1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/ext4/indirect.c
4 *
5 *  from
6 *
7 *  linux/fs/ext4/inode.c
8 *
9 * Copyright (C) 1992, 1993, 1994, 1995
10 * Remy Card (card@masi.ibp.fr)
11 * Laboratoire MASI - Institut Blaise Pascal
12 * Universite Pierre et Marie Curie (Paris VI)
13 *
14 *  from
15 *
16 *  linux/fs/minix/inode.c
17 *
18 *  Copyright (C) 1991, 1992  Linus Torvalds
19 *
20 *  Goal-directed block allocation by Stephen Tweedie
21 *	(sct@redhat.com), 1993, 1998
22 */
23
24#include "ext4_jbd2.h"
25#include "truncate.h"
26#include <linux/dax.h>
27#include <linux/uio.h>
28
29#include <trace/events/ext4.h>
30
31typedef struct {
32	__le32	*p;
33	__le32	key;
34	struct buffer_head *bh;
35} Indirect;
36
37static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38{
39	p->key = *(p->p = v);
40	p->bh = bh;
41}
42
43/**
44 *	ext4_block_to_path - parse the block number into array of offsets
45 *	@inode: inode in question (we are only interested in its superblock)
46 *	@i_block: block number to be parsed
47 *	@offsets: array to store the offsets in
48 *	@boundary: set this non-zero if the referred-to block is likely to be
49 *	       followed (on disk) by an indirect block.
50 *
51 *	To store the locations of file's data ext4 uses a data structure common
52 *	for UNIX filesystems - tree of pointers anchored in the inode, with
53 *	data blocks at leaves and indirect blocks in intermediate nodes.
54 *	This function translates the block number into path in that tree -
55 *	return value is the path length and @offsets[n] is the offset of
56 *	pointer to (n+1)th node in the nth one. If @block is out of range
57 *	(negative or too large) warning is printed and zero returned.
58 *
59 *	Note: function doesn't find node addresses, so no IO is needed. All
60 *	we need to know is the capacity of indirect blocks (taken from the
61 *	inode->i_sb).
62 */
63
64/*
65 * Portability note: the last comparison (check that we fit into triple
66 * indirect block) is spelled differently, because otherwise on an
67 * architecture with 32-bit longs and 8Kb pages we might get into trouble
68 * if our filesystem had 8Kb blocks. We might use long long, but that would
69 * kill us on x86. Oh, well, at least the sign propagation does not matter -
70 * i_block would have to be negative in the very beginning, so we would not
71 * get there at all.
72 */
73
74static int ext4_block_to_path(struct inode *inode,
75			      ext4_lblk_t i_block,
76			      ext4_lblk_t offsets[4], int *boundary)
77{
78	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
79	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
80	const long direct_blocks = EXT4_NDIR_BLOCKS,
81		indirect_blocks = ptrs,
82		double_blocks = (1 << (ptrs_bits * 2));
83	int n = 0;
84	int final = 0;
85
86	if (i_block < direct_blocks) {
87		offsets[n++] = i_block;
88		final = direct_blocks;
89	} else if ((i_block -= direct_blocks) < indirect_blocks) {
90		offsets[n++] = EXT4_IND_BLOCK;
91		offsets[n++] = i_block;
92		final = ptrs;
93	} else if ((i_block -= indirect_blocks) < double_blocks) {
94		offsets[n++] = EXT4_DIND_BLOCK;
95		offsets[n++] = i_block >> ptrs_bits;
96		offsets[n++] = i_block & (ptrs - 1);
97		final = ptrs;
98	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
99		offsets[n++] = EXT4_TIND_BLOCK;
100		offsets[n++] = i_block >> (ptrs_bits * 2);
101		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
102		offsets[n++] = i_block & (ptrs - 1);
103		final = ptrs;
104	} else {
105		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
106			     i_block + direct_blocks +
107			     indirect_blocks + double_blocks, inode->i_ino);
108	}
109	if (boundary)
110		*boundary = final - 1 - (i_block & (ptrs - 1));
111	return n;
112}
113
114/**
115 *	ext4_get_branch - read the chain of indirect blocks leading to data
116 *	@inode: inode in question
117 *	@depth: depth of the chain (1 - direct pointer, etc.)
118 *	@offsets: offsets of pointers in inode/indirect blocks
119 *	@chain: place to store the result
120 *	@err: here we store the error value
121 *
122 *	Function fills the array of triples <key, p, bh> and returns %NULL
123 *	if everything went OK or the pointer to the last filled triple
124 *	(incomplete one) otherwise. Upon the return chain[i].key contains
125 *	the number of (i+1)-th block in the chain (as it is stored in memory,
126 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
127 *	number (it points into struct inode for i==0 and into the bh->b_data
128 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
129 *	block for i>0 and NULL for i==0. In other words, it holds the block
130 *	numbers of the chain, addresses they were taken from (and where we can
131 *	verify that chain did not change) and buffer_heads hosting these
132 *	numbers.
133 *
134 *	Function stops when it stumbles upon zero pointer (absent block)
135 *		(pointer to last triple returned, *@err == 0)
136 *	or when it gets an IO error reading an indirect block
137 *		(ditto, *@err == -EIO)
138 *	or when it reads all @depth-1 indirect blocks successfully and finds
139 *	the whole chain, all way to the data (returns %NULL, *err == 0).
140 *
141 *      Need to be called with
142 *      down_read(&EXT4_I(inode)->i_data_sem)
143 */
144static Indirect *ext4_get_branch(struct inode *inode, int depth,
145				 ext4_lblk_t  *offsets,
146				 Indirect chain[4], int *err)
147{
148	struct super_block *sb = inode->i_sb;
149	Indirect *p = chain;
150	struct buffer_head *bh;
151	unsigned int key;
152	int ret = -EIO;
153
154	*err = 0;
155	/* i_data is not going away, no lock needed */
156	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
157	if (!p->key)
158		goto no_block;
159	while (--depth) {
160		key = le32_to_cpu(p->key);
161		if (key > ext4_blocks_count(EXT4_SB(sb)->s_es)) {
162			/* the block was out of range */
163			ret = -EFSCORRUPTED;
164			goto failure;
165		}
166		bh = sb_getblk(sb, key);
167		if (unlikely(!bh)) {
168			ret = -ENOMEM;
169			goto failure;
170		}
171
172		if (!bh_uptodate_or_lock(bh)) {
173			if (ext4_read_bh(bh, 0, NULL) < 0) {
174				put_bh(bh);
175				goto failure;
176			}
177			/* validate block references */
178			if (ext4_check_indirect_blockref(inode, bh)) {
179				put_bh(bh);
180				goto failure;
181			}
182		}
183
184		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
185		/* Reader: end */
186		if (!p->key)
187			goto no_block;
188	}
189	return NULL;
190
191failure:
192	*err = ret;
193no_block:
194	return p;
195}
196
197/**
198 *	ext4_find_near - find a place for allocation with sufficient locality
199 *	@inode: owner
200 *	@ind: descriptor of indirect block.
201 *
202 *	This function returns the preferred place for block allocation.
203 *	It is used when heuristic for sequential allocation fails.
204 *	Rules are:
205 *	  + if there is a block to the left of our position - allocate near it.
206 *	  + if pointer will live in indirect block - allocate near that block.
207 *	  + if pointer will live in inode - allocate in the same
208 *	    cylinder group.
209 *
210 * In the latter case we colour the starting block by the callers PID to
211 * prevent it from clashing with concurrent allocations for a different inode
212 * in the same block group.   The PID is used here so that functionally related
213 * files will be close-by on-disk.
214 *
215 *	Caller must make sure that @ind is valid and will stay that way.
216 */
217static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
218{
219	struct ext4_inode_info *ei = EXT4_I(inode);
220	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
221	__le32 *p;
222
223	/* Try to find previous block */
224	for (p = ind->p - 1; p >= start; p--) {
225		if (*p)
226			return le32_to_cpu(*p);
227	}
228
229	/* No such thing, so let's try location of indirect block */
230	if (ind->bh)
231		return ind->bh->b_blocknr;
232
233	/*
234	 * It is going to be referred to from the inode itself? OK, just put it
235	 * into the same cylinder group then.
236	 */
237	return ext4_inode_to_goal_block(inode);
238}
239
240/**
241 *	ext4_find_goal - find a preferred place for allocation.
242 *	@inode: owner
243 *	@block:  block we want
244 *	@partial: pointer to the last triple within a chain
245 *
246 *	Normally this function find the preferred place for block allocation,
247 *	returns it.
248 *	Because this is only used for non-extent files, we limit the block nr
249 *	to 32 bits.
250 */
251static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
252				   Indirect *partial)
253{
254	ext4_fsblk_t goal;
255
256	/*
257	 * XXX need to get goal block from mballoc's data structures
258	 */
259
260	goal = ext4_find_near(inode, partial);
261	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
262	return goal;
263}
264
265/**
266 *	ext4_blks_to_allocate - Look up the block map and count the number
267 *	of direct blocks need to be allocated for the given branch.
268 *
269 *	@branch: chain of indirect blocks
270 *	@k: number of blocks need for indirect blocks
271 *	@blks: number of data blocks to be mapped.
272 *	@blocks_to_boundary:  the offset in the indirect block
273 *
274 *	return the total number of blocks to be allocate, including the
275 *	direct and indirect blocks.
276 */
277static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
278				 int blocks_to_boundary)
279{
280	unsigned int count = 0;
281
282	/*
283	 * Simple case, [t,d]Indirect block(s) has not allocated yet
284	 * then it's clear blocks on that path have not allocated
285	 */
286	if (k > 0) {
287		/* right now we don't handle cross boundary allocation */
288		if (blks < blocks_to_boundary + 1)
289			count += blks;
290		else
291			count += blocks_to_boundary + 1;
292		return count;
293	}
294
295	count++;
296	while (count < blks && count <= blocks_to_boundary &&
297		le32_to_cpu(*(branch[0].p + count)) == 0) {
298		count++;
299	}
300	return count;
301}
302
303/**
304 * ext4_alloc_branch() - allocate and set up a chain of blocks
305 * @handle: handle for this transaction
306 * @ar: structure describing the allocation request
307 * @indirect_blks: number of allocated indirect blocks
308 * @offsets: offsets (in the blocks) to store the pointers to next.
309 * @branch: place to store the chain in.
310 *
311 *	This function allocates blocks, zeroes out all but the last one,
312 *	links them into chain and (if we are synchronous) writes them to disk.
313 *	In other words, it prepares a branch that can be spliced onto the
314 *	inode. It stores the information about that chain in the branch[], in
315 *	the same format as ext4_get_branch() would do. We are calling it after
316 *	we had read the existing part of chain and partial points to the last
317 *	triple of that (one with zero ->key). Upon the exit we have the same
318 *	picture as after the successful ext4_get_block(), except that in one
319 *	place chain is disconnected - *branch->p is still zero (we did not
320 *	set the last link), but branch->key contains the number that should
321 *	be placed into *branch->p to fill that gap.
322 *
323 *	If allocation fails we free all blocks we've allocated (and forget
324 *	their buffer_heads) and return the error value the from failed
325 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
326 *	as described above and return 0.
327 */
328static int ext4_alloc_branch(handle_t *handle,
329			     struct ext4_allocation_request *ar,
330			     int indirect_blks, ext4_lblk_t *offsets,
331			     Indirect *branch)
332{
333	struct buffer_head *		bh;
334	ext4_fsblk_t			b, new_blocks[4];
335	__le32				*p;
336	int				i, j, err, len = 1;
337
338	for (i = 0; i <= indirect_blks; i++) {
339		if (i == indirect_blks) {
340			new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
341		} else {
342			ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
343					ar->inode, ar->goal,
344					ar->flags & EXT4_MB_DELALLOC_RESERVED,
345					NULL, &err);
346			/* Simplify error cleanup... */
347			branch[i+1].bh = NULL;
348		}
349		if (err) {
350			i--;
351			goto failed;
352		}
353		branch[i].key = cpu_to_le32(new_blocks[i]);
354		if (i == 0)
355			continue;
356
357		bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
358		if (unlikely(!bh)) {
359			err = -ENOMEM;
360			goto failed;
361		}
362		lock_buffer(bh);
363		BUFFER_TRACE(bh, "call get_create_access");
364		err = ext4_journal_get_create_access(handle, ar->inode->i_sb,
365						     bh, EXT4_JTR_NONE);
366		if (err) {
367			unlock_buffer(bh);
368			goto failed;
369		}
370
371		memset(bh->b_data, 0, bh->b_size);
372		p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
373		b = new_blocks[i];
374
375		if (i == indirect_blks)
376			len = ar->len;
377		for (j = 0; j < len; j++)
378			*p++ = cpu_to_le32(b++);
379
380		BUFFER_TRACE(bh, "marking uptodate");
381		set_buffer_uptodate(bh);
382		unlock_buffer(bh);
383
384		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
385		err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
386		if (err)
387			goto failed;
388	}
389	return 0;
390failed:
391	if (i == indirect_blks) {
392		/* Free data blocks */
393		ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
394				 ar->len, 0);
395		i--;
396	}
397	for (; i >= 0; i--) {
398		/*
399		 * We want to ext4_forget() only freshly allocated indirect
400		 * blocks. Buffer for new_blocks[i] is at branch[i+1].bh
401		 * (buffer at branch[0].bh is indirect block / inode already
402		 * existing before ext4_alloc_branch() was called). Also
403		 * because blocks are freshly allocated, we don't need to
404		 * revoke them which is why we don't set
405		 * EXT4_FREE_BLOCKS_METADATA.
406		 */
407		ext4_free_blocks(handle, ar->inode, branch[i+1].bh,
408				 new_blocks[i], 1,
409				 branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0);
410	}
411	return err;
412}
413
414/**
415 * ext4_splice_branch() - splice the allocated branch onto inode.
416 * @handle: handle for this transaction
417 * @ar: structure describing the allocation request
418 * @where: location of missing link
419 * @num:   number of indirect blocks we are adding
420 *
421 * This function fills the missing link and does all housekeeping needed in
422 * inode (->i_blocks, etc.). In case of success we end up with the full
423 * chain to new block and return 0.
424 */
425static int ext4_splice_branch(handle_t *handle,
426			      struct ext4_allocation_request *ar,
427			      Indirect *where, int num)
428{
429	int i;
430	int err = 0;
431	ext4_fsblk_t current_block;
432
433	/*
434	 * If we're splicing into a [td]indirect block (as opposed to the
435	 * inode) then we need to get write access to the [td]indirect block
436	 * before the splice.
437	 */
438	if (where->bh) {
439		BUFFER_TRACE(where->bh, "get_write_access");
440		err = ext4_journal_get_write_access(handle, ar->inode->i_sb,
441						    where->bh, EXT4_JTR_NONE);
442		if (err)
443			goto err_out;
444	}
445	/* That's it */
446
447	*where->p = where->key;
448
449	/*
450	 * Update the host buffer_head or inode to point to more just allocated
451	 * direct blocks blocks
452	 */
453	if (num == 0 && ar->len > 1) {
454		current_block = le32_to_cpu(where->key) + 1;
455		for (i = 1; i < ar->len; i++)
456			*(where->p + i) = cpu_to_le32(current_block++);
457	}
458
459	/* We are done with atomic stuff, now do the rest of housekeeping */
460	/* had we spliced it onto indirect block? */
461	if (where->bh) {
462		/*
463		 * If we spliced it onto an indirect block, we haven't
464		 * altered the inode.  Note however that if it is being spliced
465		 * onto an indirect block at the very end of the file (the
466		 * file is growing) then we *will* alter the inode to reflect
467		 * the new i_size.  But that is not done here - it is done in
468		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
469		 */
470		ext4_debug("splicing indirect only\n");
471		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
472		err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
473		if (err)
474			goto err_out;
475	} else {
476		/*
477		 * OK, we spliced it into the inode itself on a direct block.
478		 */
479		err = ext4_mark_inode_dirty(handle, ar->inode);
480		if (unlikely(err))
481			goto err_out;
482		ext4_debug("splicing direct\n");
483	}
484	return err;
485
486err_out:
487	for (i = 1; i <= num; i++) {
488		/*
489		 * branch[i].bh is newly allocated, so there is no
490		 * need to revoke the block, which is why we don't
491		 * need to set EXT4_FREE_BLOCKS_METADATA.
492		 */
493		ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
494				 EXT4_FREE_BLOCKS_FORGET);
495	}
496	ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
497			 ar->len, 0);
498
499	return err;
500}
501
502/*
503 * The ext4_ind_map_blocks() function handles non-extents inodes
504 * (i.e., using the traditional indirect/double-indirect i_blocks
505 * scheme) for ext4_map_blocks().
506 *
507 * Allocation strategy is simple: if we have to allocate something, we will
508 * have to go the whole way to leaf. So let's do it before attaching anything
509 * to tree, set linkage between the newborn blocks, write them if sync is
510 * required, recheck the path, free and repeat if check fails, otherwise
511 * set the last missing link (that will protect us from any truncate-generated
512 * removals - all blocks on the path are immune now) and possibly force the
513 * write on the parent block.
514 * That has a nice additional property: no special recovery from the failed
515 * allocations is needed - we simply release blocks and do not touch anything
516 * reachable from inode.
517 *
518 * `handle' can be NULL if create == 0.
519 *
520 * return > 0, # of blocks mapped or allocated.
521 * return = 0, if plain lookup failed.
522 * return < 0, error case.
523 *
524 * The ext4_ind_get_blocks() function should be called with
525 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
526 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
527 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
528 * blocks.
529 */
530int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
531			struct ext4_map_blocks *map,
532			int flags)
533{
534	struct ext4_allocation_request ar;
535	int err = -EIO;
536	ext4_lblk_t offsets[4];
537	Indirect chain[4];
538	Indirect *partial;
539	int indirect_blks;
540	int blocks_to_boundary = 0;
541	int depth;
542	int count = 0;
543	ext4_fsblk_t first_block = 0;
544
545	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
546	ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
547	ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
548	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
549				   &blocks_to_boundary);
550
551	if (depth == 0)
552		goto out;
553
554	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
555
556	/* Simplest case - block found, no allocation needed */
557	if (!partial) {
558		first_block = le32_to_cpu(chain[depth - 1].key);
559		count++;
560		/*map more blocks*/
561		while (count < map->m_len && count <= blocks_to_boundary) {
562			ext4_fsblk_t blk;
563
564			blk = le32_to_cpu(*(chain[depth-1].p + count));
565
566			if (blk == first_block + count)
567				count++;
568			else
569				break;
570		}
571		goto got_it;
572	}
573
574	/* Next simple case - plain lookup failed */
575	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
576		unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
577		int i;
578
579		/*
580		 * Count number blocks in a subtree under 'partial'. At each
581		 * level we count number of complete empty subtrees beyond
582		 * current offset and then descend into the subtree only
583		 * partially beyond current offset.
584		 */
585		count = 0;
586		for (i = partial - chain + 1; i < depth; i++)
587			count = count * epb + (epb - offsets[i] - 1);
588		count++;
589		/* Fill in size of a hole we found */
590		map->m_pblk = 0;
591		map->m_len = min_t(unsigned int, map->m_len, count);
592		goto cleanup;
593	}
594
595	/* Failed read of indirect block */
596	if (err == -EIO)
597		goto cleanup;
598
599	/*
600	 * Okay, we need to do block allocation.
601	*/
602	if (ext4_has_feature_bigalloc(inode->i_sb)) {
603		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
604				 "non-extent mapped inodes with bigalloc");
605		err = -EFSCORRUPTED;
606		goto out;
607	}
608
609	/* Set up for the direct block allocation */
610	memset(&ar, 0, sizeof(ar));
611	ar.inode = inode;
612	ar.logical = map->m_lblk;
613	if (S_ISREG(inode->i_mode))
614		ar.flags = EXT4_MB_HINT_DATA;
615	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
616		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
617	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
618		ar.flags |= EXT4_MB_USE_RESERVED;
619
620	ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
621
622	/* the number of blocks need to allocate for [d,t]indirect blocks */
623	indirect_blks = (chain + depth) - partial - 1;
624
625	/*
626	 * Next look up the indirect map to count the totoal number of
627	 * direct blocks to allocate for this branch.
628	 */
629	ar.len = ext4_blks_to_allocate(partial, indirect_blks,
630				       map->m_len, blocks_to_boundary);
631
632	/*
633	 * Block out ext4_truncate while we alter the tree
634	 */
635	err = ext4_alloc_branch(handle, &ar, indirect_blks,
636				offsets + (partial - chain), partial);
637
638	/*
639	 * The ext4_splice_branch call will free and forget any buffers
640	 * on the new chain if there is a failure, but that risks using
641	 * up transaction credits, especially for bitmaps where the
642	 * credits cannot be returned.  Can we handle this somehow?  We
643	 * may need to return -EAGAIN upwards in the worst case.  --sct
644	 */
645	if (!err)
646		err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
647	if (err)
648		goto cleanup;
649
650	map->m_flags |= EXT4_MAP_NEW;
651
652	ext4_update_inode_fsync_trans(handle, inode, 1);
653	count = ar.len;
654
655	/*
656	 * Update reserved blocks/metadata blocks after successful block
657	 * allocation which had been deferred till now.
658	 */
659	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
660		ext4_da_update_reserve_space(inode, count, 1);
661
662got_it:
663	map->m_flags |= EXT4_MAP_MAPPED;
664	map->m_pblk = le32_to_cpu(chain[depth-1].key);
665	map->m_len = count;
666	if (count > blocks_to_boundary)
667		map->m_flags |= EXT4_MAP_BOUNDARY;
668	err = count;
669	/* Clean up and exit */
670	partial = chain + depth - 1;	/* the whole chain */
671cleanup:
672	while (partial > chain) {
673		BUFFER_TRACE(partial->bh, "call brelse");
674		brelse(partial->bh);
675		partial--;
676	}
677out:
678	trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
679	return err;
680}
681
682/*
683 * Calculate number of indirect blocks touched by mapping @nrblocks logically
684 * contiguous blocks
685 */
686int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
687{
688	/*
689	 * With N contiguous data blocks, we need at most
690	 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
691	 * 2 dindirect blocks, and 1 tindirect block
692	 */
693	return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
694}
695
696static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode,
697				     struct buffer_head *bh, int *dropped)
698{
699	int err;
700
701	if (bh) {
702		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
703		err = ext4_handle_dirty_metadata(handle, inode, bh);
704		if (unlikely(err))
705			return err;
706	}
707	err = ext4_mark_inode_dirty(handle, inode);
708	if (unlikely(err))
709		return err;
710	/*
711	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
712	 * moment, get_block can be called only for blocks inside i_size since
713	 * page cache has been already dropped and writes are blocked by
714	 * i_rwsem. So we can safely drop the i_data_sem here.
715	 */
716	BUG_ON(EXT4_JOURNAL(inode) == NULL);
717	ext4_discard_preallocations(inode);
718	up_write(&EXT4_I(inode)->i_data_sem);
719	*dropped = 1;
720	return 0;
721}
722
723/*
724 * Truncate transactions can be complex and absolutely huge.  So we need to
725 * be able to restart the transaction at a convenient checkpoint to make
726 * sure we don't overflow the journal.
727 *
728 * Try to extend this transaction for the purposes of truncation.  If
729 * extend fails, we restart transaction.
730 */
731static int ext4_ind_truncate_ensure_credits(handle_t *handle,
732					    struct inode *inode,
733					    struct buffer_head *bh,
734					    int revoke_creds)
735{
736	int ret;
737	int dropped = 0;
738
739	ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS,
740			ext4_blocks_for_truncate(inode), revoke_creds,
741			ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped));
742	if (dropped)
743		down_write(&EXT4_I(inode)->i_data_sem);
744	if (ret <= 0)
745		return ret;
746	if (bh) {
747		BUFFER_TRACE(bh, "retaking write access");
748		ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
749						    EXT4_JTR_NONE);
750		if (unlikely(ret))
751			return ret;
752	}
753	return 0;
754}
755
756/*
757 * Probably it should be a library function... search for first non-zero word
758 * or memcmp with zero_page, whatever is better for particular architecture.
759 * Linus?
760 */
761static inline int all_zeroes(__le32 *p, __le32 *q)
762{
763	while (p < q)
764		if (*p++)
765			return 0;
766	return 1;
767}
768
769/**
770 *	ext4_find_shared - find the indirect blocks for partial truncation.
771 *	@inode:	  inode in question
772 *	@depth:	  depth of the affected branch
773 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
774 *	@chain:	  place to store the pointers to partial indirect blocks
775 *	@top:	  place to the (detached) top of branch
776 *
777 *	This is a helper function used by ext4_truncate().
778 *
779 *	When we do truncate() we may have to clean the ends of several
780 *	indirect blocks but leave the blocks themselves alive. Block is
781 *	partially truncated if some data below the new i_size is referred
782 *	from it (and it is on the path to the first completely truncated
783 *	data block, indeed).  We have to free the top of that path along
784 *	with everything to the right of the path. Since no allocation
785 *	past the truncation point is possible until ext4_truncate()
786 *	finishes, we may safely do the latter, but top of branch may
787 *	require special attention - pageout below the truncation point
788 *	might try to populate it.
789 *
790 *	We atomically detach the top of branch from the tree, store the
791 *	block number of its root in *@top, pointers to buffer_heads of
792 *	partially truncated blocks - in @chain[].bh and pointers to
793 *	their last elements that should not be removed - in
794 *	@chain[].p. Return value is the pointer to last filled element
795 *	of @chain.
796 *
797 *	The work left to caller to do the actual freeing of subtrees:
798 *		a) free the subtree starting from *@top
799 *		b) free the subtrees whose roots are stored in
800 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
801 *		c) free the subtrees growing from the inode past the @chain[0].
802 *			(no partially truncated stuff there).  */
803
804static Indirect *ext4_find_shared(struct inode *inode, int depth,
805				  ext4_lblk_t offsets[4], Indirect chain[4],
806				  __le32 *top)
807{
808	Indirect *partial, *p;
809	int k, err;
810
811	*top = 0;
812	/* Make k index the deepest non-null offset + 1 */
813	for (k = depth; k > 1 && !offsets[k-1]; k--)
814		;
815	partial = ext4_get_branch(inode, k, offsets, chain, &err);
816	/* Writer: pointers */
817	if (!partial)
818		partial = chain + k-1;
819	/*
820	 * If the branch acquired continuation since we've looked at it -
821	 * fine, it should all survive and (new) top doesn't belong to us.
822	 */
823	if (!partial->key && *partial->p)
824		/* Writer: end */
825		goto no_top;
826	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
827		;
828	/*
829	 * OK, we've found the last block that must survive. The rest of our
830	 * branch should be detached before unlocking. However, if that rest
831	 * of branch is all ours and does not grow immediately from the inode
832	 * it's easier to cheat and just decrement partial->p.
833	 */
834	if (p == chain + k - 1 && p > chain) {
835		p->p--;
836	} else {
837		*top = *p->p;
838		/* Nope, don't do this in ext4.  Must leave the tree intact */
839#if 0
840		*p->p = 0;
841#endif
842	}
843	/* Writer: end */
844
845	while (partial > p) {
846		brelse(partial->bh);
847		partial--;
848	}
849no_top:
850	return partial;
851}
852
853/*
854 * Zero a number of block pointers in either an inode or an indirect block.
855 * If we restart the transaction we must again get write access to the
856 * indirect block for further modification.
857 *
858 * We release `count' blocks on disk, but (last - first) may be greater
859 * than `count' because there can be holes in there.
860 *
861 * Return 0 on success, 1 on invalid block range
862 * and < 0 on fatal error.
863 */
864static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
865			     struct buffer_head *bh,
866			     ext4_fsblk_t block_to_free,
867			     unsigned long count, __le32 *first,
868			     __le32 *last)
869{
870	__le32 *p;
871	int	flags = EXT4_FREE_BLOCKS_VALIDATED;
872	int	err;
873
874	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
875	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
876		flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
877	else if (ext4_should_journal_data(inode))
878		flags |= EXT4_FREE_BLOCKS_FORGET;
879
880	if (!ext4_inode_block_valid(inode, block_to_free, count)) {
881		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
882				 "blocks %llu len %lu",
883				 (unsigned long long) block_to_free, count);
884		return 1;
885	}
886
887	err = ext4_ind_truncate_ensure_credits(handle, inode, bh,
888				ext4_free_data_revoke_credits(inode, count));
889	if (err < 0)
890		goto out_err;
891
892	for (p = first; p < last; p++)
893		*p = 0;
894
895	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
896	return 0;
897out_err:
898	ext4_std_error(inode->i_sb, err);
899	return err;
900}
901
902/**
903 * ext4_free_data - free a list of data blocks
904 * @handle:	handle for this transaction
905 * @inode:	inode we are dealing with
906 * @this_bh:	indirect buffer_head which contains *@first and *@last
907 * @first:	array of block numbers
908 * @last:	points immediately past the end of array
909 *
910 * We are freeing all blocks referred from that array (numbers are stored as
911 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
912 *
913 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
914 * blocks are contiguous then releasing them at one time will only affect one
915 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
916 * actually use a lot of journal space.
917 *
918 * @this_bh will be %NULL if @first and @last point into the inode's direct
919 * block pointers.
920 */
921static void ext4_free_data(handle_t *handle, struct inode *inode,
922			   struct buffer_head *this_bh,
923			   __le32 *first, __le32 *last)
924{
925	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
926	unsigned long count = 0;	    /* Number of blocks in the run */
927	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
928					       corresponding to
929					       block_to_free */
930	ext4_fsblk_t nr;		    /* Current block # */
931	__le32 *p;			    /* Pointer into inode/ind
932					       for current block */
933	int err = 0;
934
935	if (this_bh) {				/* For indirect block */
936		BUFFER_TRACE(this_bh, "get_write_access");
937		err = ext4_journal_get_write_access(handle, inode->i_sb,
938						    this_bh, EXT4_JTR_NONE);
939		/* Important: if we can't update the indirect pointers
940		 * to the blocks, we can't free them. */
941		if (err)
942			return;
943	}
944
945	for (p = first; p < last; p++) {
946		nr = le32_to_cpu(*p);
947		if (nr) {
948			/* accumulate blocks to free if they're contiguous */
949			if (count == 0) {
950				block_to_free = nr;
951				block_to_free_p = p;
952				count = 1;
953			} else if (nr == block_to_free + count) {
954				count++;
955			} else {
956				err = ext4_clear_blocks(handle, inode, this_bh,
957						        block_to_free, count,
958						        block_to_free_p, p);
959				if (err)
960					break;
961				block_to_free = nr;
962				block_to_free_p = p;
963				count = 1;
964			}
965		}
966	}
967
968	if (!err && count > 0)
969		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
970					count, block_to_free_p, p);
971	if (err < 0)
972		/* fatal error */
973		return;
974
975	if (this_bh) {
976		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
977
978		/*
979		 * The buffer head should have an attached journal head at this
980		 * point. However, if the data is corrupted and an indirect
981		 * block pointed to itself, it would have been detached when
982		 * the block was cleared. Check for this instead of OOPSing.
983		 */
984		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
985			ext4_handle_dirty_metadata(handle, inode, this_bh);
986		else
987			EXT4_ERROR_INODE(inode,
988					 "circular indirect block detected at "
989					 "block %llu",
990				(unsigned long long) this_bh->b_blocknr);
991	}
992}
993
994/**
995 *	ext4_free_branches - free an array of branches
996 *	@handle: JBD handle for this transaction
997 *	@inode:	inode we are dealing with
998 *	@parent_bh: the buffer_head which contains *@first and *@last
999 *	@first:	array of block numbers
1000 *	@last:	pointer immediately past the end of array
1001 *	@depth:	depth of the branches to free
1002 *
1003 *	We are freeing all blocks referred from these branches (numbers are
1004 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1005 *	appropriately.
1006 */
1007static void ext4_free_branches(handle_t *handle, struct inode *inode,
1008			       struct buffer_head *parent_bh,
1009			       __le32 *first, __le32 *last, int depth)
1010{
1011	ext4_fsblk_t nr;
1012	__le32 *p;
1013
1014	if (ext4_handle_is_aborted(handle))
1015		return;
1016
1017	if (depth--) {
1018		struct buffer_head *bh;
1019		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1020		p = last;
1021		while (--p >= first) {
1022			nr = le32_to_cpu(*p);
1023			if (!nr)
1024				continue;		/* A hole */
1025
1026			if (!ext4_inode_block_valid(inode, nr, 1)) {
1027				EXT4_ERROR_INODE(inode,
1028						 "invalid indirect mapped "
1029						 "block %lu (level %d)",
1030						 (unsigned long) nr, depth);
1031				break;
1032			}
1033
1034			/* Go read the buffer for the next level down */
1035			bh = ext4_sb_bread(inode->i_sb, nr, 0);
1036
1037			/*
1038			 * A read failure? Report error and clear slot
1039			 * (should be rare).
1040			 */
1041			if (IS_ERR(bh)) {
1042				ext4_error_inode_block(inode, nr, -PTR_ERR(bh),
1043						       "Read failure");
1044				continue;
1045			}
1046
1047			/* This zaps the entire block.  Bottom up. */
1048			BUFFER_TRACE(bh, "free child branches");
1049			ext4_free_branches(handle, inode, bh,
1050					(__le32 *) bh->b_data,
1051					(__le32 *) bh->b_data + addr_per_block,
1052					depth);
1053			brelse(bh);
1054
1055			/*
1056			 * Everything below this pointer has been
1057			 * released.  Now let this top-of-subtree go.
1058			 *
1059			 * We want the freeing of this indirect block to be
1060			 * atomic in the journal with the updating of the
1061			 * bitmap block which owns it.  So make some room in
1062			 * the journal.
1063			 *
1064			 * We zero the parent pointer *after* freeing its
1065			 * pointee in the bitmaps, so if extend_transaction()
1066			 * for some reason fails to put the bitmap changes and
1067			 * the release into the same transaction, recovery
1068			 * will merely complain about releasing a free block,
1069			 * rather than leaking blocks.
1070			 */
1071			if (ext4_handle_is_aborted(handle))
1072				return;
1073			if (ext4_ind_truncate_ensure_credits(handle, inode,
1074					NULL,
1075					ext4_free_metadata_revoke_credits(
1076							inode->i_sb, 1)) < 0)
1077				return;
1078
1079			/*
1080			 * The forget flag here is critical because if
1081			 * we are journaling (and not doing data
1082			 * journaling), we have to make sure a revoke
1083			 * record is written to prevent the journal
1084			 * replay from overwriting the (former)
1085			 * indirect block if it gets reallocated as a
1086			 * data block.  This must happen in the same
1087			 * transaction where the data blocks are
1088			 * actually freed.
1089			 */
1090			ext4_free_blocks(handle, inode, NULL, nr, 1,
1091					 EXT4_FREE_BLOCKS_METADATA|
1092					 EXT4_FREE_BLOCKS_FORGET);
1093
1094			if (parent_bh) {
1095				/*
1096				 * The block which we have just freed is
1097				 * pointed to by an indirect block: journal it
1098				 */
1099				BUFFER_TRACE(parent_bh, "get_write_access");
1100				if (!ext4_journal_get_write_access(handle,
1101						inode->i_sb, parent_bh,
1102						EXT4_JTR_NONE)) {
1103					*p = 0;
1104					BUFFER_TRACE(parent_bh,
1105					"call ext4_handle_dirty_metadata");
1106					ext4_handle_dirty_metadata(handle,
1107								   inode,
1108								   parent_bh);
1109				}
1110			}
1111		}
1112	} else {
1113		/* We have reached the bottom of the tree. */
1114		BUFFER_TRACE(parent_bh, "free data blocks");
1115		ext4_free_data(handle, inode, parent_bh, first, last);
1116	}
1117}
1118
1119void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1120{
1121	struct ext4_inode_info *ei = EXT4_I(inode);
1122	__le32 *i_data = ei->i_data;
1123	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1124	ext4_lblk_t offsets[4];
1125	Indirect chain[4];
1126	Indirect *partial;
1127	__le32 nr = 0;
1128	int n = 0;
1129	ext4_lblk_t last_block, max_block;
1130	unsigned blocksize = inode->i_sb->s_blocksize;
1131
1132	last_block = (inode->i_size + blocksize-1)
1133					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1134	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1135					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1136
1137	if (last_block != max_block) {
1138		n = ext4_block_to_path(inode, last_block, offsets, NULL);
1139		if (n == 0)
1140			return;
1141	}
1142
1143	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1144
1145	/*
1146	 * The orphan list entry will now protect us from any crash which
1147	 * occurs before the truncate completes, so it is now safe to propagate
1148	 * the new, shorter inode size (held for now in i_size) into the
1149	 * on-disk inode. We do this via i_disksize, which is the value which
1150	 * ext4 *really* writes onto the disk inode.
1151	 */
1152	ei->i_disksize = inode->i_size;
1153
1154	if (last_block == max_block) {
1155		/*
1156		 * It is unnecessary to free any data blocks if last_block is
1157		 * equal to the indirect block limit.
1158		 */
1159		return;
1160	} else if (n == 1) {		/* direct blocks */
1161		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1162			       i_data + EXT4_NDIR_BLOCKS);
1163		goto do_indirects;
1164	}
1165
1166	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1167	/* Kill the top of shared branch (not detached) */
1168	if (nr) {
1169		if (partial == chain) {
1170			/* Shared branch grows from the inode */
1171			ext4_free_branches(handle, inode, NULL,
1172					   &nr, &nr+1, (chain+n-1) - partial);
1173			*partial->p = 0;
1174			/*
1175			 * We mark the inode dirty prior to restart,
1176			 * and prior to stop.  No need for it here.
1177			 */
1178		} else {
1179			/* Shared branch grows from an indirect block */
1180			BUFFER_TRACE(partial->bh, "get_write_access");
1181			ext4_free_branches(handle, inode, partial->bh,
1182					partial->p,
1183					partial->p+1, (chain+n-1) - partial);
1184		}
1185	}
1186	/* Clear the ends of indirect blocks on the shared branch */
1187	while (partial > chain) {
1188		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1189				   (__le32*)partial->bh->b_data+addr_per_block,
1190				   (chain+n-1) - partial);
1191		BUFFER_TRACE(partial->bh, "call brelse");
1192		brelse(partial->bh);
1193		partial--;
1194	}
1195do_indirects:
1196	/* Kill the remaining (whole) subtrees */
1197	switch (offsets[0]) {
1198	default:
1199		nr = i_data[EXT4_IND_BLOCK];
1200		if (nr) {
1201			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1202			i_data[EXT4_IND_BLOCK] = 0;
1203		}
1204		fallthrough;
1205	case EXT4_IND_BLOCK:
1206		nr = i_data[EXT4_DIND_BLOCK];
1207		if (nr) {
1208			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1209			i_data[EXT4_DIND_BLOCK] = 0;
1210		}
1211		fallthrough;
1212	case EXT4_DIND_BLOCK:
1213		nr = i_data[EXT4_TIND_BLOCK];
1214		if (nr) {
1215			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1216			i_data[EXT4_TIND_BLOCK] = 0;
1217		}
1218		fallthrough;
1219	case EXT4_TIND_BLOCK:
1220		;
1221	}
1222}
1223
1224/**
1225 *	ext4_ind_remove_space - remove space from the range
1226 *	@handle: JBD handle for this transaction
1227 *	@inode:	inode we are dealing with
1228 *	@start:	First block to remove
1229 *	@end:	One block after the last block to remove (exclusive)
1230 *
1231 *	Free the blocks in the defined range (end is exclusive endpoint of
1232 *	range). This is used by ext4_punch_hole().
1233 */
1234int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1235			  ext4_lblk_t start, ext4_lblk_t end)
1236{
1237	struct ext4_inode_info *ei = EXT4_I(inode);
1238	__le32 *i_data = ei->i_data;
1239	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1240	ext4_lblk_t offsets[4], offsets2[4];
1241	Indirect chain[4], chain2[4];
1242	Indirect *partial, *partial2;
1243	Indirect *p = NULL, *p2 = NULL;
1244	ext4_lblk_t max_block;
1245	__le32 nr = 0, nr2 = 0;
1246	int n = 0, n2 = 0;
1247	unsigned blocksize = inode->i_sb->s_blocksize;
1248
1249	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1250					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1251	if (end >= max_block)
1252		end = max_block;
1253	if ((start >= end) || (start > max_block))
1254		return 0;
1255
1256	n = ext4_block_to_path(inode, start, offsets, NULL);
1257	n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1258
1259	BUG_ON(n > n2);
1260
1261	if ((n == 1) && (n == n2)) {
1262		/* We're punching only within direct block range */
1263		ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1264			       i_data + offsets2[0]);
1265		return 0;
1266	} else if (n2 > n) {
1267		/*
1268		 * Start and end are on a different levels so we're going to
1269		 * free partial block at start, and partial block at end of
1270		 * the range. If there are some levels in between then
1271		 * do_indirects label will take care of that.
1272		 */
1273
1274		if (n == 1) {
1275			/*
1276			 * Start is at the direct block level, free
1277			 * everything to the end of the level.
1278			 */
1279			ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1280				       i_data + EXT4_NDIR_BLOCKS);
1281			goto end_range;
1282		}
1283
1284
1285		partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1286		if (nr) {
1287			if (partial == chain) {
1288				/* Shared branch grows from the inode */
1289				ext4_free_branches(handle, inode, NULL,
1290					   &nr, &nr+1, (chain+n-1) - partial);
1291				*partial->p = 0;
1292			} else {
1293				/* Shared branch grows from an indirect block */
1294				BUFFER_TRACE(partial->bh, "get_write_access");
1295				ext4_free_branches(handle, inode, partial->bh,
1296					partial->p,
1297					partial->p+1, (chain+n-1) - partial);
1298			}
1299		}
1300
1301		/*
1302		 * Clear the ends of indirect blocks on the shared branch
1303		 * at the start of the range
1304		 */
1305		while (partial > chain) {
1306			ext4_free_branches(handle, inode, partial->bh,
1307				partial->p + 1,
1308				(__le32 *)partial->bh->b_data+addr_per_block,
1309				(chain+n-1) - partial);
1310			partial--;
1311		}
1312
1313end_range:
1314		partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1315		if (nr2) {
1316			if (partial2 == chain2) {
1317				/*
1318				 * Remember, end is exclusive so here we're at
1319				 * the start of the next level we're not going
1320				 * to free. Everything was covered by the start
1321				 * of the range.
1322				 */
1323				goto do_indirects;
1324			}
1325		} else {
1326			/*
1327			 * ext4_find_shared returns Indirect structure which
1328			 * points to the last element which should not be
1329			 * removed by truncate. But this is end of the range
1330			 * in punch_hole so we need to point to the next element
1331			 */
1332			partial2->p++;
1333		}
1334
1335		/*
1336		 * Clear the ends of indirect blocks on the shared branch
1337		 * at the end of the range
1338		 */
1339		while (partial2 > chain2) {
1340			ext4_free_branches(handle, inode, partial2->bh,
1341					   (__le32 *)partial2->bh->b_data,
1342					   partial2->p,
1343					   (chain2+n2-1) - partial2);
1344			partial2--;
1345		}
1346		goto do_indirects;
1347	}
1348
1349	/* Punch happened within the same level (n == n2) */
1350	partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1351	partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1352
1353	/* Free top, but only if partial2 isn't its subtree. */
1354	if (nr) {
1355		int level = min(partial - chain, partial2 - chain2);
1356		int i;
1357		int subtree = 1;
1358
1359		for (i = 0; i <= level; i++) {
1360			if (offsets[i] != offsets2[i]) {
1361				subtree = 0;
1362				break;
1363			}
1364		}
1365
1366		if (!subtree) {
1367			if (partial == chain) {
1368				/* Shared branch grows from the inode */
1369				ext4_free_branches(handle, inode, NULL,
1370						   &nr, &nr+1,
1371						   (chain+n-1) - partial);
1372				*partial->p = 0;
1373			} else {
1374				/* Shared branch grows from an indirect block */
1375				BUFFER_TRACE(partial->bh, "get_write_access");
1376				ext4_free_branches(handle, inode, partial->bh,
1377						   partial->p,
1378						   partial->p+1,
1379						   (chain+n-1) - partial);
1380			}
1381		}
1382	}
1383
1384	if (!nr2) {
1385		/*
1386		 * ext4_find_shared returns Indirect structure which
1387		 * points to the last element which should not be
1388		 * removed by truncate. But this is end of the range
1389		 * in punch_hole so we need to point to the next element
1390		 */
1391		partial2->p++;
1392	}
1393
1394	while (partial > chain || partial2 > chain2) {
1395		int depth = (chain+n-1) - partial;
1396		int depth2 = (chain2+n2-1) - partial2;
1397
1398		if (partial > chain && partial2 > chain2 &&
1399		    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1400			/*
1401			 * We've converged on the same block. Clear the range,
1402			 * then we're done.
1403			 */
1404			ext4_free_branches(handle, inode, partial->bh,
1405					   partial->p + 1,
1406					   partial2->p,
1407					   (chain+n-1) - partial);
1408			goto cleanup;
1409		}
1410
1411		/*
1412		 * The start and end partial branches may not be at the same
1413		 * level even though the punch happened within one level. So, we
1414		 * give them a chance to arrive at the same level, then walk
1415		 * them in step with each other until we converge on the same
1416		 * block.
1417		 */
1418		if (partial > chain && depth <= depth2) {
1419			ext4_free_branches(handle, inode, partial->bh,
1420					   partial->p + 1,
1421					   (__le32 *)partial->bh->b_data+addr_per_block,
1422					   (chain+n-1) - partial);
1423			partial--;
1424		}
1425		if (partial2 > chain2 && depth2 <= depth) {
1426			ext4_free_branches(handle, inode, partial2->bh,
1427					   (__le32 *)partial2->bh->b_data,
1428					   partial2->p,
1429					   (chain2+n2-1) - partial2);
1430			partial2--;
1431		}
1432	}
1433
1434cleanup:
1435	while (p && p > chain) {
1436		BUFFER_TRACE(p->bh, "call brelse");
1437		brelse(p->bh);
1438		p--;
1439	}
1440	while (p2 && p2 > chain2) {
1441		BUFFER_TRACE(p2->bh, "call brelse");
1442		brelse(p2->bh);
1443		p2--;
1444	}
1445	return 0;
1446
1447do_indirects:
1448	/* Kill the remaining (whole) subtrees */
1449	switch (offsets[0]) {
1450	default:
1451		if (++n >= n2)
1452			break;
1453		nr = i_data[EXT4_IND_BLOCK];
1454		if (nr) {
1455			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1456			i_data[EXT4_IND_BLOCK] = 0;
1457		}
1458		fallthrough;
1459	case EXT4_IND_BLOCK:
1460		if (++n >= n2)
1461			break;
1462		nr = i_data[EXT4_DIND_BLOCK];
1463		if (nr) {
1464			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1465			i_data[EXT4_DIND_BLOCK] = 0;
1466		}
1467		fallthrough;
1468	case EXT4_DIND_BLOCK:
1469		if (++n >= n2)
1470			break;
1471		nr = i_data[EXT4_TIND_BLOCK];
1472		if (nr) {
1473			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1474			i_data[EXT4_TIND_BLOCK] = 0;
1475		}
1476		fallthrough;
1477	case EXT4_TIND_BLOCK:
1478		;
1479	}
1480	goto cleanup;
1481}
1482