1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 *  from
11 *
12 *  linux/fs/minix/inode.c
13 *
14 *  Copyright (C) 1991, 1992  Linus Torvalds
15 *
16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
17 *	(jj@sunsite.ms.mff.cuni.cz)
18 *
19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/mount.h>
24#include <linux/time.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/pagevec.h>
33#include <linux/mpage.h>
34#include <linux/namei.h>
35#include <linux/uio.h>
36#include <linux/bio.h>
37#include <linux/workqueue.h>
38#include <linux/kernel.h>
39#include <linux/printk.h>
40#include <linux/slab.h>
41#include <linux/bitops.h>
42#include <linux/iomap.h>
43#include <linux/iversion.h>
44
45#include "ext4_jbd2.h"
46#include "xattr.h"
47#include "acl.h"
48#include "truncate.h"
49
50#include <trace/events/ext4.h>
51
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53			      struct ext4_inode_info *ei)
54{
55	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56	__u32 csum;
57	__u16 dummy_csum = 0;
58	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59	unsigned int csum_size = sizeof(dummy_csum);
60
61	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63	offset += csum_size;
64	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68		offset = offsetof(struct ext4_inode, i_checksum_hi);
69		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70				   EXT4_GOOD_OLD_INODE_SIZE,
71				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74					   csum_size);
75			offset += csum_size;
76		}
77		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79	}
80
81	return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85				  struct ext4_inode_info *ei)
86{
87	__u32 provided, calculated;
88
89	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90	    cpu_to_le32(EXT4_OS_LINUX) ||
91	    !ext4_has_metadata_csum(inode->i_sb))
92		return 1;
93
94	provided = le16_to_cpu(raw->i_checksum_lo);
95	calculated = ext4_inode_csum(inode, raw, ei);
96	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99	else
100		calculated &= 0xFFFF;
101
102	return provided == calculated;
103}
104
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106			 struct ext4_inode_info *ei)
107{
108	__u32 csum;
109
110	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111	    cpu_to_le32(EXT4_OS_LINUX) ||
112	    !ext4_has_metadata_csum(inode->i_sb))
113		return;
114
115	csum = ext4_inode_csum(inode, raw, ei);
116	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123					      loff_t new_size)
124{
125	trace_ext4_begin_ordered_truncate(inode, new_size);
126	/*
127	 * If jinode is zero, then we never opened the file for
128	 * writing, so there's no need to call
129	 * jbd2_journal_begin_ordered_truncate() since there's no
130	 * outstanding writes we need to flush.
131	 */
132	if (!EXT4_I(inode)->jinode)
133		return 0;
134	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135						   EXT4_I(inode)->jinode,
136						   new_size);
137}
138
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140				  int pextents);
141
142/*
143 * Test whether an inode is a fast symlink.
144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145 */
146int ext4_inode_is_fast_symlink(struct inode *inode)
147{
148	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149		int ea_blocks = EXT4_I(inode)->i_file_acl ?
150				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152		if (ext4_has_inline_data(inode))
153			return 0;
154
155		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156	}
157	return S_ISLNK(inode->i_mode) && inode->i_size &&
158	       (inode->i_size < EXT4_N_BLOCKS * 4);
159}
160
161/*
162 * Called at the last iput() if i_nlink is zero.
163 */
164void ext4_evict_inode(struct inode *inode)
165{
166	handle_t *handle;
167	int err;
168	/*
169	 * Credits for final inode cleanup and freeing:
170	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172	 */
173	int extra_credits = 6;
174	struct ext4_xattr_inode_array *ea_inode_array = NULL;
175	bool freeze_protected = false;
176
177	trace_ext4_evict_inode(inode);
178
179	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180		ext4_evict_ea_inode(inode);
181	if (inode->i_nlink) {
182		truncate_inode_pages_final(&inode->i_data);
183
184		goto no_delete;
185	}
186
187	if (is_bad_inode(inode))
188		goto no_delete;
189	dquot_initialize(inode);
190
191	if (ext4_should_order_data(inode))
192		ext4_begin_ordered_truncate(inode, 0);
193	truncate_inode_pages_final(&inode->i_data);
194
195	/*
196	 * For inodes with journalled data, transaction commit could have
197	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198	 * extents converting worker could merge extents and also have dirtied
199	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200	 * we still need to remove the inode from the writeback lists.
201	 */
202	if (!list_empty_careful(&inode->i_io_list))
203		inode_io_list_del(inode);
204
205	/*
206	 * Protect us against freezing - iput() caller didn't have to have any
207	 * protection against it. When we are in a running transaction though,
208	 * we are already protected against freezing and we cannot grab further
209	 * protection due to lock ordering constraints.
210	 */
211	if (!ext4_journal_current_handle()) {
212		sb_start_intwrite(inode->i_sb);
213		freeze_protected = true;
214	}
215
216	if (!IS_NOQUOTA(inode))
217		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218
219	/*
220	 * Block bitmap, group descriptor, and inode are accounted in both
221	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222	 */
223	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225	if (IS_ERR(handle)) {
226		ext4_std_error(inode->i_sb, PTR_ERR(handle));
227		/*
228		 * If we're going to skip the normal cleanup, we still need to
229		 * make sure that the in-core orphan linked list is properly
230		 * cleaned up.
231		 */
232		ext4_orphan_del(NULL, inode);
233		if (freeze_protected)
234			sb_end_intwrite(inode->i_sb);
235		goto no_delete;
236	}
237
238	if (IS_SYNC(inode))
239		ext4_handle_sync(handle);
240
241	/*
242	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243	 * special handling of symlinks here because i_size is used to
244	 * determine whether ext4_inode_info->i_data contains symlink data or
245	 * block mappings. Setting i_size to 0 will remove its fast symlink
246	 * status. Erase i_data so that it becomes a valid empty block map.
247	 */
248	if (ext4_inode_is_fast_symlink(inode))
249		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250	inode->i_size = 0;
251	err = ext4_mark_inode_dirty(handle, inode);
252	if (err) {
253		ext4_warning(inode->i_sb,
254			     "couldn't mark inode dirty (err %d)", err);
255		goto stop_handle;
256	}
257	if (inode->i_blocks) {
258		err = ext4_truncate(inode);
259		if (err) {
260			ext4_error_err(inode->i_sb, -err,
261				       "couldn't truncate inode %lu (err %d)",
262				       inode->i_ino, err);
263			goto stop_handle;
264		}
265	}
266
267	/* Remove xattr references. */
268	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269				      extra_credits);
270	if (err) {
271		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272stop_handle:
273		ext4_journal_stop(handle);
274		ext4_orphan_del(NULL, inode);
275		if (freeze_protected)
276			sb_end_intwrite(inode->i_sb);
277		ext4_xattr_inode_array_free(ea_inode_array);
278		goto no_delete;
279	}
280
281	/*
282	 * Kill off the orphan record which ext4_truncate created.
283	 * AKPM: I think this can be inside the above `if'.
284	 * Note that ext4_orphan_del() has to be able to cope with the
285	 * deletion of a non-existent orphan - this is because we don't
286	 * know if ext4_truncate() actually created an orphan record.
287	 * (Well, we could do this if we need to, but heck - it works)
288	 */
289	ext4_orphan_del(handle, inode);
290	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
291
292	/*
293	 * One subtle ordering requirement: if anything has gone wrong
294	 * (transaction abort, IO errors, whatever), then we can still
295	 * do these next steps (the fs will already have been marked as
296	 * having errors), but we can't free the inode if the mark_dirty
297	 * fails.
298	 */
299	if (ext4_mark_inode_dirty(handle, inode))
300		/* If that failed, just do the required in-core inode clear. */
301		ext4_clear_inode(inode);
302	else
303		ext4_free_inode(handle, inode);
304	ext4_journal_stop(handle);
305	if (freeze_protected)
306		sb_end_intwrite(inode->i_sb);
307	ext4_xattr_inode_array_free(ea_inode_array);
308	return;
309no_delete:
310	/*
311	 * Check out some where else accidentally dirty the evicting inode,
312	 * which may probably cause inode use-after-free issues later.
313	 */
314	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315
316	if (!list_empty(&EXT4_I(inode)->i_fc_list))
317		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
319}
320
321#ifdef CONFIG_QUOTA
322qsize_t *ext4_get_reserved_space(struct inode *inode)
323{
324	return &EXT4_I(inode)->i_reserved_quota;
325}
326#endif
327
328/*
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
331 */
332void ext4_da_update_reserve_space(struct inode *inode,
333					int used, int quota_claim)
334{
335	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336	struct ext4_inode_info *ei = EXT4_I(inode);
337
338	spin_lock(&ei->i_block_reservation_lock);
339	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340	if (unlikely(used > ei->i_reserved_data_blocks)) {
341		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342			 "with only %d reserved data blocks",
343			 __func__, inode->i_ino, used,
344			 ei->i_reserved_data_blocks);
345		WARN_ON(1);
346		used = ei->i_reserved_data_blocks;
347	}
348
349	/* Update per-inode reservations */
350	ei->i_reserved_data_blocks -= used;
351	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352
353	spin_unlock(&ei->i_block_reservation_lock);
354
355	/* Update quota subsystem for data blocks */
356	if (quota_claim)
357		dquot_claim_block(inode, EXT4_C2B(sbi, used));
358	else {
359		/*
360		 * We did fallocate with an offset that is already delayed
361		 * allocated. So on delayed allocated writeback we should
362		 * not re-claim the quota for fallocated blocks.
363		 */
364		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365	}
366
367	/*
368	 * If we have done all the pending block allocations and if
369	 * there aren't any writers on the inode, we can discard the
370	 * inode's preallocations.
371	 */
372	if ((ei->i_reserved_data_blocks == 0) &&
373	    !inode_is_open_for_write(inode))
374		ext4_discard_preallocations(inode);
375}
376
377static int __check_block_validity(struct inode *inode, const char *func,
378				unsigned int line,
379				struct ext4_map_blocks *map)
380{
381	if (ext4_has_feature_journal(inode->i_sb) &&
382	    (inode->i_ino ==
383	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384		return 0;
385	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386		ext4_error_inode(inode, func, line, map->m_pblk,
387				 "lblock %lu mapped to illegal pblock %llu "
388				 "(length %d)", (unsigned long) map->m_lblk,
389				 map->m_pblk, map->m_len);
390		return -EFSCORRUPTED;
391	}
392	return 0;
393}
394
395int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396		       ext4_lblk_t len)
397{
398	int ret;
399
400	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401		return fscrypt_zeroout_range(inode, lblk, pblk, len);
402
403	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404	if (ret > 0)
405		ret = 0;
406
407	return ret;
408}
409
410#define check_block_validity(inode, map)	\
411	__check_block_validity((inode), __func__, __LINE__, (map))
412
413#ifdef ES_AGGRESSIVE_TEST
414static void ext4_map_blocks_es_recheck(handle_t *handle,
415				       struct inode *inode,
416				       struct ext4_map_blocks *es_map,
417				       struct ext4_map_blocks *map,
418				       int flags)
419{
420	int retval;
421
422	map->m_flags = 0;
423	/*
424	 * There is a race window that the result is not the same.
425	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
426	 * is that we lookup a block mapping in extent status tree with
427	 * out taking i_data_sem.  So at the time the unwritten extent
428	 * could be converted.
429	 */
430	down_read(&EXT4_I(inode)->i_data_sem);
431	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432		retval = ext4_ext_map_blocks(handle, inode, map, 0);
433	} else {
434		retval = ext4_ind_map_blocks(handle, inode, map, 0);
435	}
436	up_read((&EXT4_I(inode)->i_data_sem));
437
438	/*
439	 * We don't check m_len because extent will be collpased in status
440	 * tree.  So the m_len might not equal.
441	 */
442	if (es_map->m_lblk != map->m_lblk ||
443	    es_map->m_flags != map->m_flags ||
444	    es_map->m_pblk != map->m_pblk) {
445		printk("ES cache assertion failed for inode: %lu "
446		       "es_cached ex [%d/%d/%llu/%x] != "
447		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448		       inode->i_ino, es_map->m_lblk, es_map->m_len,
449		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
450		       map->m_len, map->m_pblk, map->m_flags,
451		       retval, flags);
452	}
453}
454#endif /* ES_AGGRESSIVE_TEST */
455
456/*
457 * The ext4_map_blocks() function tries to look up the requested blocks,
458 * and returns if the blocks are already mapped.
459 *
460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461 * and store the allocated blocks in the result buffer head and mark it
462 * mapped.
463 *
464 * If file type is extents based, it will call ext4_ext_map_blocks(),
465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466 * based files
467 *
468 * On success, it returns the number of blocks being mapped or allocated.
469 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
470 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
471 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
472 *
473 * It returns 0 if plain look up failed (blocks have not been allocated), in
474 * that case, @map is returned as unmapped but we still do fill map->m_len to
475 * indicate the length of a hole starting at map->m_lblk.
476 *
477 * It returns the error in case of allocation failure.
478 */
479int ext4_map_blocks(handle_t *handle, struct inode *inode,
480		    struct ext4_map_blocks *map, int flags)
481{
482	struct extent_status es;
483	int retval;
484	int ret = 0;
485#ifdef ES_AGGRESSIVE_TEST
486	struct ext4_map_blocks orig_map;
487
488	memcpy(&orig_map, map, sizeof(*map));
489#endif
490
491	map->m_flags = 0;
492	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
493		  flags, map->m_len, (unsigned long) map->m_lblk);
494
495	/*
496	 * ext4_map_blocks returns an int, and m_len is an unsigned int
497	 */
498	if (unlikely(map->m_len > INT_MAX))
499		map->m_len = INT_MAX;
500
501	/* We can handle the block number less than EXT_MAX_BLOCKS */
502	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
503		return -EFSCORRUPTED;
504
505	/* Lookup extent status tree firstly */
506	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
507	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
508		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
509			map->m_pblk = ext4_es_pblock(&es) +
510					map->m_lblk - es.es_lblk;
511			map->m_flags |= ext4_es_is_written(&es) ?
512					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
513			retval = es.es_len - (map->m_lblk - es.es_lblk);
514			if (retval > map->m_len)
515				retval = map->m_len;
516			map->m_len = retval;
517		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
518			map->m_pblk = 0;
519			map->m_flags |= ext4_es_is_delayed(&es) ?
520					EXT4_MAP_DELAYED : 0;
521			retval = es.es_len - (map->m_lblk - es.es_lblk);
522			if (retval > map->m_len)
523				retval = map->m_len;
524			map->m_len = retval;
525			retval = 0;
526		} else {
527			BUG();
528		}
529
530		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
531			return retval;
532#ifdef ES_AGGRESSIVE_TEST
533		ext4_map_blocks_es_recheck(handle, inode, map,
534					   &orig_map, flags);
535#endif
536		goto found;
537	}
538	/*
539	 * In the query cache no-wait mode, nothing we can do more if we
540	 * cannot find extent in the cache.
541	 */
542	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
543		return 0;
544
545	/*
546	 * Try to see if we can get the block without requesting a new
547	 * file system block.
548	 */
549	down_read(&EXT4_I(inode)->i_data_sem);
550	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
551		retval = ext4_ext_map_blocks(handle, inode, map, 0);
552	} else {
553		retval = ext4_ind_map_blocks(handle, inode, map, 0);
554	}
555	if (retval > 0) {
556		unsigned int status;
557
558		if (unlikely(retval != map->m_len)) {
559			ext4_warning(inode->i_sb,
560				     "ES len assertion failed for inode "
561				     "%lu: retval %d != map->m_len %d",
562				     inode->i_ino, retval, map->m_len);
563			WARN_ON(1);
564		}
565
566		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569		    !(status & EXTENT_STATUS_WRITTEN) &&
570		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
571				       map->m_lblk + map->m_len - 1))
572			status |= EXTENT_STATUS_DELAYED;
573		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
574				      map->m_pblk, status);
575	}
576	up_read((&EXT4_I(inode)->i_data_sem));
577
578found:
579	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
580		ret = check_block_validity(inode, map);
581		if (ret != 0)
582			return ret;
583	}
584
585	/* If it is only a block(s) look up */
586	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
587		return retval;
588
589	/*
590	 * Returns if the blocks have already allocated
591	 *
592	 * Note that if blocks have been preallocated
593	 * ext4_ext_map_blocks() returns with buffer head unmapped
594	 */
595	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
596		/*
597		 * If we need to convert extent to unwritten
598		 * we continue and do the actual work in
599		 * ext4_ext_map_blocks()
600		 */
601		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
602			return retval;
603
604	/*
605	 * Here we clear m_flags because after allocating an new extent,
606	 * it will be set again.
607	 */
608	map->m_flags &= ~EXT4_MAP_FLAGS;
609
610	/*
611	 * New blocks allocate and/or writing to unwritten extent
612	 * will possibly result in updating i_data, so we take
613	 * the write lock of i_data_sem, and call get_block()
614	 * with create == 1 flag.
615	 */
616	down_write(&EXT4_I(inode)->i_data_sem);
617
618	/*
619	 * We need to check for EXT4 here because migrate
620	 * could have changed the inode type in between
621	 */
622	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
623		retval = ext4_ext_map_blocks(handle, inode, map, flags);
624	} else {
625		retval = ext4_ind_map_blocks(handle, inode, map, flags);
626
627		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
628			/*
629			 * We allocated new blocks which will result in
630			 * i_data's format changing.  Force the migrate
631			 * to fail by clearing migrate flags
632			 */
633			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
634		}
635	}
636
637	if (retval > 0) {
638		unsigned int status;
639
640		if (unlikely(retval != map->m_len)) {
641			ext4_warning(inode->i_sb,
642				     "ES len assertion failed for inode "
643				     "%lu: retval %d != map->m_len %d",
644				     inode->i_ino, retval, map->m_len);
645			WARN_ON(1);
646		}
647
648		/*
649		 * We have to zeroout blocks before inserting them into extent
650		 * status tree. Otherwise someone could look them up there and
651		 * use them before they are really zeroed. We also have to
652		 * unmap metadata before zeroing as otherwise writeback can
653		 * overwrite zeros with stale data from block device.
654		 */
655		if (flags & EXT4_GET_BLOCKS_ZERO &&
656		    map->m_flags & EXT4_MAP_MAPPED &&
657		    map->m_flags & EXT4_MAP_NEW) {
658			ret = ext4_issue_zeroout(inode, map->m_lblk,
659						 map->m_pblk, map->m_len);
660			if (ret) {
661				retval = ret;
662				goto out_sem;
663			}
664		}
665
666		/*
667		 * If the extent has been zeroed out, we don't need to update
668		 * extent status tree.
669		 */
670		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
672			if (ext4_es_is_written(&es))
673				goto out_sem;
674		}
675		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678		    !(status & EXTENT_STATUS_WRITTEN) &&
679		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
680				       map->m_lblk + map->m_len - 1))
681			status |= EXTENT_STATUS_DELAYED;
682		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
683				      map->m_pblk, status);
684	}
685
686out_sem:
687	up_write((&EXT4_I(inode)->i_data_sem));
688	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
689		ret = check_block_validity(inode, map);
690		if (ret != 0)
691			return ret;
692
693		/*
694		 * Inodes with freshly allocated blocks where contents will be
695		 * visible after transaction commit must be on transaction's
696		 * ordered data list.
697		 */
698		if (map->m_flags & EXT4_MAP_NEW &&
699		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
700		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
701		    !ext4_is_quota_file(inode) &&
702		    ext4_should_order_data(inode)) {
703			loff_t start_byte =
704				(loff_t)map->m_lblk << inode->i_blkbits;
705			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
706
707			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
708				ret = ext4_jbd2_inode_add_wait(handle, inode,
709						start_byte, length);
710			else
711				ret = ext4_jbd2_inode_add_write(handle, inode,
712						start_byte, length);
713			if (ret)
714				return ret;
715		}
716	}
717	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
718				map->m_flags & EXT4_MAP_MAPPED))
719		ext4_fc_track_range(handle, inode, map->m_lblk,
720					map->m_lblk + map->m_len - 1);
721	if (retval < 0)
722		ext_debug(inode, "failed with err %d\n", retval);
723	return retval;
724}
725
726/*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731{
732	unsigned long old_state;
733	unsigned long new_state;
734
735	flags &= EXT4_MAP_FLAGS;
736
737	/* Dummy buffer_head? Set non-atomically. */
738	if (!bh->b_page) {
739		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740		return;
741	}
742	/*
743	 * Someone else may be modifying b_state. Be careful! This is ugly but
744	 * once we get rid of using bh as a container for mapping information
745	 * to pass to / from get_block functions, this can go away.
746	 */
747	old_state = READ_ONCE(bh->b_state);
748	do {
749		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
751}
752
753static int _ext4_get_block(struct inode *inode, sector_t iblock,
754			   struct buffer_head *bh, int flags)
755{
756	struct ext4_map_blocks map;
757	int ret = 0;
758
759	if (ext4_has_inline_data(inode))
760		return -ERANGE;
761
762	map.m_lblk = iblock;
763	map.m_len = bh->b_size >> inode->i_blkbits;
764
765	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
766			      flags);
767	if (ret > 0) {
768		map_bh(bh, inode->i_sb, map.m_pblk);
769		ext4_update_bh_state(bh, map.m_flags);
770		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
771		ret = 0;
772	} else if (ret == 0) {
773		/* hole case, need to fill in bh->b_size */
774		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
775	}
776	return ret;
777}
778
779int ext4_get_block(struct inode *inode, sector_t iblock,
780		   struct buffer_head *bh, int create)
781{
782	return _ext4_get_block(inode, iblock, bh,
783			       create ? EXT4_GET_BLOCKS_CREATE : 0);
784}
785
786/*
787 * Get block function used when preparing for buffered write if we require
788 * creating an unwritten extent if blocks haven't been allocated.  The extent
789 * will be converted to written after the IO is complete.
790 */
791int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
792			     struct buffer_head *bh_result, int create)
793{
794	int ret = 0;
795
796	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
797		   inode->i_ino, create);
798	ret = _ext4_get_block(inode, iblock, bh_result,
799			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
800
801	/*
802	 * If the buffer is marked unwritten, mark it as new to make sure it is
803	 * zeroed out correctly in case of partial writes. Otherwise, there is
804	 * a chance of stale data getting exposed.
805	 */
806	if (ret == 0 && buffer_unwritten(bh_result))
807		set_buffer_new(bh_result);
808
809	return ret;
810}
811
812/* Maximum number of blocks we map for direct IO at once. */
813#define DIO_MAX_BLOCKS 4096
814
815/*
816 * `handle' can be NULL if create is zero
817 */
818struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
819				ext4_lblk_t block, int map_flags)
820{
821	struct ext4_map_blocks map;
822	struct buffer_head *bh;
823	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
824	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
825	int err;
826
827	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
828		    || handle != NULL || create == 0);
829	ASSERT(create == 0 || !nowait);
830
831	map.m_lblk = block;
832	map.m_len = 1;
833	err = ext4_map_blocks(handle, inode, &map, map_flags);
834
835	if (err == 0)
836		return create ? ERR_PTR(-ENOSPC) : NULL;
837	if (err < 0)
838		return ERR_PTR(err);
839
840	if (nowait)
841		return sb_find_get_block(inode->i_sb, map.m_pblk);
842
843	bh = sb_getblk(inode->i_sb, map.m_pblk);
844	if (unlikely(!bh))
845		return ERR_PTR(-ENOMEM);
846	if (map.m_flags & EXT4_MAP_NEW) {
847		ASSERT(create != 0);
848		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
849			    || (handle != NULL));
850
851		/*
852		 * Now that we do not always journal data, we should
853		 * keep in mind whether this should always journal the
854		 * new buffer as metadata.  For now, regular file
855		 * writes use ext4_get_block instead, so it's not a
856		 * problem.
857		 */
858		lock_buffer(bh);
859		BUFFER_TRACE(bh, "call get_create_access");
860		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
861						     EXT4_JTR_NONE);
862		if (unlikely(err)) {
863			unlock_buffer(bh);
864			goto errout;
865		}
866		if (!buffer_uptodate(bh)) {
867			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
868			set_buffer_uptodate(bh);
869		}
870		unlock_buffer(bh);
871		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
872		err = ext4_handle_dirty_metadata(handle, inode, bh);
873		if (unlikely(err))
874			goto errout;
875	} else
876		BUFFER_TRACE(bh, "not a new buffer");
877	return bh;
878errout:
879	brelse(bh);
880	return ERR_PTR(err);
881}
882
883struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
884			       ext4_lblk_t block, int map_flags)
885{
886	struct buffer_head *bh;
887	int ret;
888
889	bh = ext4_getblk(handle, inode, block, map_flags);
890	if (IS_ERR(bh))
891		return bh;
892	if (!bh || ext4_buffer_uptodate(bh))
893		return bh;
894
895	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
896	if (ret) {
897		put_bh(bh);
898		return ERR_PTR(ret);
899	}
900	return bh;
901}
902
903/* Read a contiguous batch of blocks. */
904int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
905		     bool wait, struct buffer_head **bhs)
906{
907	int i, err;
908
909	for (i = 0; i < bh_count; i++) {
910		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
911		if (IS_ERR(bhs[i])) {
912			err = PTR_ERR(bhs[i]);
913			bh_count = i;
914			goto out_brelse;
915		}
916	}
917
918	for (i = 0; i < bh_count; i++)
919		/* Note that NULL bhs[i] is valid because of holes. */
920		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
921			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
922
923	if (!wait)
924		return 0;
925
926	for (i = 0; i < bh_count; i++)
927		if (bhs[i])
928			wait_on_buffer(bhs[i]);
929
930	for (i = 0; i < bh_count; i++) {
931		if (bhs[i] && !buffer_uptodate(bhs[i])) {
932			err = -EIO;
933			goto out_brelse;
934		}
935	}
936	return 0;
937
938out_brelse:
939	for (i = 0; i < bh_count; i++) {
940		brelse(bhs[i]);
941		bhs[i] = NULL;
942	}
943	return err;
944}
945
946int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
947			   struct buffer_head *head,
948			   unsigned from,
949			   unsigned to,
950			   int *partial,
951			   int (*fn)(handle_t *handle, struct inode *inode,
952				     struct buffer_head *bh))
953{
954	struct buffer_head *bh;
955	unsigned block_start, block_end;
956	unsigned blocksize = head->b_size;
957	int err, ret = 0;
958	struct buffer_head *next;
959
960	for (bh = head, block_start = 0;
961	     ret == 0 && (bh != head || !block_start);
962	     block_start = block_end, bh = next) {
963		next = bh->b_this_page;
964		block_end = block_start + blocksize;
965		if (block_end <= from || block_start >= to) {
966			if (partial && !buffer_uptodate(bh))
967				*partial = 1;
968			continue;
969		}
970		err = (*fn)(handle, inode, bh);
971		if (!ret)
972			ret = err;
973	}
974	return ret;
975}
976
977/*
978 * Helper for handling dirtying of journalled data. We also mark the folio as
979 * dirty so that writeback code knows about this page (and inode) contains
980 * dirty data. ext4_writepages() then commits appropriate transaction to
981 * make data stable.
982 */
983static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
984{
985	folio_mark_dirty(bh->b_folio);
986	return ext4_handle_dirty_metadata(handle, NULL, bh);
987}
988
989int do_journal_get_write_access(handle_t *handle, struct inode *inode,
990				struct buffer_head *bh)
991{
992	int dirty = buffer_dirty(bh);
993	int ret;
994
995	if (!buffer_mapped(bh) || buffer_freed(bh))
996		return 0;
997	/*
998	 * __block_write_begin() could have dirtied some buffers. Clean
999	 * the dirty bit as jbd2_journal_get_write_access() could complain
1000	 * otherwise about fs integrity issues. Setting of the dirty bit
1001	 * by __block_write_begin() isn't a real problem here as we clear
1002	 * the bit before releasing a page lock and thus writeback cannot
1003	 * ever write the buffer.
1004	 */
1005	if (dirty)
1006		clear_buffer_dirty(bh);
1007	BUFFER_TRACE(bh, "get write access");
1008	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1009					    EXT4_JTR_NONE);
1010	if (!ret && dirty)
1011		ret = ext4_dirty_journalled_data(handle, bh);
1012	return ret;
1013}
1014
1015#ifdef CONFIG_FS_ENCRYPTION
1016static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1017				  get_block_t *get_block)
1018{
1019	unsigned from = pos & (PAGE_SIZE - 1);
1020	unsigned to = from + len;
1021	struct inode *inode = folio->mapping->host;
1022	unsigned block_start, block_end;
1023	sector_t block;
1024	int err = 0;
1025	unsigned blocksize = inode->i_sb->s_blocksize;
1026	unsigned bbits;
1027	struct buffer_head *bh, *head, *wait[2];
1028	int nr_wait = 0;
1029	int i;
1030
1031	BUG_ON(!folio_test_locked(folio));
1032	BUG_ON(from > PAGE_SIZE);
1033	BUG_ON(to > PAGE_SIZE);
1034	BUG_ON(from > to);
1035
1036	head = folio_buffers(folio);
1037	if (!head)
1038		head = create_empty_buffers(folio, blocksize, 0);
1039	bbits = ilog2(blocksize);
1040	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1041
1042	for (bh = head, block_start = 0; bh != head || !block_start;
1043	    block++, block_start = block_end, bh = bh->b_this_page) {
1044		block_end = block_start + blocksize;
1045		if (block_end <= from || block_start >= to) {
1046			if (folio_test_uptodate(folio)) {
1047				set_buffer_uptodate(bh);
1048			}
1049			continue;
1050		}
1051		if (buffer_new(bh))
1052			clear_buffer_new(bh);
1053		if (!buffer_mapped(bh)) {
1054			WARN_ON(bh->b_size != blocksize);
1055			err = get_block(inode, block, bh, 1);
1056			if (err)
1057				break;
1058			if (buffer_new(bh)) {
1059				if (folio_test_uptodate(folio)) {
1060					clear_buffer_new(bh);
1061					set_buffer_uptodate(bh);
1062					mark_buffer_dirty(bh);
1063					continue;
1064				}
1065				if (block_end > to || block_start < from)
1066					folio_zero_segments(folio, to,
1067							    block_end,
1068							    block_start, from);
1069				continue;
1070			}
1071		}
1072		if (folio_test_uptodate(folio)) {
1073			set_buffer_uptodate(bh);
1074			continue;
1075		}
1076		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077		    !buffer_unwritten(bh) &&
1078		    (block_start < from || block_end > to)) {
1079			ext4_read_bh_lock(bh, 0, false);
1080			wait[nr_wait++] = bh;
1081		}
1082	}
1083	/*
1084	 * If we issued read requests, let them complete.
1085	 */
1086	for (i = 0; i < nr_wait; i++) {
1087		wait_on_buffer(wait[i]);
1088		if (!buffer_uptodate(wait[i]))
1089			err = -EIO;
1090	}
1091	if (unlikely(err)) {
1092		folio_zero_new_buffers(folio, from, to);
1093	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1094		for (i = 0; i < nr_wait; i++) {
1095			int err2;
1096
1097			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1098						blocksize, bh_offset(wait[i]));
1099			if (err2) {
1100				clear_buffer_uptodate(wait[i]);
1101				err = err2;
1102			}
1103		}
1104	}
1105
1106	return err;
1107}
1108#endif
1109
1110/*
1111 * To preserve ordering, it is essential that the hole instantiation and
1112 * the data write be encapsulated in a single transaction.  We cannot
1113 * close off a transaction and start a new one between the ext4_get_block()
1114 * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1115 * ext4_write_begin() is the right place.
1116 */
1117static int ext4_write_begin(struct file *file, struct address_space *mapping,
1118			    loff_t pos, unsigned len,
1119			    struct page **pagep, void **fsdata)
1120{
1121	struct inode *inode = mapping->host;
1122	int ret, needed_blocks;
1123	handle_t *handle;
1124	int retries = 0;
1125	struct folio *folio;
1126	pgoff_t index;
1127	unsigned from, to;
1128
1129	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1130		return -EIO;
1131
1132	trace_ext4_write_begin(inode, pos, len);
1133	/*
1134	 * Reserve one block more for addition to orphan list in case
1135	 * we allocate blocks but write fails for some reason
1136	 */
1137	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1138	index = pos >> PAGE_SHIFT;
1139	from = pos & (PAGE_SIZE - 1);
1140	to = from + len;
1141
1142	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1143		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1144						    pagep);
1145		if (ret < 0)
1146			return ret;
1147		if (ret == 1)
1148			return 0;
1149	}
1150
1151	/*
1152	 * __filemap_get_folio() can take a long time if the
1153	 * system is thrashing due to memory pressure, or if the folio
1154	 * is being written back.  So grab it first before we start
1155	 * the transaction handle.  This also allows us to allocate
1156	 * the folio (if needed) without using GFP_NOFS.
1157	 */
1158retry_grab:
1159	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1160					mapping_gfp_mask(mapping));
1161	if (IS_ERR(folio))
1162		return PTR_ERR(folio);
1163	/*
1164	 * The same as page allocation, we prealloc buffer heads before
1165	 * starting the handle.
1166	 */
1167	if (!folio_buffers(folio))
1168		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1169
1170	folio_unlock(folio);
1171
1172retry_journal:
1173	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1174	if (IS_ERR(handle)) {
1175		folio_put(folio);
1176		return PTR_ERR(handle);
1177	}
1178
1179	folio_lock(folio);
1180	if (folio->mapping != mapping) {
1181		/* The folio got truncated from under us */
1182		folio_unlock(folio);
1183		folio_put(folio);
1184		ext4_journal_stop(handle);
1185		goto retry_grab;
1186	}
1187	/* In case writeback began while the folio was unlocked */
1188	folio_wait_stable(folio);
1189
1190#ifdef CONFIG_FS_ENCRYPTION
1191	if (ext4_should_dioread_nolock(inode))
1192		ret = ext4_block_write_begin(folio, pos, len,
1193					     ext4_get_block_unwritten);
1194	else
1195		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1196#else
1197	if (ext4_should_dioread_nolock(inode))
1198		ret = __block_write_begin(&folio->page, pos, len,
1199					  ext4_get_block_unwritten);
1200	else
1201		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1202#endif
1203	if (!ret && ext4_should_journal_data(inode)) {
1204		ret = ext4_walk_page_buffers(handle, inode,
1205					     folio_buffers(folio), from, to,
1206					     NULL, do_journal_get_write_access);
1207	}
1208
1209	if (ret) {
1210		bool extended = (pos + len > inode->i_size) &&
1211				!ext4_verity_in_progress(inode);
1212
1213		folio_unlock(folio);
1214		/*
1215		 * __block_write_begin may have instantiated a few blocks
1216		 * outside i_size.  Trim these off again. Don't need
1217		 * i_size_read because we hold i_rwsem.
1218		 *
1219		 * Add inode to orphan list in case we crash before
1220		 * truncate finishes
1221		 */
1222		if (extended && ext4_can_truncate(inode))
1223			ext4_orphan_add(handle, inode);
1224
1225		ext4_journal_stop(handle);
1226		if (extended) {
1227			ext4_truncate_failed_write(inode);
1228			/*
1229			 * If truncate failed early the inode might
1230			 * still be on the orphan list; we need to
1231			 * make sure the inode is removed from the
1232			 * orphan list in that case.
1233			 */
1234			if (inode->i_nlink)
1235				ext4_orphan_del(NULL, inode);
1236		}
1237
1238		if (ret == -ENOSPC &&
1239		    ext4_should_retry_alloc(inode->i_sb, &retries))
1240			goto retry_journal;
1241		folio_put(folio);
1242		return ret;
1243	}
1244	*pagep = &folio->page;
1245	return ret;
1246}
1247
1248/* For write_end() in data=journal mode */
1249static int write_end_fn(handle_t *handle, struct inode *inode,
1250			struct buffer_head *bh)
1251{
1252	int ret;
1253	if (!buffer_mapped(bh) || buffer_freed(bh))
1254		return 0;
1255	set_buffer_uptodate(bh);
1256	ret = ext4_dirty_journalled_data(handle, bh);
1257	clear_buffer_meta(bh);
1258	clear_buffer_prio(bh);
1259	return ret;
1260}
1261
1262/*
1263 * We need to pick up the new inode size which generic_commit_write gave us
1264 * `file' can be NULL - eg, when called from page_symlink().
1265 *
1266 * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1267 * buffers are managed internally.
1268 */
1269static int ext4_write_end(struct file *file,
1270			  struct address_space *mapping,
1271			  loff_t pos, unsigned len, unsigned copied,
1272			  struct page *page, void *fsdata)
1273{
1274	struct folio *folio = page_folio(page);
1275	handle_t *handle = ext4_journal_current_handle();
1276	struct inode *inode = mapping->host;
1277	loff_t old_size = inode->i_size;
1278	int ret = 0, ret2;
1279	int i_size_changed = 0;
1280	bool verity = ext4_verity_in_progress(inode);
1281
1282	trace_ext4_write_end(inode, pos, len, copied);
1283
1284	if (ext4_has_inline_data(inode) &&
1285	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1286		return ext4_write_inline_data_end(inode, pos, len, copied,
1287						  folio);
1288
1289	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1290	/*
1291	 * it's important to update i_size while still holding folio lock:
1292	 * page writeout could otherwise come in and zero beyond i_size.
1293	 *
1294	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1295	 * blocks are being written past EOF, so skip the i_size update.
1296	 */
1297	if (!verity)
1298		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1299	folio_unlock(folio);
1300	folio_put(folio);
1301
1302	if (old_size < pos && !verity)
1303		pagecache_isize_extended(inode, old_size, pos);
1304	/*
1305	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1306	 * makes the holding time of folio lock longer. Second, it forces lock
1307	 * ordering of folio lock and transaction start for journaling
1308	 * filesystems.
1309	 */
1310	if (i_size_changed)
1311		ret = ext4_mark_inode_dirty(handle, inode);
1312
1313	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1314		/* if we have allocated more blocks and copied
1315		 * less. We will have blocks allocated outside
1316		 * inode->i_size. So truncate them
1317		 */
1318		ext4_orphan_add(handle, inode);
1319
1320	ret2 = ext4_journal_stop(handle);
1321	if (!ret)
1322		ret = ret2;
1323
1324	if (pos + len > inode->i_size && !verity) {
1325		ext4_truncate_failed_write(inode);
1326		/*
1327		 * If truncate failed early the inode might still be
1328		 * on the orphan list; we need to make sure the inode
1329		 * is removed from the orphan list in that case.
1330		 */
1331		if (inode->i_nlink)
1332			ext4_orphan_del(NULL, inode);
1333	}
1334
1335	return ret ? ret : copied;
1336}
1337
1338/*
1339 * This is a private version of folio_zero_new_buffers() which doesn't
1340 * set the buffer to be dirty, since in data=journalled mode we need
1341 * to call ext4_dirty_journalled_data() instead.
1342 */
1343static void ext4_journalled_zero_new_buffers(handle_t *handle,
1344					    struct inode *inode,
1345					    struct folio *folio,
1346					    unsigned from, unsigned to)
1347{
1348	unsigned int block_start = 0, block_end;
1349	struct buffer_head *head, *bh;
1350
1351	bh = head = folio_buffers(folio);
1352	do {
1353		block_end = block_start + bh->b_size;
1354		if (buffer_new(bh)) {
1355			if (block_end > from && block_start < to) {
1356				if (!folio_test_uptodate(folio)) {
1357					unsigned start, size;
1358
1359					start = max(from, block_start);
1360					size = min(to, block_end) - start;
1361
1362					folio_zero_range(folio, start, size);
1363					write_end_fn(handle, inode, bh);
1364				}
1365				clear_buffer_new(bh);
1366			}
1367		}
1368		block_start = block_end;
1369		bh = bh->b_this_page;
1370	} while (bh != head);
1371}
1372
1373static int ext4_journalled_write_end(struct file *file,
1374				     struct address_space *mapping,
1375				     loff_t pos, unsigned len, unsigned copied,
1376				     struct page *page, void *fsdata)
1377{
1378	struct folio *folio = page_folio(page);
1379	handle_t *handle = ext4_journal_current_handle();
1380	struct inode *inode = mapping->host;
1381	loff_t old_size = inode->i_size;
1382	int ret = 0, ret2;
1383	int partial = 0;
1384	unsigned from, to;
1385	int size_changed = 0;
1386	bool verity = ext4_verity_in_progress(inode);
1387
1388	trace_ext4_journalled_write_end(inode, pos, len, copied);
1389	from = pos & (PAGE_SIZE - 1);
1390	to = from + len;
1391
1392	BUG_ON(!ext4_handle_valid(handle));
1393
1394	if (ext4_has_inline_data(inode))
1395		return ext4_write_inline_data_end(inode, pos, len, copied,
1396						  folio);
1397
1398	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1399		copied = 0;
1400		ext4_journalled_zero_new_buffers(handle, inode, folio,
1401						 from, to);
1402	} else {
1403		if (unlikely(copied < len))
1404			ext4_journalled_zero_new_buffers(handle, inode, folio,
1405							 from + copied, to);
1406		ret = ext4_walk_page_buffers(handle, inode,
1407					     folio_buffers(folio),
1408					     from, from + copied, &partial,
1409					     write_end_fn);
1410		if (!partial)
1411			folio_mark_uptodate(folio);
1412	}
1413	if (!verity)
1414		size_changed = ext4_update_inode_size(inode, pos + copied);
1415	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1416	folio_unlock(folio);
1417	folio_put(folio);
1418
1419	if (old_size < pos && !verity)
1420		pagecache_isize_extended(inode, old_size, pos);
1421
1422	if (size_changed) {
1423		ret2 = ext4_mark_inode_dirty(handle, inode);
1424		if (!ret)
1425			ret = ret2;
1426	}
1427
1428	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1429		/* if we have allocated more blocks and copied
1430		 * less. We will have blocks allocated outside
1431		 * inode->i_size. So truncate them
1432		 */
1433		ext4_orphan_add(handle, inode);
1434
1435	ret2 = ext4_journal_stop(handle);
1436	if (!ret)
1437		ret = ret2;
1438	if (pos + len > inode->i_size && !verity) {
1439		ext4_truncate_failed_write(inode);
1440		/*
1441		 * If truncate failed early the inode might still be
1442		 * on the orphan list; we need to make sure the inode
1443		 * is removed from the orphan list in that case.
1444		 */
1445		if (inode->i_nlink)
1446			ext4_orphan_del(NULL, inode);
1447	}
1448
1449	return ret ? ret : copied;
1450}
1451
1452/*
1453 * Reserve space for a single cluster
1454 */
1455static int ext4_da_reserve_space(struct inode *inode)
1456{
1457	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458	struct ext4_inode_info *ei = EXT4_I(inode);
1459	int ret;
1460
1461	/*
1462	 * We will charge metadata quota at writeout time; this saves
1463	 * us from metadata over-estimation, though we may go over by
1464	 * a small amount in the end.  Here we just reserve for data.
1465	 */
1466	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467	if (ret)
1468		return ret;
1469
1470	spin_lock(&ei->i_block_reservation_lock);
1471	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472		spin_unlock(&ei->i_block_reservation_lock);
1473		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474		return -ENOSPC;
1475	}
1476	ei->i_reserved_data_blocks++;
1477	trace_ext4_da_reserve_space(inode);
1478	spin_unlock(&ei->i_block_reservation_lock);
1479
1480	return 0;       /* success */
1481}
1482
1483void ext4_da_release_space(struct inode *inode, int to_free)
1484{
1485	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486	struct ext4_inode_info *ei = EXT4_I(inode);
1487
1488	if (!to_free)
1489		return;		/* Nothing to release, exit */
1490
1491	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492
1493	trace_ext4_da_release_space(inode, to_free);
1494	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495		/*
1496		 * if there aren't enough reserved blocks, then the
1497		 * counter is messed up somewhere.  Since this
1498		 * function is called from invalidate page, it's
1499		 * harmless to return without any action.
1500		 */
1501		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502			 "ino %lu, to_free %d with only %d reserved "
1503			 "data blocks", inode->i_ino, to_free,
1504			 ei->i_reserved_data_blocks);
1505		WARN_ON(1);
1506		to_free = ei->i_reserved_data_blocks;
1507	}
1508	ei->i_reserved_data_blocks -= to_free;
1509
1510	/* update fs dirty data blocks counter */
1511	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512
1513	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516}
1517
1518/*
1519 * Delayed allocation stuff
1520 */
1521
1522struct mpage_da_data {
1523	/* These are input fields for ext4_do_writepages() */
1524	struct inode *inode;
1525	struct writeback_control *wbc;
1526	unsigned int can_map:1;	/* Can writepages call map blocks? */
1527
1528	/* These are internal state of ext4_do_writepages() */
1529	pgoff_t first_page;	/* The first page to write */
1530	pgoff_t next_page;	/* Current page to examine */
1531	pgoff_t last_page;	/* Last page to examine */
1532	/*
1533	 * Extent to map - this can be after first_page because that can be
1534	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1535	 * is delalloc or unwritten.
1536	 */
1537	struct ext4_map_blocks map;
1538	struct ext4_io_submit io_submit;	/* IO submission data */
1539	unsigned int do_map:1;
1540	unsigned int scanned_until_end:1;
1541	unsigned int journalled_more_data:1;
1542};
1543
1544static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545				       bool invalidate)
1546{
1547	unsigned nr, i;
1548	pgoff_t index, end;
1549	struct folio_batch fbatch;
1550	struct inode *inode = mpd->inode;
1551	struct address_space *mapping = inode->i_mapping;
1552
1553	/* This is necessary when next_page == 0. */
1554	if (mpd->first_page >= mpd->next_page)
1555		return;
1556
1557	mpd->scanned_until_end = 0;
1558	index = mpd->first_page;
1559	end   = mpd->next_page - 1;
1560	if (invalidate) {
1561		ext4_lblk_t start, last;
1562		start = index << (PAGE_SHIFT - inode->i_blkbits);
1563		last = end << (PAGE_SHIFT - inode->i_blkbits);
1564
1565		/*
1566		 * avoid racing with extent status tree scans made by
1567		 * ext4_insert_delayed_block()
1568		 */
1569		down_write(&EXT4_I(inode)->i_data_sem);
1570		ext4_es_remove_extent(inode, start, last - start + 1);
1571		up_write(&EXT4_I(inode)->i_data_sem);
1572	}
1573
1574	folio_batch_init(&fbatch);
1575	while (index <= end) {
1576		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1577		if (nr == 0)
1578			break;
1579		for (i = 0; i < nr; i++) {
1580			struct folio *folio = fbatch.folios[i];
1581
1582			if (folio->index < mpd->first_page)
1583				continue;
1584			if (folio_next_index(folio) - 1 > end)
1585				continue;
1586			BUG_ON(!folio_test_locked(folio));
1587			BUG_ON(folio_test_writeback(folio));
1588			if (invalidate) {
1589				if (folio_mapped(folio))
1590					folio_clear_dirty_for_io(folio);
1591				block_invalidate_folio(folio, 0,
1592						folio_size(folio));
1593				folio_clear_uptodate(folio);
1594			}
1595			folio_unlock(folio);
1596		}
1597		folio_batch_release(&fbatch);
1598	}
1599}
1600
1601static void ext4_print_free_blocks(struct inode *inode)
1602{
1603	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604	struct super_block *sb = inode->i_sb;
1605	struct ext4_inode_info *ei = EXT4_I(inode);
1606
1607	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608	       EXT4_C2B(EXT4_SB(inode->i_sb),
1609			ext4_count_free_clusters(sb)));
1610	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612	       (long long) EXT4_C2B(EXT4_SB(sb),
1613		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615	       (long long) EXT4_C2B(EXT4_SB(sb),
1616		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619		 ei->i_reserved_data_blocks);
1620	return;
1621}
1622
1623/*
1624 * ext4_insert_delayed_block - adds a delayed block to the extents status
1625 *                             tree, incrementing the reserved cluster/block
1626 *                             count or making a pending reservation
1627 *                             where needed
1628 *
1629 * @inode - file containing the newly added block
1630 * @lblk - logical block to be added
1631 *
1632 * Returns 0 on success, negative error code on failure.
1633 */
1634static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1635{
1636	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637	int ret;
1638	bool allocated = false;
1639
1640	/*
1641	 * If the cluster containing lblk is shared with a delayed,
1642	 * written, or unwritten extent in a bigalloc file system, it's
1643	 * already been accounted for and does not need to be reserved.
1644	 * A pending reservation must be made for the cluster if it's
1645	 * shared with a written or unwritten extent and doesn't already
1646	 * have one.  Written and unwritten extents can be purged from the
1647	 * extents status tree if the system is under memory pressure, so
1648	 * it's necessary to examine the extent tree if a search of the
1649	 * extents status tree doesn't get a match.
1650	 */
1651	if (sbi->s_cluster_ratio == 1) {
1652		ret = ext4_da_reserve_space(inode);
1653		if (ret != 0)   /* ENOSPC */
1654			return ret;
1655	} else {   /* bigalloc */
1656		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1657			if (!ext4_es_scan_clu(inode,
1658					      &ext4_es_is_mapped, lblk)) {
1659				ret = ext4_clu_mapped(inode,
1660						      EXT4_B2C(sbi, lblk));
1661				if (ret < 0)
1662					return ret;
1663				if (ret == 0) {
1664					ret = ext4_da_reserve_space(inode);
1665					if (ret != 0)   /* ENOSPC */
1666						return ret;
1667				} else {
1668					allocated = true;
1669				}
1670			} else {
1671				allocated = true;
1672			}
1673		}
1674	}
1675
1676	ext4_es_insert_delayed_block(inode, lblk, allocated);
1677	return 0;
1678}
1679
1680/*
1681 * This function is grabs code from the very beginning of
1682 * ext4_map_blocks, but assumes that the caller is from delayed write
1683 * time. This function looks up the requested blocks and sets the
1684 * buffer delay bit under the protection of i_data_sem.
1685 */
1686static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687			      struct ext4_map_blocks *map,
1688			      struct buffer_head *bh)
1689{
1690	struct extent_status es;
1691	int retval;
1692	sector_t invalid_block = ~((sector_t) 0xffff);
1693#ifdef ES_AGGRESSIVE_TEST
1694	struct ext4_map_blocks orig_map;
1695
1696	memcpy(&orig_map, map, sizeof(*map));
1697#endif
1698
1699	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1700		invalid_block = ~0;
1701
1702	map->m_flags = 0;
1703	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1704		  (unsigned long) map->m_lblk);
1705
1706	/* Lookup extent status tree firstly */
1707	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1708		if (ext4_es_is_hole(&es))
1709			goto add_delayed;
1710
1711		/*
1712		 * Delayed extent could be allocated by fallocate.
1713		 * So we need to check it.
1714		 */
1715		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716			map_bh(bh, inode->i_sb, invalid_block);
1717			set_buffer_new(bh);
1718			set_buffer_delay(bh);
1719			return 0;
1720		}
1721
1722		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723		retval = es.es_len - (iblock - es.es_lblk);
1724		if (retval > map->m_len)
1725			retval = map->m_len;
1726		map->m_len = retval;
1727		if (ext4_es_is_written(&es))
1728			map->m_flags |= EXT4_MAP_MAPPED;
1729		else if (ext4_es_is_unwritten(&es))
1730			map->m_flags |= EXT4_MAP_UNWRITTEN;
1731		else
1732			BUG();
1733
1734#ifdef ES_AGGRESSIVE_TEST
1735		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736#endif
1737		return retval;
1738	}
1739
1740	/*
1741	 * Try to see if we can get the block without requesting a new
1742	 * file system block.
1743	 */
1744	down_read(&EXT4_I(inode)->i_data_sem);
1745	if (ext4_has_inline_data(inode))
1746		retval = 0;
1747	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1748		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1749	else
1750		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1751	if (retval < 0) {
1752		up_read(&EXT4_I(inode)->i_data_sem);
1753		return retval;
1754	}
1755	if (retval > 0) {
1756		unsigned int status;
1757
1758		if (unlikely(retval != map->m_len)) {
1759			ext4_warning(inode->i_sb,
1760				     "ES len assertion failed for inode "
1761				     "%lu: retval %d != map->m_len %d",
1762				     inode->i_ino, retval, map->m_len);
1763			WARN_ON(1);
1764		}
1765
1766		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1767				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1768		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1769				      map->m_pblk, status);
1770		up_read(&EXT4_I(inode)->i_data_sem);
1771		return retval;
1772	}
1773	up_read(&EXT4_I(inode)->i_data_sem);
1774
1775add_delayed:
1776	down_write(&EXT4_I(inode)->i_data_sem);
1777	retval = ext4_insert_delayed_block(inode, map->m_lblk);
1778	up_write(&EXT4_I(inode)->i_data_sem);
1779	if (retval)
1780		return retval;
1781
1782	map_bh(bh, inode->i_sb, invalid_block);
1783	set_buffer_new(bh);
1784	set_buffer_delay(bh);
1785	return retval;
1786}
1787
1788/*
1789 * This is a special get_block_t callback which is used by
1790 * ext4_da_write_begin().  It will either return mapped block or
1791 * reserve space for a single block.
1792 *
1793 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1794 * We also have b_blocknr = -1 and b_bdev initialized properly
1795 *
1796 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1797 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1798 * initialized properly.
1799 */
1800int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1801			   struct buffer_head *bh, int create)
1802{
1803	struct ext4_map_blocks map;
1804	int ret = 0;
1805
1806	BUG_ON(create == 0);
1807	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1808
1809	map.m_lblk = iblock;
1810	map.m_len = 1;
1811
1812	/*
1813	 * first, we need to know whether the block is allocated already
1814	 * preallocated blocks are unmapped but should treated
1815	 * the same as allocated blocks.
1816	 */
1817	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1818	if (ret <= 0)
1819		return ret;
1820
1821	map_bh(bh, inode->i_sb, map.m_pblk);
1822	ext4_update_bh_state(bh, map.m_flags);
1823
1824	if (buffer_unwritten(bh)) {
1825		/* A delayed write to unwritten bh should be marked
1826		 * new and mapped.  Mapped ensures that we don't do
1827		 * get_block multiple times when we write to the same
1828		 * offset and new ensures that we do proper zero out
1829		 * for partial write.
1830		 */
1831		set_buffer_new(bh);
1832		set_buffer_mapped(bh);
1833	}
1834	return 0;
1835}
1836
1837static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1838{
1839	mpd->first_page += folio_nr_pages(folio);
1840	folio_unlock(folio);
1841}
1842
1843static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1844{
1845	size_t len;
1846	loff_t size;
1847	int err;
1848
1849	BUG_ON(folio->index != mpd->first_page);
1850	folio_clear_dirty_for_io(folio);
1851	/*
1852	 * We have to be very careful here!  Nothing protects writeback path
1853	 * against i_size changes and the page can be writeably mapped into
1854	 * page tables. So an application can be growing i_size and writing
1855	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1856	 * write-protects our page in page tables and the page cannot get
1857	 * written to again until we release folio lock. So only after
1858	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1859	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1860	 * on the barrier provided by folio_test_clear_dirty() in
1861	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1862	 * after page tables are updated.
1863	 */
1864	size = i_size_read(mpd->inode);
1865	len = folio_size(folio);
1866	if (folio_pos(folio) + len > size &&
1867	    !ext4_verity_in_progress(mpd->inode))
1868		len = size & ~PAGE_MASK;
1869	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1870	if (!err)
1871		mpd->wbc->nr_to_write--;
1872
1873	return err;
1874}
1875
1876#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1877
1878/*
1879 * mballoc gives us at most this number of blocks...
1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881 * The rest of mballoc seems to handle chunks up to full group size.
1882 */
1883#define MAX_WRITEPAGES_EXTENT_LEN 2048
1884
1885/*
1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1887 *
1888 * @mpd - extent of blocks
1889 * @lblk - logical number of the block in the file
1890 * @bh - buffer head we want to add to the extent
1891 *
1892 * The function is used to collect contig. blocks in the same state. If the
1893 * buffer doesn't require mapping for writeback and we haven't started the
1894 * extent of buffers to map yet, the function returns 'true' immediately - the
1895 * caller can write the buffer right away. Otherwise the function returns true
1896 * if the block has been added to the extent, false if the block couldn't be
1897 * added.
1898 */
1899static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1900				   struct buffer_head *bh)
1901{
1902	struct ext4_map_blocks *map = &mpd->map;
1903
1904	/* Buffer that doesn't need mapping for writeback? */
1905	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1906	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1907		/* So far no extent to map => we write the buffer right away */
1908		if (map->m_len == 0)
1909			return true;
1910		return false;
1911	}
1912
1913	/* First block in the extent? */
1914	if (map->m_len == 0) {
1915		/* We cannot map unless handle is started... */
1916		if (!mpd->do_map)
1917			return false;
1918		map->m_lblk = lblk;
1919		map->m_len = 1;
1920		map->m_flags = bh->b_state & BH_FLAGS;
1921		return true;
1922	}
1923
1924	/* Don't go larger than mballoc is willing to allocate */
1925	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1926		return false;
1927
1928	/* Can we merge the block to our big extent? */
1929	if (lblk == map->m_lblk + map->m_len &&
1930	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1931		map->m_len++;
1932		return true;
1933	}
1934	return false;
1935}
1936
1937/*
1938 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1939 *
1940 * @mpd - extent of blocks for mapping
1941 * @head - the first buffer in the page
1942 * @bh - buffer we should start processing from
1943 * @lblk - logical number of the block in the file corresponding to @bh
1944 *
1945 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1946 * the page for IO if all buffers in this page were mapped and there's no
1947 * accumulated extent of buffers to map or add buffers in the page to the
1948 * extent of buffers to map. The function returns 1 if the caller can continue
1949 * by processing the next page, 0 if it should stop adding buffers to the
1950 * extent to map because we cannot extend it anymore. It can also return value
1951 * < 0 in case of error during IO submission.
1952 */
1953static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1954				   struct buffer_head *head,
1955				   struct buffer_head *bh,
1956				   ext4_lblk_t lblk)
1957{
1958	struct inode *inode = mpd->inode;
1959	int err;
1960	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1961							>> inode->i_blkbits;
1962
1963	if (ext4_verity_in_progress(inode))
1964		blocks = EXT_MAX_BLOCKS;
1965
1966	do {
1967		BUG_ON(buffer_locked(bh));
1968
1969		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1970			/* Found extent to map? */
1971			if (mpd->map.m_len)
1972				return 0;
1973			/* Buffer needs mapping and handle is not started? */
1974			if (!mpd->do_map)
1975				return 0;
1976			/* Everything mapped so far and we hit EOF */
1977			break;
1978		}
1979	} while (lblk++, (bh = bh->b_this_page) != head);
1980	/* So far everything mapped? Submit the page for IO. */
1981	if (mpd->map.m_len == 0) {
1982		err = mpage_submit_folio(mpd, head->b_folio);
1983		if (err < 0)
1984			return err;
1985		mpage_folio_done(mpd, head->b_folio);
1986	}
1987	if (lblk >= blocks) {
1988		mpd->scanned_until_end = 1;
1989		return 0;
1990	}
1991	return 1;
1992}
1993
1994/*
1995 * mpage_process_folio - update folio buffers corresponding to changed extent
1996 *			 and may submit fully mapped page for IO
1997 * @mpd: description of extent to map, on return next extent to map
1998 * @folio: Contains these buffers.
1999 * @m_lblk: logical block mapping.
2000 * @m_pblk: corresponding physical mapping.
2001 * @map_bh: determines on return whether this page requires any further
2002 *		  mapping or not.
2003 *
2004 * Scan given folio buffers corresponding to changed extent and update buffer
2005 * state according to new extent state.
2006 * We map delalloc buffers to their physical location, clear unwritten bits.
2007 * If the given folio is not fully mapped, we update @mpd to the next extent in
2008 * the given folio that needs mapping & return @map_bh as true.
2009 */
2010static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2011			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2012			      bool *map_bh)
2013{
2014	struct buffer_head *head, *bh;
2015	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2016	ext4_lblk_t lblk = *m_lblk;
2017	ext4_fsblk_t pblock = *m_pblk;
2018	int err = 0;
2019	int blkbits = mpd->inode->i_blkbits;
2020	ssize_t io_end_size = 0;
2021	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2022
2023	bh = head = folio_buffers(folio);
2024	do {
2025		if (lblk < mpd->map.m_lblk)
2026			continue;
2027		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2028			/*
2029			 * Buffer after end of mapped extent.
2030			 * Find next buffer in the folio to map.
2031			 */
2032			mpd->map.m_len = 0;
2033			mpd->map.m_flags = 0;
2034			io_end_vec->size += io_end_size;
2035
2036			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2037			if (err > 0)
2038				err = 0;
2039			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2040				io_end_vec = ext4_alloc_io_end_vec(io_end);
2041				if (IS_ERR(io_end_vec)) {
2042					err = PTR_ERR(io_end_vec);
2043					goto out;
2044				}
2045				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2046			}
2047			*map_bh = true;
2048			goto out;
2049		}
2050		if (buffer_delay(bh)) {
2051			clear_buffer_delay(bh);
2052			bh->b_blocknr = pblock++;
2053		}
2054		clear_buffer_unwritten(bh);
2055		io_end_size += (1 << blkbits);
2056	} while (lblk++, (bh = bh->b_this_page) != head);
2057
2058	io_end_vec->size += io_end_size;
2059	*map_bh = false;
2060out:
2061	*m_lblk = lblk;
2062	*m_pblk = pblock;
2063	return err;
2064}
2065
2066/*
2067 * mpage_map_buffers - update buffers corresponding to changed extent and
2068 *		       submit fully mapped pages for IO
2069 *
2070 * @mpd - description of extent to map, on return next extent to map
2071 *
2072 * Scan buffers corresponding to changed extent (we expect corresponding pages
2073 * to be already locked) and update buffer state according to new extent state.
2074 * We map delalloc buffers to their physical location, clear unwritten bits,
2075 * and mark buffers as uninit when we perform writes to unwritten extents
2076 * and do extent conversion after IO is finished. If the last page is not fully
2077 * mapped, we update @map to the next extent in the last page that needs
2078 * mapping. Otherwise we submit the page for IO.
2079 */
2080static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2081{
2082	struct folio_batch fbatch;
2083	unsigned nr, i;
2084	struct inode *inode = mpd->inode;
2085	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2086	pgoff_t start, end;
2087	ext4_lblk_t lblk;
2088	ext4_fsblk_t pblock;
2089	int err;
2090	bool map_bh = false;
2091
2092	start = mpd->map.m_lblk >> bpp_bits;
2093	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2094	lblk = start << bpp_bits;
2095	pblock = mpd->map.m_pblk;
2096
2097	folio_batch_init(&fbatch);
2098	while (start <= end) {
2099		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2100		if (nr == 0)
2101			break;
2102		for (i = 0; i < nr; i++) {
2103			struct folio *folio = fbatch.folios[i];
2104
2105			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2106						 &map_bh);
2107			/*
2108			 * If map_bh is true, means page may require further bh
2109			 * mapping, or maybe the page was submitted for IO.
2110			 * So we return to call further extent mapping.
2111			 */
2112			if (err < 0 || map_bh)
2113				goto out;
2114			/* Page fully mapped - let IO run! */
2115			err = mpage_submit_folio(mpd, folio);
2116			if (err < 0)
2117				goto out;
2118			mpage_folio_done(mpd, folio);
2119		}
2120		folio_batch_release(&fbatch);
2121	}
2122	/* Extent fully mapped and matches with page boundary. We are done. */
2123	mpd->map.m_len = 0;
2124	mpd->map.m_flags = 0;
2125	return 0;
2126out:
2127	folio_batch_release(&fbatch);
2128	return err;
2129}
2130
2131static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2132{
2133	struct inode *inode = mpd->inode;
2134	struct ext4_map_blocks *map = &mpd->map;
2135	int get_blocks_flags;
2136	int err, dioread_nolock;
2137
2138	trace_ext4_da_write_pages_extent(inode, map);
2139	/*
2140	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2141	 * to convert an unwritten extent to be initialized (in the case
2142	 * where we have written into one or more preallocated blocks).  It is
2143	 * possible that we're going to need more metadata blocks than
2144	 * previously reserved. However we must not fail because we're in
2145	 * writeback and there is nothing we can do about it so it might result
2146	 * in data loss.  So use reserved blocks to allocate metadata if
2147	 * possible.
2148	 *
2149	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2150	 * the blocks in question are delalloc blocks.  This indicates
2151	 * that the blocks and quotas has already been checked when
2152	 * the data was copied into the page cache.
2153	 */
2154	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2155			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2156			   EXT4_GET_BLOCKS_IO_SUBMIT;
2157	dioread_nolock = ext4_should_dioread_nolock(inode);
2158	if (dioread_nolock)
2159		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2160	if (map->m_flags & BIT(BH_Delay))
2161		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2162
2163	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2164	if (err < 0)
2165		return err;
2166	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2167		if (!mpd->io_submit.io_end->handle &&
2168		    ext4_handle_valid(handle)) {
2169			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2170			handle->h_rsv_handle = NULL;
2171		}
2172		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2173	}
2174
2175	BUG_ON(map->m_len == 0);
2176	return 0;
2177}
2178
2179/*
2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181 *				 mpd->len and submit pages underlying it for IO
2182 *
2183 * @handle - handle for journal operations
2184 * @mpd - extent to map
2185 * @give_up_on_write - we set this to true iff there is a fatal error and there
2186 *                     is no hope of writing the data. The caller should discard
2187 *                     dirty pages to avoid infinite loops.
2188 *
2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191 * them to initialized or split the described range from larger unwritten
2192 * extent. Note that we need not map all the described range since allocation
2193 * can return less blocks or the range is covered by more unwritten extents. We
2194 * cannot map more because we are limited by reserved transaction credits. On
2195 * the other hand we always make sure that the last touched page is fully
2196 * mapped so that it can be written out (and thus forward progress is
2197 * guaranteed). After mapping we submit all mapped pages for IO.
2198 */
2199static int mpage_map_and_submit_extent(handle_t *handle,
2200				       struct mpage_da_data *mpd,
2201				       bool *give_up_on_write)
2202{
2203	struct inode *inode = mpd->inode;
2204	struct ext4_map_blocks *map = &mpd->map;
2205	int err;
2206	loff_t disksize;
2207	int progress = 0;
2208	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2209	struct ext4_io_end_vec *io_end_vec;
2210
2211	io_end_vec = ext4_alloc_io_end_vec(io_end);
2212	if (IS_ERR(io_end_vec))
2213		return PTR_ERR(io_end_vec);
2214	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2215	do {
2216		err = mpage_map_one_extent(handle, mpd);
2217		if (err < 0) {
2218			struct super_block *sb = inode->i_sb;
2219
2220			if (ext4_forced_shutdown(sb))
2221				goto invalidate_dirty_pages;
2222			/*
2223			 * Let the uper layers retry transient errors.
2224			 * In the case of ENOSPC, if ext4_count_free_blocks()
2225			 * is non-zero, a commit should free up blocks.
2226			 */
2227			if ((err == -ENOMEM) ||
2228			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2229				if (progress)
2230					goto update_disksize;
2231				return err;
2232			}
2233			ext4_msg(sb, KERN_CRIT,
2234				 "Delayed block allocation failed for "
2235				 "inode %lu at logical offset %llu with"
2236				 " max blocks %u with error %d",
2237				 inode->i_ino,
2238				 (unsigned long long)map->m_lblk,
2239				 (unsigned)map->m_len, -err);
2240			ext4_msg(sb, KERN_CRIT,
2241				 "This should not happen!! Data will "
2242				 "be lost\n");
2243			if (err == -ENOSPC)
2244				ext4_print_free_blocks(inode);
2245		invalidate_dirty_pages:
2246			*give_up_on_write = true;
2247			return err;
2248		}
2249		progress = 1;
2250		/*
2251		 * Update buffer state, submit mapped pages, and get us new
2252		 * extent to map
2253		 */
2254		err = mpage_map_and_submit_buffers(mpd);
2255		if (err < 0)
2256			goto update_disksize;
2257	} while (map->m_len);
2258
2259update_disksize:
2260	/*
2261	 * Update on-disk size after IO is submitted.  Races with
2262	 * truncate are avoided by checking i_size under i_data_sem.
2263	 */
2264	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2265	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2266		int err2;
2267		loff_t i_size;
2268
2269		down_write(&EXT4_I(inode)->i_data_sem);
2270		i_size = i_size_read(inode);
2271		if (disksize > i_size)
2272			disksize = i_size;
2273		if (disksize > EXT4_I(inode)->i_disksize)
2274			EXT4_I(inode)->i_disksize = disksize;
2275		up_write(&EXT4_I(inode)->i_data_sem);
2276		err2 = ext4_mark_inode_dirty(handle, inode);
2277		if (err2) {
2278			ext4_error_err(inode->i_sb, -err2,
2279				       "Failed to mark inode %lu dirty",
2280				       inode->i_ino);
2281		}
2282		if (!err)
2283			err = err2;
2284	}
2285	return err;
2286}
2287
2288/*
2289 * Calculate the total number of credits to reserve for one writepages
2290 * iteration. This is called from ext4_writepages(). We map an extent of
2291 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2292 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2293 * bpp - 1 blocks in bpp different extents.
2294 */
2295static int ext4_da_writepages_trans_blocks(struct inode *inode)
2296{
2297	int bpp = ext4_journal_blocks_per_page(inode);
2298
2299	return ext4_meta_trans_blocks(inode,
2300				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2301}
2302
2303static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2304				     size_t len)
2305{
2306	struct buffer_head *page_bufs = folio_buffers(folio);
2307	struct inode *inode = folio->mapping->host;
2308	int ret, err;
2309
2310	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2311				     NULL, do_journal_get_write_access);
2312	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2313				     NULL, write_end_fn);
2314	if (ret == 0)
2315		ret = err;
2316	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2317	if (ret == 0)
2318		ret = err;
2319	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2320
2321	return ret;
2322}
2323
2324static int mpage_journal_page_buffers(handle_t *handle,
2325				      struct mpage_da_data *mpd,
2326				      struct folio *folio)
2327{
2328	struct inode *inode = mpd->inode;
2329	loff_t size = i_size_read(inode);
2330	size_t len = folio_size(folio);
2331
2332	folio_clear_checked(folio);
2333	mpd->wbc->nr_to_write--;
2334
2335	if (folio_pos(folio) + len > size &&
2336	    !ext4_verity_in_progress(inode))
2337		len = size - folio_pos(folio);
2338
2339	return ext4_journal_folio_buffers(handle, folio, len);
2340}
2341
2342/*
2343 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2344 * 				 needing mapping, submit mapped pages
2345 *
2346 * @mpd - where to look for pages
2347 *
2348 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2349 * IO immediately. If we cannot map blocks, we submit just already mapped
2350 * buffers in the page for IO and keep page dirty. When we can map blocks and
2351 * we find a page which isn't mapped we start accumulating extent of buffers
2352 * underlying these pages that needs mapping (formed by either delayed or
2353 * unwritten buffers). We also lock the pages containing these buffers. The
2354 * extent found is returned in @mpd structure (starting at mpd->lblk with
2355 * length mpd->len blocks).
2356 *
2357 * Note that this function can attach bios to one io_end structure which are
2358 * neither logically nor physically contiguous. Although it may seem as an
2359 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2360 * case as we need to track IO to all buffers underlying a page in one io_end.
2361 */
2362static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2363{
2364	struct address_space *mapping = mpd->inode->i_mapping;
2365	struct folio_batch fbatch;
2366	unsigned int nr_folios;
2367	pgoff_t index = mpd->first_page;
2368	pgoff_t end = mpd->last_page;
2369	xa_mark_t tag;
2370	int i, err = 0;
2371	int blkbits = mpd->inode->i_blkbits;
2372	ext4_lblk_t lblk;
2373	struct buffer_head *head;
2374	handle_t *handle = NULL;
2375	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2376
2377	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2378		tag = PAGECACHE_TAG_TOWRITE;
2379	else
2380		tag = PAGECACHE_TAG_DIRTY;
2381
2382	mpd->map.m_len = 0;
2383	mpd->next_page = index;
2384	if (ext4_should_journal_data(mpd->inode)) {
2385		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2386					    bpp);
2387		if (IS_ERR(handle))
2388			return PTR_ERR(handle);
2389	}
2390	folio_batch_init(&fbatch);
2391	while (index <= end) {
2392		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2393				tag, &fbatch);
2394		if (nr_folios == 0)
2395			break;
2396
2397		for (i = 0; i < nr_folios; i++) {
2398			struct folio *folio = fbatch.folios[i];
2399
2400			/*
2401			 * Accumulated enough dirty pages? This doesn't apply
2402			 * to WB_SYNC_ALL mode. For integrity sync we have to
2403			 * keep going because someone may be concurrently
2404			 * dirtying pages, and we might have synced a lot of
2405			 * newly appeared dirty pages, but have not synced all
2406			 * of the old dirty pages.
2407			 */
2408			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2409			    mpd->wbc->nr_to_write <=
2410			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2411				goto out;
2412
2413			/* If we can't merge this page, we are done. */
2414			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2415				goto out;
2416
2417			if (handle) {
2418				err = ext4_journal_ensure_credits(handle, bpp,
2419								  0);
2420				if (err < 0)
2421					goto out;
2422			}
2423
2424			folio_lock(folio);
2425			/*
2426			 * If the page is no longer dirty, or its mapping no
2427			 * longer corresponds to inode we are writing (which
2428			 * means it has been truncated or invalidated), or the
2429			 * page is already under writeback and we are not doing
2430			 * a data integrity writeback, skip the page
2431			 */
2432			if (!folio_test_dirty(folio) ||
2433			    (folio_test_writeback(folio) &&
2434			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2435			    unlikely(folio->mapping != mapping)) {
2436				folio_unlock(folio);
2437				continue;
2438			}
2439
2440			folio_wait_writeback(folio);
2441			BUG_ON(folio_test_writeback(folio));
2442
2443			/*
2444			 * Should never happen but for buggy code in
2445			 * other subsystems that call
2446			 * set_page_dirty() without properly warning
2447			 * the file system first.  See [1] for more
2448			 * information.
2449			 *
2450			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2451			 */
2452			if (!folio_buffers(folio)) {
2453				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2454				folio_clear_dirty(folio);
2455				folio_unlock(folio);
2456				continue;
2457			}
2458
2459			if (mpd->map.m_len == 0)
2460				mpd->first_page = folio->index;
2461			mpd->next_page = folio_next_index(folio);
2462			/*
2463			 * Writeout when we cannot modify metadata is simple.
2464			 * Just submit the page. For data=journal mode we
2465			 * first handle writeout of the page for checkpoint and
2466			 * only after that handle delayed page dirtying. This
2467			 * makes sure current data is checkpointed to the final
2468			 * location before possibly journalling it again which
2469			 * is desirable when the page is frequently dirtied
2470			 * through a pin.
2471			 */
2472			if (!mpd->can_map) {
2473				err = mpage_submit_folio(mpd, folio);
2474				if (err < 0)
2475					goto out;
2476				/* Pending dirtying of journalled data? */
2477				if (folio_test_checked(folio)) {
2478					err = mpage_journal_page_buffers(handle,
2479						mpd, folio);
2480					if (err < 0)
2481						goto out;
2482					mpd->journalled_more_data = 1;
2483				}
2484				mpage_folio_done(mpd, folio);
2485			} else {
2486				/* Add all dirty buffers to mpd */
2487				lblk = ((ext4_lblk_t)folio->index) <<
2488					(PAGE_SHIFT - blkbits);
2489				head = folio_buffers(folio);
2490				err = mpage_process_page_bufs(mpd, head, head,
2491						lblk);
2492				if (err <= 0)
2493					goto out;
2494				err = 0;
2495			}
2496		}
2497		folio_batch_release(&fbatch);
2498		cond_resched();
2499	}
2500	mpd->scanned_until_end = 1;
2501	if (handle)
2502		ext4_journal_stop(handle);
2503	return 0;
2504out:
2505	folio_batch_release(&fbatch);
2506	if (handle)
2507		ext4_journal_stop(handle);
2508	return err;
2509}
2510
2511static int ext4_do_writepages(struct mpage_da_data *mpd)
2512{
2513	struct writeback_control *wbc = mpd->wbc;
2514	pgoff_t	writeback_index = 0;
2515	long nr_to_write = wbc->nr_to_write;
2516	int range_whole = 0;
2517	int cycled = 1;
2518	handle_t *handle = NULL;
2519	struct inode *inode = mpd->inode;
2520	struct address_space *mapping = inode->i_mapping;
2521	int needed_blocks, rsv_blocks = 0, ret = 0;
2522	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2523	struct blk_plug plug;
2524	bool give_up_on_write = false;
2525
2526	trace_ext4_writepages(inode, wbc);
2527
2528	/*
2529	 * No pages to write? This is mainly a kludge to avoid starting
2530	 * a transaction for special inodes like journal inode on last iput()
2531	 * because that could violate lock ordering on umount
2532	 */
2533	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2534		goto out_writepages;
2535
2536	/*
2537	 * If the filesystem has aborted, it is read-only, so return
2538	 * right away instead of dumping stack traces later on that
2539	 * will obscure the real source of the problem.  We test
2540	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2541	 * the latter could be true if the filesystem is mounted
2542	 * read-only, and in that case, ext4_writepages should
2543	 * *never* be called, so if that ever happens, we would want
2544	 * the stack trace.
2545	 */
2546	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2547		ret = -EROFS;
2548		goto out_writepages;
2549	}
2550
2551	/*
2552	 * If we have inline data and arrive here, it means that
2553	 * we will soon create the block for the 1st page, so
2554	 * we'd better clear the inline data here.
2555	 */
2556	if (ext4_has_inline_data(inode)) {
2557		/* Just inode will be modified... */
2558		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2559		if (IS_ERR(handle)) {
2560			ret = PTR_ERR(handle);
2561			goto out_writepages;
2562		}
2563		BUG_ON(ext4_test_inode_state(inode,
2564				EXT4_STATE_MAY_INLINE_DATA));
2565		ext4_destroy_inline_data(handle, inode);
2566		ext4_journal_stop(handle);
2567	}
2568
2569	/*
2570	 * data=journal mode does not do delalloc so we just need to writeout /
2571	 * journal already mapped buffers. On the other hand we need to commit
2572	 * transaction to make data stable. We expect all the data to be
2573	 * already in the journal (the only exception are DMA pinned pages
2574	 * dirtied behind our back) so we commit transaction here and run the
2575	 * writeback loop to checkpoint them. The checkpointing is not actually
2576	 * necessary to make data persistent *but* quite a few places (extent
2577	 * shifting operations, fsverity, ...) depend on being able to drop
2578	 * pagecache pages after calling filemap_write_and_wait() and for that
2579	 * checkpointing needs to happen.
2580	 */
2581	if (ext4_should_journal_data(inode)) {
2582		mpd->can_map = 0;
2583		if (wbc->sync_mode == WB_SYNC_ALL)
2584			ext4_fc_commit(sbi->s_journal,
2585				       EXT4_I(inode)->i_datasync_tid);
2586	}
2587	mpd->journalled_more_data = 0;
2588
2589	if (ext4_should_dioread_nolock(inode)) {
2590		/*
2591		 * We may need to convert up to one extent per block in
2592		 * the page and we may dirty the inode.
2593		 */
2594		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2595						PAGE_SIZE >> inode->i_blkbits);
2596	}
2597
2598	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2599		range_whole = 1;
2600
2601	if (wbc->range_cyclic) {
2602		writeback_index = mapping->writeback_index;
2603		if (writeback_index)
2604			cycled = 0;
2605		mpd->first_page = writeback_index;
2606		mpd->last_page = -1;
2607	} else {
2608		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2609		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2610	}
2611
2612	ext4_io_submit_init(&mpd->io_submit, wbc);
2613retry:
2614	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2615		tag_pages_for_writeback(mapping, mpd->first_page,
2616					mpd->last_page);
2617	blk_start_plug(&plug);
2618
2619	/*
2620	 * First writeback pages that don't need mapping - we can avoid
2621	 * starting a transaction unnecessarily and also avoid being blocked
2622	 * in the block layer on device congestion while having transaction
2623	 * started.
2624	 */
2625	mpd->do_map = 0;
2626	mpd->scanned_until_end = 0;
2627	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2628	if (!mpd->io_submit.io_end) {
2629		ret = -ENOMEM;
2630		goto unplug;
2631	}
2632	ret = mpage_prepare_extent_to_map(mpd);
2633	/* Unlock pages we didn't use */
2634	mpage_release_unused_pages(mpd, false);
2635	/* Submit prepared bio */
2636	ext4_io_submit(&mpd->io_submit);
2637	ext4_put_io_end_defer(mpd->io_submit.io_end);
2638	mpd->io_submit.io_end = NULL;
2639	if (ret < 0)
2640		goto unplug;
2641
2642	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2643		/* For each extent of pages we use new io_end */
2644		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2645		if (!mpd->io_submit.io_end) {
2646			ret = -ENOMEM;
2647			break;
2648		}
2649
2650		WARN_ON_ONCE(!mpd->can_map);
2651		/*
2652		 * We have two constraints: We find one extent to map and we
2653		 * must always write out whole page (makes a difference when
2654		 * blocksize < pagesize) so that we don't block on IO when we
2655		 * try to write out the rest of the page. Journalled mode is
2656		 * not supported by delalloc.
2657		 */
2658		BUG_ON(ext4_should_journal_data(inode));
2659		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2660
2661		/* start a new transaction */
2662		handle = ext4_journal_start_with_reserve(inode,
2663				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2664		if (IS_ERR(handle)) {
2665			ret = PTR_ERR(handle);
2666			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2667			       "%ld pages, ino %lu; err %d", __func__,
2668				wbc->nr_to_write, inode->i_ino, ret);
2669			/* Release allocated io_end */
2670			ext4_put_io_end(mpd->io_submit.io_end);
2671			mpd->io_submit.io_end = NULL;
2672			break;
2673		}
2674		mpd->do_map = 1;
2675
2676		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2677		ret = mpage_prepare_extent_to_map(mpd);
2678		if (!ret && mpd->map.m_len)
2679			ret = mpage_map_and_submit_extent(handle, mpd,
2680					&give_up_on_write);
2681		/*
2682		 * Caution: If the handle is synchronous,
2683		 * ext4_journal_stop() can wait for transaction commit
2684		 * to finish which may depend on writeback of pages to
2685		 * complete or on page lock to be released.  In that
2686		 * case, we have to wait until after we have
2687		 * submitted all the IO, released page locks we hold,
2688		 * and dropped io_end reference (for extent conversion
2689		 * to be able to complete) before stopping the handle.
2690		 */
2691		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2692			ext4_journal_stop(handle);
2693			handle = NULL;
2694			mpd->do_map = 0;
2695		}
2696		/* Unlock pages we didn't use */
2697		mpage_release_unused_pages(mpd, give_up_on_write);
2698		/* Submit prepared bio */
2699		ext4_io_submit(&mpd->io_submit);
2700
2701		/*
2702		 * Drop our io_end reference we got from init. We have
2703		 * to be careful and use deferred io_end finishing if
2704		 * we are still holding the transaction as we can
2705		 * release the last reference to io_end which may end
2706		 * up doing unwritten extent conversion.
2707		 */
2708		if (handle) {
2709			ext4_put_io_end_defer(mpd->io_submit.io_end);
2710			ext4_journal_stop(handle);
2711		} else
2712			ext4_put_io_end(mpd->io_submit.io_end);
2713		mpd->io_submit.io_end = NULL;
2714
2715		if (ret == -ENOSPC && sbi->s_journal) {
2716			/*
2717			 * Commit the transaction which would
2718			 * free blocks released in the transaction
2719			 * and try again
2720			 */
2721			jbd2_journal_force_commit_nested(sbi->s_journal);
2722			ret = 0;
2723			continue;
2724		}
2725		/* Fatal error - ENOMEM, EIO... */
2726		if (ret)
2727			break;
2728	}
2729unplug:
2730	blk_finish_plug(&plug);
2731	if (!ret && !cycled && wbc->nr_to_write > 0) {
2732		cycled = 1;
2733		mpd->last_page = writeback_index - 1;
2734		mpd->first_page = 0;
2735		goto retry;
2736	}
2737
2738	/* Update index */
2739	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2740		/*
2741		 * Set the writeback_index so that range_cyclic
2742		 * mode will write it back later
2743		 */
2744		mapping->writeback_index = mpd->first_page;
2745
2746out_writepages:
2747	trace_ext4_writepages_result(inode, wbc, ret,
2748				     nr_to_write - wbc->nr_to_write);
2749	return ret;
2750}
2751
2752static int ext4_writepages(struct address_space *mapping,
2753			   struct writeback_control *wbc)
2754{
2755	struct super_block *sb = mapping->host->i_sb;
2756	struct mpage_da_data mpd = {
2757		.inode = mapping->host,
2758		.wbc = wbc,
2759		.can_map = 1,
2760	};
2761	int ret;
2762	int alloc_ctx;
2763
2764	if (unlikely(ext4_forced_shutdown(sb)))
2765		return -EIO;
2766
2767	alloc_ctx = ext4_writepages_down_read(sb);
2768	ret = ext4_do_writepages(&mpd);
2769	/*
2770	 * For data=journal writeback we could have come across pages marked
2771	 * for delayed dirtying (PageChecked) which were just added to the
2772	 * running transaction. Try once more to get them to stable storage.
2773	 */
2774	if (!ret && mpd.journalled_more_data)
2775		ret = ext4_do_writepages(&mpd);
2776	ext4_writepages_up_read(sb, alloc_ctx);
2777
2778	return ret;
2779}
2780
2781int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2782{
2783	struct writeback_control wbc = {
2784		.sync_mode = WB_SYNC_ALL,
2785		.nr_to_write = LONG_MAX,
2786		.range_start = jinode->i_dirty_start,
2787		.range_end = jinode->i_dirty_end,
2788	};
2789	struct mpage_da_data mpd = {
2790		.inode = jinode->i_vfs_inode,
2791		.wbc = &wbc,
2792		.can_map = 0,
2793	};
2794	return ext4_do_writepages(&mpd);
2795}
2796
2797static int ext4_dax_writepages(struct address_space *mapping,
2798			       struct writeback_control *wbc)
2799{
2800	int ret;
2801	long nr_to_write = wbc->nr_to_write;
2802	struct inode *inode = mapping->host;
2803	int alloc_ctx;
2804
2805	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2806		return -EIO;
2807
2808	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2809	trace_ext4_writepages(inode, wbc);
2810
2811	ret = dax_writeback_mapping_range(mapping,
2812					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2813	trace_ext4_writepages_result(inode, wbc, ret,
2814				     nr_to_write - wbc->nr_to_write);
2815	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2816	return ret;
2817}
2818
2819static int ext4_nonda_switch(struct super_block *sb)
2820{
2821	s64 free_clusters, dirty_clusters;
2822	struct ext4_sb_info *sbi = EXT4_SB(sb);
2823
2824	/*
2825	 * switch to non delalloc mode if we are running low
2826	 * on free block. The free block accounting via percpu
2827	 * counters can get slightly wrong with percpu_counter_batch getting
2828	 * accumulated on each CPU without updating global counters
2829	 * Delalloc need an accurate free block accounting. So switch
2830	 * to non delalloc when we are near to error range.
2831	 */
2832	free_clusters =
2833		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2834	dirty_clusters =
2835		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2836	/*
2837	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2838	 */
2839	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2840		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2841
2842	if (2 * free_clusters < 3 * dirty_clusters ||
2843	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2844		/*
2845		 * free block count is less than 150% of dirty blocks
2846		 * or free blocks is less than watermark
2847		 */
2848		return 1;
2849	}
2850	return 0;
2851}
2852
2853static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2854			       loff_t pos, unsigned len,
2855			       struct page **pagep, void **fsdata)
2856{
2857	int ret, retries = 0;
2858	struct folio *folio;
2859	pgoff_t index;
2860	struct inode *inode = mapping->host;
2861
2862	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2863		return -EIO;
2864
2865	index = pos >> PAGE_SHIFT;
2866
2867	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2868		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2869		return ext4_write_begin(file, mapping, pos,
2870					len, pagep, fsdata);
2871	}
2872	*fsdata = (void *)0;
2873	trace_ext4_da_write_begin(inode, pos, len);
2874
2875	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2876		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2877						      pagep, fsdata);
2878		if (ret < 0)
2879			return ret;
2880		if (ret == 1)
2881			return 0;
2882	}
2883
2884retry:
2885	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2886			mapping_gfp_mask(mapping));
2887	if (IS_ERR(folio))
2888		return PTR_ERR(folio);
2889
2890	/* In case writeback began while the folio was unlocked */
2891	folio_wait_stable(folio);
2892
2893#ifdef CONFIG_FS_ENCRYPTION
2894	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2895#else
2896	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2897#endif
2898	if (ret < 0) {
2899		folio_unlock(folio);
2900		folio_put(folio);
2901		/*
2902		 * block_write_begin may have instantiated a few blocks
2903		 * outside i_size.  Trim these off again. Don't need
2904		 * i_size_read because we hold inode lock.
2905		 */
2906		if (pos + len > inode->i_size)
2907			ext4_truncate_failed_write(inode);
2908
2909		if (ret == -ENOSPC &&
2910		    ext4_should_retry_alloc(inode->i_sb, &retries))
2911			goto retry;
2912		return ret;
2913	}
2914
2915	*pagep = &folio->page;
2916	return ret;
2917}
2918
2919/*
2920 * Check if we should update i_disksize
2921 * when write to the end of file but not require block allocation
2922 */
2923static int ext4_da_should_update_i_disksize(struct folio *folio,
2924					    unsigned long offset)
2925{
2926	struct buffer_head *bh;
2927	struct inode *inode = folio->mapping->host;
2928	unsigned int idx;
2929	int i;
2930
2931	bh = folio_buffers(folio);
2932	idx = offset >> inode->i_blkbits;
2933
2934	for (i = 0; i < idx; i++)
2935		bh = bh->b_this_page;
2936
2937	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2938		return 0;
2939	return 1;
2940}
2941
2942static int ext4_da_do_write_end(struct address_space *mapping,
2943			loff_t pos, unsigned len, unsigned copied,
2944			struct folio *folio)
2945{
2946	struct inode *inode = mapping->host;
2947	loff_t old_size = inode->i_size;
2948	bool disksize_changed = false;
2949	loff_t new_i_size;
2950
2951	/*
2952	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2953	 * flag, which all that's needed to trigger page writeback.
2954	 */
2955	copied = block_write_end(NULL, mapping, pos, len, copied,
2956			&folio->page, NULL);
2957	new_i_size = pos + copied;
2958
2959	/*
2960	 * It's important to update i_size while still holding folio lock,
2961	 * because folio writeout could otherwise come in and zero beyond
2962	 * i_size.
2963	 *
2964	 * Since we are holding inode lock, we are sure i_disksize <=
2965	 * i_size. We also know that if i_disksize < i_size, there are
2966	 * delalloc writes pending in the range up to i_size. If the end of
2967	 * the current write is <= i_size, there's no need to touch
2968	 * i_disksize since writeback will push i_disksize up to i_size
2969	 * eventually. If the end of the current write is > i_size and
2970	 * inside an allocated block which ext4_da_should_update_i_disksize()
2971	 * checked, we need to update i_disksize here as certain
2972	 * ext4_writepages() paths not allocating blocks and update i_disksize.
2973	 */
2974	if (new_i_size > inode->i_size) {
2975		unsigned long end;
2976
2977		i_size_write(inode, new_i_size);
2978		end = (new_i_size - 1) & (PAGE_SIZE - 1);
2979		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
2980			ext4_update_i_disksize(inode, new_i_size);
2981			disksize_changed = true;
2982		}
2983	}
2984
2985	folio_unlock(folio);
2986	folio_put(folio);
2987
2988	if (old_size < pos)
2989		pagecache_isize_extended(inode, old_size, pos);
2990
2991	if (disksize_changed) {
2992		handle_t *handle;
2993
2994		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
2995		if (IS_ERR(handle))
2996			return PTR_ERR(handle);
2997		ext4_mark_inode_dirty(handle, inode);
2998		ext4_journal_stop(handle);
2999	}
3000
3001	return copied;
3002}
3003
3004static int ext4_da_write_end(struct file *file,
3005			     struct address_space *mapping,
3006			     loff_t pos, unsigned len, unsigned copied,
3007			     struct page *page, void *fsdata)
3008{
3009	struct inode *inode = mapping->host;
3010	int write_mode = (int)(unsigned long)fsdata;
3011	struct folio *folio = page_folio(page);
3012
3013	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3014		return ext4_write_end(file, mapping, pos,
3015				      len, copied, &folio->page, fsdata);
3016
3017	trace_ext4_da_write_end(inode, pos, len, copied);
3018
3019	if (write_mode != CONVERT_INLINE_DATA &&
3020	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3021	    ext4_has_inline_data(inode))
3022		return ext4_write_inline_data_end(inode, pos, len, copied,
3023						  folio);
3024
3025	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3026		copied = 0;
3027
3028	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3029}
3030
3031/*
3032 * Force all delayed allocation blocks to be allocated for a given inode.
3033 */
3034int ext4_alloc_da_blocks(struct inode *inode)
3035{
3036	trace_ext4_alloc_da_blocks(inode);
3037
3038	if (!EXT4_I(inode)->i_reserved_data_blocks)
3039		return 0;
3040
3041	/*
3042	 * We do something simple for now.  The filemap_flush() will
3043	 * also start triggering a write of the data blocks, which is
3044	 * not strictly speaking necessary (and for users of
3045	 * laptop_mode, not even desirable).  However, to do otherwise
3046	 * would require replicating code paths in:
3047	 *
3048	 * ext4_writepages() ->
3049	 *    write_cache_pages() ---> (via passed in callback function)
3050	 *        __mpage_da_writepage() -->
3051	 *           mpage_add_bh_to_extent()
3052	 *           mpage_da_map_blocks()
3053	 *
3054	 * The problem is that write_cache_pages(), located in
3055	 * mm/page-writeback.c, marks pages clean in preparation for
3056	 * doing I/O, which is not desirable if we're not planning on
3057	 * doing I/O at all.
3058	 *
3059	 * We could call write_cache_pages(), and then redirty all of
3060	 * the pages by calling redirty_page_for_writepage() but that
3061	 * would be ugly in the extreme.  So instead we would need to
3062	 * replicate parts of the code in the above functions,
3063	 * simplifying them because we wouldn't actually intend to
3064	 * write out the pages, but rather only collect contiguous
3065	 * logical block extents, call the multi-block allocator, and
3066	 * then update the buffer heads with the block allocations.
3067	 *
3068	 * For now, though, we'll cheat by calling filemap_flush(),
3069	 * which will map the blocks, and start the I/O, but not
3070	 * actually wait for the I/O to complete.
3071	 */
3072	return filemap_flush(inode->i_mapping);
3073}
3074
3075/*
3076 * bmap() is special.  It gets used by applications such as lilo and by
3077 * the swapper to find the on-disk block of a specific piece of data.
3078 *
3079 * Naturally, this is dangerous if the block concerned is still in the
3080 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3081 * filesystem and enables swap, then they may get a nasty shock when the
3082 * data getting swapped to that swapfile suddenly gets overwritten by
3083 * the original zero's written out previously to the journal and
3084 * awaiting writeback in the kernel's buffer cache.
3085 *
3086 * So, if we see any bmap calls here on a modified, data-journaled file,
3087 * take extra steps to flush any blocks which might be in the cache.
3088 */
3089static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3090{
3091	struct inode *inode = mapping->host;
3092	sector_t ret = 0;
3093
3094	inode_lock_shared(inode);
3095	/*
3096	 * We can get here for an inline file via the FIBMAP ioctl
3097	 */
3098	if (ext4_has_inline_data(inode))
3099		goto out;
3100
3101	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3102	    (test_opt(inode->i_sb, DELALLOC) ||
3103	     ext4_should_journal_data(inode))) {
3104		/*
3105		 * With delalloc or journalled data we want to sync the file so
3106		 * that we can make sure we allocate blocks for file and data
3107		 * is in place for the user to see it
3108		 */
3109		filemap_write_and_wait(mapping);
3110	}
3111
3112	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3113
3114out:
3115	inode_unlock_shared(inode);
3116	return ret;
3117}
3118
3119static int ext4_read_folio(struct file *file, struct folio *folio)
3120{
3121	int ret = -EAGAIN;
3122	struct inode *inode = folio->mapping->host;
3123
3124	trace_ext4_read_folio(inode, folio);
3125
3126	if (ext4_has_inline_data(inode))
3127		ret = ext4_readpage_inline(inode, folio);
3128
3129	if (ret == -EAGAIN)
3130		return ext4_mpage_readpages(inode, NULL, folio);
3131
3132	return ret;
3133}
3134
3135static void ext4_readahead(struct readahead_control *rac)
3136{
3137	struct inode *inode = rac->mapping->host;
3138
3139	/* If the file has inline data, no need to do readahead. */
3140	if (ext4_has_inline_data(inode))
3141		return;
3142
3143	ext4_mpage_readpages(inode, rac, NULL);
3144}
3145
3146static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3147				size_t length)
3148{
3149	trace_ext4_invalidate_folio(folio, offset, length);
3150
3151	/* No journalling happens on data buffers when this function is used */
3152	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3153
3154	block_invalidate_folio(folio, offset, length);
3155}
3156
3157static int __ext4_journalled_invalidate_folio(struct folio *folio,
3158					    size_t offset, size_t length)
3159{
3160	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3161
3162	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3163
3164	/*
3165	 * If it's a full truncate we just forget about the pending dirtying
3166	 */
3167	if (offset == 0 && length == folio_size(folio))
3168		folio_clear_checked(folio);
3169
3170	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3171}
3172
3173/* Wrapper for aops... */
3174static void ext4_journalled_invalidate_folio(struct folio *folio,
3175					   size_t offset,
3176					   size_t length)
3177{
3178	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3179}
3180
3181static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3182{
3183	struct inode *inode = folio->mapping->host;
3184	journal_t *journal = EXT4_JOURNAL(inode);
3185
3186	trace_ext4_release_folio(inode, folio);
3187
3188	/* Page has dirty journalled data -> cannot release */
3189	if (folio_test_checked(folio))
3190		return false;
3191	if (journal)
3192		return jbd2_journal_try_to_free_buffers(journal, folio);
3193	else
3194		return try_to_free_buffers(folio);
3195}
3196
3197static bool ext4_inode_datasync_dirty(struct inode *inode)
3198{
3199	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3200
3201	if (journal) {
3202		if (jbd2_transaction_committed(journal,
3203			EXT4_I(inode)->i_datasync_tid))
3204			return false;
3205		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3206			return !list_empty(&EXT4_I(inode)->i_fc_list);
3207		return true;
3208	}
3209
3210	/* Any metadata buffers to write? */
3211	if (!list_empty(&inode->i_mapping->i_private_list))
3212		return true;
3213	return inode->i_state & I_DIRTY_DATASYNC;
3214}
3215
3216static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3217			   struct ext4_map_blocks *map, loff_t offset,
3218			   loff_t length, unsigned int flags)
3219{
3220	u8 blkbits = inode->i_blkbits;
3221
3222	/*
3223	 * Writes that span EOF might trigger an I/O size update on completion,
3224	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3225	 * there is no other metadata changes being made or are pending.
3226	 */
3227	iomap->flags = 0;
3228	if (ext4_inode_datasync_dirty(inode) ||
3229	    offset + length > i_size_read(inode))
3230		iomap->flags |= IOMAP_F_DIRTY;
3231
3232	if (map->m_flags & EXT4_MAP_NEW)
3233		iomap->flags |= IOMAP_F_NEW;
3234
3235	if (flags & IOMAP_DAX)
3236		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3237	else
3238		iomap->bdev = inode->i_sb->s_bdev;
3239	iomap->offset = (u64) map->m_lblk << blkbits;
3240	iomap->length = (u64) map->m_len << blkbits;
3241
3242	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3243	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3244		iomap->flags |= IOMAP_F_MERGED;
3245
3246	/*
3247	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3248	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3249	 * set. In order for any allocated unwritten extents to be converted
3250	 * into written extents correctly within the ->end_io() handler, we
3251	 * need to ensure that the iomap->type is set appropriately. Hence, the
3252	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3253	 * been set first.
3254	 */
3255	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3256		iomap->type = IOMAP_UNWRITTEN;
3257		iomap->addr = (u64) map->m_pblk << blkbits;
3258		if (flags & IOMAP_DAX)
3259			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3260	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3261		iomap->type = IOMAP_MAPPED;
3262		iomap->addr = (u64) map->m_pblk << blkbits;
3263		if (flags & IOMAP_DAX)
3264			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3265	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3266		iomap->type = IOMAP_DELALLOC;
3267		iomap->addr = IOMAP_NULL_ADDR;
3268	} else {
3269		iomap->type = IOMAP_HOLE;
3270		iomap->addr = IOMAP_NULL_ADDR;
3271	}
3272}
3273
3274static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3275			    unsigned int flags)
3276{
3277	handle_t *handle;
3278	u8 blkbits = inode->i_blkbits;
3279	int ret, dio_credits, m_flags = 0, retries = 0;
3280
3281	/*
3282	 * Trim the mapping request to the maximum value that we can map at
3283	 * once for direct I/O.
3284	 */
3285	if (map->m_len > DIO_MAX_BLOCKS)
3286		map->m_len = DIO_MAX_BLOCKS;
3287	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3288
3289retry:
3290	/*
3291	 * Either we allocate blocks and then don't get an unwritten extent, so
3292	 * in that case we have reserved enough credits. Or, the blocks are
3293	 * already allocated and unwritten. In that case, the extent conversion
3294	 * fits into the credits as well.
3295	 */
3296	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3297	if (IS_ERR(handle))
3298		return PTR_ERR(handle);
3299
3300	/*
3301	 * DAX and direct I/O are the only two operations that are currently
3302	 * supported with IOMAP_WRITE.
3303	 */
3304	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3305	if (flags & IOMAP_DAX)
3306		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3307	/*
3308	 * We use i_size instead of i_disksize here because delalloc writeback
3309	 * can complete at any point during the I/O and subsequently push the
3310	 * i_disksize out to i_size. This could be beyond where direct I/O is
3311	 * happening and thus expose allocated blocks to direct I/O reads.
3312	 */
3313	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3314		m_flags = EXT4_GET_BLOCKS_CREATE;
3315	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3316		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3317
3318	ret = ext4_map_blocks(handle, inode, map, m_flags);
3319
3320	/*
3321	 * We cannot fill holes in indirect tree based inodes as that could
3322	 * expose stale data in the case of a crash. Use the magic error code
3323	 * to fallback to buffered I/O.
3324	 */
3325	if (!m_flags && !ret)
3326		ret = -ENOTBLK;
3327
3328	ext4_journal_stop(handle);
3329	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3330		goto retry;
3331
3332	return ret;
3333}
3334
3335
3336static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3337		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3338{
3339	int ret;
3340	struct ext4_map_blocks map;
3341	u8 blkbits = inode->i_blkbits;
3342
3343	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3344		return -EINVAL;
3345
3346	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3347		return -ERANGE;
3348
3349	/*
3350	 * Calculate the first and last logical blocks respectively.
3351	 */
3352	map.m_lblk = offset >> blkbits;
3353	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3354			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3355
3356	if (flags & IOMAP_WRITE) {
3357		/*
3358		 * We check here if the blocks are already allocated, then we
3359		 * don't need to start a journal txn and we can directly return
3360		 * the mapping information. This could boost performance
3361		 * especially in multi-threaded overwrite requests.
3362		 */
3363		if (offset + length <= i_size_read(inode)) {
3364			ret = ext4_map_blocks(NULL, inode, &map, 0);
3365			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3366				goto out;
3367		}
3368		ret = ext4_iomap_alloc(inode, &map, flags);
3369	} else {
3370		ret = ext4_map_blocks(NULL, inode, &map, 0);
3371	}
3372
3373	if (ret < 0)
3374		return ret;
3375out:
3376	/*
3377	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3378	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3379	 * limiting the length of the mapping returned.
3380	 */
3381	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3382
3383	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3384
3385	return 0;
3386}
3387
3388static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3389		loff_t length, unsigned flags, struct iomap *iomap,
3390		struct iomap *srcmap)
3391{
3392	int ret;
3393
3394	/*
3395	 * Even for writes we don't need to allocate blocks, so just pretend
3396	 * we are reading to save overhead of starting a transaction.
3397	 */
3398	flags &= ~IOMAP_WRITE;
3399	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3400	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3401	return ret;
3402}
3403
3404static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3405			  ssize_t written, unsigned flags, struct iomap *iomap)
3406{
3407	/*
3408	 * Check to see whether an error occurred while writing out the data to
3409	 * the allocated blocks. If so, return the magic error code so that we
3410	 * fallback to buffered I/O and attempt to complete the remainder of
3411	 * the I/O. Any blocks that may have been allocated in preparation for
3412	 * the direct I/O will be reused during buffered I/O.
3413	 */
3414	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3415		return -ENOTBLK;
3416
3417	return 0;
3418}
3419
3420const struct iomap_ops ext4_iomap_ops = {
3421	.iomap_begin		= ext4_iomap_begin,
3422	.iomap_end		= ext4_iomap_end,
3423};
3424
3425const struct iomap_ops ext4_iomap_overwrite_ops = {
3426	.iomap_begin		= ext4_iomap_overwrite_begin,
3427	.iomap_end		= ext4_iomap_end,
3428};
3429
3430static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3431				   loff_t length, unsigned int flags,
3432				   struct iomap *iomap, struct iomap *srcmap)
3433{
3434	int ret;
3435	struct ext4_map_blocks map;
3436	u8 blkbits = inode->i_blkbits;
3437
3438	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3439		return -EINVAL;
3440
3441	if (ext4_has_inline_data(inode)) {
3442		ret = ext4_inline_data_iomap(inode, iomap);
3443		if (ret != -EAGAIN) {
3444			if (ret == 0 && offset >= iomap->length)
3445				ret = -ENOENT;
3446			return ret;
3447		}
3448	}
3449
3450	/*
3451	 * Calculate the first and last logical block respectively.
3452	 */
3453	map.m_lblk = offset >> blkbits;
3454	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3455			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3456
3457	/*
3458	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3459	 * So handle it here itself instead of querying ext4_map_blocks().
3460	 * Since ext4_map_blocks() will warn about it and will return
3461	 * -EIO error.
3462	 */
3463	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3464		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3465
3466		if (offset >= sbi->s_bitmap_maxbytes) {
3467			map.m_flags = 0;
3468			goto set_iomap;
3469		}
3470	}
3471
3472	ret = ext4_map_blocks(NULL, inode, &map, 0);
3473	if (ret < 0)
3474		return ret;
3475set_iomap:
3476	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3477
3478	return 0;
3479}
3480
3481const struct iomap_ops ext4_iomap_report_ops = {
3482	.iomap_begin = ext4_iomap_begin_report,
3483};
3484
3485/*
3486 * For data=journal mode, folio should be marked dirty only when it was
3487 * writeably mapped. When that happens, it was already attached to the
3488 * transaction and marked as jbddirty (we take care of this in
3489 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3490 * so we should have nothing to do here, except for the case when someone
3491 * had the page pinned and dirtied the page through this pin (e.g. by doing
3492 * direct IO to it). In that case we'd need to attach buffers here to the
3493 * transaction but we cannot due to lock ordering.  We cannot just dirty the
3494 * folio and leave attached buffers clean, because the buffers' dirty state is
3495 * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3496 * the journalling code will explode.  So what we do is to mark the folio
3497 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3498 * to the transaction appropriately.
3499 */
3500static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3501		struct folio *folio)
3502{
3503	WARN_ON_ONCE(!folio_buffers(folio));
3504	if (folio_maybe_dma_pinned(folio))
3505		folio_set_checked(folio);
3506	return filemap_dirty_folio(mapping, folio);
3507}
3508
3509static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3510{
3511	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3512	WARN_ON_ONCE(!folio_buffers(folio));
3513	return block_dirty_folio(mapping, folio);
3514}
3515
3516static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3517				    struct file *file, sector_t *span)
3518{
3519	return iomap_swapfile_activate(sis, file, span,
3520				       &ext4_iomap_report_ops);
3521}
3522
3523static const struct address_space_operations ext4_aops = {
3524	.read_folio		= ext4_read_folio,
3525	.readahead		= ext4_readahead,
3526	.writepages		= ext4_writepages,
3527	.write_begin		= ext4_write_begin,
3528	.write_end		= ext4_write_end,
3529	.dirty_folio		= ext4_dirty_folio,
3530	.bmap			= ext4_bmap,
3531	.invalidate_folio	= ext4_invalidate_folio,
3532	.release_folio		= ext4_release_folio,
3533	.direct_IO		= noop_direct_IO,
3534	.migrate_folio		= buffer_migrate_folio,
3535	.is_partially_uptodate  = block_is_partially_uptodate,
3536	.error_remove_folio	= generic_error_remove_folio,
3537	.swap_activate		= ext4_iomap_swap_activate,
3538};
3539
3540static const struct address_space_operations ext4_journalled_aops = {
3541	.read_folio		= ext4_read_folio,
3542	.readahead		= ext4_readahead,
3543	.writepages		= ext4_writepages,
3544	.write_begin		= ext4_write_begin,
3545	.write_end		= ext4_journalled_write_end,
3546	.dirty_folio		= ext4_journalled_dirty_folio,
3547	.bmap			= ext4_bmap,
3548	.invalidate_folio	= ext4_journalled_invalidate_folio,
3549	.release_folio		= ext4_release_folio,
3550	.direct_IO		= noop_direct_IO,
3551	.migrate_folio		= buffer_migrate_folio_norefs,
3552	.is_partially_uptodate  = block_is_partially_uptodate,
3553	.error_remove_folio	= generic_error_remove_folio,
3554	.swap_activate		= ext4_iomap_swap_activate,
3555};
3556
3557static const struct address_space_operations ext4_da_aops = {
3558	.read_folio		= ext4_read_folio,
3559	.readahead		= ext4_readahead,
3560	.writepages		= ext4_writepages,
3561	.write_begin		= ext4_da_write_begin,
3562	.write_end		= ext4_da_write_end,
3563	.dirty_folio		= ext4_dirty_folio,
3564	.bmap			= ext4_bmap,
3565	.invalidate_folio	= ext4_invalidate_folio,
3566	.release_folio		= ext4_release_folio,
3567	.direct_IO		= noop_direct_IO,
3568	.migrate_folio		= buffer_migrate_folio,
3569	.is_partially_uptodate  = block_is_partially_uptodate,
3570	.error_remove_folio	= generic_error_remove_folio,
3571	.swap_activate		= ext4_iomap_swap_activate,
3572};
3573
3574static const struct address_space_operations ext4_dax_aops = {
3575	.writepages		= ext4_dax_writepages,
3576	.direct_IO		= noop_direct_IO,
3577	.dirty_folio		= noop_dirty_folio,
3578	.bmap			= ext4_bmap,
3579	.swap_activate		= ext4_iomap_swap_activate,
3580};
3581
3582void ext4_set_aops(struct inode *inode)
3583{
3584	switch (ext4_inode_journal_mode(inode)) {
3585	case EXT4_INODE_ORDERED_DATA_MODE:
3586	case EXT4_INODE_WRITEBACK_DATA_MODE:
3587		break;
3588	case EXT4_INODE_JOURNAL_DATA_MODE:
3589		inode->i_mapping->a_ops = &ext4_journalled_aops;
3590		return;
3591	default:
3592		BUG();
3593	}
3594	if (IS_DAX(inode))
3595		inode->i_mapping->a_ops = &ext4_dax_aops;
3596	else if (test_opt(inode->i_sb, DELALLOC))
3597		inode->i_mapping->a_ops = &ext4_da_aops;
3598	else
3599		inode->i_mapping->a_ops = &ext4_aops;
3600}
3601
3602/*
3603 * Here we can't skip an unwritten buffer even though it usually reads zero
3604 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3605 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3606 * racing writeback can come later and flush the stale pagecache to disk.
3607 */
3608static int __ext4_block_zero_page_range(handle_t *handle,
3609		struct address_space *mapping, loff_t from, loff_t length)
3610{
3611	ext4_fsblk_t index = from >> PAGE_SHIFT;
3612	unsigned offset = from & (PAGE_SIZE-1);
3613	unsigned blocksize, pos;
3614	ext4_lblk_t iblock;
3615	struct inode *inode = mapping->host;
3616	struct buffer_head *bh;
3617	struct folio *folio;
3618	int err = 0;
3619
3620	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3621				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3622				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3623	if (IS_ERR(folio))
3624		return PTR_ERR(folio);
3625
3626	blocksize = inode->i_sb->s_blocksize;
3627
3628	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3629
3630	bh = folio_buffers(folio);
3631	if (!bh)
3632		bh = create_empty_buffers(folio, blocksize, 0);
3633
3634	/* Find the buffer that contains "offset" */
3635	pos = blocksize;
3636	while (offset >= pos) {
3637		bh = bh->b_this_page;
3638		iblock++;
3639		pos += blocksize;
3640	}
3641	if (buffer_freed(bh)) {
3642		BUFFER_TRACE(bh, "freed: skip");
3643		goto unlock;
3644	}
3645	if (!buffer_mapped(bh)) {
3646		BUFFER_TRACE(bh, "unmapped");
3647		ext4_get_block(inode, iblock, bh, 0);
3648		/* unmapped? It's a hole - nothing to do */
3649		if (!buffer_mapped(bh)) {
3650			BUFFER_TRACE(bh, "still unmapped");
3651			goto unlock;
3652		}
3653	}
3654
3655	/* Ok, it's mapped. Make sure it's up-to-date */
3656	if (folio_test_uptodate(folio))
3657		set_buffer_uptodate(bh);
3658
3659	if (!buffer_uptodate(bh)) {
3660		err = ext4_read_bh_lock(bh, 0, true);
3661		if (err)
3662			goto unlock;
3663		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3664			/* We expect the key to be set. */
3665			BUG_ON(!fscrypt_has_encryption_key(inode));
3666			err = fscrypt_decrypt_pagecache_blocks(folio,
3667							       blocksize,
3668							       bh_offset(bh));
3669			if (err) {
3670				clear_buffer_uptodate(bh);
3671				goto unlock;
3672			}
3673		}
3674	}
3675	if (ext4_should_journal_data(inode)) {
3676		BUFFER_TRACE(bh, "get write access");
3677		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3678						    EXT4_JTR_NONE);
3679		if (err)
3680			goto unlock;
3681	}
3682	folio_zero_range(folio, offset, length);
3683	BUFFER_TRACE(bh, "zeroed end of block");
3684
3685	if (ext4_should_journal_data(inode)) {
3686		err = ext4_dirty_journalled_data(handle, bh);
3687	} else {
3688		err = 0;
3689		mark_buffer_dirty(bh);
3690		if (ext4_should_order_data(inode))
3691			err = ext4_jbd2_inode_add_write(handle, inode, from,
3692					length);
3693	}
3694
3695unlock:
3696	folio_unlock(folio);
3697	folio_put(folio);
3698	return err;
3699}
3700
3701/*
3702 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3703 * starting from file offset 'from'.  The range to be zero'd must
3704 * be contained with in one block.  If the specified range exceeds
3705 * the end of the block it will be shortened to end of the block
3706 * that corresponds to 'from'
3707 */
3708static int ext4_block_zero_page_range(handle_t *handle,
3709		struct address_space *mapping, loff_t from, loff_t length)
3710{
3711	struct inode *inode = mapping->host;
3712	unsigned offset = from & (PAGE_SIZE-1);
3713	unsigned blocksize = inode->i_sb->s_blocksize;
3714	unsigned max = blocksize - (offset & (blocksize - 1));
3715
3716	/*
3717	 * correct length if it does not fall between
3718	 * 'from' and the end of the block
3719	 */
3720	if (length > max || length < 0)
3721		length = max;
3722
3723	if (IS_DAX(inode)) {
3724		return dax_zero_range(inode, from, length, NULL,
3725				      &ext4_iomap_ops);
3726	}
3727	return __ext4_block_zero_page_range(handle, mapping, from, length);
3728}
3729
3730/*
3731 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3732 * up to the end of the block which corresponds to `from'.
3733 * This required during truncate. We need to physically zero the tail end
3734 * of that block so it doesn't yield old data if the file is later grown.
3735 */
3736static int ext4_block_truncate_page(handle_t *handle,
3737		struct address_space *mapping, loff_t from)
3738{
3739	unsigned offset = from & (PAGE_SIZE-1);
3740	unsigned length;
3741	unsigned blocksize;
3742	struct inode *inode = mapping->host;
3743
3744	/* If we are processing an encrypted inode during orphan list handling */
3745	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3746		return 0;
3747
3748	blocksize = inode->i_sb->s_blocksize;
3749	length = blocksize - (offset & (blocksize - 1));
3750
3751	return ext4_block_zero_page_range(handle, mapping, from, length);
3752}
3753
3754int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3755			     loff_t lstart, loff_t length)
3756{
3757	struct super_block *sb = inode->i_sb;
3758	struct address_space *mapping = inode->i_mapping;
3759	unsigned partial_start, partial_end;
3760	ext4_fsblk_t start, end;
3761	loff_t byte_end = (lstart + length - 1);
3762	int err = 0;
3763
3764	partial_start = lstart & (sb->s_blocksize - 1);
3765	partial_end = byte_end & (sb->s_blocksize - 1);
3766
3767	start = lstart >> sb->s_blocksize_bits;
3768	end = byte_end >> sb->s_blocksize_bits;
3769
3770	/* Handle partial zero within the single block */
3771	if (start == end &&
3772	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3773		err = ext4_block_zero_page_range(handle, mapping,
3774						 lstart, length);
3775		return err;
3776	}
3777	/* Handle partial zero out on the start of the range */
3778	if (partial_start) {
3779		err = ext4_block_zero_page_range(handle, mapping,
3780						 lstart, sb->s_blocksize);
3781		if (err)
3782			return err;
3783	}
3784	/* Handle partial zero out on the end of the range */
3785	if (partial_end != sb->s_blocksize - 1)
3786		err = ext4_block_zero_page_range(handle, mapping,
3787						 byte_end - partial_end,
3788						 partial_end + 1);
3789	return err;
3790}
3791
3792int ext4_can_truncate(struct inode *inode)
3793{
3794	if (S_ISREG(inode->i_mode))
3795		return 1;
3796	if (S_ISDIR(inode->i_mode))
3797		return 1;
3798	if (S_ISLNK(inode->i_mode))
3799		return !ext4_inode_is_fast_symlink(inode);
3800	return 0;
3801}
3802
3803/*
3804 * We have to make sure i_disksize gets properly updated before we truncate
3805 * page cache due to hole punching or zero range. Otherwise i_disksize update
3806 * can get lost as it may have been postponed to submission of writeback but
3807 * that will never happen after we truncate page cache.
3808 */
3809int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3810				      loff_t len)
3811{
3812	handle_t *handle;
3813	int ret;
3814
3815	loff_t size = i_size_read(inode);
3816
3817	WARN_ON(!inode_is_locked(inode));
3818	if (offset > size || offset + len < size)
3819		return 0;
3820
3821	if (EXT4_I(inode)->i_disksize >= size)
3822		return 0;
3823
3824	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3825	if (IS_ERR(handle))
3826		return PTR_ERR(handle);
3827	ext4_update_i_disksize(inode, size);
3828	ret = ext4_mark_inode_dirty(handle, inode);
3829	ext4_journal_stop(handle);
3830
3831	return ret;
3832}
3833
3834static void ext4_wait_dax_page(struct inode *inode)
3835{
3836	filemap_invalidate_unlock(inode->i_mapping);
3837	schedule();
3838	filemap_invalidate_lock(inode->i_mapping);
3839}
3840
3841int ext4_break_layouts(struct inode *inode)
3842{
3843	struct page *page;
3844	int error;
3845
3846	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3847		return -EINVAL;
3848
3849	do {
3850		page = dax_layout_busy_page(inode->i_mapping);
3851		if (!page)
3852			return 0;
3853
3854		error = ___wait_var_event(&page->_refcount,
3855				atomic_read(&page->_refcount) == 1,
3856				TASK_INTERRUPTIBLE, 0, 0,
3857				ext4_wait_dax_page(inode));
3858	} while (error == 0);
3859
3860	return error;
3861}
3862
3863/*
3864 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3865 * associated with the given offset and length
3866 *
3867 * @inode:  File inode
3868 * @offset: The offset where the hole will begin
3869 * @len:    The length of the hole
3870 *
3871 * Returns: 0 on success or negative on failure
3872 */
3873
3874int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3875{
3876	struct inode *inode = file_inode(file);
3877	struct super_block *sb = inode->i_sb;
3878	ext4_lblk_t first_block, stop_block;
3879	struct address_space *mapping = inode->i_mapping;
3880	loff_t first_block_offset, last_block_offset, max_length;
3881	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3882	handle_t *handle;
3883	unsigned int credits;
3884	int ret = 0, ret2 = 0;
3885
3886	trace_ext4_punch_hole(inode, offset, length, 0);
3887
3888	/*
3889	 * Write out all dirty pages to avoid race conditions
3890	 * Then release them.
3891	 */
3892	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3893		ret = filemap_write_and_wait_range(mapping, offset,
3894						   offset + length - 1);
3895		if (ret)
3896			return ret;
3897	}
3898
3899	inode_lock(inode);
3900
3901	/* No need to punch hole beyond i_size */
3902	if (offset >= inode->i_size)
3903		goto out_mutex;
3904
3905	/*
3906	 * If the hole extends beyond i_size, set the hole
3907	 * to end after the page that contains i_size
3908	 */
3909	if (offset + length > inode->i_size) {
3910		length = inode->i_size +
3911		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3912		   offset;
3913	}
3914
3915	/*
3916	 * For punch hole the length + offset needs to be within one block
3917	 * before last range. Adjust the length if it goes beyond that limit.
3918	 */
3919	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3920	if (offset + length > max_length)
3921		length = max_length - offset;
3922
3923	if (offset & (sb->s_blocksize - 1) ||
3924	    (offset + length) & (sb->s_blocksize - 1)) {
3925		/*
3926		 * Attach jinode to inode for jbd2 if we do any zeroing of
3927		 * partial block
3928		 */
3929		ret = ext4_inode_attach_jinode(inode);
3930		if (ret < 0)
3931			goto out_mutex;
3932
3933	}
3934
3935	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3936	inode_dio_wait(inode);
3937
3938	ret = file_modified(file);
3939	if (ret)
3940		goto out_mutex;
3941
3942	/*
3943	 * Prevent page faults from reinstantiating pages we have released from
3944	 * page cache.
3945	 */
3946	filemap_invalidate_lock(mapping);
3947
3948	ret = ext4_break_layouts(inode);
3949	if (ret)
3950		goto out_dio;
3951
3952	first_block_offset = round_up(offset, sb->s_blocksize);
3953	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3954
3955	/* Now release the pages and zero block aligned part of pages*/
3956	if (last_block_offset > first_block_offset) {
3957		ret = ext4_update_disksize_before_punch(inode, offset, length);
3958		if (ret)
3959			goto out_dio;
3960		truncate_pagecache_range(inode, first_block_offset,
3961					 last_block_offset);
3962	}
3963
3964	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3965		credits = ext4_writepage_trans_blocks(inode);
3966	else
3967		credits = ext4_blocks_for_truncate(inode);
3968	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3969	if (IS_ERR(handle)) {
3970		ret = PTR_ERR(handle);
3971		ext4_std_error(sb, ret);
3972		goto out_dio;
3973	}
3974
3975	ret = ext4_zero_partial_blocks(handle, inode, offset,
3976				       length);
3977	if (ret)
3978		goto out_stop;
3979
3980	first_block = (offset + sb->s_blocksize - 1) >>
3981		EXT4_BLOCK_SIZE_BITS(sb);
3982	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3983
3984	/* If there are blocks to remove, do it */
3985	if (stop_block > first_block) {
3986		ext4_lblk_t hole_len = stop_block - first_block;
3987
3988		down_write(&EXT4_I(inode)->i_data_sem);
3989		ext4_discard_preallocations(inode);
3990
3991		ext4_es_remove_extent(inode, first_block, hole_len);
3992
3993		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3994			ret = ext4_ext_remove_space(inode, first_block,
3995						    stop_block - 1);
3996		else
3997			ret = ext4_ind_remove_space(handle, inode, first_block,
3998						    stop_block);
3999
4000		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4001				      EXTENT_STATUS_HOLE);
4002		up_write(&EXT4_I(inode)->i_data_sem);
4003	}
4004	ext4_fc_track_range(handle, inode, first_block, stop_block);
4005	if (IS_SYNC(inode))
4006		ext4_handle_sync(handle);
4007
4008	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4009	ret2 = ext4_mark_inode_dirty(handle, inode);
4010	if (unlikely(ret2))
4011		ret = ret2;
4012	if (ret >= 0)
4013		ext4_update_inode_fsync_trans(handle, inode, 1);
4014out_stop:
4015	ext4_journal_stop(handle);
4016out_dio:
4017	filemap_invalidate_unlock(mapping);
4018out_mutex:
4019	inode_unlock(inode);
4020	return ret;
4021}
4022
4023int ext4_inode_attach_jinode(struct inode *inode)
4024{
4025	struct ext4_inode_info *ei = EXT4_I(inode);
4026	struct jbd2_inode *jinode;
4027
4028	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4029		return 0;
4030
4031	jinode = jbd2_alloc_inode(GFP_KERNEL);
4032	spin_lock(&inode->i_lock);
4033	if (!ei->jinode) {
4034		if (!jinode) {
4035			spin_unlock(&inode->i_lock);
4036			return -ENOMEM;
4037		}
4038		ei->jinode = jinode;
4039		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4040		jinode = NULL;
4041	}
4042	spin_unlock(&inode->i_lock);
4043	if (unlikely(jinode != NULL))
4044		jbd2_free_inode(jinode);
4045	return 0;
4046}
4047
4048/*
4049 * ext4_truncate()
4050 *
4051 * We block out ext4_get_block() block instantiations across the entire
4052 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4053 * simultaneously on behalf of the same inode.
4054 *
4055 * As we work through the truncate and commit bits of it to the journal there
4056 * is one core, guiding principle: the file's tree must always be consistent on
4057 * disk.  We must be able to restart the truncate after a crash.
4058 *
4059 * The file's tree may be transiently inconsistent in memory (although it
4060 * probably isn't), but whenever we close off and commit a journal transaction,
4061 * the contents of (the filesystem + the journal) must be consistent and
4062 * restartable.  It's pretty simple, really: bottom up, right to left (although
4063 * left-to-right works OK too).
4064 *
4065 * Note that at recovery time, journal replay occurs *before* the restart of
4066 * truncate against the orphan inode list.
4067 *
4068 * The committed inode has the new, desired i_size (which is the same as
4069 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4070 * that this inode's truncate did not complete and it will again call
4071 * ext4_truncate() to have another go.  So there will be instantiated blocks
4072 * to the right of the truncation point in a crashed ext4 filesystem.  But
4073 * that's fine - as long as they are linked from the inode, the post-crash
4074 * ext4_truncate() run will find them and release them.
4075 */
4076int ext4_truncate(struct inode *inode)
4077{
4078	struct ext4_inode_info *ei = EXT4_I(inode);
4079	unsigned int credits;
4080	int err = 0, err2;
4081	handle_t *handle;
4082	struct address_space *mapping = inode->i_mapping;
4083
4084	/*
4085	 * There is a possibility that we're either freeing the inode
4086	 * or it's a completely new inode. In those cases we might not
4087	 * have i_rwsem locked because it's not necessary.
4088	 */
4089	if (!(inode->i_state & (I_NEW|I_FREEING)))
4090		WARN_ON(!inode_is_locked(inode));
4091	trace_ext4_truncate_enter(inode);
4092
4093	if (!ext4_can_truncate(inode))
4094		goto out_trace;
4095
4096	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4097		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4098
4099	if (ext4_has_inline_data(inode)) {
4100		int has_inline = 1;
4101
4102		err = ext4_inline_data_truncate(inode, &has_inline);
4103		if (err || has_inline)
4104			goto out_trace;
4105	}
4106
4107	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4108	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4109		err = ext4_inode_attach_jinode(inode);
4110		if (err)
4111			goto out_trace;
4112	}
4113
4114	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4115		credits = ext4_writepage_trans_blocks(inode);
4116	else
4117		credits = ext4_blocks_for_truncate(inode);
4118
4119	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4120	if (IS_ERR(handle)) {
4121		err = PTR_ERR(handle);
4122		goto out_trace;
4123	}
4124
4125	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4126		ext4_block_truncate_page(handle, mapping, inode->i_size);
4127
4128	/*
4129	 * We add the inode to the orphan list, so that if this
4130	 * truncate spans multiple transactions, and we crash, we will
4131	 * resume the truncate when the filesystem recovers.  It also
4132	 * marks the inode dirty, to catch the new size.
4133	 *
4134	 * Implication: the file must always be in a sane, consistent
4135	 * truncatable state while each transaction commits.
4136	 */
4137	err = ext4_orphan_add(handle, inode);
4138	if (err)
4139		goto out_stop;
4140
4141	down_write(&EXT4_I(inode)->i_data_sem);
4142
4143	ext4_discard_preallocations(inode);
4144
4145	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4146		err = ext4_ext_truncate(handle, inode);
4147	else
4148		ext4_ind_truncate(handle, inode);
4149
4150	up_write(&ei->i_data_sem);
4151	if (err)
4152		goto out_stop;
4153
4154	if (IS_SYNC(inode))
4155		ext4_handle_sync(handle);
4156
4157out_stop:
4158	/*
4159	 * If this was a simple ftruncate() and the file will remain alive,
4160	 * then we need to clear up the orphan record which we created above.
4161	 * However, if this was a real unlink then we were called by
4162	 * ext4_evict_inode(), and we allow that function to clean up the
4163	 * orphan info for us.
4164	 */
4165	if (inode->i_nlink)
4166		ext4_orphan_del(handle, inode);
4167
4168	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4169	err2 = ext4_mark_inode_dirty(handle, inode);
4170	if (unlikely(err2 && !err))
4171		err = err2;
4172	ext4_journal_stop(handle);
4173
4174out_trace:
4175	trace_ext4_truncate_exit(inode);
4176	return err;
4177}
4178
4179static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4180{
4181	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4182		return inode_peek_iversion_raw(inode);
4183	else
4184		return inode_peek_iversion(inode);
4185}
4186
4187static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4188				 struct ext4_inode_info *ei)
4189{
4190	struct inode *inode = &(ei->vfs_inode);
4191	u64 i_blocks = READ_ONCE(inode->i_blocks);
4192	struct super_block *sb = inode->i_sb;
4193
4194	if (i_blocks <= ~0U) {
4195		/*
4196		 * i_blocks can be represented in a 32 bit variable
4197		 * as multiple of 512 bytes
4198		 */
4199		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4200		raw_inode->i_blocks_high = 0;
4201		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4202		return 0;
4203	}
4204
4205	/*
4206	 * This should never happen since sb->s_maxbytes should not have
4207	 * allowed this, sb->s_maxbytes was set according to the huge_file
4208	 * feature in ext4_fill_super().
4209	 */
4210	if (!ext4_has_feature_huge_file(sb))
4211		return -EFSCORRUPTED;
4212
4213	if (i_blocks <= 0xffffffffffffULL) {
4214		/*
4215		 * i_blocks can be represented in a 48 bit variable
4216		 * as multiple of 512 bytes
4217		 */
4218		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4219		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4220		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4221	} else {
4222		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4223		/* i_block is stored in file system block size */
4224		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4225		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4226		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4227	}
4228	return 0;
4229}
4230
4231static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4232{
4233	struct ext4_inode_info *ei = EXT4_I(inode);
4234	uid_t i_uid;
4235	gid_t i_gid;
4236	projid_t i_projid;
4237	int block;
4238	int err;
4239
4240	err = ext4_inode_blocks_set(raw_inode, ei);
4241
4242	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4243	i_uid = i_uid_read(inode);
4244	i_gid = i_gid_read(inode);
4245	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4246	if (!(test_opt(inode->i_sb, NO_UID32))) {
4247		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4248		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4249		/*
4250		 * Fix up interoperability with old kernels. Otherwise,
4251		 * old inodes get re-used with the upper 16 bits of the
4252		 * uid/gid intact.
4253		 */
4254		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4255			raw_inode->i_uid_high = 0;
4256			raw_inode->i_gid_high = 0;
4257		} else {
4258			raw_inode->i_uid_high =
4259				cpu_to_le16(high_16_bits(i_uid));
4260			raw_inode->i_gid_high =
4261				cpu_to_le16(high_16_bits(i_gid));
4262		}
4263	} else {
4264		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4265		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4266		raw_inode->i_uid_high = 0;
4267		raw_inode->i_gid_high = 0;
4268	}
4269	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4270
4271	EXT4_INODE_SET_CTIME(inode, raw_inode);
4272	EXT4_INODE_SET_MTIME(inode, raw_inode);
4273	EXT4_INODE_SET_ATIME(inode, raw_inode);
4274	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4275
4276	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4277	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4278	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4279		raw_inode->i_file_acl_high =
4280			cpu_to_le16(ei->i_file_acl >> 32);
4281	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4282	ext4_isize_set(raw_inode, ei->i_disksize);
4283
4284	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4285	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4286		if (old_valid_dev(inode->i_rdev)) {
4287			raw_inode->i_block[0] =
4288				cpu_to_le32(old_encode_dev(inode->i_rdev));
4289			raw_inode->i_block[1] = 0;
4290		} else {
4291			raw_inode->i_block[0] = 0;
4292			raw_inode->i_block[1] =
4293				cpu_to_le32(new_encode_dev(inode->i_rdev));
4294			raw_inode->i_block[2] = 0;
4295		}
4296	} else if (!ext4_has_inline_data(inode)) {
4297		for (block = 0; block < EXT4_N_BLOCKS; block++)
4298			raw_inode->i_block[block] = ei->i_data[block];
4299	}
4300
4301	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4302		u64 ivers = ext4_inode_peek_iversion(inode);
4303
4304		raw_inode->i_disk_version = cpu_to_le32(ivers);
4305		if (ei->i_extra_isize) {
4306			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4307				raw_inode->i_version_hi =
4308					cpu_to_le32(ivers >> 32);
4309			raw_inode->i_extra_isize =
4310				cpu_to_le16(ei->i_extra_isize);
4311		}
4312	}
4313
4314	if (i_projid != EXT4_DEF_PROJID &&
4315	    !ext4_has_feature_project(inode->i_sb))
4316		err = err ?: -EFSCORRUPTED;
4317
4318	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4319	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4320		raw_inode->i_projid = cpu_to_le32(i_projid);
4321
4322	ext4_inode_csum_set(inode, raw_inode, ei);
4323	return err;
4324}
4325
4326/*
4327 * ext4_get_inode_loc returns with an extra refcount against the inode's
4328 * underlying buffer_head on success. If we pass 'inode' and it does not
4329 * have in-inode xattr, we have all inode data in memory that is needed
4330 * to recreate the on-disk version of this inode.
4331 */
4332static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4333				struct inode *inode, struct ext4_iloc *iloc,
4334				ext4_fsblk_t *ret_block)
4335{
4336	struct ext4_group_desc	*gdp;
4337	struct buffer_head	*bh;
4338	ext4_fsblk_t		block;
4339	struct blk_plug		plug;
4340	int			inodes_per_block, inode_offset;
4341
4342	iloc->bh = NULL;
4343	if (ino < EXT4_ROOT_INO ||
4344	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4345		return -EFSCORRUPTED;
4346
4347	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4348	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4349	if (!gdp)
4350		return -EIO;
4351
4352	/*
4353	 * Figure out the offset within the block group inode table
4354	 */
4355	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4356	inode_offset = ((ino - 1) %
4357			EXT4_INODES_PER_GROUP(sb));
4358	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4359
4360	block = ext4_inode_table(sb, gdp);
4361	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4362	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4363		ext4_error(sb, "Invalid inode table block %llu in "
4364			   "block_group %u", block, iloc->block_group);
4365		return -EFSCORRUPTED;
4366	}
4367	block += (inode_offset / inodes_per_block);
4368
4369	bh = sb_getblk(sb, block);
4370	if (unlikely(!bh))
4371		return -ENOMEM;
4372	if (ext4_buffer_uptodate(bh))
4373		goto has_buffer;
4374
4375	lock_buffer(bh);
4376	if (ext4_buffer_uptodate(bh)) {
4377		/* Someone brought it uptodate while we waited */
4378		unlock_buffer(bh);
4379		goto has_buffer;
4380	}
4381
4382	/*
4383	 * If we have all information of the inode in memory and this
4384	 * is the only valid inode in the block, we need not read the
4385	 * block.
4386	 */
4387	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4388		struct buffer_head *bitmap_bh;
4389		int i, start;
4390
4391		start = inode_offset & ~(inodes_per_block - 1);
4392
4393		/* Is the inode bitmap in cache? */
4394		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4395		if (unlikely(!bitmap_bh))
4396			goto make_io;
4397
4398		/*
4399		 * If the inode bitmap isn't in cache then the
4400		 * optimisation may end up performing two reads instead
4401		 * of one, so skip it.
4402		 */
4403		if (!buffer_uptodate(bitmap_bh)) {
4404			brelse(bitmap_bh);
4405			goto make_io;
4406		}
4407		for (i = start; i < start + inodes_per_block; i++) {
4408			if (i == inode_offset)
4409				continue;
4410			if (ext4_test_bit(i, bitmap_bh->b_data))
4411				break;
4412		}
4413		brelse(bitmap_bh);
4414		if (i == start + inodes_per_block) {
4415			struct ext4_inode *raw_inode =
4416				(struct ext4_inode *) (bh->b_data + iloc->offset);
4417
4418			/* all other inodes are free, so skip I/O */
4419			memset(bh->b_data, 0, bh->b_size);
4420			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4421				ext4_fill_raw_inode(inode, raw_inode);
4422			set_buffer_uptodate(bh);
4423			unlock_buffer(bh);
4424			goto has_buffer;
4425		}
4426	}
4427
4428make_io:
4429	/*
4430	 * If we need to do any I/O, try to pre-readahead extra
4431	 * blocks from the inode table.
4432	 */
4433	blk_start_plug(&plug);
4434	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4435		ext4_fsblk_t b, end, table;
4436		unsigned num;
4437		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4438
4439		table = ext4_inode_table(sb, gdp);
4440		/* s_inode_readahead_blks is always a power of 2 */
4441		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4442		if (table > b)
4443			b = table;
4444		end = b + ra_blks;
4445		num = EXT4_INODES_PER_GROUP(sb);
4446		if (ext4_has_group_desc_csum(sb))
4447			num -= ext4_itable_unused_count(sb, gdp);
4448		table += num / inodes_per_block;
4449		if (end > table)
4450			end = table;
4451		while (b <= end)
4452			ext4_sb_breadahead_unmovable(sb, b++);
4453	}
4454
4455	/*
4456	 * There are other valid inodes in the buffer, this inode
4457	 * has in-inode xattrs, or we don't have this inode in memory.
4458	 * Read the block from disk.
4459	 */
4460	trace_ext4_load_inode(sb, ino);
4461	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4462	blk_finish_plug(&plug);
4463	wait_on_buffer(bh);
4464	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4465	if (!buffer_uptodate(bh)) {
4466		if (ret_block)
4467			*ret_block = block;
4468		brelse(bh);
4469		return -EIO;
4470	}
4471has_buffer:
4472	iloc->bh = bh;
4473	return 0;
4474}
4475
4476static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4477					struct ext4_iloc *iloc)
4478{
4479	ext4_fsblk_t err_blk = 0;
4480	int ret;
4481
4482	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4483					&err_blk);
4484
4485	if (ret == -EIO)
4486		ext4_error_inode_block(inode, err_blk, EIO,
4487					"unable to read itable block");
4488
4489	return ret;
4490}
4491
4492int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4493{
4494	ext4_fsblk_t err_blk = 0;
4495	int ret;
4496
4497	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4498					&err_blk);
4499
4500	if (ret == -EIO)
4501		ext4_error_inode_block(inode, err_blk, EIO,
4502					"unable to read itable block");
4503
4504	return ret;
4505}
4506
4507
4508int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4509			  struct ext4_iloc *iloc)
4510{
4511	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4512}
4513
4514static bool ext4_should_enable_dax(struct inode *inode)
4515{
4516	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4517
4518	if (test_opt2(inode->i_sb, DAX_NEVER))
4519		return false;
4520	if (!S_ISREG(inode->i_mode))
4521		return false;
4522	if (ext4_should_journal_data(inode))
4523		return false;
4524	if (ext4_has_inline_data(inode))
4525		return false;
4526	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4527		return false;
4528	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4529		return false;
4530	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4531		return false;
4532	if (test_opt(inode->i_sb, DAX_ALWAYS))
4533		return true;
4534
4535	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4536}
4537
4538void ext4_set_inode_flags(struct inode *inode, bool init)
4539{
4540	unsigned int flags = EXT4_I(inode)->i_flags;
4541	unsigned int new_fl = 0;
4542
4543	WARN_ON_ONCE(IS_DAX(inode) && init);
4544
4545	if (flags & EXT4_SYNC_FL)
4546		new_fl |= S_SYNC;
4547	if (flags & EXT4_APPEND_FL)
4548		new_fl |= S_APPEND;
4549	if (flags & EXT4_IMMUTABLE_FL)
4550		new_fl |= S_IMMUTABLE;
4551	if (flags & EXT4_NOATIME_FL)
4552		new_fl |= S_NOATIME;
4553	if (flags & EXT4_DIRSYNC_FL)
4554		new_fl |= S_DIRSYNC;
4555
4556	/* Because of the way inode_set_flags() works we must preserve S_DAX
4557	 * here if already set. */
4558	new_fl |= (inode->i_flags & S_DAX);
4559	if (init && ext4_should_enable_dax(inode))
4560		new_fl |= S_DAX;
4561
4562	if (flags & EXT4_ENCRYPT_FL)
4563		new_fl |= S_ENCRYPTED;
4564	if (flags & EXT4_CASEFOLD_FL)
4565		new_fl |= S_CASEFOLD;
4566	if (flags & EXT4_VERITY_FL)
4567		new_fl |= S_VERITY;
4568	inode_set_flags(inode, new_fl,
4569			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4570			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4571}
4572
4573static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4574				  struct ext4_inode_info *ei)
4575{
4576	blkcnt_t i_blocks ;
4577	struct inode *inode = &(ei->vfs_inode);
4578	struct super_block *sb = inode->i_sb;
4579
4580	if (ext4_has_feature_huge_file(sb)) {
4581		/* we are using combined 48 bit field */
4582		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4583					le32_to_cpu(raw_inode->i_blocks_lo);
4584		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4585			/* i_blocks represent file system block size */
4586			return i_blocks  << (inode->i_blkbits - 9);
4587		} else {
4588			return i_blocks;
4589		}
4590	} else {
4591		return le32_to_cpu(raw_inode->i_blocks_lo);
4592	}
4593}
4594
4595static inline int ext4_iget_extra_inode(struct inode *inode,
4596					 struct ext4_inode *raw_inode,
4597					 struct ext4_inode_info *ei)
4598{
4599	__le32 *magic = (void *)raw_inode +
4600			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4601
4602	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4603	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4604		int err;
4605
4606		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4607		err = ext4_find_inline_data_nolock(inode);
4608		if (!err && ext4_has_inline_data(inode))
4609			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4610		return err;
4611	} else
4612		EXT4_I(inode)->i_inline_off = 0;
4613	return 0;
4614}
4615
4616int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4617{
4618	if (!ext4_has_feature_project(inode->i_sb))
4619		return -EOPNOTSUPP;
4620	*projid = EXT4_I(inode)->i_projid;
4621	return 0;
4622}
4623
4624/*
4625 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4626 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4627 * set.
4628 */
4629static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4630{
4631	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4632		inode_set_iversion_raw(inode, val);
4633	else
4634		inode_set_iversion_queried(inode, val);
4635}
4636
4637static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4638
4639{
4640	if (flags & EXT4_IGET_EA_INODE) {
4641		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4642			return "missing EA_INODE flag";
4643		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4644		    EXT4_I(inode)->i_file_acl)
4645			return "ea_inode with extended attributes";
4646	} else {
4647		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4648			return "unexpected EA_INODE flag";
4649	}
4650	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4651		return "unexpected bad inode w/o EXT4_IGET_BAD";
4652	return NULL;
4653}
4654
4655struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4656			  ext4_iget_flags flags, const char *function,
4657			  unsigned int line)
4658{
4659	struct ext4_iloc iloc;
4660	struct ext4_inode *raw_inode;
4661	struct ext4_inode_info *ei;
4662	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4663	struct inode *inode;
4664	const char *err_str;
4665	journal_t *journal = EXT4_SB(sb)->s_journal;
4666	long ret;
4667	loff_t size;
4668	int block;
4669	uid_t i_uid;
4670	gid_t i_gid;
4671	projid_t i_projid;
4672
4673	if ((!(flags & EXT4_IGET_SPECIAL) &&
4674	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4675	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4676	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4677	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4678	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4679	    (ino < EXT4_ROOT_INO) ||
4680	    (ino > le32_to_cpu(es->s_inodes_count))) {
4681		if (flags & EXT4_IGET_HANDLE)
4682			return ERR_PTR(-ESTALE);
4683		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4684			     "inode #%lu: comm %s: iget: illegal inode #",
4685			     ino, current->comm);
4686		return ERR_PTR(-EFSCORRUPTED);
4687	}
4688
4689	inode = iget_locked(sb, ino);
4690	if (!inode)
4691		return ERR_PTR(-ENOMEM);
4692	if (!(inode->i_state & I_NEW)) {
4693		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4694			ext4_error_inode(inode, function, line, 0, err_str);
4695			iput(inode);
4696			return ERR_PTR(-EFSCORRUPTED);
4697		}
4698		return inode;
4699	}
4700
4701	ei = EXT4_I(inode);
4702	iloc.bh = NULL;
4703
4704	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4705	if (ret < 0)
4706		goto bad_inode;
4707	raw_inode = ext4_raw_inode(&iloc);
4708
4709	if ((flags & EXT4_IGET_HANDLE) &&
4710	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4711		ret = -ESTALE;
4712		goto bad_inode;
4713	}
4714
4715	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4716		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4717		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4718			EXT4_INODE_SIZE(inode->i_sb) ||
4719		    (ei->i_extra_isize & 3)) {
4720			ext4_error_inode(inode, function, line, 0,
4721					 "iget: bad extra_isize %u "
4722					 "(inode size %u)",
4723					 ei->i_extra_isize,
4724					 EXT4_INODE_SIZE(inode->i_sb));
4725			ret = -EFSCORRUPTED;
4726			goto bad_inode;
4727		}
4728	} else
4729		ei->i_extra_isize = 0;
4730
4731	/* Precompute checksum seed for inode metadata */
4732	if (ext4_has_metadata_csum(sb)) {
4733		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4734		__u32 csum;
4735		__le32 inum = cpu_to_le32(inode->i_ino);
4736		__le32 gen = raw_inode->i_generation;
4737		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4738				   sizeof(inum));
4739		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4740					      sizeof(gen));
4741	}
4742
4743	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4744	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4745	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4746		ext4_error_inode_err(inode, function, line, 0,
4747				EFSBADCRC, "iget: checksum invalid");
4748		ret = -EFSBADCRC;
4749		goto bad_inode;
4750	}
4751
4752	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4753	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4754	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4755	if (ext4_has_feature_project(sb) &&
4756	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4757	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4758		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4759	else
4760		i_projid = EXT4_DEF_PROJID;
4761
4762	if (!(test_opt(inode->i_sb, NO_UID32))) {
4763		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4764		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4765	}
4766	i_uid_write(inode, i_uid);
4767	i_gid_write(inode, i_gid);
4768	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4769	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4770
4771	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4772	ei->i_inline_off = 0;
4773	ei->i_dir_start_lookup = 0;
4774	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4775	/* We now have enough fields to check if the inode was active or not.
4776	 * This is needed because nfsd might try to access dead inodes
4777	 * the test is that same one that e2fsck uses
4778	 * NeilBrown 1999oct15
4779	 */
4780	if (inode->i_nlink == 0) {
4781		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4782		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4783		    ino != EXT4_BOOT_LOADER_INO) {
4784			/* this inode is deleted or unallocated */
4785			if (flags & EXT4_IGET_SPECIAL) {
4786				ext4_error_inode(inode, function, line, 0,
4787						 "iget: special inode unallocated");
4788				ret = -EFSCORRUPTED;
4789			} else
4790				ret = -ESTALE;
4791			goto bad_inode;
4792		}
4793		/* The only unlinked inodes we let through here have
4794		 * valid i_mode and are being read by the orphan
4795		 * recovery code: that's fine, we're about to complete
4796		 * the process of deleting those.
4797		 * OR it is the EXT4_BOOT_LOADER_INO which is
4798		 * not initialized on a new filesystem. */
4799	}
4800	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4801	ext4_set_inode_flags(inode, true);
4802	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4803	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4804	if (ext4_has_feature_64bit(sb))
4805		ei->i_file_acl |=
4806			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4807	inode->i_size = ext4_isize(sb, raw_inode);
4808	if ((size = i_size_read(inode)) < 0) {
4809		ext4_error_inode(inode, function, line, 0,
4810				 "iget: bad i_size value: %lld", size);
4811		ret = -EFSCORRUPTED;
4812		goto bad_inode;
4813	}
4814	/*
4815	 * If dir_index is not enabled but there's dir with INDEX flag set,
4816	 * we'd normally treat htree data as empty space. But with metadata
4817	 * checksumming that corrupts checksums so forbid that.
4818	 */
4819	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4820	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4821		ext4_error_inode(inode, function, line, 0,
4822			 "iget: Dir with htree data on filesystem without dir_index feature.");
4823		ret = -EFSCORRUPTED;
4824		goto bad_inode;
4825	}
4826	ei->i_disksize = inode->i_size;
4827#ifdef CONFIG_QUOTA
4828	ei->i_reserved_quota = 0;
4829#endif
4830	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4831	ei->i_block_group = iloc.block_group;
4832	ei->i_last_alloc_group = ~0;
4833	/*
4834	 * NOTE! The in-memory inode i_data array is in little-endian order
4835	 * even on big-endian machines: we do NOT byteswap the block numbers!
4836	 */
4837	for (block = 0; block < EXT4_N_BLOCKS; block++)
4838		ei->i_data[block] = raw_inode->i_block[block];
4839	INIT_LIST_HEAD(&ei->i_orphan);
4840	ext4_fc_init_inode(&ei->vfs_inode);
4841
4842	/*
4843	 * Set transaction id's of transactions that have to be committed
4844	 * to finish f[data]sync. We set them to currently running transaction
4845	 * as we cannot be sure that the inode or some of its metadata isn't
4846	 * part of the transaction - the inode could have been reclaimed and
4847	 * now it is reread from disk.
4848	 */
4849	if (journal) {
4850		transaction_t *transaction;
4851		tid_t tid;
4852
4853		read_lock(&journal->j_state_lock);
4854		if (journal->j_running_transaction)
4855			transaction = journal->j_running_transaction;
4856		else
4857			transaction = journal->j_committing_transaction;
4858		if (transaction)
4859			tid = transaction->t_tid;
4860		else
4861			tid = journal->j_commit_sequence;
4862		read_unlock(&journal->j_state_lock);
4863		ei->i_sync_tid = tid;
4864		ei->i_datasync_tid = tid;
4865	}
4866
4867	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4868		if (ei->i_extra_isize == 0) {
4869			/* The extra space is currently unused. Use it. */
4870			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4871			ei->i_extra_isize = sizeof(struct ext4_inode) -
4872					    EXT4_GOOD_OLD_INODE_SIZE;
4873		} else {
4874			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4875			if (ret)
4876				goto bad_inode;
4877		}
4878	}
4879
4880	EXT4_INODE_GET_CTIME(inode, raw_inode);
4881	EXT4_INODE_GET_ATIME(inode, raw_inode);
4882	EXT4_INODE_GET_MTIME(inode, raw_inode);
4883	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4884
4885	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4886		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4887
4888		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4889			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4890				ivers |=
4891		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4892		}
4893		ext4_inode_set_iversion_queried(inode, ivers);
4894	}
4895
4896	ret = 0;
4897	if (ei->i_file_acl &&
4898	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4899		ext4_error_inode(inode, function, line, 0,
4900				 "iget: bad extended attribute block %llu",
4901				 ei->i_file_acl);
4902		ret = -EFSCORRUPTED;
4903		goto bad_inode;
4904	} else if (!ext4_has_inline_data(inode)) {
4905		/* validate the block references in the inode */
4906		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4907			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4908			(S_ISLNK(inode->i_mode) &&
4909			!ext4_inode_is_fast_symlink(inode)))) {
4910			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4911				ret = ext4_ext_check_inode(inode);
4912			else
4913				ret = ext4_ind_check_inode(inode);
4914		}
4915	}
4916	if (ret)
4917		goto bad_inode;
4918
4919	if (S_ISREG(inode->i_mode)) {
4920		inode->i_op = &ext4_file_inode_operations;
4921		inode->i_fop = &ext4_file_operations;
4922		ext4_set_aops(inode);
4923	} else if (S_ISDIR(inode->i_mode)) {
4924		inode->i_op = &ext4_dir_inode_operations;
4925		inode->i_fop = &ext4_dir_operations;
4926	} else if (S_ISLNK(inode->i_mode)) {
4927		/* VFS does not allow setting these so must be corruption */
4928		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4929			ext4_error_inode(inode, function, line, 0,
4930					 "iget: immutable or append flags "
4931					 "not allowed on symlinks");
4932			ret = -EFSCORRUPTED;
4933			goto bad_inode;
4934		}
4935		if (IS_ENCRYPTED(inode)) {
4936			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4937		} else if (ext4_inode_is_fast_symlink(inode)) {
4938			inode->i_link = (char *)ei->i_data;
4939			inode->i_op = &ext4_fast_symlink_inode_operations;
4940			nd_terminate_link(ei->i_data, inode->i_size,
4941				sizeof(ei->i_data) - 1);
4942		} else {
4943			inode->i_op = &ext4_symlink_inode_operations;
4944		}
4945	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4946	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4947		inode->i_op = &ext4_special_inode_operations;
4948		if (raw_inode->i_block[0])
4949			init_special_inode(inode, inode->i_mode,
4950			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4951		else
4952			init_special_inode(inode, inode->i_mode,
4953			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4954	} else if (ino == EXT4_BOOT_LOADER_INO) {
4955		make_bad_inode(inode);
4956	} else {
4957		ret = -EFSCORRUPTED;
4958		ext4_error_inode(inode, function, line, 0,
4959				 "iget: bogus i_mode (%o)", inode->i_mode);
4960		goto bad_inode;
4961	}
4962	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4963		ext4_error_inode(inode, function, line, 0,
4964				 "casefold flag without casefold feature");
4965		ret = -EFSCORRUPTED;
4966		goto bad_inode;
4967	}
4968	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4969		ext4_error_inode(inode, function, line, 0, err_str);
4970		ret = -EFSCORRUPTED;
4971		goto bad_inode;
4972	}
4973
4974	brelse(iloc.bh);
4975	unlock_new_inode(inode);
4976	return inode;
4977
4978bad_inode:
4979	brelse(iloc.bh);
4980	iget_failed(inode);
4981	return ERR_PTR(ret);
4982}
4983
4984static void __ext4_update_other_inode_time(struct super_block *sb,
4985					   unsigned long orig_ino,
4986					   unsigned long ino,
4987					   struct ext4_inode *raw_inode)
4988{
4989	struct inode *inode;
4990
4991	inode = find_inode_by_ino_rcu(sb, ino);
4992	if (!inode)
4993		return;
4994
4995	if (!inode_is_dirtytime_only(inode))
4996		return;
4997
4998	spin_lock(&inode->i_lock);
4999	if (inode_is_dirtytime_only(inode)) {
5000		struct ext4_inode_info	*ei = EXT4_I(inode);
5001
5002		inode->i_state &= ~I_DIRTY_TIME;
5003		spin_unlock(&inode->i_lock);
5004
5005		spin_lock(&ei->i_raw_lock);
5006		EXT4_INODE_SET_CTIME(inode, raw_inode);
5007		EXT4_INODE_SET_MTIME(inode, raw_inode);
5008		EXT4_INODE_SET_ATIME(inode, raw_inode);
5009		ext4_inode_csum_set(inode, raw_inode, ei);
5010		spin_unlock(&ei->i_raw_lock);
5011		trace_ext4_other_inode_update_time(inode, orig_ino);
5012		return;
5013	}
5014	spin_unlock(&inode->i_lock);
5015}
5016
5017/*
5018 * Opportunistically update the other time fields for other inodes in
5019 * the same inode table block.
5020 */
5021static void ext4_update_other_inodes_time(struct super_block *sb,
5022					  unsigned long orig_ino, char *buf)
5023{
5024	unsigned long ino;
5025	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5026	int inode_size = EXT4_INODE_SIZE(sb);
5027
5028	/*
5029	 * Calculate the first inode in the inode table block.  Inode
5030	 * numbers are one-based.  That is, the first inode in a block
5031	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5032	 */
5033	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5034	rcu_read_lock();
5035	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5036		if (ino == orig_ino)
5037			continue;
5038		__ext4_update_other_inode_time(sb, orig_ino, ino,
5039					       (struct ext4_inode *)buf);
5040	}
5041	rcu_read_unlock();
5042}
5043
5044/*
5045 * Post the struct inode info into an on-disk inode location in the
5046 * buffer-cache.  This gobbles the caller's reference to the
5047 * buffer_head in the inode location struct.
5048 *
5049 * The caller must have write access to iloc->bh.
5050 */
5051static int ext4_do_update_inode(handle_t *handle,
5052				struct inode *inode,
5053				struct ext4_iloc *iloc)
5054{
5055	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5056	struct ext4_inode_info *ei = EXT4_I(inode);
5057	struct buffer_head *bh = iloc->bh;
5058	struct super_block *sb = inode->i_sb;
5059	int err;
5060	int need_datasync = 0, set_large_file = 0;
5061
5062	spin_lock(&ei->i_raw_lock);
5063
5064	/*
5065	 * For fields not tracked in the in-memory inode, initialise them
5066	 * to zero for new inodes.
5067	 */
5068	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5069		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5070
5071	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5072		need_datasync = 1;
5073	if (ei->i_disksize > 0x7fffffffULL) {
5074		if (!ext4_has_feature_large_file(sb) ||
5075		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5076			set_large_file = 1;
5077	}
5078
5079	err = ext4_fill_raw_inode(inode, raw_inode);
5080	spin_unlock(&ei->i_raw_lock);
5081	if (err) {
5082		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5083		goto out_brelse;
5084	}
5085
5086	if (inode->i_sb->s_flags & SB_LAZYTIME)
5087		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5088					      bh->b_data);
5089
5090	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5091	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5092	if (err)
5093		goto out_error;
5094	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5095	if (set_large_file) {
5096		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5097		err = ext4_journal_get_write_access(handle, sb,
5098						    EXT4_SB(sb)->s_sbh,
5099						    EXT4_JTR_NONE);
5100		if (err)
5101			goto out_error;
5102		lock_buffer(EXT4_SB(sb)->s_sbh);
5103		ext4_set_feature_large_file(sb);
5104		ext4_superblock_csum_set(sb);
5105		unlock_buffer(EXT4_SB(sb)->s_sbh);
5106		ext4_handle_sync(handle);
5107		err = ext4_handle_dirty_metadata(handle, NULL,
5108						 EXT4_SB(sb)->s_sbh);
5109	}
5110	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5111out_error:
5112	ext4_std_error(inode->i_sb, err);
5113out_brelse:
5114	brelse(bh);
5115	return err;
5116}
5117
5118/*
5119 * ext4_write_inode()
5120 *
5121 * We are called from a few places:
5122 *
5123 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5124 *   Here, there will be no transaction running. We wait for any running
5125 *   transaction to commit.
5126 *
5127 * - Within flush work (sys_sync(), kupdate and such).
5128 *   We wait on commit, if told to.
5129 *
5130 * - Within iput_final() -> write_inode_now()
5131 *   We wait on commit, if told to.
5132 *
5133 * In all cases it is actually safe for us to return without doing anything,
5134 * because the inode has been copied into a raw inode buffer in
5135 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5136 * writeback.
5137 *
5138 * Note that we are absolutely dependent upon all inode dirtiers doing the
5139 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5140 * which we are interested.
5141 *
5142 * It would be a bug for them to not do this.  The code:
5143 *
5144 *	mark_inode_dirty(inode)
5145 *	stuff();
5146 *	inode->i_size = expr;
5147 *
5148 * is in error because write_inode() could occur while `stuff()' is running,
5149 * and the new i_size will be lost.  Plus the inode will no longer be on the
5150 * superblock's dirty inode list.
5151 */
5152int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5153{
5154	int err;
5155
5156	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5157		return 0;
5158
5159	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5160		return -EIO;
5161
5162	if (EXT4_SB(inode->i_sb)->s_journal) {
5163		if (ext4_journal_current_handle()) {
5164			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5165			dump_stack();
5166			return -EIO;
5167		}
5168
5169		/*
5170		 * No need to force transaction in WB_SYNC_NONE mode. Also
5171		 * ext4_sync_fs() will force the commit after everything is
5172		 * written.
5173		 */
5174		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5175			return 0;
5176
5177		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5178						EXT4_I(inode)->i_sync_tid);
5179	} else {
5180		struct ext4_iloc iloc;
5181
5182		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5183		if (err)
5184			return err;
5185		/*
5186		 * sync(2) will flush the whole buffer cache. No need to do
5187		 * it here separately for each inode.
5188		 */
5189		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5190			sync_dirty_buffer(iloc.bh);
5191		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5192			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5193					       "IO error syncing inode");
5194			err = -EIO;
5195		}
5196		brelse(iloc.bh);
5197	}
5198	return err;
5199}
5200
5201/*
5202 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5203 * buffers that are attached to a folio straddling i_size and are undergoing
5204 * commit. In that case we have to wait for commit to finish and try again.
5205 */
5206static void ext4_wait_for_tail_page_commit(struct inode *inode)
5207{
5208	unsigned offset;
5209	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5210	tid_t commit_tid = 0;
5211	int ret;
5212
5213	offset = inode->i_size & (PAGE_SIZE - 1);
5214	/*
5215	 * If the folio is fully truncated, we don't need to wait for any commit
5216	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5217	 * strip all buffers from the folio but keep the folio dirty which can then
5218	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5219	 * buffers). Also we don't need to wait for any commit if all buffers in
5220	 * the folio remain valid. This is most beneficial for the common case of
5221	 * blocksize == PAGESIZE.
5222	 */
5223	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5224		return;
5225	while (1) {
5226		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5227				      inode->i_size >> PAGE_SHIFT);
5228		if (IS_ERR(folio))
5229			return;
5230		ret = __ext4_journalled_invalidate_folio(folio, offset,
5231						folio_size(folio) - offset);
5232		folio_unlock(folio);
5233		folio_put(folio);
5234		if (ret != -EBUSY)
5235			return;
5236		commit_tid = 0;
5237		read_lock(&journal->j_state_lock);
5238		if (journal->j_committing_transaction)
5239			commit_tid = journal->j_committing_transaction->t_tid;
5240		read_unlock(&journal->j_state_lock);
5241		if (commit_tid)
5242			jbd2_log_wait_commit(journal, commit_tid);
5243	}
5244}
5245
5246/*
5247 * ext4_setattr()
5248 *
5249 * Called from notify_change.
5250 *
5251 * We want to trap VFS attempts to truncate the file as soon as
5252 * possible.  In particular, we want to make sure that when the VFS
5253 * shrinks i_size, we put the inode on the orphan list and modify
5254 * i_disksize immediately, so that during the subsequent flushing of
5255 * dirty pages and freeing of disk blocks, we can guarantee that any
5256 * commit will leave the blocks being flushed in an unused state on
5257 * disk.  (On recovery, the inode will get truncated and the blocks will
5258 * be freed, so we have a strong guarantee that no future commit will
5259 * leave these blocks visible to the user.)
5260 *
5261 * Another thing we have to assure is that if we are in ordered mode
5262 * and inode is still attached to the committing transaction, we must
5263 * we start writeout of all the dirty pages which are being truncated.
5264 * This way we are sure that all the data written in the previous
5265 * transaction are already on disk (truncate waits for pages under
5266 * writeback).
5267 *
5268 * Called with inode->i_rwsem down.
5269 */
5270int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5271		 struct iattr *attr)
5272{
5273	struct inode *inode = d_inode(dentry);
5274	int error, rc = 0;
5275	int orphan = 0;
5276	const unsigned int ia_valid = attr->ia_valid;
5277	bool inc_ivers = true;
5278
5279	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5280		return -EIO;
5281
5282	if (unlikely(IS_IMMUTABLE(inode)))
5283		return -EPERM;
5284
5285	if (unlikely(IS_APPEND(inode) &&
5286		     (ia_valid & (ATTR_MODE | ATTR_UID |
5287				  ATTR_GID | ATTR_TIMES_SET))))
5288		return -EPERM;
5289
5290	error = setattr_prepare(idmap, dentry, attr);
5291	if (error)
5292		return error;
5293
5294	error = fscrypt_prepare_setattr(dentry, attr);
5295	if (error)
5296		return error;
5297
5298	error = fsverity_prepare_setattr(dentry, attr);
5299	if (error)
5300		return error;
5301
5302	if (is_quota_modification(idmap, inode, attr)) {
5303		error = dquot_initialize(inode);
5304		if (error)
5305			return error;
5306	}
5307
5308	if (i_uid_needs_update(idmap, attr, inode) ||
5309	    i_gid_needs_update(idmap, attr, inode)) {
5310		handle_t *handle;
5311
5312		/* (user+group)*(old+new) structure, inode write (sb,
5313		 * inode block, ? - but truncate inode update has it) */
5314		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5315			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5316			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5317		if (IS_ERR(handle)) {
5318			error = PTR_ERR(handle);
5319			goto err_out;
5320		}
5321
5322		/* dquot_transfer() calls back ext4_get_inode_usage() which
5323		 * counts xattr inode references.
5324		 */
5325		down_read(&EXT4_I(inode)->xattr_sem);
5326		error = dquot_transfer(idmap, inode, attr);
5327		up_read(&EXT4_I(inode)->xattr_sem);
5328
5329		if (error) {
5330			ext4_journal_stop(handle);
5331			return error;
5332		}
5333		/* Update corresponding info in inode so that everything is in
5334		 * one transaction */
5335		i_uid_update(idmap, attr, inode);
5336		i_gid_update(idmap, attr, inode);
5337		error = ext4_mark_inode_dirty(handle, inode);
5338		ext4_journal_stop(handle);
5339		if (unlikely(error)) {
5340			return error;
5341		}
5342	}
5343
5344	if (attr->ia_valid & ATTR_SIZE) {
5345		handle_t *handle;
5346		loff_t oldsize = inode->i_size;
5347		loff_t old_disksize;
5348		int shrink = (attr->ia_size < inode->i_size);
5349
5350		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5351			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5352
5353			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5354				return -EFBIG;
5355			}
5356		}
5357		if (!S_ISREG(inode->i_mode)) {
5358			return -EINVAL;
5359		}
5360
5361		if (attr->ia_size == inode->i_size)
5362			inc_ivers = false;
5363
5364		if (shrink) {
5365			if (ext4_should_order_data(inode)) {
5366				error = ext4_begin_ordered_truncate(inode,
5367							    attr->ia_size);
5368				if (error)
5369					goto err_out;
5370			}
5371			/*
5372			 * Blocks are going to be removed from the inode. Wait
5373			 * for dio in flight.
5374			 */
5375			inode_dio_wait(inode);
5376		}
5377
5378		filemap_invalidate_lock(inode->i_mapping);
5379
5380		rc = ext4_break_layouts(inode);
5381		if (rc) {
5382			filemap_invalidate_unlock(inode->i_mapping);
5383			goto err_out;
5384		}
5385
5386		if (attr->ia_size != inode->i_size) {
5387			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5388			if (IS_ERR(handle)) {
5389				error = PTR_ERR(handle);
5390				goto out_mmap_sem;
5391			}
5392			if (ext4_handle_valid(handle) && shrink) {
5393				error = ext4_orphan_add(handle, inode);
5394				orphan = 1;
5395			}
5396			/*
5397			 * Update c/mtime on truncate up, ext4_truncate() will
5398			 * update c/mtime in shrink case below
5399			 */
5400			if (!shrink)
5401				inode_set_mtime_to_ts(inode,
5402						      inode_set_ctime_current(inode));
5403
5404			if (shrink)
5405				ext4_fc_track_range(handle, inode,
5406					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5407					inode->i_sb->s_blocksize_bits,
5408					EXT_MAX_BLOCKS - 1);
5409			else
5410				ext4_fc_track_range(
5411					handle, inode,
5412					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5413					inode->i_sb->s_blocksize_bits,
5414					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5415					inode->i_sb->s_blocksize_bits);
5416
5417			down_write(&EXT4_I(inode)->i_data_sem);
5418			old_disksize = EXT4_I(inode)->i_disksize;
5419			EXT4_I(inode)->i_disksize = attr->ia_size;
5420			rc = ext4_mark_inode_dirty(handle, inode);
5421			if (!error)
5422				error = rc;
5423			/*
5424			 * We have to update i_size under i_data_sem together
5425			 * with i_disksize to avoid races with writeback code
5426			 * running ext4_wb_update_i_disksize().
5427			 */
5428			if (!error)
5429				i_size_write(inode, attr->ia_size);
5430			else
5431				EXT4_I(inode)->i_disksize = old_disksize;
5432			up_write(&EXT4_I(inode)->i_data_sem);
5433			ext4_journal_stop(handle);
5434			if (error)
5435				goto out_mmap_sem;
5436			if (!shrink) {
5437				pagecache_isize_extended(inode, oldsize,
5438							 inode->i_size);
5439			} else if (ext4_should_journal_data(inode)) {
5440				ext4_wait_for_tail_page_commit(inode);
5441			}
5442		}
5443
5444		/*
5445		 * Truncate pagecache after we've waited for commit
5446		 * in data=journal mode to make pages freeable.
5447		 */
5448		truncate_pagecache(inode, inode->i_size);
5449		/*
5450		 * Call ext4_truncate() even if i_size didn't change to
5451		 * truncate possible preallocated blocks.
5452		 */
5453		if (attr->ia_size <= oldsize) {
5454			rc = ext4_truncate(inode);
5455			if (rc)
5456				error = rc;
5457		}
5458out_mmap_sem:
5459		filemap_invalidate_unlock(inode->i_mapping);
5460	}
5461
5462	if (!error) {
5463		if (inc_ivers)
5464			inode_inc_iversion(inode);
5465		setattr_copy(idmap, inode, attr);
5466		mark_inode_dirty(inode);
5467	}
5468
5469	/*
5470	 * If the call to ext4_truncate failed to get a transaction handle at
5471	 * all, we need to clean up the in-core orphan list manually.
5472	 */
5473	if (orphan && inode->i_nlink)
5474		ext4_orphan_del(NULL, inode);
5475
5476	if (!error && (ia_valid & ATTR_MODE))
5477		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5478
5479err_out:
5480	if  (error)
5481		ext4_std_error(inode->i_sb, error);
5482	if (!error)
5483		error = rc;
5484	return error;
5485}
5486
5487u32 ext4_dio_alignment(struct inode *inode)
5488{
5489	if (fsverity_active(inode))
5490		return 0;
5491	if (ext4_should_journal_data(inode))
5492		return 0;
5493	if (ext4_has_inline_data(inode))
5494		return 0;
5495	if (IS_ENCRYPTED(inode)) {
5496		if (!fscrypt_dio_supported(inode))
5497			return 0;
5498		return i_blocksize(inode);
5499	}
5500	return 1; /* use the iomap defaults */
5501}
5502
5503int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5504		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5505{
5506	struct inode *inode = d_inode(path->dentry);
5507	struct ext4_inode *raw_inode;
5508	struct ext4_inode_info *ei = EXT4_I(inode);
5509	unsigned int flags;
5510
5511	if ((request_mask & STATX_BTIME) &&
5512	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5513		stat->result_mask |= STATX_BTIME;
5514		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5515		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5516	}
5517
5518	/*
5519	 * Return the DIO alignment restrictions if requested.  We only return
5520	 * this information when requested, since on encrypted files it might
5521	 * take a fair bit of work to get if the file wasn't opened recently.
5522	 */
5523	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5524		u32 dio_align = ext4_dio_alignment(inode);
5525
5526		stat->result_mask |= STATX_DIOALIGN;
5527		if (dio_align == 1) {
5528			struct block_device *bdev = inode->i_sb->s_bdev;
5529
5530			/* iomap defaults */
5531			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5532			stat->dio_offset_align = bdev_logical_block_size(bdev);
5533		} else {
5534			stat->dio_mem_align = dio_align;
5535			stat->dio_offset_align = dio_align;
5536		}
5537	}
5538
5539	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5540	if (flags & EXT4_APPEND_FL)
5541		stat->attributes |= STATX_ATTR_APPEND;
5542	if (flags & EXT4_COMPR_FL)
5543		stat->attributes |= STATX_ATTR_COMPRESSED;
5544	if (flags & EXT4_ENCRYPT_FL)
5545		stat->attributes |= STATX_ATTR_ENCRYPTED;
5546	if (flags & EXT4_IMMUTABLE_FL)
5547		stat->attributes |= STATX_ATTR_IMMUTABLE;
5548	if (flags & EXT4_NODUMP_FL)
5549		stat->attributes |= STATX_ATTR_NODUMP;
5550	if (flags & EXT4_VERITY_FL)
5551		stat->attributes |= STATX_ATTR_VERITY;
5552
5553	stat->attributes_mask |= (STATX_ATTR_APPEND |
5554				  STATX_ATTR_COMPRESSED |
5555				  STATX_ATTR_ENCRYPTED |
5556				  STATX_ATTR_IMMUTABLE |
5557				  STATX_ATTR_NODUMP |
5558				  STATX_ATTR_VERITY);
5559
5560	generic_fillattr(idmap, request_mask, inode, stat);
5561	return 0;
5562}
5563
5564int ext4_file_getattr(struct mnt_idmap *idmap,
5565		      const struct path *path, struct kstat *stat,
5566		      u32 request_mask, unsigned int query_flags)
5567{
5568	struct inode *inode = d_inode(path->dentry);
5569	u64 delalloc_blocks;
5570
5571	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5572
5573	/*
5574	 * If there is inline data in the inode, the inode will normally not
5575	 * have data blocks allocated (it may have an external xattr block).
5576	 * Report at least one sector for such files, so tools like tar, rsync,
5577	 * others don't incorrectly think the file is completely sparse.
5578	 */
5579	if (unlikely(ext4_has_inline_data(inode)))
5580		stat->blocks += (stat->size + 511) >> 9;
5581
5582	/*
5583	 * We can't update i_blocks if the block allocation is delayed
5584	 * otherwise in the case of system crash before the real block
5585	 * allocation is done, we will have i_blocks inconsistent with
5586	 * on-disk file blocks.
5587	 * We always keep i_blocks updated together with real
5588	 * allocation. But to not confuse with user, stat
5589	 * will return the blocks that include the delayed allocation
5590	 * blocks for this file.
5591	 */
5592	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5593				   EXT4_I(inode)->i_reserved_data_blocks);
5594	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5595	return 0;
5596}
5597
5598static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5599				   int pextents)
5600{
5601	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5602		return ext4_ind_trans_blocks(inode, lblocks);
5603	return ext4_ext_index_trans_blocks(inode, pextents);
5604}
5605
5606/*
5607 * Account for index blocks, block groups bitmaps and block group
5608 * descriptor blocks if modify datablocks and index blocks
5609 * worse case, the indexs blocks spread over different block groups
5610 *
5611 * If datablocks are discontiguous, they are possible to spread over
5612 * different block groups too. If they are contiguous, with flexbg,
5613 * they could still across block group boundary.
5614 *
5615 * Also account for superblock, inode, quota and xattr blocks
5616 */
5617static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5618				  int pextents)
5619{
5620	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5621	int gdpblocks;
5622	int idxblocks;
5623	int ret;
5624
5625	/*
5626	 * How many index blocks need to touch to map @lblocks logical blocks
5627	 * to @pextents physical extents?
5628	 */
5629	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5630
5631	ret = idxblocks;
5632
5633	/*
5634	 * Now let's see how many group bitmaps and group descriptors need
5635	 * to account
5636	 */
5637	groups = idxblocks + pextents;
5638	gdpblocks = groups;
5639	if (groups > ngroups)
5640		groups = ngroups;
5641	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5642		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5643
5644	/* bitmaps and block group descriptor blocks */
5645	ret += groups + gdpblocks;
5646
5647	/* Blocks for super block, inode, quota and xattr blocks */
5648	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5649
5650	return ret;
5651}
5652
5653/*
5654 * Calculate the total number of credits to reserve to fit
5655 * the modification of a single pages into a single transaction,
5656 * which may include multiple chunks of block allocations.
5657 *
5658 * This could be called via ext4_write_begin()
5659 *
5660 * We need to consider the worse case, when
5661 * one new block per extent.
5662 */
5663int ext4_writepage_trans_blocks(struct inode *inode)
5664{
5665	int bpp = ext4_journal_blocks_per_page(inode);
5666	int ret;
5667
5668	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5669
5670	/* Account for data blocks for journalled mode */
5671	if (ext4_should_journal_data(inode))
5672		ret += bpp;
5673	return ret;
5674}
5675
5676/*
5677 * Calculate the journal credits for a chunk of data modification.
5678 *
5679 * This is called from DIO, fallocate or whoever calling
5680 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5681 *
5682 * journal buffers for data blocks are not included here, as DIO
5683 * and fallocate do no need to journal data buffers.
5684 */
5685int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5686{
5687	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5688}
5689
5690/*
5691 * The caller must have previously called ext4_reserve_inode_write().
5692 * Give this, we know that the caller already has write access to iloc->bh.
5693 */
5694int ext4_mark_iloc_dirty(handle_t *handle,
5695			 struct inode *inode, struct ext4_iloc *iloc)
5696{
5697	int err = 0;
5698
5699	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5700		put_bh(iloc->bh);
5701		return -EIO;
5702	}
5703	ext4_fc_track_inode(handle, inode);
5704
5705	/* the do_update_inode consumes one bh->b_count */
5706	get_bh(iloc->bh);
5707
5708	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5709	err = ext4_do_update_inode(handle, inode, iloc);
5710	put_bh(iloc->bh);
5711	return err;
5712}
5713
5714/*
5715 * On success, We end up with an outstanding reference count against
5716 * iloc->bh.  This _must_ be cleaned up later.
5717 */
5718
5719int
5720ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5721			 struct ext4_iloc *iloc)
5722{
5723	int err;
5724
5725	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5726		return -EIO;
5727
5728	err = ext4_get_inode_loc(inode, iloc);
5729	if (!err) {
5730		BUFFER_TRACE(iloc->bh, "get_write_access");
5731		err = ext4_journal_get_write_access(handle, inode->i_sb,
5732						    iloc->bh, EXT4_JTR_NONE);
5733		if (err) {
5734			brelse(iloc->bh);
5735			iloc->bh = NULL;
5736		}
5737	}
5738	ext4_std_error(inode->i_sb, err);
5739	return err;
5740}
5741
5742static int __ext4_expand_extra_isize(struct inode *inode,
5743				     unsigned int new_extra_isize,
5744				     struct ext4_iloc *iloc,
5745				     handle_t *handle, int *no_expand)
5746{
5747	struct ext4_inode *raw_inode;
5748	struct ext4_xattr_ibody_header *header;
5749	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5750	struct ext4_inode_info *ei = EXT4_I(inode);
5751	int error;
5752
5753	/* this was checked at iget time, but double check for good measure */
5754	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5755	    (ei->i_extra_isize & 3)) {
5756		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5757				 ei->i_extra_isize,
5758				 EXT4_INODE_SIZE(inode->i_sb));
5759		return -EFSCORRUPTED;
5760	}
5761	if ((new_extra_isize < ei->i_extra_isize) ||
5762	    (new_extra_isize < 4) ||
5763	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5764		return -EINVAL;	/* Should never happen */
5765
5766	raw_inode = ext4_raw_inode(iloc);
5767
5768	header = IHDR(inode, raw_inode);
5769
5770	/* No extended attributes present */
5771	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5772	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5773		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5774		       EXT4_I(inode)->i_extra_isize, 0,
5775		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5776		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5777		return 0;
5778	}
5779
5780	/*
5781	 * We may need to allocate external xattr block so we need quotas
5782	 * initialized. Here we can be called with various locks held so we
5783	 * cannot affort to initialize quotas ourselves. So just bail.
5784	 */
5785	if (dquot_initialize_needed(inode))
5786		return -EAGAIN;
5787
5788	/* try to expand with EAs present */
5789	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5790					   raw_inode, handle);
5791	if (error) {
5792		/*
5793		 * Inode size expansion failed; don't try again
5794		 */
5795		*no_expand = 1;
5796	}
5797
5798	return error;
5799}
5800
5801/*
5802 * Expand an inode by new_extra_isize bytes.
5803 * Returns 0 on success or negative error number on failure.
5804 */
5805static int ext4_try_to_expand_extra_isize(struct inode *inode,
5806					  unsigned int new_extra_isize,
5807					  struct ext4_iloc iloc,
5808					  handle_t *handle)
5809{
5810	int no_expand;
5811	int error;
5812
5813	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5814		return -EOVERFLOW;
5815
5816	/*
5817	 * In nojournal mode, we can immediately attempt to expand
5818	 * the inode.  When journaled, we first need to obtain extra
5819	 * buffer credits since we may write into the EA block
5820	 * with this same handle. If journal_extend fails, then it will
5821	 * only result in a minor loss of functionality for that inode.
5822	 * If this is felt to be critical, then e2fsck should be run to
5823	 * force a large enough s_min_extra_isize.
5824	 */
5825	if (ext4_journal_extend(handle,
5826				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5827		return -ENOSPC;
5828
5829	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5830		return -EBUSY;
5831
5832	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5833					  handle, &no_expand);
5834	ext4_write_unlock_xattr(inode, &no_expand);
5835
5836	return error;
5837}
5838
5839int ext4_expand_extra_isize(struct inode *inode,
5840			    unsigned int new_extra_isize,
5841			    struct ext4_iloc *iloc)
5842{
5843	handle_t *handle;
5844	int no_expand;
5845	int error, rc;
5846
5847	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5848		brelse(iloc->bh);
5849		return -EOVERFLOW;
5850	}
5851
5852	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5853				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5854	if (IS_ERR(handle)) {
5855		error = PTR_ERR(handle);
5856		brelse(iloc->bh);
5857		return error;
5858	}
5859
5860	ext4_write_lock_xattr(inode, &no_expand);
5861
5862	BUFFER_TRACE(iloc->bh, "get_write_access");
5863	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5864					      EXT4_JTR_NONE);
5865	if (error) {
5866		brelse(iloc->bh);
5867		goto out_unlock;
5868	}
5869
5870	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5871					  handle, &no_expand);
5872
5873	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5874	if (!error)
5875		error = rc;
5876
5877out_unlock:
5878	ext4_write_unlock_xattr(inode, &no_expand);
5879	ext4_journal_stop(handle);
5880	return error;
5881}
5882
5883/*
5884 * What we do here is to mark the in-core inode as clean with respect to inode
5885 * dirtiness (it may still be data-dirty).
5886 * This means that the in-core inode may be reaped by prune_icache
5887 * without having to perform any I/O.  This is a very good thing,
5888 * because *any* task may call prune_icache - even ones which
5889 * have a transaction open against a different journal.
5890 *
5891 * Is this cheating?  Not really.  Sure, we haven't written the
5892 * inode out, but prune_icache isn't a user-visible syncing function.
5893 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5894 * we start and wait on commits.
5895 */
5896int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5897				const char *func, unsigned int line)
5898{
5899	struct ext4_iloc iloc;
5900	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5901	int err;
5902
5903	might_sleep();
5904	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5905	err = ext4_reserve_inode_write(handle, inode, &iloc);
5906	if (err)
5907		goto out;
5908
5909	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5910		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5911					       iloc, handle);
5912
5913	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5914out:
5915	if (unlikely(err))
5916		ext4_error_inode_err(inode, func, line, 0, err,
5917					"mark_inode_dirty error");
5918	return err;
5919}
5920
5921/*
5922 * ext4_dirty_inode() is called from __mark_inode_dirty()
5923 *
5924 * We're really interested in the case where a file is being extended.
5925 * i_size has been changed by generic_commit_write() and we thus need
5926 * to include the updated inode in the current transaction.
5927 *
5928 * Also, dquot_alloc_block() will always dirty the inode when blocks
5929 * are allocated to the file.
5930 *
5931 * If the inode is marked synchronous, we don't honour that here - doing
5932 * so would cause a commit on atime updates, which we don't bother doing.
5933 * We handle synchronous inodes at the highest possible level.
5934 */
5935void ext4_dirty_inode(struct inode *inode, int flags)
5936{
5937	handle_t *handle;
5938
5939	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5940	if (IS_ERR(handle))
5941		return;
5942	ext4_mark_inode_dirty(handle, inode);
5943	ext4_journal_stop(handle);
5944}
5945
5946int ext4_change_inode_journal_flag(struct inode *inode, int val)
5947{
5948	journal_t *journal;
5949	handle_t *handle;
5950	int err;
5951	int alloc_ctx;
5952
5953	/*
5954	 * We have to be very careful here: changing a data block's
5955	 * journaling status dynamically is dangerous.  If we write a
5956	 * data block to the journal, change the status and then delete
5957	 * that block, we risk forgetting to revoke the old log record
5958	 * from the journal and so a subsequent replay can corrupt data.
5959	 * So, first we make sure that the journal is empty and that
5960	 * nobody is changing anything.
5961	 */
5962
5963	journal = EXT4_JOURNAL(inode);
5964	if (!journal)
5965		return 0;
5966	if (is_journal_aborted(journal))
5967		return -EROFS;
5968
5969	/* Wait for all existing dio workers */
5970	inode_dio_wait(inode);
5971
5972	/*
5973	 * Before flushing the journal and switching inode's aops, we have
5974	 * to flush all dirty data the inode has. There can be outstanding
5975	 * delayed allocations, there can be unwritten extents created by
5976	 * fallocate or buffered writes in dioread_nolock mode covered by
5977	 * dirty data which can be converted only after flushing the dirty
5978	 * data (and journalled aops don't know how to handle these cases).
5979	 */
5980	if (val) {
5981		filemap_invalidate_lock(inode->i_mapping);
5982		err = filemap_write_and_wait(inode->i_mapping);
5983		if (err < 0) {
5984			filemap_invalidate_unlock(inode->i_mapping);
5985			return err;
5986		}
5987	}
5988
5989	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
5990	jbd2_journal_lock_updates(journal);
5991
5992	/*
5993	 * OK, there are no updates running now, and all cached data is
5994	 * synced to disk.  We are now in a completely consistent state
5995	 * which doesn't have anything in the journal, and we know that
5996	 * no filesystem updates are running, so it is safe to modify
5997	 * the inode's in-core data-journaling state flag now.
5998	 */
5999
6000	if (val)
6001		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6002	else {
6003		err = jbd2_journal_flush(journal, 0);
6004		if (err < 0) {
6005			jbd2_journal_unlock_updates(journal);
6006			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6007			return err;
6008		}
6009		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6010	}
6011	ext4_set_aops(inode);
6012
6013	jbd2_journal_unlock_updates(journal);
6014	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6015
6016	if (val)
6017		filemap_invalidate_unlock(inode->i_mapping);
6018
6019	/* Finally we can mark the inode as dirty. */
6020
6021	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6022	if (IS_ERR(handle))
6023		return PTR_ERR(handle);
6024
6025	ext4_fc_mark_ineligible(inode->i_sb,
6026		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6027	err = ext4_mark_inode_dirty(handle, inode);
6028	ext4_handle_sync(handle);
6029	ext4_journal_stop(handle);
6030	ext4_std_error(inode->i_sb, err);
6031
6032	return err;
6033}
6034
6035static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6036			    struct buffer_head *bh)
6037{
6038	return !buffer_mapped(bh);
6039}
6040
6041vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6042{
6043	struct vm_area_struct *vma = vmf->vma;
6044	struct folio *folio = page_folio(vmf->page);
6045	loff_t size;
6046	unsigned long len;
6047	int err;
6048	vm_fault_t ret;
6049	struct file *file = vma->vm_file;
6050	struct inode *inode = file_inode(file);
6051	struct address_space *mapping = inode->i_mapping;
6052	handle_t *handle;
6053	get_block_t *get_block;
6054	int retries = 0;
6055
6056	if (unlikely(IS_IMMUTABLE(inode)))
6057		return VM_FAULT_SIGBUS;
6058
6059	sb_start_pagefault(inode->i_sb);
6060	file_update_time(vma->vm_file);
6061
6062	filemap_invalidate_lock_shared(mapping);
6063
6064	err = ext4_convert_inline_data(inode);
6065	if (err)
6066		goto out_ret;
6067
6068	/*
6069	 * On data journalling we skip straight to the transaction handle:
6070	 * there's no delalloc; page truncated will be checked later; the
6071	 * early return w/ all buffers mapped (calculates size/len) can't
6072	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6073	 */
6074	if (ext4_should_journal_data(inode))
6075		goto retry_alloc;
6076
6077	/* Delalloc case is easy... */
6078	if (test_opt(inode->i_sb, DELALLOC) &&
6079	    !ext4_nonda_switch(inode->i_sb)) {
6080		do {
6081			err = block_page_mkwrite(vma, vmf,
6082						   ext4_da_get_block_prep);
6083		} while (err == -ENOSPC &&
6084		       ext4_should_retry_alloc(inode->i_sb, &retries));
6085		goto out_ret;
6086	}
6087
6088	folio_lock(folio);
6089	size = i_size_read(inode);
6090	/* Page got truncated from under us? */
6091	if (folio->mapping != mapping || folio_pos(folio) > size) {
6092		folio_unlock(folio);
6093		ret = VM_FAULT_NOPAGE;
6094		goto out;
6095	}
6096
6097	len = folio_size(folio);
6098	if (folio_pos(folio) + len > size)
6099		len = size - folio_pos(folio);
6100	/*
6101	 * Return if we have all the buffers mapped. This avoids the need to do
6102	 * journal_start/journal_stop which can block and take a long time
6103	 *
6104	 * This cannot be done for data journalling, as we have to add the
6105	 * inode to the transaction's list to writeprotect pages on commit.
6106	 */
6107	if (folio_buffers(folio)) {
6108		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6109					    0, len, NULL,
6110					    ext4_bh_unmapped)) {
6111			/* Wait so that we don't change page under IO */
6112			folio_wait_stable(folio);
6113			ret = VM_FAULT_LOCKED;
6114			goto out;
6115		}
6116	}
6117	folio_unlock(folio);
6118	/* OK, we need to fill the hole... */
6119	if (ext4_should_dioread_nolock(inode))
6120		get_block = ext4_get_block_unwritten;
6121	else
6122		get_block = ext4_get_block;
6123retry_alloc:
6124	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6125				    ext4_writepage_trans_blocks(inode));
6126	if (IS_ERR(handle)) {
6127		ret = VM_FAULT_SIGBUS;
6128		goto out;
6129	}
6130	/*
6131	 * Data journalling can't use block_page_mkwrite() because it
6132	 * will set_buffer_dirty() before do_journal_get_write_access()
6133	 * thus might hit warning messages for dirty metadata buffers.
6134	 */
6135	if (!ext4_should_journal_data(inode)) {
6136		err = block_page_mkwrite(vma, vmf, get_block);
6137	} else {
6138		folio_lock(folio);
6139		size = i_size_read(inode);
6140		/* Page got truncated from under us? */
6141		if (folio->mapping != mapping || folio_pos(folio) > size) {
6142			ret = VM_FAULT_NOPAGE;
6143			goto out_error;
6144		}
6145
6146		len = folio_size(folio);
6147		if (folio_pos(folio) + len > size)
6148			len = size - folio_pos(folio);
6149
6150		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6151		if (!err) {
6152			ret = VM_FAULT_SIGBUS;
6153			if (ext4_journal_folio_buffers(handle, folio, len))
6154				goto out_error;
6155		} else {
6156			folio_unlock(folio);
6157		}
6158	}
6159	ext4_journal_stop(handle);
6160	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6161		goto retry_alloc;
6162out_ret:
6163	ret = vmf_fs_error(err);
6164out:
6165	filemap_invalidate_unlock_shared(mapping);
6166	sb_end_pagefault(inode->i_sb);
6167	return ret;
6168out_error:
6169	folio_unlock(folio);
6170	ext4_journal_stop(handle);
6171	goto out;
6172}
6173