =	(pgoff_t)map->m_lblk;
1545	end = pgofs + maxblocks;
1546
1547next_dnode:
1548	if (map->m_may_create)
1549		f2fs_map_lock(sbi, flag);
1550
1551	/* When reading holes, we need its node page */
1552	set_new_dnode(&dn, inode, NULL, NULL, 0);
1553	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1554	if (err) {
1555		if (flag == F2FS_GET_BLOCK_BMAP)
1556			map->m_pblk = 0;
1557		if (err == -ENOENT)
1558			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1559		goto unlock_out;
1560	}
1561
1562	start_pgofs = pgofs;
1563	prealloc = 0;
1564	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1565	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1566
1567next_block:
1568	blkaddr = f2fs_data_blkaddr(&dn);
1569	is_hole = !__is_valid_data_blkaddr(blkaddr);
1570	if (!is_hole &&
1571	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1572		err = -EFSCORRUPTED;
1573		goto sync_out;
1574	}
1575
1576	/* use out-place-update for direct IO under LFS mode */
1577	if (map->m_may_create &&
1578	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1579		if (unlikely(f2fs_cp_error(sbi))) {
1580			err = -EIO;
1581			goto sync_out;
1582		}
1583
1584		switch (flag) {
1585		case F2FS_GET_BLOCK_PRE_AIO:
1586			if (blkaddr == NULL_ADDR) {
1587				prealloc++;
1588				last_ofs_in_node = dn.ofs_in_node;
1589			}
1590			break;
1591		case F2FS_GET_BLOCK_PRE_DIO:
1592		case F2FS_GET_BLOCK_DIO:
1593			err = __allocate_data_block(&dn, map->m_seg_type);
1594			if (err)
1595				goto sync_out;
1596			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1597				file_need_truncate(inode);
1598			set_inode_flag(inode, FI_APPEND_WRITE);
1599			break;
1600		default:
1601			WARN_ON_ONCE(1);
1602			err = -EIO;
1603			goto sync_out;
1604		}
1605
1606		blkaddr = dn.data_blkaddr;
1607		if (is_hole)
1608			map->m_flags |= F2FS_MAP_NEW;
1609	} else if (is_hole) {
1610		if (f2fs_compressed_file(inode) &&
1611		    f2fs_sanity_check_cluster(&dn)) {
1612			err = -EFSCORRUPTED;
1613			f2fs_handle_error(sbi,
1614					ERROR_CORRUPTED_CLUSTER);
1615			goto sync_out;
1616		}
1617
1618		switch (flag) {
1619		case F2FS_GET_BLOCK_PRECACHE:
1620			goto sync_out;
1621		case F2FS_GET_BLOCK_BMAP:
1622			map->m_pblk = 0;
1623			goto sync_out;
1624		case F2FS_GET_BLOCK_FIEMAP:
1625			if (blkaddr == NULL_ADDR) {
1626				if (map->m_next_pgofs)
1627					*map->m_next_pgofs = pgofs + 1;
1628				goto sync_out;
1629			}
1630			break;
1631		default:
1632			/* for defragment case */
1633			if (map->m_next_pgofs)
1634				*map->m_next_pgofs = pgofs + 1;
1635			goto sync_out;
1636		}
1637	}
1638
1639	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1640		goto skip;
1641
1642	if (map->m_multidev_dio)
1643		bidx = f2fs_target_device_index(sbi, blkaddr);
1644
1645	if (map->m_len == 0) {
1646		/* reserved delalloc block should be mapped for fiemap. */
1647		if (blkaddr == NEW_ADDR)
1648			map->m_flags |= F2FS_MAP_DELALLOC;
1649		map->m_flags |= F2FS_MAP_MAPPED;
1650
1651		map->m_pblk = blkaddr;
1652		map->m_len = 1;
1653
1654		if (map->m_multidev_dio)
1655			map->m_bdev = FDEV(bidx).bdev;
1656	} else if ((map->m_pblk != NEW_ADDR &&
1657			blkaddr == (map->m_pblk + ofs)) ||
1658			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1659			flag == F2FS_GET_BLOCK_PRE_DIO) {
1660		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1661			goto sync_out;
1662		ofs++;
1663		map->m_len++;
1664	} else {
1665		goto sync_out;
1666	}
1667
1668skip:
1669	dn.ofs_in_node++;
1670	pgofs++;
1671
1672	/* preallocate blocks in batch for one dnode page */
1673	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1674			(pgofs == end || dn.ofs_in_node == end_offset)) {
1675
1676		dn.ofs_in_node = ofs_in_node;
1677		err = f2fs_reserve_new_blocks(&dn, prealloc);
1678		if (err)
1679			goto sync_out;
1680
1681		map->m_len += dn.ofs_in_node - ofs_in_node;
1682		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1683			err = -ENOSPC;
1684			goto sync_out;
1685		}
1686		dn.ofs_in_node = end_offset;
1687	}
1688
1689	if (pgofs >= end)
1690		goto sync_out;
1691	else if (dn.ofs_in_node < end_offset)
1692		goto next_block;
1693
1694	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1695		if (map->m_flags & F2FS_MAP_MAPPED) {
1696			unsigned int ofs = start_pgofs - map->m_lblk;
1697
1698			f2fs_update_read_extent_cache_range(&dn,
1699				start_pgofs, map->m_pblk + ofs,
1700				map->m_len - ofs);
1701		}
1702	}
1703
1704	f2fs_put_dnode(&dn);
1705
1706	if (map->m_may_create) {
1707		f2fs_map_unlock(sbi, flag);
1708		f2fs_balance_fs(sbi, dn.node_changed);
1709	}
1710	goto next_dnode;
1711
1712sync_out:
1713
1714	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1715		/*
1716		 * for hardware encryption, but to avoid potential issue
1717		 * in future
1718		 */
1719		f2fs_wait_on_block_writeback_range(inode,
1720						map->m_pblk, map->m_len);
1721
1722		if (map->m_multidev_dio) {
1723			block_t blk_addr = map->m_pblk;
1724
1725			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1726
1727			map->m_bdev = FDEV(bidx).bdev;
1728			map->m_pblk -= FDEV(bidx).start_blk;
1729
1730			if (map->m_may_create)
1731				f2fs_update_device_state(sbi, inode->i_ino,
1732							blk_addr, map->m_len);
1733
1734			f2fs_bug_on(sbi, blk_addr + map->m_len >
1735						FDEV(bidx).end_blk + 1);
1736		}
1737	}
1738
1739	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1740		if (map->m_flags & F2FS_MAP_MAPPED) {
1741			unsigned int ofs = start_pgofs - map->m_lblk;
1742
1743			f2fs_update_read_extent_cache_range(&dn,
1744				start_pgofs, map->m_pblk + ofs,
1745				map->m_len - ofs);
1746		}
1747		if (map->m_next_extent)
1748			*map->m_next_extent = pgofs + 1;
1749	}
1750	f2fs_put_dnode(&dn);
1751unlock_out:
1752	if (map->m_may_create) {
1753		f2fs_map_unlock(sbi, flag);
1754		f2fs_balance_fs(sbi, dn.node_changed);
1755	}
1756out:
1757	trace_f2fs_map_blocks(inode, map, flag, err);
1758	return err;
1759}
1760
1761bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1762{
1763	struct f2fs_map_blocks map;
1764	block_t last_lblk;
1765	int err;
1766
1767	if (pos + len > i_size_read(inode))
1768		return false;
1769
1770	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1771	map.m_next_pgofs = NULL;
1772	map.m_next_extent = NULL;
1773	map.m_seg_type = NO_CHECK_TYPE;
1774	map.m_may_create = false;
1775	last_lblk = F2FS_BLK_ALIGN(pos + len);
1776
1777	while (map.m_lblk < last_lblk) {
1778		map.m_len = last_lblk - map.m_lblk;
1779		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1780		if (err || map.m_len == 0)
1781			return false;
1782		map.m_lblk += map.m_len;
1783	}
1784	return true;
1785}
1786
1787static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1788{
1789	return (bytes >> inode->i_blkbits);
1790}
1791
1792static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1793{
1794	return (blks << inode->i_blkbits);
1795}
1796
1797static int f2fs_xattr_fiemap(struct inode *inode,
1798				struct fiemap_extent_info *fieinfo)
1799{
1800	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1801	struct page *page;
1802	struct node_info ni;
1803	__u64 phys = 0, len;
1804	__u32 flags;
1805	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1806	int err = 0;
1807
1808	if (f2fs_has_inline_xattr(inode)) {
1809		int offset;
1810
1811		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1812						inode->i_ino, false);
1813		if (!page)
1814			return -ENOMEM;
1815
1816		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1817		if (err) {
1818			f2fs_put_page(page, 1);
1819			return err;
1820		}
1821
1822		phys = blks_to_bytes(inode, ni.blk_addr);
1823		offset = offsetof(struct f2fs_inode, i_addr) +
1824					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1825					get_inline_xattr_addrs(inode));
1826
1827		phys += offset;
1828		len = inline_xattr_size(inode);
1829
1830		f2fs_put_page(page, 1);
1831
1832		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1833
1834		if (!xnid)
1835			flags |= FIEMAP_EXTENT_LAST;
1836
1837		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1838		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1839		if (err)
1840			return err;
1841	}
1842
1843	if (xnid) {
1844		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1845		if (!page)
1846			return -ENOMEM;
1847
1848		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1849		if (err) {
1850			f2fs_put_page(page, 1);
1851			return err;
1852		}
1853
1854		phys = blks_to_bytes(inode, ni.blk_addr);
1855		len = inode->i_sb->s_blocksize;
1856
1857		f2fs_put_page(page, 1);
1858
1859		flags = FIEMAP_EXTENT_LAST;
1860	}
1861
1862	if (phys) {
1863		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1864		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1865	}
1866
1867	return (err < 0 ? err : 0);
1868}
1869
1870static loff_t max_inode_blocks(struct inode *inode)
1871{
1872	loff_t result = ADDRS_PER_INODE(inode);
1873	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1874
1875	/* two direct node blocks */
1876	result += (leaf_count * 2);
1877
1878	/* two indirect node blocks */
1879	leaf_count *= NIDS_PER_BLOCK;
1880	result += (leaf_count * 2);
1881
1882	/* one double indirect node block */
1883	leaf_count *= NIDS_PER_BLOCK;
1884	result += leaf_count;
1885
1886	return result;
1887}
1888
1889int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1890		u64 start, u64 len)
1891{
1892	struct f2fs_map_blocks map;
1893	sector_t start_blk, last_blk;
1894	pgoff_t next_pgofs;
1895	u64 logical = 0, phys = 0, size = 0;
1896	u32 flags = 0;
1897	int ret = 0;
1898	bool compr_cluster = false, compr_appended;
1899	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1900	unsigned int count_in_cluster = 0;
1901	loff_t maxbytes;
1902
1903	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1904		ret = f2fs_precache_extents(inode);
1905		if (ret)
1906			return ret;
1907	}
1908
1909	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1910	if (ret)
1911		return ret;
1912
1913	inode_lock_shared(inode);
1914
1915	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1916	if (start > maxbytes) {
1917		ret = -EFBIG;
1918		goto out;
1919	}
1920
1921	if (len > maxbytes || (maxbytes - len) < start)
1922		len = maxbytes - start;
1923
1924	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1925		ret = f2fs_xattr_fiemap(inode, fieinfo);
1926		goto out;
1927	}
1928
1929	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1930		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1931		if (ret != -EAGAIN)
1932			goto out;
1933	}
1934
1935	if (bytes_to_blks(inode, len) == 0)
1936		len = blks_to_bytes(inode, 1);
1937
1938	start_blk = bytes_to_blks(inode, start);
1939	last_blk = bytes_to_blks(inode, start + len - 1);
1940
1941next:
1942	memset(&map, 0, sizeof(map));
1943	map.m_lblk = start_blk;
1944	map.m_len = bytes_to_blks(inode, len);
1945	map.m_next_pgofs = &next_pgofs;
1946	map.m_seg_type = NO_CHECK_TYPE;
1947
1948	if (compr_cluster) {
1949		map.m_lblk += 1;
1950		map.m_len = cluster_size - count_in_cluster;
1951	}
1952
1953	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1954	if (ret)
1955		goto out;
1956
1957	/* HOLE */
1958	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1959		start_blk = next_pgofs;
1960
1961		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1962						max_inode_blocks(inode)))
1963			goto prep_next;
1964
1965		flags |= FIEMAP_EXTENT_LAST;
1966	}
1967
1968	compr_appended = false;
1969	/* In a case of compressed cluster, append this to the last extent */
1970	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1971			!(map.m_flags & F2FS_MAP_FLAGS))) {
1972		compr_appended = true;
1973		goto skip_fill;
1974	}
1975
1976	if (size) {
1977		flags |= FIEMAP_EXTENT_MERGED;
1978		if (IS_ENCRYPTED(inode))
1979			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1980
1981		ret = fiemap_fill_next_extent(fieinfo, logical,
1982				phys, size, flags);
1983		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1984		if (ret)
1985			goto out;
1986		size = 0;
1987	}
1988
1989	if (start_blk > last_blk)
1990		goto out;
1991
1992skip_fill:
1993	if (map.m_pblk == COMPRESS_ADDR) {
1994		compr_cluster = true;
1995		count_in_cluster = 1;
1996	} else if (compr_appended) {
1997		unsigned int appended_blks = cluster_size -
1998						count_in_cluster + 1;
1999		size += blks_to_bytes(inode, appended_blks);
2000		start_blk += appended_blks;
2001		compr_cluster = false;
2002	} else {
2003		logical = blks_to_bytes(inode, start_blk);
2004		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2005			blks_to_bytes(inode, map.m_pblk) : 0;
2006		size = blks_to_bytes(inode, map.m_len);
2007		flags = 0;
2008
2009		if (compr_cluster) {
2010			flags = FIEMAP_EXTENT_ENCODED;
2011			count_in_cluster += map.m_len;
2012			if (count_in_cluster == cluster_size) {
2013				compr_cluster = false;
2014				size += blks_to_bytes(inode, 1);
2015			}
2016		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2017			flags = FIEMAP_EXTENT_UNWRITTEN;
2018		}
2019
2020		start_blk += bytes_to_blks(inode, size);
2021	}
2022
2023prep_next:
2024	cond_resched();
2025	if (fatal_signal_pending(current))
2026		ret = -EINTR;
2027	else
2028		goto next;
2029out:
2030	if (ret == 1)
2031		ret = 0;
2032
2033	inode_unlock_shared(inode);
2034	return ret;
2035}
2036
2037static inline loff_t f2fs_readpage_limit(struct inode *inode)
2038{
2039	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2040		return inode->i_sb->s_maxbytes;
2041
2042	return i_size_read(inode);
2043}
2044
2045static int f2fs_read_single_page(struct inode *inode, struct page *page,
2046					unsigned nr_pages,
2047					struct f2fs_map_blocks *map,
2048					struct bio **bio_ret,
2049					sector_t *last_block_in_bio,
2050					bool is_readahead)
2051{
2052	struct bio *bio = *bio_ret;
2053	const unsigned blocksize = blks_to_bytes(inode, 1);
2054	sector_t block_in_file;
2055	sector_t last_block;
2056	sector_t last_block_in_file;
2057	sector_t block_nr;
2058	int ret = 0;
2059
2060	block_in_file = (sector_t)page_index(page);
2061	last_block = block_in_file + nr_pages;
2062	last_block_in_file = bytes_to_blks(inode,
2063			f2fs_readpage_limit(inode) + blocksize - 1);
2064	if (last_block > last_block_in_file)
2065		last_block = last_block_in_file;
2066
2067	/* just zeroing out page which is beyond EOF */
2068	if (block_in_file >= last_block)
2069		goto zero_out;
2070	/*
2071	 * Map blocks using the previous result first.
2072	 */
2073	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2074			block_in_file > map->m_lblk &&
2075			block_in_file < (map->m_lblk + map->m_len))
2076		goto got_it;
2077
2078	/*
2079	 * Then do more f2fs_map_blocks() calls until we are
2080	 * done with this page.
2081	 */
2082	map->m_lblk = block_in_file;
2083	map->m_len = last_block - block_in_file;
2084
2085	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2086	if (ret)
2087		goto out;
2088got_it:
2089	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2090		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2091		SetPageMappedToDisk(page);
2092
2093		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2094						DATA_GENERIC_ENHANCE_READ)) {
2095			ret = -EFSCORRUPTED;
2096			goto out;
2097		}
2098	} else {
2099zero_out:
2100		zero_user_segment(page, 0, PAGE_SIZE);
2101		if (f2fs_need_verity(inode, page->index) &&
2102		    !fsverity_verify_page(page)) {
2103			ret = -EIO;
2104			goto out;
2105		}
2106		if (!PageUptodate(page))
2107			SetPageUptodate(page);
2108		unlock_page(page);
2109		goto out;
2110	}
2111
2112	/*
2113	 * This page will go to BIO.  Do we need to send this
2114	 * BIO off first?
2115	 */
2116	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2117				       *last_block_in_bio, block_nr) ||
2118		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2119submit_and_realloc:
2120		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2121		bio = NULL;
2122	}
2123	if (bio == NULL) {
2124		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2125				is_readahead ? REQ_RAHEAD : 0, page->index,
2126				false);
2127		if (IS_ERR(bio)) {
2128			ret = PTR_ERR(bio);
2129			bio = NULL;
2130			goto out;
2131		}
2132	}
2133
2134	/*
2135	 * If the page is under writeback, we need to wait for
2136	 * its completion to see the correct decrypted data.
2137	 */
2138	f2fs_wait_on_block_writeback(inode, block_nr);
2139
2140	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2141		goto submit_and_realloc;
2142
2143	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2144	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2145							F2FS_BLKSIZE);
2146	*last_block_in_bio = block_nr;
2147out:
2148	*bio_ret = bio;
2149	return ret;
2150}
2151
2152#ifdef CONFIG_F2FS_FS_COMPRESSION
2153int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2154				unsigned nr_pages, sector_t *last_block_in_bio,
2155				bool is_readahead, bool for_write)
2156{
2157	struct dnode_of_data dn;
2158	struct inode *inode = cc->inode;
2159	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2160	struct bio *bio = *bio_ret;
2161	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2162	sector_t last_block_in_file;
2163	const unsigned blocksize = blks_to_bytes(inode, 1);
2164	struct decompress_io_ctx *dic = NULL;
2165	struct extent_info ei = {};
2166	bool from_dnode = true;
2167	int i;
2168	int ret = 0;
2169
2170	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2171
2172	last_block_in_file = bytes_to_blks(inode,
2173			f2fs_readpage_limit(inode) + blocksize - 1);
2174
2175	/* get rid of pages beyond EOF */
2176	for (i = 0; i < cc->cluster_size; i++) {
2177		struct page *page = cc->rpages[i];
2178
2179		if (!page)
2180			continue;
2181		if ((sector_t)page->index >= last_block_in_file) {
2182			zero_user_segment(page, 0, PAGE_SIZE);
2183			if (!PageUptodate(page))
2184				SetPageUptodate(page);
2185		} else if (!PageUptodate(page)) {
2186			continue;
2187		}
2188		unlock_page(page);
2189		if (for_write)
2190			put_page(page);
2191		cc->rpages[i] = NULL;
2192		cc->nr_rpages--;
2193	}
2194
2195	/* we are done since all pages are beyond EOF */
2196	if (f2fs_cluster_is_empty(cc))
2197		goto out;
2198
2199	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2200		from_dnode = false;
2201
2202	if (!from_dnode)
2203		goto skip_reading_dnode;
2204
2205	set_new_dnode(&dn, inode, NULL, NULL, 0);
2206	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2207	if (ret)
2208		goto out;
2209
2210	if (unlikely(f2fs_cp_error(sbi))) {
2211		ret = -EIO;
2212		goto out_put_dnode;
2213	}
2214	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2215
2216skip_reading_dnode:
2217	for (i = 1; i < cc->cluster_size; i++) {
2218		block_t blkaddr;
2219
2220		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2221					dn.ofs_in_node + i) :
2222					ei.blk + i - 1;
2223
2224		if (!__is_valid_data_blkaddr(blkaddr))
2225			break;
2226
2227		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2228			ret = -EFAULT;
2229			goto out_put_dnode;
2230		}
2231		cc->nr_cpages++;
2232
2233		if (!from_dnode && i >= ei.c_len)
2234			break;
2235	}
2236
2237	/* nothing to decompress */
2238	if (cc->nr_cpages == 0) {
2239		ret = 0;
2240		goto out_put_dnode;
2241	}
2242
2243	dic = f2fs_alloc_dic(cc);
2244	if (IS_ERR(dic)) {
2245		ret = PTR_ERR(dic);
2246		goto out_put_dnode;
2247	}
2248
2249	for (i = 0; i < cc->nr_cpages; i++) {
2250		struct page *page = dic->cpages[i];
2251		block_t blkaddr;
2252		struct bio_post_read_ctx *ctx;
2253
2254		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2255					dn.ofs_in_node + i + 1) :
2256					ei.blk + i;
2257
2258		f2fs_wait_on_block_writeback(inode, blkaddr);
2259
2260		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2261			if (atomic_dec_and_test(&dic->remaining_pages)) {
2262				f2fs_decompress_cluster(dic, true);
2263				break;
2264			}
2265			continue;
2266		}
2267
2268		if (bio && (!page_is_mergeable(sbi, bio,
2269					*last_block_in_bio, blkaddr) ||
2270		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2271submit_and_realloc:
2272			f2fs_submit_read_bio(sbi, bio, DATA);
2273			bio = NULL;
2274		}
2275
2276		if (!bio) {
2277			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2278					is_readahead ? REQ_RAHEAD : 0,
2279					page->index, for_write);
2280			if (IS_ERR(bio)) {
2281				ret = PTR_ERR(bio);
2282				f2fs_decompress_end_io(dic, ret, true);
2283				f2fs_put_dnode(&dn);
2284				*bio_ret = NULL;
2285				return ret;
2286			}
2287		}
2288
2289		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2290			goto submit_and_realloc;
2291
2292		ctx = get_post_read_ctx(bio);
2293		ctx->enabled_steps |= STEP_DECOMPRESS;
2294		refcount_inc(&dic->refcnt);
2295
2296		inc_page_count(sbi, F2FS_RD_DATA);
2297		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2298		*last_block_in_bio = blkaddr;
2299	}
2300
2301	if (from_dnode)
2302		f2fs_put_dnode(&dn);
2303
2304	*bio_ret = bio;
2305	return 0;
2306
2307out_put_dnode:
2308	if (from_dnode)
2309		f2fs_put_dnode(&dn);
2310out:
2311	for (i = 0; i < cc->cluster_size; i++) {
2312		if (cc->rpages[i]) {
2313			ClearPageUptodate(cc->rpages[i]);
2314			unlock_page(cc->rpages[i]);
2315		}
2316	}
2317	*bio_ret = bio;
2318	return ret;
2319}
2320#endif
2321
2322/*
2323 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2324 * Major change was from block_size == page_size in f2fs by default.
2325 */
2326static int f2fs_mpage_readpages(struct inode *inode,
2327		struct readahead_control *rac, struct page *page)
2328{
2329	struct bio *bio = NULL;
2330	sector_t last_block_in_bio = 0;
2331	struct f2fs_map_blocks map;
2332#ifdef CONFIG_F2FS_FS_COMPRESSION
2333	struct compress_ctx cc = {
2334		.inode = inode,
2335		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2336		.cluster_size = F2FS_I(inode)->i_cluster_size,
2337		.cluster_idx = NULL_CLUSTER,
2338		.rpages = NULL,
2339		.cpages = NULL,
2340		.nr_rpages = 0,
2341		.nr_cpages = 0,
2342	};
2343	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2344#endif
2345	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2346	unsigned max_nr_pages = nr_pages;
2347	int ret = 0;
2348
2349	map.m_pblk = 0;
2350	map.m_lblk = 0;
2351	map.m_len = 0;
2352	map.m_flags = 0;
2353	map.m_next_pgofs = NULL;
2354	map.m_next_extent = NULL;
2355	map.m_seg_type = NO_CHECK_TYPE;
2356	map.m_may_create = false;
2357
2358	for (; nr_pages; nr_pages--) {
2359		if (rac) {
2360			page = readahead_page(rac);
2361			prefetchw(&page->flags);
2362		}
2363
2364#ifdef CONFIG_F2FS_FS_COMPRESSION
2365		if (f2fs_compressed_file(inode)) {
2366			/* there are remained compressed pages, submit them */
2367			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2368				ret = f2fs_read_multi_pages(&cc, &bio,
2369							max_nr_pages,
2370							&last_block_in_bio,
2371							rac != NULL, false);
2372				f2fs_destroy_compress_ctx(&cc, false);
2373				if (ret)
2374					goto set_error_page;
2375			}
2376			if (cc.cluster_idx == NULL_CLUSTER) {
2377				if (nc_cluster_idx ==
2378					page->index >> cc.log_cluster_size) {
2379					goto read_single_page;
2380				}
2381
2382				ret = f2fs_is_compressed_cluster(inode, page->index);
2383				if (ret < 0)
2384					goto set_error_page;
2385				else if (!ret) {
2386					nc_cluster_idx =
2387						page->index >> cc.log_cluster_size;
2388					goto read_single_page;
2389				}
2390
2391				nc_cluster_idx = NULL_CLUSTER;
2392			}
2393			ret = f2fs_init_compress_ctx(&cc);
2394			if (ret)
2395				goto set_error_page;
2396
2397			f2fs_compress_ctx_add_page(&cc, page);
2398
2399			goto next_page;
2400		}
2401read_single_page:
2402#endif
2403
2404		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2405					&bio, &last_block_in_bio, rac);
2406		if (ret) {
2407#ifdef CONFIG_F2FS_FS_COMPRESSION
2408set_error_page:
2409#endif
2410			zero_user_segment(page, 0, PAGE_SIZE);
2411			unlock_page(page);
2412		}
2413#ifdef CONFIG_F2FS_FS_COMPRESSION
2414next_page:
2415#endif
2416		if (rac)
2417			put_page(page);
2418
2419#ifdef CONFIG_F2FS_FS_COMPRESSION
2420		if (f2fs_compressed_file(inode)) {
2421			/* last page */
2422			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2423				ret = f2fs_read_multi_pages(&cc, &bio,
2424							max_nr_pages,
2425							&last_block_in_bio,
2426							rac != NULL, false);
2427				f2fs_destroy_compress_ctx(&cc, false);
2428			}
2429		}
2430#endif
2431	}
2432	if (bio)
2433		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2434	return ret;
2435}
2436
2437static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2438{
2439	struct page *page = &folio->page;
2440	struct inode *inode = page_file_mapping(page)->host;
2441	int ret = -EAGAIN;
2442
2443	trace_f2fs_readpage(page, DATA);
2444
2445	if (!f2fs_is_compress_backend_ready(inode)) {
2446		unlock_page(page);
2447		return -EOPNOTSUPP;
2448	}
2449
2450	/* If the file has inline data, try to read it directly */
2451	if (f2fs_has_inline_data(inode))
2452		ret = f2fs_read_inline_data(inode, page);
2453	if (ret == -EAGAIN)
2454		ret = f2fs_mpage_readpages(inode, NULL, page);
2455	return ret;
2456}
2457
2458static void f2fs_readahead(struct readahead_control *rac)
2459{
2460	struct inode *inode = rac->mapping->host;
2461
2462	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2463
2464	if (!f2fs_is_compress_backend_ready(inode))
2465		return;
2466
2467	/* If the file has inline data, skip readahead */
2468	if (f2fs_has_inline_data(inode))
2469		return;
2470
2471	f2fs_mpage_readpages(inode, rac, NULL);
2472}
2473
2474int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2475{
2476	struct inode *inode = fio->page->mapping->host;
2477	struct page *mpage, *page;
2478	gfp_t gfp_flags = GFP_NOFS;
2479
2480	if (!f2fs_encrypted_file(inode))
2481		return 0;
2482
2483	page = fio->compressed_page ? fio->compressed_page : fio->page;
2484
2485	if (fscrypt_inode_uses_inline_crypto(inode))
2486		return 0;
2487
2488retry_encrypt:
2489	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2490					PAGE_SIZE, 0, gfp_flags);
2491	if (IS_ERR(fio->encrypted_page)) {
2492		/* flush pending IOs and wait for a while in the ENOMEM case */
2493		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2494			f2fs_flush_merged_writes(fio->sbi);
2495			memalloc_retry_wait(GFP_NOFS);
2496			gfp_flags |= __GFP_NOFAIL;
2497			goto retry_encrypt;
2498		}
2499		return PTR_ERR(fio->encrypted_page);
2500	}
2501
2502	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2503	if (mpage) {
2504		if (PageUptodate(mpage))
2505			memcpy(page_address(mpage),
2506				page_address(fio->encrypted_page), PAGE_SIZE);
2507		f2fs_put_page(mpage, 1);
2508	}
2509	return 0;
2510}
2511
2512static inline bool check_inplace_update_policy(struct inode *inode,
2513				struct f2fs_io_info *fio)
2514{
2515	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2516
2517	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2518	    is_inode_flag_set(inode, FI_OPU_WRITE))
2519		return false;
2520	if (IS_F2FS_IPU_FORCE(sbi))
2521		return true;
2522	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2523		return true;
2524	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2525		return true;
2526	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2527	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2528		return true;
2529
2530	/*
2531	 * IPU for rewrite async pages
2532	 */
2533	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2534	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2535		return true;
2536
2537	/* this is only set during fdatasync */
2538	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2539		return true;
2540
2541	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2542			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2543		return true;
2544
2545	return false;
2546}
2547
2548bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2549{
2550	/* swap file is migrating in aligned write mode */
2551	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2552		return false;
2553
2554	if (f2fs_is_pinned_file(inode))
2555		return true;
2556
2557	/* if this is cold file, we should overwrite to avoid fragmentation */
2558	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2559		return true;
2560
2561	return check_inplace_update_policy(inode, fio);
2562}
2563
2564bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2565{
2566	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2567
2568	/* The below cases were checked when setting it. */
2569	if (f2fs_is_pinned_file(inode))
2570		return false;
2571	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2572		return true;
2573	if (f2fs_lfs_mode(sbi))
2574		return true;
2575	if (S_ISDIR(inode->i_mode))
2576		return true;
2577	if (IS_NOQUOTA(inode))
2578		return true;
2579	if (f2fs_is_atomic_file(inode))
2580		return true;
2581	/* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2582	if (f2fs_compressed_file(inode) &&
2583		F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2584		is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2585		return true;
2586
2587	/* swap file is migrating in aligned write mode */
2588	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2589		return true;
2590
2591	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2592		return true;
2593
2594	if (fio) {
2595		if (page_private_gcing(fio->page))
2596			return true;
2597		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2598			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2599			return true;
2600	}
2601	return false;
2602}
2603
2604static inline bool need_inplace_update(struct f2fs_io_info *fio)
2605{
2606	struct inode *inode = fio->page->mapping->host;
2607
2608	if (f2fs_should_update_outplace(inode, fio))
2609		return false;
2610
2611	return f2fs_should_update_inplace(inode, fio);
2612}
2613
2614int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2615{
2616	struct page *page = fio->page;
2617	struct inode *inode = page->mapping->host;
2618	struct dnode_of_data dn;
2619	struct node_info ni;
2620	bool ipu_force = false;
2621	int err = 0;
2622
2623	/* Use COW inode to make dnode_of_data for atomic write */
2624	if (f2fs_is_atomic_file(inode))
2625		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2626	else
2627		set_new_dnode(&dn, inode, NULL, NULL, 0);
2628
2629	if (need_inplace_update(fio) &&
2630	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2631						&fio->old_blkaddr)) {
2632		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2633						DATA_GENERIC_ENHANCE))
2634			return -EFSCORRUPTED;
2635
2636		ipu_force = true;
2637		fio->need_lock = LOCK_DONE;
2638		goto got_it;
2639	}
2640
2641	/* Deadlock due to between page->lock and f2fs_lock_op */
2642	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2643		return -EAGAIN;
2644
2645	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2646	if (err)
2647		goto out;
2648
2649	fio->old_blkaddr = dn.data_blkaddr;
2650
2651	/* This page is already truncated */
2652	if (fio->old_blkaddr == NULL_ADDR) {
2653		ClearPageUptodate(page);
2654		clear_page_private_gcing(page);
2655		goto out_writepage;
2656	}
2657got_it:
2658	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2659		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2660						DATA_GENERIC_ENHANCE)) {
2661		err = -EFSCORRUPTED;
2662		goto out_writepage;
2663	}
2664
2665	/* wait for GCed page writeback via META_MAPPING */
2666	if (fio->post_read)
2667		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2668
2669	/*
2670	 * If current allocation needs SSR,
2671	 * it had better in-place writes for updated data.
2672	 */
2673	if (ipu_force ||
2674		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2675					need_inplace_update(fio))) {
2676		err = f2fs_encrypt_one_page(fio);
2677		if (err)
2678			goto out_writepage;
2679
2680		set_page_writeback(page);
2681		f2fs_put_dnode(&dn);
2682		if (fio->need_lock == LOCK_REQ)
2683			f2fs_unlock_op(fio->sbi);
2684		err = f2fs_inplace_write_data(fio);
2685		if (err) {
2686			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2687				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2688			if (PageWriteback(page))
2689				end_page_writeback(page);
2690		} else {
2691			set_inode_flag(inode, FI_UPDATE_WRITE);
2692		}
2693		trace_f2fs_do_write_data_page(fio->page, IPU);
2694		return err;
2695	}
2696
2697	if (fio->need_lock == LOCK_RETRY) {
2698		if (!f2fs_trylock_op(fio->sbi)) {
2699			err = -EAGAIN;
2700			goto out_writepage;
2701		}
2702		fio->need_lock = LOCK_REQ;
2703	}
2704
2705	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2706	if (err)
2707		goto out_writepage;
2708
2709	fio->version = ni.version;
2710
2711	err = f2fs_encrypt_one_page(fio);
2712	if (err)
2713		goto out_writepage;
2714
2715	set_page_writeback(page);
2716
2717	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2718		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2719
2720	/* LFS mode write path */
2721	f2fs_outplace_write_data(&dn, fio);
2722	trace_f2fs_do_write_data_page(page, OPU);
2723	set_inode_flag(inode, FI_APPEND_WRITE);
2724out_writepage:
2725	f2fs_put_dnode(&dn);
2726out:
2727	if (fio->need_lock == LOCK_REQ)
2728		f2fs_unlock_op(fio->sbi);
2729	return err;
2730}
2731
2732int f2fs_write_single_data_page(struct page *page, int *submitted,
2733				struct bio **bio,
2734				sector_t *last_block,
2735				struct writeback_control *wbc,
2736				enum iostat_type io_type,
2737				int compr_blocks,
2738				bool allow_balance)
2739{
2740	struct inode *inode = page->mapping->host;
2741	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2742	loff_t i_size = i_size_read(inode);
2743	const pgoff_t end_index = ((unsigned long long)i_size)
2744							>> PAGE_SHIFT;
2745	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2746	unsigned offset = 0;
2747	bool need_balance_fs = false;
2748	bool quota_inode = IS_NOQUOTA(inode);
2749	int err = 0;
2750	struct f2fs_io_info fio = {
2751		.sbi = sbi,
2752		.ino = inode->i_ino,
2753		.type = DATA,
2754		.op = REQ_OP_WRITE,
2755		.op_flags = wbc_to_write_flags(wbc),
2756		.old_blkaddr = NULL_ADDR,
2757		.page = page,
2758		.encrypted_page = NULL,
2759		.submitted = 0,
2760		.compr_blocks = compr_blocks,
2761		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2762		.post_read = f2fs_post_read_required(inode) ? 1 : 0,
2763		.io_type = io_type,
2764		.io_wbc = wbc,
2765		.bio = bio,
2766		.last_block = last_block,
2767	};
2768
2769	trace_f2fs_writepage(page, DATA);
2770
2771	/* we should bypass data pages to proceed the kworker jobs */
2772	if (unlikely(f2fs_cp_error(sbi))) {
2773		mapping_set_error(page->mapping, -EIO);
2774		/*
2775		 * don't drop any dirty dentry pages for keeping lastest
2776		 * directory structure.
2777		 */
2778		if (S_ISDIR(inode->i_mode) &&
2779				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2780			goto redirty_out;
2781
2782		/* keep data pages in remount-ro mode */
2783		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2784			goto redirty_out;
2785		goto out;
2786	}
2787
2788	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2789		goto redirty_out;
2790
2791	if (page->index < end_index ||
2792			f2fs_verity_in_progress(inode) ||
2793			compr_blocks)
2794		goto write;
2795
2796	/*
2797	 * If the offset is out-of-range of file size,
2798	 * this page does not have to be written to disk.
2799	 */
2800	offset = i_size & (PAGE_SIZE - 1);
2801	if ((page->index >= end_index + 1) || !offset)
2802		goto out;
2803
2804	zero_user_segment(page, offset, PAGE_SIZE);
2805write:
2806	/* Dentry/quota blocks are controlled by checkpoint */
2807	if (S_ISDIR(inode->i_mode) || quota_inode) {
2808		/*
2809		 * We need to wait for node_write to avoid block allocation during
2810		 * checkpoint. This can only happen to quota writes which can cause
2811		 * the below discard race condition.
2812		 */
2813		if (quota_inode)
2814			f2fs_down_read(&sbi->node_write);
2815
2816		fio.need_lock = LOCK_DONE;
2817		err = f2fs_do_write_data_page(&fio);
2818
2819		if (quota_inode)
2820			f2fs_up_read(&sbi->node_write);
2821
2822		goto done;
2823	}
2824
2825	if (!wbc->for_reclaim)
2826		need_balance_fs = true;
2827	else if (has_not_enough_free_secs(sbi, 0, 0))
2828		goto redirty_out;
2829	else
2830		set_inode_flag(inode, FI_HOT_DATA);
2831
2832	err = -EAGAIN;
2833	if (f2fs_has_inline_data(inode)) {
2834		err = f2fs_write_inline_data(inode, page);
2835		if (!err)
2836			goto out;
2837	}
2838
2839	if (err == -EAGAIN) {
2840		err = f2fs_do_write_data_page(&fio);
2841		if (err == -EAGAIN) {
2842			f2fs_bug_on(sbi, compr_blocks);
2843			fio.need_lock = LOCK_REQ;
2844			err = f2fs_do_write_data_page(&fio);
2845		}
2846	}
2847
2848	if (err) {
2849		file_set_keep_isize(inode);
2850	} else {
2851		spin_lock(&F2FS_I(inode)->i_size_lock);
2852		if (F2FS_I(inode)->last_disk_size < psize)
2853			F2FS_I(inode)->last_disk_size = psize;
2854		spin_unlock(&F2FS_I(inode)->i_size_lock);
2855	}
2856
2857done:
2858	if (err && err != -ENOENT)
2859		goto redirty_out;
2860
2861out:
2862	inode_dec_dirty_pages(inode);
2863	if (err) {
2864		ClearPageUptodate(page);
2865		clear_page_private_gcing(page);
2866	}
2867
2868	if (wbc->for_reclaim) {
2869		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2870		clear_inode_flag(inode, FI_HOT_DATA);
2871		f2fs_remove_dirty_inode(inode);
2872		submitted = NULL;
2873	}
2874	unlock_page(page);
2875	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2876			!F2FS_I(inode)->wb_task && allow_balance)
2877		f2fs_balance_fs(sbi, need_balance_fs);
2878
2879	if (unlikely(f2fs_cp_error(sbi))) {
2880		f2fs_submit_merged_write(sbi, DATA);
2881		if (bio && *bio)
2882			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2883		submitted = NULL;
2884	}
2885
2886	if (submitted)
2887		*submitted = fio.submitted;
2888
2889	return 0;
2890
2891redirty_out:
2892	redirty_page_for_writepage(wbc, page);
2893	/*
2894	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2895	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2896	 * file_write_and_wait_range() will see EIO error, which is critical
2897	 * to return value of fsync() followed by atomic_write failure to user.
2898	 */
2899	if (!err || wbc->for_reclaim)
2900		return AOP_WRITEPAGE_ACTIVATE;
2901	unlock_page(page);
2902	return err;
2903}
2904
2905static int f2fs_write_data_page(struct page *page,
2906					struct writeback_control *wbc)
2907{
2908#ifdef CONFIG_F2FS_FS_COMPRESSION
2909	struct inode *inode = page->mapping->host;
2910
2911	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2912		goto out;
2913
2914	if (f2fs_compressed_file(inode)) {
2915		if (f2fs_is_compressed_cluster(inode, page->index)) {
2916			redirty_page_for_writepage(wbc, page);
2917			return AOP_WRITEPAGE_ACTIVATE;
2918		}
2919	}
2920out:
2921#endif
2922
2923	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2924						wbc, FS_DATA_IO, 0, true);
2925}
2926
2927/*
2928 * This function was copied from write_cache_pages from mm/page-writeback.c.
2929 * The major change is making write step of cold data page separately from
2930 * warm/hot data page.
2931 */
2932static int f2fs_write_cache_pages(struct address_space *mapping,
2933					struct writeback_control *wbc,
2934					enum iostat_type io_type)
2935{
2936	int ret = 0;
2937	int done = 0, retry = 0;
2938	struct page *pages_local[F2FS_ONSTACK_PAGES];
2939	struct page **pages = pages_local;
2940	struct folio_batch fbatch;
2941	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2942	struct bio *bio = NULL;
2943	sector_t last_block;
2944#ifdef CONFIG_F2FS_FS_COMPRESSION
2945	struct inode *inode = mapping->host;
2946	struct compress_ctx cc = {
2947		.inode = inode,
2948		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2949		.cluster_size = F2FS_I(inode)->i_cluster_size,
2950		.cluster_idx = NULL_CLUSTER,
2951		.rpages = NULL,
2952		.nr_rpages = 0,
2953		.cpages = NULL,
2954		.valid_nr_cpages = 0,
2955		.rbuf = NULL,
2956		.cbuf = NULL,
2957		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2958		.private = NULL,
2959	};
2960#endif
2961	int nr_folios, p, idx;
2962	int nr_pages;
2963	unsigned int max_pages = F2FS_ONSTACK_PAGES;
2964	pgoff_t index;
2965	pgoff_t end;		/* Inclusive */
2966	pgoff_t done_index;
2967	int range_whole = 0;
2968	xa_mark_t tag;
2969	int nwritten = 0;
2970	int submitted = 0;
2971	int i;
2972
2973#ifdef CONFIG_F2FS_FS_COMPRESSION
2974	if (f2fs_compressed_file(inode) &&
2975		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2976		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2977				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2978		max_pages = 1 << cc.log_cluster_size;
2979	}
2980#endif
2981
2982	folio_batch_init(&fbatch);
2983
2984	if (get_dirty_pages(mapping->host) <=
2985				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2986		set_inode_flag(mapping->host, FI_HOT_DATA);
2987	else
2988		clear_inode_flag(mapping->host, FI_HOT_DATA);
2989
2990	if (wbc->range_cyclic) {
2991		index = mapping->writeback_index; /* prev offset */
2992		end = -1;
2993	} else {
2994		index = wbc->range_start >> PAGE_SHIFT;
2995		end = wbc->range_end >> PAGE_SHIFT;
2996		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2997			range_whole = 1;
2998	}
2999	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3000		tag = PAGECACHE_TAG_TOWRITE;
3001	else
3002		tag = PAGECACHE_TAG_DIRTY;
3003retry:
3004	retry = 0;
3005	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3006		tag_pages_for_writeback(mapping, index, end);
3007	done_index = index;
3008	while (!done && !retry && (index <= end)) {
3009		nr_pages = 0;
3010again:
3011		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3012				tag, &fbatch);
3013		if (nr_folios == 0) {
3014			if (nr_pages)
3015				goto write;
3016			break;
3017		}
3018
3019		for (i = 0; i < nr_folios; i++) {
3020			struct folio *folio = fbatch.folios[i];
3021
3022			idx = 0;
3023			p = folio_nr_pages(folio);
3024add_more:
3025			pages[nr_pages] = folio_page(folio, idx);
3026			folio_get(folio);
3027			if (++nr_pages == max_pages) {
3028				index = folio->index + idx + 1;
3029				folio_batch_release(&fbatch);
3030				goto write;
3031			}
3032			if (++idx < p)
3033				goto add_more;
3034		}
3035		folio_batch_release(&fbatch);
3036		goto again;
3037write:
3038		for (i = 0; i < nr_pages; i++) {
3039			struct page *page = pages[i];
3040			struct folio *folio = page_folio(page);
3041			bool need_readd;
3042readd:
3043			need_readd = false;
3044#ifdef CONFIG_F2FS_FS_COMPRESSION
3045			if (f2fs_compressed_file(inode)) {
3046				void *fsdata = NULL;
3047				struct page *pagep;
3048				int ret2;
3049
3050				ret = f2fs_init_compress_ctx(&cc);
3051				if (ret) {
3052					done = 1;
3053					break;
3054				}
3055
3056				if (!f2fs_cluster_can_merge_page(&cc,
3057								folio->index)) {
3058					ret = f2fs_write_multi_pages(&cc,
3059						&submitted, wbc, io_type);
3060					if (!ret)
3061						need_readd = true;
3062					goto result;
3063				}
3064
3065				if (unlikely(f2fs_cp_error(sbi)))
3066					goto lock_folio;
3067
3068				if (!f2fs_cluster_is_empty(&cc))
3069					goto lock_folio;
3070
3071				if (f2fs_all_cluster_page_ready(&cc,
3072					pages, i, nr_pages, true))
3073					goto lock_folio;
3074
3075				ret2 = f2fs_prepare_compress_overwrite(
3076							inode, &pagep,
3077							folio->index, &fsdata);
3078				if (ret2 < 0) {
3079					ret = ret2;
3080					done = 1;
3081					break;
3082				} else if (ret2 &&
3083					(!f2fs_compress_write_end(inode,
3084						fsdata, folio->index, 1) ||
3085					 !f2fs_all_cluster_page_ready(&cc,
3086						pages, i, nr_pages,
3087						false))) {
3088					retry = 1;
3089					break;
3090				}
3091			}
3092#endif
3093			/* give a priority to WB_SYNC threads */
3094			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3095					wbc->sync_mode == WB_SYNC_NONE) {
3096				done = 1;
3097				break;
3098			}
3099#ifdef CONFIG_F2FS_FS_COMPRESSION
3100lock_folio:
3101#endif
3102			done_index = folio->index;
3103retry_write:
3104			folio_lock(folio);
3105
3106			if (unlikely(folio->mapping != mapping)) {
3107continue_unlock:
3108				folio_unlock(folio);
3109				continue;
3110			}
3111
3112			if (!folio_test_dirty(folio)) {
3113				/* someone wrote it for us */
3114				goto continue_unlock;
3115			}
3116
3117			if (folio_test_writeback(folio)) {
3118				if (wbc->sync_mode == WB_SYNC_NONE)
3119					goto continue_unlock;
3120				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3121			}
3122
3123			if (!folio_clear_dirty_for_io(folio))
3124				goto continue_unlock;
3125
3126#ifdef CONFIG_F2FS_FS_COMPRESSION
3127			if (f2fs_compressed_file(inode)) {
3128				folio_get(folio);
3129				f2fs_compress_ctx_add_page(&cc, &folio->page);
3130				continue;
3131			}
3132#endif
3133			ret = f2fs_write_single_data_page(&folio->page,
3134					&submitted, &bio, &last_block,
3135					wbc, io_type, 0, true);
3136			if (ret == AOP_WRITEPAGE_ACTIVATE)
3137				folio_unlock(folio);
3138#ifdef CONFIG_F2FS_FS_COMPRESSION
3139result:
3140#endif
3141			nwritten += submitted;
3142			wbc->nr_to_write -= submitted;
3143
3144			if (unlikely(ret)) {
3145				/*
3146				 * keep nr_to_write, since vfs uses this to
3147				 * get # of written pages.
3148				 */
3149				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3150					ret = 0;
3151					goto next;
3152				} else if (ret == -EAGAIN) {
3153					ret = 0;
3154					if (wbc->sync_mode == WB_SYNC_ALL) {
3155						f2fs_io_schedule_timeout(
3156							DEFAULT_IO_TIMEOUT);
3157						goto retry_write;
3158					}
3159					goto next;
3160				}
3161				done_index = folio_next_index(folio);
3162				done = 1;
3163				break;
3164			}
3165
3166			if (wbc->nr_to_write <= 0 &&
3167					wbc->sync_mode == WB_SYNC_NONE) {
3168				done = 1;
3169				break;
3170			}
3171next:
3172			if (need_readd)
3173				goto readd;
3174		}
3175		release_pages(pages, nr_pages);
3176		cond_resched();
3177	}
3178#ifdef CONFIG_F2FS_FS_COMPRESSION
3179	/* flush remained pages in compress cluster */
3180	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3181		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3182		nwritten += submitted;
3183		wbc->nr_to_write -= submitted;
3184		if (ret) {
3185			done = 1;
3186			retry = 0;
3187		}
3188	}
3189	if (f2fs_compressed_file(inode))
3190		f2fs_destroy_compress_ctx(&cc, false);
3191#endif
3192	if (retry) {
3193		index = 0;
3194		end = -1;
3195		goto retry;
3196	}
3197	if (wbc->range_cyclic && !done)
3198		done_index = 0;
3199	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3200		mapping->writeback_index = done_index;
3201
3202	if (nwritten)
3203		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3204								NULL, 0, DATA);
3205	/* submit cached bio of IPU write */
3206	if (bio)
3207		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3208
3209#ifdef CONFIG_F2FS_FS_COMPRESSION
3210	if (pages != pages_local)
3211		kfree(pages);
3212#endif
3213
3214	return ret;
3215}
3216
3217static inline bool __should_serialize_io(struct inode *inode,
3218					struct writeback_control *wbc)
3219{
3220	/* to avoid deadlock in path of data flush */
3221	if (F2FS_I(inode)->wb_task)
3222		return false;
3223
3224	if (!S_ISREG(inode->i_mode))
3225		return false;
3226	if (IS_NOQUOTA(inode))
3227		return false;
3228
3229	if (f2fs_need_compress_data(inode))
3230		return true;
3231	if (wbc->sync_mode != WB_SYNC_ALL)
3232		return true;
3233	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3234		return true;
3235	return false;
3236}
3237
3238static int __f2fs_write_data_pages(struct address_space *mapping,
3239						struct writeback_control *wbc,
3240						enum iostat_type io_type)
3241{
3242	struct inode *inode = mapping->host;
3243	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3244	struct blk_plug plug;
3245	int ret;
3246	bool locked = false;
3247
3248	/* deal with chardevs and other special file */
3249	if (!mapping->a_ops->writepage)
3250		return 0;
3251
3252	/* skip writing if there is no dirty page in this inode */
3253	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3254		return 0;
3255
3256	/* during POR, we don't need to trigger writepage at all. */
3257	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3258		goto skip_write;
3259
3260	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3261			wbc->sync_mode == WB_SYNC_NONE &&
3262			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3263			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3264		goto skip_write;
3265
3266	/* skip writing in file defragment preparing stage */
3267	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3268		goto skip_write;
3269
3270	trace_f2fs_writepages(mapping->host, wbc, DATA);
3271
3272	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3273	if (wbc->sync_mode == WB_SYNC_ALL)
3274		atomic_inc(&sbi->wb_sync_req[DATA]);
3275	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3276		/* to avoid potential deadlock */
3277		if (current->plug)
3278			blk_finish_plug(current->plug);
3279		goto skip_write;
3280	}
3281
3282	if (__should_serialize_io(inode, wbc)) {
3283		mutex_lock(&sbi->writepages);
3284		locked = true;
3285	}
3286
3287	blk_start_plug(&plug);
3288	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3289	blk_finish_plug(&plug);
3290
3291	if (locked)
3292		mutex_unlock(&sbi->writepages);
3293
3294	if (wbc->sync_mode == WB_SYNC_ALL)
3295		atomic_dec(&sbi->wb_sync_req[DATA]);
3296	/*
3297	 * if some pages were truncated, we cannot guarantee its mapping->host
3298	 * to detect pending bios.
3299	 */
3300
3301	f2fs_remove_dirty_inode(inode);
3302	return ret;
3303
3304skip_write:
3305	wbc->pages_skipped += get_dirty_pages(inode);
3306	trace_f2fs_writepages(mapping->host, wbc, DATA);
3307	return 0;
3308}
3309
3310static int f2fs_write_data_pages(struct address_space *mapping,
3311			    struct writeback_control *wbc)
3312{
3313	struct inode *inode = mapping->host;
3314
3315	return __f2fs_write_data_pages(mapping, wbc,
3316			F2FS_I(inode)->cp_task == current ?
3317			FS_CP_DATA_IO : FS_DATA_IO);
3318}
3319
3320void f2fs_write_failed(struct inode *inode, loff_t to)
3321{
3322	loff_t i_size = i_size_read(inode);
3323
3324	if (IS_NOQUOTA(inode))
3325		return;
3326
3327	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3328	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3329		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3330		filemap_invalidate_lock(inode->i_mapping);
3331
3332		truncate_pagecache(inode, i_size);
3333		f2fs_truncate_blocks(inode, i_size, true);
3334
3335		filemap_invalidate_unlock(inode->i_mapping);
3336		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3337	}
3338}
3339
3340static int prepare_write_begin(struct f2fs_sb_info *sbi,
3341			struct page *page, loff_t pos, unsigned len,
3342			block_t *blk_addr, bool *node_changed)
3343{
3344	struct inode *inode = page->mapping->host;
3345	pgoff_t index = page->index;
3346	struct dnode_of_data dn;
3347	struct page *ipage;
3348	bool locked = false;
3349	int flag = F2FS_GET_BLOCK_PRE_AIO;
3350	int err = 0;
3351
3352	/*
3353	 * If a whole page is being written and we already preallocated all the
3354	 * blocks, then there is no need to get a block address now.
3355	 */
3356	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3357		return 0;
3358
3359	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3360	if (f2fs_has_inline_data(inode)) {
3361		if (pos + len > MAX_INLINE_DATA(inode))
3362			flag = F2FS_GET_BLOCK_DEFAULT;
3363		f2fs_map_lock(sbi, flag);
3364		locked = true;
3365	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3366		f2fs_map_lock(sbi, flag);
3367		locked = true;
3368	}
3369
3370restart:
3371	/* check inline_data */
3372	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3373	if (IS_ERR(ipage)) {
3374		err = PTR_ERR(ipage);
3375		goto unlock_out;
3376	}
3377
3378	set_new_dnode(&dn, inode, ipage, ipage, 0);
3379
3380	if (f2fs_has_inline_data(inode)) {
3381		if (pos + len <= MAX_INLINE_DATA(inode)) {
3382			f2fs_do_read_inline_data(page, ipage);
3383			set_inode_flag(inode, FI_DATA_EXIST);
3384			if (inode->i_nlink)
3385				set_page_private_inline(ipage);
3386			goto out;
3387		}
3388		err = f2fs_convert_inline_page(&dn, page);
3389		if (err || dn.data_blkaddr != NULL_ADDR)
3390			goto out;
3391	}
3392
3393	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3394						 &dn.data_blkaddr)) {
3395		if (locked) {
3396			err = f2fs_reserve_block(&dn, index);
3397			goto out;
3398		}
3399
3400		/* hole case */
3401		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3402		if (!err && dn.data_blkaddr != NULL_ADDR)
3403			goto out;
3404		f2fs_put_dnode(&dn);
3405		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3406		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3407		locked = true;
3408		goto restart;
3409	}
3410out:
3411	if (!err) {
3412		/* convert_inline_page can make node_changed */
3413		*blk_addr = dn.data_blkaddr;
3414		*node_changed = dn.node_changed;
3415	}
3416	f2fs_put_dnode(&dn);
3417unlock_out:
3418	if (locked)
3419		f2fs_map_unlock(sbi, flag);
3420	return err;
3421}
3422
3423static int __find_data_block(struct inode *inode, pgoff_t index,
3424				block_t *blk_addr)
3425{
3426	struct dnode_of_data dn;
3427	struct page *ipage;
3428	int err = 0;
3429
3430	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3431	if (IS_ERR(ipage))
3432		return PTR_ERR(ipage);
3433
3434	set_new_dnode(&dn, inode, ipage, ipage, 0);
3435
3436	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3437						 &dn.data_blkaddr)) {
3438		/* hole case */
3439		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3440		if (err) {
3441			dn.data_blkaddr = NULL_ADDR;
3442			err = 0;
3443		}
3444	}
3445	*blk_addr = dn.data_blkaddr;
3446	f2fs_put_dnode(&dn);
3447	return err;
3448}
3449
3450static int __reserve_data_block(struct inode *inode, pgoff_t index,
3451				block_t *blk_addr, bool *node_changed)
3452{
3453	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3454	struct dnode_of_data dn;
3455	struct page *ipage;
3456	int err = 0;
3457
3458	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3459
3460	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3461	if (IS_ERR(ipage)) {
3462		err = PTR_ERR(ipage);
3463		goto unlock_out;
3464	}
3465	set_new_dnode(&dn, inode, ipage, ipage, 0);
3466
3467	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3468						&dn.data_blkaddr))
3469		err = f2fs_reserve_block(&dn, index);
3470
3471	*blk_addr = dn.data_blkaddr;
3472	*node_changed = dn.node_changed;
3473	f2fs_put_dnode(&dn);
3474
3475unlock_out:
3476	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3477	return err;
3478}
3479
3480static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3481			struct page *page, loff_t pos, unsigned int len,
3482			block_t *blk_addr, bool *node_changed, bool *use_cow)
3483{
3484	struct inode *inode = page->mapping->host;
3485	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3486	pgoff_t index = page->index;
3487	int err = 0;
3488	block_t ori_blk_addr = NULL_ADDR;
3489
3490	/* If pos is beyond the end of file, reserve a new block in COW inode */
3491	if ((pos & PAGE_MASK) >= i_size_read(inode))
3492		goto reserve_block;
3493
3494	/* Look for the block in COW inode first */
3495	err = __find_data_block(cow_inode, index, blk_addr);
3496	if (err) {
3497		return err;
3498	} else if (*blk_addr != NULL_ADDR) {
3499		*use_cow = true;
3500		return 0;
3501	}
3502
3503	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3504		goto reserve_block;
3505
3506	/* Look for the block in the original inode */
3507	err = __find_data_block(inode, index, &ori_blk_addr);
3508	if (err)
3509		return err;
3510
3511reserve_block:
3512	/* Finally, we should reserve a new block in COW inode for the update */
3513	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3514	if (err)
3515		return err;
3516	inc_atomic_write_cnt(inode);
3517
3518	if (ori_blk_addr != NULL_ADDR)
3519		*blk_addr = ori_blk_addr;
3520	return 0;
3521}
3522
3523static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3524		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3525{
3526	struct inode *inode = mapping->host;
3527	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3528	struct page *page = NULL;
3529	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3530	bool need_balance = false;
3531	bool use_cow = false;
3532	block_t blkaddr = NULL_ADDR;
3533	int err = 0;
3534
3535	trace_f2fs_write_begin(inode, pos, len);
3536
3537	if (!f2fs_is_checkpoint_ready(sbi)) {
3538		err = -ENOSPC;
3539		goto fail;
3540	}
3541
3542	/*
3543	 * We should check this at this moment to avoid deadlock on inode page
3544	 * and #0 page. The locking rule for inline_data conversion should be:
3545	 * lock_page(page #0) -> lock_page(inode_page)
3546	 */
3547	if (index != 0) {
3548		err = f2fs_convert_inline_inode(inode);
3549		if (err)
3550			goto fail;
3551	}
3552
3553#ifdef CONFIG_F2FS_FS_COMPRESSION
3554	if (f2fs_compressed_file(inode)) {
3555		int ret;
3556
3557		*fsdata = NULL;
3558
3559		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3560			goto repeat;
3561
3562		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3563							index, fsdata);
3564		if (ret < 0) {
3565			err = ret;
3566			goto fail;
3567		} else if (ret) {
3568			return 0;
3569		}
3570	}
3571#endif
3572
3573repeat:
3574	/*
3575	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3576	 * wait_for_stable_page. Will wait that below with our IO control.
3577	 */
3578	page = f2fs_pagecache_get_page(mapping, index,
3579				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3580	if (!page) {
3581		err = -ENOMEM;
3582		goto fail;
3583	}
3584
3585	/* TODO: cluster can be compressed due to race with .writepage */
3586
3587	*pagep = page;
3588
3589	if (f2fs_is_atomic_file(inode))
3590		err = prepare_atomic_write_begin(sbi, page, pos, len,
3591					&blkaddr, &need_balance, &use_cow);
3592	else
3593		err = prepare_write_begin(sbi, page, pos, len,
3594					&blkaddr, &need_balance);
3595	if (err)
3596		goto fail;
3597
3598	if (need_balance && !IS_NOQUOTA(inode) &&
3599			has_not_enough_free_secs(sbi, 0, 0)) {
3600		unlock_page(page);
3601		f2fs_balance_fs(sbi, true);
3602		lock_page(page);
3603		if (page->mapping != mapping) {
3604			/* The page got truncated from under us */
3605			f2fs_put_page(page, 1);
3606			goto repeat;
3607		}
3608	}
3609
3610	f2fs_wait_on_page_writeback(page, DATA, false, true);
3611
3612	if (len == PAGE_SIZE || PageUptodate(page))
3613		return 0;
3614
3615	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3616	    !f2fs_verity_in_progress(inode)) {
3617		zero_user_segment(page, len, PAGE_SIZE);
3618		return 0;
3619	}
3620
3621	if (blkaddr == NEW_ADDR) {
3622		zero_user_segment(page, 0, PAGE_SIZE);
3623		SetPageUptodate(page);
3624	} else {
3625		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3626				DATA_GENERIC_ENHANCE_READ)) {
3627			err = -EFSCORRUPTED;
3628			goto fail;
3629		}
3630		err = f2fs_submit_page_read(use_cow ?
3631				F2FS_I(inode)->cow_inode : inode, page,
3632				blkaddr, 0, true);
3633		if (err)
3634			goto fail;
3635
3636		lock_page(page);
3637		if (unlikely(page->mapping != mapping)) {
3638			f2fs_put_page(page, 1);
3639			goto repeat;
3640		}
3641		if (unlikely(!PageUptodate(page))) {
3642			err = -EIO;
3643			goto fail;
3644		}
3645	}
3646	return 0;
3647
3648fail:
3649	f2fs_put_page(page, 1);
3650	f2fs_write_failed(inode, pos + len);
3651	return err;
3652}
3653
3654static int f2fs_write_end(struct file *file,
3655			struct address_space *mapping,
3656			loff_t pos, unsigned len, unsigned copied,
3657			struct page *page, void *fsdata)
3658{
3659	struct inode *inode = page->mapping->host;
3660
3661	trace_f2fs_write_end(inode, pos, len, copied);
3662
3663	/*
3664	 * This should be come from len == PAGE_SIZE, and we expect copied
3665	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3666	 * let generic_perform_write() try to copy data again through copied=0.
3667	 */
3668	if (!PageUptodate(page)) {
3669		if (unlikely(copied != len))
3670			copied = 0;
3671		else
3672			SetPageUptodate(page);
3673	}
3674
3675#ifdef CONFIG_F2FS_FS_COMPRESSION
3676	/* overwrite compressed file */
3677	if (f2fs_compressed_file(inode) && fsdata) {
3678		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3679		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3680
3681		if (pos + copied > i_size_read(inode) &&
3682				!f2fs_verity_in_progress(inode))
3683			f2fs_i_size_write(inode, pos + copied);
3684		return copied;
3685	}
3686#endif
3687
3688	if (!copied)
3689		goto unlock_out;
3690
3691	set_page_dirty(page);
3692
3693	if (pos + copied > i_size_read(inode) &&
3694	    !f2fs_verity_in_progress(inode)) {
3695		f2fs_i_size_write(inode, pos + copied);
3696		if (f2fs_is_atomic_file(inode))
3697			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3698					pos + copied);
3699	}
3700unlock_out:
3701	f2fs_put_page(page, 1);
3702	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3703	return copied;
3704}
3705
3706void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3707{
3708	struct inode *inode = folio->mapping->host;
3709	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3710
3711	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3712				(offset || length != folio_size(folio)))
3713		return;
3714
3715	if (folio_test_dirty(folio)) {
3716		if (inode->i_ino == F2FS_META_INO(sbi)) {
3717			dec_page_count(sbi, F2FS_DIRTY_META);
3718		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3719			dec_page_count(sbi, F2FS_DIRTY_NODES);
3720		} else {
3721			inode_dec_dirty_pages(inode);
3722			f2fs_remove_dirty_inode(inode);
3723		}
3724	}
3725	clear_page_private_all(&folio->page);
3726}
3727
3728bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3729{
3730	/* If this is dirty folio, keep private data */
3731	if (folio_test_dirty(folio))
3732		return false;
3733
3734	clear_page_private_all(&folio->page);
3735	return true;
3736}
3737
3738static bool f2fs_dirty_data_folio(struct address_space *mapping,
3739		struct folio *folio)
3740{
3741	struct inode *inode = mapping->host;
3742
3743	trace_f2fs_set_page_dirty(&folio->page, DATA);
3744
3745	if (!folio_test_uptodate(folio))
3746		folio_mark_uptodate(folio);
3747	BUG_ON(folio_test_swapcache(folio));
3748
3749	if (filemap_dirty_folio(mapping, folio)) {
3750		f2fs_update_dirty_folio(inode, folio);
3751		return true;
3752	}
3753	return false;
3754}
3755
3756
3757static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3758{
3759#ifdef CONFIG_F2FS_FS_COMPRESSION
3760	struct dnode_of_data dn;
3761	sector_t start_idx, blknr = 0;
3762	int ret;
3763
3764	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3765
3766	set_new_dnode(&dn, inode, NULL, NULL, 0);
3767	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3768	if (ret)
3769		return 0;
3770
3771	if (dn.data_blkaddr != COMPRESS_ADDR) {
3772		dn.ofs_in_node += block - start_idx;
3773		blknr = f2fs_data_blkaddr(&dn);
3774		if (!__is_valid_data_blkaddr(blknr))
3775			blknr = 0;
3776	}
3777
3778	f2fs_put_dnode(&dn);
3779	return blknr;
3780#else
3781	return 0;
3782#endif
3783}
3784
3785
3786static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3787{
3788	struct inode *inode = mapping->host;
3789	sector_t blknr = 0;
3790
3791	if (f2fs_has_inline_data(inode))
3792		goto out;
3793
3794	/* make sure allocating whole blocks */
3795	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3796		filemap_write_and_wait(mapping);
3797
3798	/* Block number less than F2FS MAX BLOCKS */
3799	if (unlikely(block >= max_file_blocks(inode)))
3800		goto out;
3801
3802	if (f2fs_compressed_file(inode)) {
3803		blknr = f2fs_bmap_compress(inode, block);
3804	} else {
3805		struct f2fs_map_blocks map;
3806
3807		memset(&map, 0, sizeof(map));
3808		map.m_lblk = block;
3809		map.m_len = 1;
3810		map.m_next_pgofs = NULL;
3811		map.m_seg_type = NO_CHECK_TYPE;
3812
3813		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3814			blknr = map.m_pblk;
3815	}
3816out:
3817	trace_f2fs_bmap(inode, block, blknr);
3818	return blknr;
3819}
3820
3821#ifdef CONFIG_SWAP
3822static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3823							unsigned int blkcnt)
3824{
3825	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3826	unsigned int blkofs;
3827	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3828	unsigned int end_blk = start_blk + blkcnt - 1;
3829	unsigned int secidx = start_blk / blk_per_sec;
3830	unsigned int end_sec;
3831	int ret = 0;
3832
3833	if (!blkcnt)
3834		return 0;
3835	end_sec = end_blk / blk_per_sec;
3836
3837	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3838	filemap_invalidate_lock(inode->i_mapping);
3839
3840	set_inode_flag(inode, FI_ALIGNED_WRITE);
3841	set_inode_flag(inode, FI_OPU_WRITE);
3842
3843	for (; secidx <= end_sec; secidx++) {
3844		unsigned int blkofs_end = secidx == end_sec ?
3845				end_blk % blk_per_sec : blk_per_sec - 1;
3846
3847		f2fs_down_write(&sbi->pin_sem);
3848
3849		ret = f2fs_allocate_pinning_section(sbi);
3850		if (ret) {
3851			f2fs_up_write(&sbi->pin_sem);
3852			break;
3853		}
3854
3855		set_inode_flag(inode, FI_SKIP_WRITES);
3856
3857		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3858			struct page *page;
3859			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3860
3861			page = f2fs_get_lock_data_page(inode, blkidx, true);
3862			if (IS_ERR(page)) {
3863				f2fs_up_write(&sbi->pin_sem);
3864				ret = PTR_ERR(page);
3865				goto done;
3866			}
3867
3868			set_page_dirty(page);
3869			f2fs_put_page(page, 1);
3870		}
3871
3872		clear_inode_flag(inode, FI_SKIP_WRITES);
3873
3874		ret = filemap_fdatawrite(inode->i_mapping);
3875
3876		f2fs_up_write(&sbi->pin_sem);
3877
3878		if (ret)
3879			break;
3880	}
3881
3882done:
3883	clear_inode_flag(inode, FI_SKIP_WRITES);
3884	clear_inode_flag(inode, FI_OPU_WRITE);
3885	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3886
3887	filemap_invalidate_unlock(inode->i_mapping);
3888	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3889
3890	return ret;
3891}
3892
3893static int check_swap_activate(struct swap_info_struct *sis,
3894				struct file *swap_file, sector_t *span)
3895{
3896	struct address_space *mapping = swap_file->f_mapping;
3897	struct inode *inode = mapping->host;
3898	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3899	sector_t cur_lblock;
3900	sector_t last_lblock;
3901	sector_t pblock;
3902	sector_t lowest_pblock = -1;
3903	sector_t highest_pblock = 0;
3904	int nr_extents = 0;
3905	unsigned long nr_pblocks;
3906	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3907	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3908	unsigned int not_aligned = 0;
3909	int ret = 0;
3910
3911	/*
3912	 * Map all the blocks into the extent list.  This code doesn't try
3913	 * to be very smart.
3914	 */
3915	cur_lblock = 0;
3916	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3917
3918	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3919		struct f2fs_map_blocks map;
3920retry:
3921		cond_resched();
3922
3923		memset(&map, 0, sizeof(map));
3924		map.m_lblk = cur_lblock;
3925		map.m_len = last_lblock - cur_lblock;
3926		map.m_next_pgofs = NULL;
3927		map.m_next_extent = NULL;
3928		map.m_seg_type = NO_CHECK_TYPE;
3929		map.m_may_create = false;
3930
3931		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3932		if (ret)
3933			goto out;
3934
3935		/* hole */
3936		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3937			f2fs_err(sbi, "Swapfile has holes");
3938			ret = -EINVAL;
3939			goto out;
3940		}
3941
3942		pblock = map.m_pblk;
3943		nr_pblocks = map.m_len;
3944
3945		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3946				nr_pblocks & sec_blks_mask ||
3947				!f2fs_valid_pinned_area(sbi, pblock)) {
3948			bool last_extent = false;
3949
3950			not_aligned++;
3951
3952			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3953			if (cur_lblock + nr_pblocks > sis->max)
3954				nr_pblocks -= blks_per_sec;
3955
3956			/* this extent is last one */
3957			if (!nr_pblocks) {
3958				nr_pblocks = last_lblock - cur_lblock;
3959				last_extent = true;
3960			}
3961
3962			ret = f2fs_migrate_blocks(inode, cur_lblock,
3963							nr_pblocks);
3964			if (ret) {
3965				if (ret == -ENOENT)
3966					ret = -EINVAL;
3967				goto out;
3968			}
3969
3970			if (!last_extent)
3971				goto retry;
3972		}
3973
3974		if (cur_lblock + nr_pblocks >= sis->max)
3975			nr_pblocks = sis->max - cur_lblock;
3976
3977		if (cur_lblock) {	/* exclude the header page */
3978			if (pblock < lowest_pblock)
3979				lowest_pblock = pblock;
3980			if (pblock + nr_pblocks - 1 > highest_pblock)
3981				highest_pblock = pblock + nr_pblocks - 1;
3982		}
3983
3984		/*
3985		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3986		 */
3987		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3988		if (ret < 0)
3989			goto out;
3990		nr_extents += ret;
3991		cur_lblock += nr_pblocks;
3992	}
3993	ret = nr_extents;
3994	*span = 1 + highest_pblock - lowest_pblock;
3995	if (cur_lblock == 0)
3996		cur_lblock = 1;	/* force Empty message */
3997	sis->max = cur_lblock;
3998	sis->pages = cur_lblock - 1;
3999	sis->highest_bit = cur_lblock - 1;
4000out:
4001	if (not_aligned)
4002		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4003			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4004	return ret;
4005}
4006
4007static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4008				sector_t *span)
4009{
4010	struct inode *inode = file_inode(file);
4011	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4012	int ret;
4013
4014	if (!S_ISREG(inode->i_mode))
4015		return -EINVAL;
4016
4017	if (f2fs_readonly(sbi->sb))
4018		return -EROFS;
4019
4020	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4021		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4022		return -EINVAL;
4023	}
4024
4025	ret = f2fs_convert_inline_inode(inode);
4026	if (ret)
4027		return ret;
4028
4029	if (!f2fs_disable_compressed_file(inode))
4030		return -EINVAL;
4031
4032	ret = filemap_fdatawrite(inode->i_mapping);
4033	if (ret < 0)
4034		return ret;
4035
4036	f2fs_precache_extents(inode);
4037
4038	ret = check_swap_activate(sis, file, span);
4039	if (ret < 0)
4040		return ret;
4041
4042	stat_inc_swapfile_inode(inode);
4043	set_inode_flag(inode, FI_PIN_FILE);
4044	f2fs_update_time(sbi, REQ_TIME);
4045	return ret;
4046}
4047
4048static void f2fs_swap_deactivate(struct file *file)
4049{
4050	struct inode *inode = file_inode(file);
4051
4052	stat_dec_swapfile_inode(inode);
4053	clear_inode_flag(inode, FI_PIN_FILE);
4054}
4055#else
4056static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4057				sector_t *span)
4058{
4059	return -EOPNOTSUPP;
4060}
4061
4062static void f2fs_swap_deactivate(struct file *file)
4063{
4064}
4065#endif
4066
4067const struct address_space_operations f2fs_dblock_aops = {
4068	.read_folio	= f2fs_read_data_folio,
4069	.readahead	= f2fs_readahead,
4070	.writepage	= f2fs_write_data_page,
4071	.writepages	= f2fs_write_data_pages,
4072	.write_begin	= f2fs_write_begin,
4073	.write_end	= f2fs_write_end,
4074	.dirty_folio	= f2fs_dirty_data_folio,
4075	.migrate_folio	= filemap_migrate_folio,
4076	.invalidate_folio = f2fs_invalidate_folio,
4077	.release_folio	= f2fs_release_folio,
4078	.bmap		= f2fs_bmap,
4079	.swap_activate  = f2fs_swap_activate,
4080	.swap_deactivate = f2fs_swap_deactivate,
4081};
4082
4083void f2fs_clear_page_cache_dirty_tag(struct page *page)
4084{
4085	struct address_space *mapping = page_mapping(page);
4086	unsigned long flags;
4087
4088	xa_lock_irqsave(&mapping->i_pages, flags);
4089	__xa_clear_mark(&mapping->i_pages, page_index(page),
4090						PAGECACHE_TAG_DIRTY);
4091	xa_unlock_irqrestore(&mapping->i_pages, flags);
4092}
4093
4094int __init f2fs_init_post_read_processing(void)
4095{
4096	bio_post_read_ctx_cache =
4097		kmem_cache_create("f2fs_bio_post_read_ctx",
4098				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4099	if (!bio_post_read_ctx_cache)
4100		goto fail;
4101	bio_post_read_ctx_pool =
4102		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4103					 bio_post_read_ctx_cache);
4104	if (!bio_post_read_ctx_pool)
4105		goto fail_free_cache;
4106	return 0;
4107
4108fail_free_cache:
4109	kmem_cache_destroy(bio_post_read_ctx_cache);
4110fail:
4111	return -ENOMEM;
4112}
4113
4114void f2fs_destroy_post_read_processing(void)
4115{
4116	mempool_destroy(bio_post_read_ctx_pool);
4117	kmem_cache_destroy(bio_post_read_ctx_cache);
4118}
4119
4120int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4121{
4122	if (!f2fs_sb_has_encrypt(sbi) &&
4123		!f2fs_sb_has_verity(sbi) &&
4124		!f2fs_sb_has_compression(sbi))
4125		return 0;
4126
4127	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4128						 WQ_UNBOUND | WQ_HIGHPRI,
4129						 num_online_cpus());
4130	return sbi->post_read_wq ? 0 : -ENOMEM;
4131}
4132
4133void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4134{
4135	if (sbi->post_read_wq)
4136		destroy_workqueue(sbi->post_read_wq);
4137}
4138
4139int __init f2fs_init_bio_entry_cache(void)
4140{
4141	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4142			sizeof(struct bio_entry));
4143	return bio_entry_slab ? 0 : -ENOMEM;
4144}
4145
4146void f2fs_destroy_bio_entry_cache(void)
4147{
4148	kmem_cache_destroy(bio_entry_slab);
4149}
4150
4151static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4152			    unsigned int flags, struct iomap *iomap,
4153			    struct iomap *srcmap)
4154{
4155	struct f2fs_map_blocks map = {};
4156	pgoff_t next_pgofs = 0;
4157	int err;
4158
4159	map.m_lblk = bytes_to_blks(inode, offset);
4160	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4161	map.m_next_pgofs = &next_pgofs;
4162	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4163	if (flags & IOMAP_WRITE)
4164		map.m_may_create = true;
4165
4166	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4167	if (err)
4168		return err;
4169
4170	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4171
4172	/*
4173	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4174	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4175	 * limiting the length of the mapping returned.
4176	 */
4177	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4178
4179	/*
4180	 * We should never see delalloc or compressed extents here based on
4181	 * prior flushing and checks.
4182	 */
4183	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4184		return -EINVAL;
4185	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4186		return -EINVAL;
4187
4188	if (map.m_pblk != NULL_ADDR) {
4189		iomap->length = blks_to_bytes(inode, map.m_len);
4190		iomap->type = IOMAP_MAPPED;
4191		iomap->flags |= IOMAP_F_MERGED;
4192		iomap->bdev = map.m_bdev;
4193		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4194	} else {
4195		if (flags & IOMAP_WRITE)
4196			return -ENOTBLK;
4197		iomap->length = blks_to_bytes(inode, next_pgofs) -
4198				iomap->offset;
4199		iomap->type = IOMAP_HOLE;
4200		iomap->addr = IOMAP_NULL_ADDR;
4201	}
4202
4203	if (map.m_flags & F2FS_MAP_NEW)
4204		iomap->flags |= IOMAP_F_NEW;
4205	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4206	    offset + length > i_size_read(inode))
4207		iomap->flags |= IOMAP_F_DIRTY;
4208
4209	return 0;
4210}
4211
4212const struct iomap_ops f2fs_iomap_ops = {
4213	.iomap_begin	= f2fs_iomap_begin,
4214};
4215