1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/fs/exec.c
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 */
7
8/*
9 * #!-checking implemented by tytso.
10 */
11/*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20 * current->executable is only used by the procfs.  This allows a dispatch
21 * table to check for several different types  of binary formats.  We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26#include <linux/kernel_read_file.h>
27#include <linux/slab.h>
28#include <linux/file.h>
29#include <linux/fdtable.h>
30#include <linux/mm.h>
31#include <linux/stat.h>
32#include <linux/fcntl.h>
33#include <linux/swap.h>
34#include <linux/string.h>
35#include <linux/init.h>
36#include <linux/sched/mm.h>
37#include <linux/sched/coredump.h>
38#include <linux/sched/signal.h>
39#include <linux/sched/numa_balancing.h>
40#include <linux/sched/task.h>
41#include <linux/pagemap.h>
42#include <linux/perf_event.h>
43#include <linux/highmem.h>
44#include <linux/spinlock.h>
45#include <linux/key.h>
46#include <linux/personality.h>
47#include <linux/binfmts.h>
48#include <linux/utsname.h>
49#include <linux/pid_namespace.h>
50#include <linux/module.h>
51#include <linux/namei.h>
52#include <linux/mount.h>
53#include <linux/security.h>
54#include <linux/syscalls.h>
55#include <linux/tsacct_kern.h>
56#include <linux/cn_proc.h>
57#include <linux/audit.h>
58#include <linux/kmod.h>
59#include <linux/fsnotify.h>
60#include <linux/fs_struct.h>
61#include <linux/oom.h>
62#include <linux/compat.h>
63#include <linux/vmalloc.h>
64#include <linux/io_uring.h>
65#include <linux/syscall_user_dispatch.h>
66#include <linux/coredump.h>
67#include <linux/time_namespace.h>
68#include <linux/user_events.h>
69#include <linux/rseq.h>
70
71#include <linux/uaccess.h>
72#include <asm/mmu_context.h>
73#include <asm/tlb.h>
74
75#include <trace/events/task.h>
76#include "internal.h"
77
78#include <trace/events/sched.h>
79
80static int bprm_creds_from_file(struct linux_binprm *bprm);
81
82int suid_dumpable = 0;
83
84static LIST_HEAD(formats);
85static DEFINE_RWLOCK(binfmt_lock);
86
87void __register_binfmt(struct linux_binfmt * fmt, int insert)
88{
89	write_lock(&binfmt_lock);
90	insert ? list_add(&fmt->lh, &formats) :
91		 list_add_tail(&fmt->lh, &formats);
92	write_unlock(&binfmt_lock);
93}
94
95EXPORT_SYMBOL(__register_binfmt);
96
97void unregister_binfmt(struct linux_binfmt * fmt)
98{
99	write_lock(&binfmt_lock);
100	list_del(&fmt->lh);
101	write_unlock(&binfmt_lock);
102}
103
104EXPORT_SYMBOL(unregister_binfmt);
105
106static inline void put_binfmt(struct linux_binfmt * fmt)
107{
108	module_put(fmt->module);
109}
110
111bool path_noexec(const struct path *path)
112{
113	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
114	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
115}
116
117#ifdef CONFIG_USELIB
118/*
119 * Note that a shared library must be both readable and executable due to
120 * security reasons.
121 *
122 * Also note that we take the address to load from the file itself.
123 */
124SYSCALL_DEFINE1(uselib, const char __user *, library)
125{
126	struct linux_binfmt *fmt;
127	struct file *file;
128	struct filename *tmp = getname(library);
129	int error = PTR_ERR(tmp);
130	static const struct open_flags uselib_flags = {
131		.open_flag = O_LARGEFILE | O_RDONLY,
132		.acc_mode = MAY_READ | MAY_EXEC,
133		.intent = LOOKUP_OPEN,
134		.lookup_flags = LOOKUP_FOLLOW,
135	};
136
137	if (IS_ERR(tmp))
138		goto out;
139
140	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
141	putname(tmp);
142	error = PTR_ERR(file);
143	if (IS_ERR(file))
144		goto out;
145
146	/*
147	 * may_open() has already checked for this, so it should be
148	 * impossible to trip now. But we need to be extra cautious
149	 * and check again at the very end too.
150	 */
151	error = -EACCES;
152	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
153			 path_noexec(&file->f_path)))
154		goto exit;
155
156	error = -ENOEXEC;
157
158	read_lock(&binfmt_lock);
159	list_for_each_entry(fmt, &formats, lh) {
160		if (!fmt->load_shlib)
161			continue;
162		if (!try_module_get(fmt->module))
163			continue;
164		read_unlock(&binfmt_lock);
165		error = fmt->load_shlib(file);
166		read_lock(&binfmt_lock);
167		put_binfmt(fmt);
168		if (error != -ENOEXEC)
169			break;
170	}
171	read_unlock(&binfmt_lock);
172exit:
173	fput(file);
174out:
175	return error;
176}
177#endif /* #ifdef CONFIG_USELIB */
178
179#ifdef CONFIG_MMU
180/*
181 * The nascent bprm->mm is not visible until exec_mmap() but it can
182 * use a lot of memory, account these pages in current->mm temporary
183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184 * change the counter back via acct_arg_size(0).
185 */
186static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187{
188	struct mm_struct *mm = current->mm;
189	long diff = (long)(pages - bprm->vma_pages);
190
191	if (!mm || !diff)
192		return;
193
194	bprm->vma_pages = pages;
195	add_mm_counter(mm, MM_ANONPAGES, diff);
196}
197
198static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199		int write)
200{
201	struct page *page;
202	struct vm_area_struct *vma = bprm->vma;
203	struct mm_struct *mm = bprm->mm;
204	int ret;
205
206	/*
207	 * Avoid relying on expanding the stack down in GUP (which
208	 * does not work for STACK_GROWSUP anyway), and just do it
209	 * by hand ahead of time.
210	 */
211	if (write && pos < vma->vm_start) {
212		mmap_write_lock(mm);
213		ret = expand_downwards(vma, pos);
214		if (unlikely(ret < 0)) {
215			mmap_write_unlock(mm);
216			return NULL;
217		}
218		mmap_write_downgrade(mm);
219	} else
220		mmap_read_lock(mm);
221
222	/*
223	 * We are doing an exec().  'current' is the process
224	 * doing the exec and 'mm' is the new process's mm.
225	 */
226	ret = get_user_pages_remote(mm, pos, 1,
227			write ? FOLL_WRITE : 0,
228			&page, NULL);
229	mmap_read_unlock(mm);
230	if (ret <= 0)
231		return NULL;
232
233	if (write)
234		acct_arg_size(bprm, vma_pages(vma));
235
236	return page;
237}
238
239static void put_arg_page(struct page *page)
240{
241	put_page(page);
242}
243
244static void free_arg_pages(struct linux_binprm *bprm)
245{
246}
247
248static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
249		struct page *page)
250{
251	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
252}
253
254static int __bprm_mm_init(struct linux_binprm *bprm)
255{
256	int err;
257	struct vm_area_struct *vma = NULL;
258	struct mm_struct *mm = bprm->mm;
259
260	bprm->vma = vma = vm_area_alloc(mm);
261	if (!vma)
262		return -ENOMEM;
263	vma_set_anonymous(vma);
264
265	if (mmap_write_lock_killable(mm)) {
266		err = -EINTR;
267		goto err_free;
268	}
269
270	/*
271	 * Place the stack at the largest stack address the architecture
272	 * supports. Later, we'll move this to an appropriate place. We don't
273	 * use STACK_TOP because that can depend on attributes which aren't
274	 * configured yet.
275	 */
276	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
277	vma->vm_end = STACK_TOP_MAX;
278	vma->vm_start = vma->vm_end - PAGE_SIZE;
279	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
280	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
281
282	err = insert_vm_struct(mm, vma);
283	if (err)
284		goto err;
285
286	mm->stack_vm = mm->total_vm = 1;
287	mmap_write_unlock(mm);
288	bprm->p = vma->vm_end - sizeof(void *);
289	return 0;
290err:
291	mmap_write_unlock(mm);
292err_free:
293	bprm->vma = NULL;
294	vm_area_free(vma);
295	return err;
296}
297
298static bool valid_arg_len(struct linux_binprm *bprm, long len)
299{
300	return len <= MAX_ARG_STRLEN;
301}
302
303#else
304
305static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
306{
307}
308
309static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310		int write)
311{
312	struct page *page;
313
314	page = bprm->page[pos / PAGE_SIZE];
315	if (!page && write) {
316		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317		if (!page)
318			return NULL;
319		bprm->page[pos / PAGE_SIZE] = page;
320	}
321
322	return page;
323}
324
325static void put_arg_page(struct page *page)
326{
327}
328
329static void free_arg_page(struct linux_binprm *bprm, int i)
330{
331	if (bprm->page[i]) {
332		__free_page(bprm->page[i]);
333		bprm->page[i] = NULL;
334	}
335}
336
337static void free_arg_pages(struct linux_binprm *bprm)
338{
339	int i;
340
341	for (i = 0; i < MAX_ARG_PAGES; i++)
342		free_arg_page(bprm, i);
343}
344
345static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346		struct page *page)
347{
348}
349
350static int __bprm_mm_init(struct linux_binprm *bprm)
351{
352	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353	return 0;
354}
355
356static bool valid_arg_len(struct linux_binprm *bprm, long len)
357{
358	return len <= bprm->p;
359}
360
361#endif /* CONFIG_MMU */
362
363/*
364 * Create a new mm_struct and populate it with a temporary stack
365 * vm_area_struct.  We don't have enough context at this point to set the stack
366 * flags, permissions, and offset, so we use temporary values.  We'll update
367 * them later in setup_arg_pages().
368 */
369static int bprm_mm_init(struct linux_binprm *bprm)
370{
371	int err;
372	struct mm_struct *mm = NULL;
373
374	bprm->mm = mm = mm_alloc();
375	err = -ENOMEM;
376	if (!mm)
377		goto err;
378
379	/* Save current stack limit for all calculations made during exec. */
380	task_lock(current->group_leader);
381	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
382	task_unlock(current->group_leader);
383
384	err = __bprm_mm_init(bprm);
385	if (err)
386		goto err;
387
388	return 0;
389
390err:
391	if (mm) {
392		bprm->mm = NULL;
393		mmdrop(mm);
394	}
395
396	return err;
397}
398
399struct user_arg_ptr {
400#ifdef CONFIG_COMPAT
401	bool is_compat;
402#endif
403	union {
404		const char __user *const __user *native;
405#ifdef CONFIG_COMPAT
406		const compat_uptr_t __user *compat;
407#endif
408	} ptr;
409};
410
411static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
412{
413	const char __user *native;
414
415#ifdef CONFIG_COMPAT
416	if (unlikely(argv.is_compat)) {
417		compat_uptr_t compat;
418
419		if (get_user(compat, argv.ptr.compat + nr))
420			return ERR_PTR(-EFAULT);
421
422		return compat_ptr(compat);
423	}
424#endif
425
426	if (get_user(native, argv.ptr.native + nr))
427		return ERR_PTR(-EFAULT);
428
429	return native;
430}
431
432/*
433 * count() counts the number of strings in array ARGV.
434 */
435static int count(struct user_arg_ptr argv, int max)
436{
437	int i = 0;
438
439	if (argv.ptr.native != NULL) {
440		for (;;) {
441			const char __user *p = get_user_arg_ptr(argv, i);
442
443			if (!p)
444				break;
445
446			if (IS_ERR(p))
447				return -EFAULT;
448
449			if (i >= max)
450				return -E2BIG;
451			++i;
452
453			if (fatal_signal_pending(current))
454				return -ERESTARTNOHAND;
455			cond_resched();
456		}
457	}
458	return i;
459}
460
461static int count_strings_kernel(const char *const *argv)
462{
463	int i;
464
465	if (!argv)
466		return 0;
467
468	for (i = 0; argv[i]; ++i) {
469		if (i >= MAX_ARG_STRINGS)
470			return -E2BIG;
471		if (fatal_signal_pending(current))
472			return -ERESTARTNOHAND;
473		cond_resched();
474	}
475	return i;
476}
477
478static int bprm_stack_limits(struct linux_binprm *bprm)
479{
480	unsigned long limit, ptr_size;
481
482	/*
483	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
484	 * (whichever is smaller) for the argv+env strings.
485	 * This ensures that:
486	 *  - the remaining binfmt code will not run out of stack space,
487	 *  - the program will have a reasonable amount of stack left
488	 *    to work from.
489	 */
490	limit = _STK_LIM / 4 * 3;
491	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
492	/*
493	 * We've historically supported up to 32 pages (ARG_MAX)
494	 * of argument strings even with small stacks
495	 */
496	limit = max_t(unsigned long, limit, ARG_MAX);
497	/*
498	 * We must account for the size of all the argv and envp pointers to
499	 * the argv and envp strings, since they will also take up space in
500	 * the stack. They aren't stored until much later when we can't
501	 * signal to the parent that the child has run out of stack space.
502	 * Instead, calculate it here so it's possible to fail gracefully.
503	 *
504	 * In the case of argc = 0, make sure there is space for adding a
505	 * empty string (which will bump argc to 1), to ensure confused
506	 * userspace programs don't start processing from argv[1], thinking
507	 * argc can never be 0, to keep them from walking envp by accident.
508	 * See do_execveat_common().
509	 */
510	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
511	if (limit <= ptr_size)
512		return -E2BIG;
513	limit -= ptr_size;
514
515	bprm->argmin = bprm->p - limit;
516	return 0;
517}
518
519/*
520 * 'copy_strings()' copies argument/environment strings from the old
521 * processes's memory to the new process's stack.  The call to get_user_pages()
522 * ensures the destination page is created and not swapped out.
523 */
524static int copy_strings(int argc, struct user_arg_ptr argv,
525			struct linux_binprm *bprm)
526{
527	struct page *kmapped_page = NULL;
528	char *kaddr = NULL;
529	unsigned long kpos = 0;
530	int ret;
531
532	while (argc-- > 0) {
533		const char __user *str;
534		int len;
535		unsigned long pos;
536
537		ret = -EFAULT;
538		str = get_user_arg_ptr(argv, argc);
539		if (IS_ERR(str))
540			goto out;
541
542		len = strnlen_user(str, MAX_ARG_STRLEN);
543		if (!len)
544			goto out;
545
546		ret = -E2BIG;
547		if (!valid_arg_len(bprm, len))
548			goto out;
549
550		/* We're going to work our way backwards. */
551		pos = bprm->p;
552		str += len;
553		bprm->p -= len;
554#ifdef CONFIG_MMU
555		if (bprm->p < bprm->argmin)
556			goto out;
557#endif
558
559		while (len > 0) {
560			int offset, bytes_to_copy;
561
562			if (fatal_signal_pending(current)) {
563				ret = -ERESTARTNOHAND;
564				goto out;
565			}
566			cond_resched();
567
568			offset = pos % PAGE_SIZE;
569			if (offset == 0)
570				offset = PAGE_SIZE;
571
572			bytes_to_copy = offset;
573			if (bytes_to_copy > len)
574				bytes_to_copy = len;
575
576			offset -= bytes_to_copy;
577			pos -= bytes_to_copy;
578			str -= bytes_to_copy;
579			len -= bytes_to_copy;
580
581			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
582				struct page *page;
583
584				page = get_arg_page(bprm, pos, 1);
585				if (!page) {
586					ret = -E2BIG;
587					goto out;
588				}
589
590				if (kmapped_page) {
591					flush_dcache_page(kmapped_page);
592					kunmap_local(kaddr);
593					put_arg_page(kmapped_page);
594				}
595				kmapped_page = page;
596				kaddr = kmap_local_page(kmapped_page);
597				kpos = pos & PAGE_MASK;
598				flush_arg_page(bprm, kpos, kmapped_page);
599			}
600			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
601				ret = -EFAULT;
602				goto out;
603			}
604		}
605	}
606	ret = 0;
607out:
608	if (kmapped_page) {
609		flush_dcache_page(kmapped_page);
610		kunmap_local(kaddr);
611		put_arg_page(kmapped_page);
612	}
613	return ret;
614}
615
616/*
617 * Copy and argument/environment string from the kernel to the processes stack.
618 */
619int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
620{
621	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
622	unsigned long pos = bprm->p;
623
624	if (len == 0)
625		return -EFAULT;
626	if (!valid_arg_len(bprm, len))
627		return -E2BIG;
628
629	/* We're going to work our way backwards. */
630	arg += len;
631	bprm->p -= len;
632	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
633		return -E2BIG;
634
635	while (len > 0) {
636		unsigned int bytes_to_copy = min_t(unsigned int, len,
637				min_not_zero(offset_in_page(pos), PAGE_SIZE));
638		struct page *page;
639
640		pos -= bytes_to_copy;
641		arg -= bytes_to_copy;
642		len -= bytes_to_copy;
643
644		page = get_arg_page(bprm, pos, 1);
645		if (!page)
646			return -E2BIG;
647		flush_arg_page(bprm, pos & PAGE_MASK, page);
648		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
649		put_arg_page(page);
650	}
651
652	return 0;
653}
654EXPORT_SYMBOL(copy_string_kernel);
655
656static int copy_strings_kernel(int argc, const char *const *argv,
657			       struct linux_binprm *bprm)
658{
659	while (argc-- > 0) {
660		int ret = copy_string_kernel(argv[argc], bprm);
661		if (ret < 0)
662			return ret;
663		if (fatal_signal_pending(current))
664			return -ERESTARTNOHAND;
665		cond_resched();
666	}
667	return 0;
668}
669
670#ifdef CONFIG_MMU
671
672/*
673 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
674 * the binfmt code determines where the new stack should reside, we shift it to
675 * its final location.  The process proceeds as follows:
676 *
677 * 1) Use shift to calculate the new vma endpoints.
678 * 2) Extend vma to cover both the old and new ranges.  This ensures the
679 *    arguments passed to subsequent functions are consistent.
680 * 3) Move vma's page tables to the new range.
681 * 4) Free up any cleared pgd range.
682 * 5) Shrink the vma to cover only the new range.
683 */
684static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
685{
686	struct mm_struct *mm = vma->vm_mm;
687	unsigned long old_start = vma->vm_start;
688	unsigned long old_end = vma->vm_end;
689	unsigned long length = old_end - old_start;
690	unsigned long new_start = old_start - shift;
691	unsigned long new_end = old_end - shift;
692	VMA_ITERATOR(vmi, mm, new_start);
693	struct vm_area_struct *next;
694	struct mmu_gather tlb;
695
696	BUG_ON(new_start > new_end);
697
698	/*
699	 * ensure there are no vmas between where we want to go
700	 * and where we are
701	 */
702	if (vma != vma_next(&vmi))
703		return -EFAULT;
704
705	vma_iter_prev_range(&vmi);
706	/*
707	 * cover the whole range: [new_start, old_end)
708	 */
709	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
710		return -ENOMEM;
711
712	/*
713	 * move the page tables downwards, on failure we rely on
714	 * process cleanup to remove whatever mess we made.
715	 */
716	if (length != move_page_tables(vma, old_start,
717				       vma, new_start, length, false, true))
718		return -ENOMEM;
719
720	lru_add_drain();
721	tlb_gather_mmu(&tlb, mm);
722	next = vma_next(&vmi);
723	if (new_end > old_start) {
724		/*
725		 * when the old and new regions overlap clear from new_end.
726		 */
727		free_pgd_range(&tlb, new_end, old_end, new_end,
728			next ? next->vm_start : USER_PGTABLES_CEILING);
729	} else {
730		/*
731		 * otherwise, clean from old_start; this is done to not touch
732		 * the address space in [new_end, old_start) some architectures
733		 * have constraints on va-space that make this illegal (IA64) -
734		 * for the others its just a little faster.
735		 */
736		free_pgd_range(&tlb, old_start, old_end, new_end,
737			next ? next->vm_start : USER_PGTABLES_CEILING);
738	}
739	tlb_finish_mmu(&tlb);
740
741	vma_prev(&vmi);
742	/* Shrink the vma to just the new range */
743	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
744}
745
746/*
747 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
748 * the stack is optionally relocated, and some extra space is added.
749 */
750int setup_arg_pages(struct linux_binprm *bprm,
751		    unsigned long stack_top,
752		    int executable_stack)
753{
754	unsigned long ret;
755	unsigned long stack_shift;
756	struct mm_struct *mm = current->mm;
757	struct vm_area_struct *vma = bprm->vma;
758	struct vm_area_struct *prev = NULL;
759	unsigned long vm_flags;
760	unsigned long stack_base;
761	unsigned long stack_size;
762	unsigned long stack_expand;
763	unsigned long rlim_stack;
764	struct mmu_gather tlb;
765	struct vma_iterator vmi;
766
767#ifdef CONFIG_STACK_GROWSUP
768	/* Limit stack size */
769	stack_base = bprm->rlim_stack.rlim_max;
770
771	stack_base = calc_max_stack_size(stack_base);
772
773	/* Add space for stack randomization. */
774	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
775
776	/* Make sure we didn't let the argument array grow too large. */
777	if (vma->vm_end - vma->vm_start > stack_base)
778		return -ENOMEM;
779
780	stack_base = PAGE_ALIGN(stack_top - stack_base);
781
782	stack_shift = vma->vm_start - stack_base;
783	mm->arg_start = bprm->p - stack_shift;
784	bprm->p = vma->vm_end - stack_shift;
785#else
786	stack_top = arch_align_stack(stack_top);
787	stack_top = PAGE_ALIGN(stack_top);
788
789	if (unlikely(stack_top < mmap_min_addr) ||
790	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
791		return -ENOMEM;
792
793	stack_shift = vma->vm_end - stack_top;
794
795	bprm->p -= stack_shift;
796	mm->arg_start = bprm->p;
797#endif
798
799	if (bprm->loader)
800		bprm->loader -= stack_shift;
801	bprm->exec -= stack_shift;
802
803	if (mmap_write_lock_killable(mm))
804		return -EINTR;
805
806	vm_flags = VM_STACK_FLAGS;
807
808	/*
809	 * Adjust stack execute permissions; explicitly enable for
810	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
811	 * (arch default) otherwise.
812	 */
813	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
814		vm_flags |= VM_EXEC;
815	else if (executable_stack == EXSTACK_DISABLE_X)
816		vm_flags &= ~VM_EXEC;
817	vm_flags |= mm->def_flags;
818	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
819
820	vma_iter_init(&vmi, mm, vma->vm_start);
821
822	tlb_gather_mmu(&tlb, mm);
823	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
824			vm_flags);
825	tlb_finish_mmu(&tlb);
826
827	if (ret)
828		goto out_unlock;
829	BUG_ON(prev != vma);
830
831	if (unlikely(vm_flags & VM_EXEC)) {
832		pr_warn_once("process '%pD4' started with executable stack\n",
833			     bprm->file);
834	}
835
836	/* Move stack pages down in memory. */
837	if (stack_shift) {
838		ret = shift_arg_pages(vma, stack_shift);
839		if (ret)
840			goto out_unlock;
841	}
842
843	/* mprotect_fixup is overkill to remove the temporary stack flags */
844	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
845
846	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
847	stack_size = vma->vm_end - vma->vm_start;
848	/*
849	 * Align this down to a page boundary as expand_stack
850	 * will align it up.
851	 */
852	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
853
854	stack_expand = min(rlim_stack, stack_size + stack_expand);
855
856#ifdef CONFIG_STACK_GROWSUP
857	stack_base = vma->vm_start + stack_expand;
858#else
859	stack_base = vma->vm_end - stack_expand;
860#endif
861	current->mm->start_stack = bprm->p;
862	ret = expand_stack_locked(vma, stack_base);
863	if (ret)
864		ret = -EFAULT;
865
866out_unlock:
867	mmap_write_unlock(mm);
868	return ret;
869}
870EXPORT_SYMBOL(setup_arg_pages);
871
872#else
873
874/*
875 * Transfer the program arguments and environment from the holding pages
876 * onto the stack. The provided stack pointer is adjusted accordingly.
877 */
878int transfer_args_to_stack(struct linux_binprm *bprm,
879			   unsigned long *sp_location)
880{
881	unsigned long index, stop, sp;
882	int ret = 0;
883
884	stop = bprm->p >> PAGE_SHIFT;
885	sp = *sp_location;
886
887	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
888		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
889		char *src = kmap_local_page(bprm->page[index]) + offset;
890		sp -= PAGE_SIZE - offset;
891		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
892			ret = -EFAULT;
893		kunmap_local(src);
894		if (ret)
895			goto out;
896	}
897
898	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
899	*sp_location = sp;
900
901out:
902	return ret;
903}
904EXPORT_SYMBOL(transfer_args_to_stack);
905
906#endif /* CONFIG_MMU */
907
908/*
909 * On success, caller must call do_close_execat() on the returned
910 * struct file to close it.
911 */
912static struct file *do_open_execat(int fd, struct filename *name, int flags)
913{
914	struct file *file;
915	int err;
916	struct open_flags open_exec_flags = {
917		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
918		.acc_mode = MAY_EXEC,
919		.intent = LOOKUP_OPEN,
920		.lookup_flags = LOOKUP_FOLLOW,
921	};
922
923	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
924		return ERR_PTR(-EINVAL);
925	if (flags & AT_SYMLINK_NOFOLLOW)
926		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
927	if (flags & AT_EMPTY_PATH)
928		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
929
930	file = do_filp_open(fd, name, &open_exec_flags);
931	if (IS_ERR(file))
932		goto out;
933
934	/*
935	 * may_open() has already checked for this, so it should be
936	 * impossible to trip now. But we need to be extra cautious
937	 * and check again at the very end too.
938	 */
939	err = -EACCES;
940	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
941			 path_noexec(&file->f_path)))
942		goto exit;
943
944	err = deny_write_access(file);
945	if (err)
946		goto exit;
947
948out:
949	return file;
950
951exit:
952	fput(file);
953	return ERR_PTR(err);
954}
955
956/**
957 * open_exec - Open a path name for execution
958 *
959 * @name: path name to open with the intent of executing it.
960 *
961 * Returns ERR_PTR on failure or allocated struct file on success.
962 *
963 * As this is a wrapper for the internal do_open_execat(), callers
964 * must call allow_write_access() before fput() on release. Also see
965 * do_close_execat().
966 */
967struct file *open_exec(const char *name)
968{
969	struct filename *filename = getname_kernel(name);
970	struct file *f = ERR_CAST(filename);
971
972	if (!IS_ERR(filename)) {
973		f = do_open_execat(AT_FDCWD, filename, 0);
974		putname(filename);
975	}
976	return f;
977}
978EXPORT_SYMBOL(open_exec);
979
980#if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
981ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
982{
983	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
984	if (res > 0)
985		flush_icache_user_range(addr, addr + len);
986	return res;
987}
988EXPORT_SYMBOL(read_code);
989#endif
990
991/*
992 * Maps the mm_struct mm into the current task struct.
993 * On success, this function returns with exec_update_lock
994 * held for writing.
995 */
996static int exec_mmap(struct mm_struct *mm)
997{
998	struct task_struct *tsk;
999	struct mm_struct *old_mm, *active_mm;
1000	int ret;
1001
1002	/* Notify parent that we're no longer interested in the old VM */
1003	tsk = current;
1004	old_mm = current->mm;
1005	exec_mm_release(tsk, old_mm);
1006
1007	ret = down_write_killable(&tsk->signal->exec_update_lock);
1008	if (ret)
1009		return ret;
1010
1011	if (old_mm) {
1012		/*
1013		 * If there is a pending fatal signal perhaps a signal
1014		 * whose default action is to create a coredump get
1015		 * out and die instead of going through with the exec.
1016		 */
1017		ret = mmap_read_lock_killable(old_mm);
1018		if (ret) {
1019			up_write(&tsk->signal->exec_update_lock);
1020			return ret;
1021		}
1022	}
1023
1024	task_lock(tsk);
1025	membarrier_exec_mmap(mm);
1026
1027	local_irq_disable();
1028	active_mm = tsk->active_mm;
1029	tsk->active_mm = mm;
1030	tsk->mm = mm;
1031	mm_init_cid(mm);
1032	/*
1033	 * This prevents preemption while active_mm is being loaded and
1034	 * it and mm are being updated, which could cause problems for
1035	 * lazy tlb mm refcounting when these are updated by context
1036	 * switches. Not all architectures can handle irqs off over
1037	 * activate_mm yet.
1038	 */
1039	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1040		local_irq_enable();
1041	activate_mm(active_mm, mm);
1042	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1043		local_irq_enable();
1044	lru_gen_add_mm(mm);
1045	task_unlock(tsk);
1046	lru_gen_use_mm(mm);
1047	if (old_mm) {
1048		mmap_read_unlock(old_mm);
1049		BUG_ON(active_mm != old_mm);
1050		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1051		mm_update_next_owner(old_mm);
1052		mmput(old_mm);
1053		return 0;
1054	}
1055	mmdrop_lazy_tlb(active_mm);
1056	return 0;
1057}
1058
1059static int de_thread(struct task_struct *tsk)
1060{
1061	struct signal_struct *sig = tsk->signal;
1062	struct sighand_struct *oldsighand = tsk->sighand;
1063	spinlock_t *lock = &oldsighand->siglock;
1064
1065	if (thread_group_empty(tsk))
1066		goto no_thread_group;
1067
1068	/*
1069	 * Kill all other threads in the thread group.
1070	 */
1071	spin_lock_irq(lock);
1072	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1073		/*
1074		 * Another group action in progress, just
1075		 * return so that the signal is processed.
1076		 */
1077		spin_unlock_irq(lock);
1078		return -EAGAIN;
1079	}
1080
1081	sig->group_exec_task = tsk;
1082	sig->notify_count = zap_other_threads(tsk);
1083	if (!thread_group_leader(tsk))
1084		sig->notify_count--;
1085
1086	while (sig->notify_count) {
1087		__set_current_state(TASK_KILLABLE);
1088		spin_unlock_irq(lock);
1089		schedule();
1090		if (__fatal_signal_pending(tsk))
1091			goto killed;
1092		spin_lock_irq(lock);
1093	}
1094	spin_unlock_irq(lock);
1095
1096	/*
1097	 * At this point all other threads have exited, all we have to
1098	 * do is to wait for the thread group leader to become inactive,
1099	 * and to assume its PID:
1100	 */
1101	if (!thread_group_leader(tsk)) {
1102		struct task_struct *leader = tsk->group_leader;
1103
1104		for (;;) {
1105			cgroup_threadgroup_change_begin(tsk);
1106			write_lock_irq(&tasklist_lock);
1107			/*
1108			 * Do this under tasklist_lock to ensure that
1109			 * exit_notify() can't miss ->group_exec_task
1110			 */
1111			sig->notify_count = -1;
1112			if (likely(leader->exit_state))
1113				break;
1114			__set_current_state(TASK_KILLABLE);
1115			write_unlock_irq(&tasklist_lock);
1116			cgroup_threadgroup_change_end(tsk);
1117			schedule();
1118			if (__fatal_signal_pending(tsk))
1119				goto killed;
1120		}
1121
1122		/*
1123		 * The only record we have of the real-time age of a
1124		 * process, regardless of execs it's done, is start_time.
1125		 * All the past CPU time is accumulated in signal_struct
1126		 * from sister threads now dead.  But in this non-leader
1127		 * exec, nothing survives from the original leader thread,
1128		 * whose birth marks the true age of this process now.
1129		 * When we take on its identity by switching to its PID, we
1130		 * also take its birthdate (always earlier than our own).
1131		 */
1132		tsk->start_time = leader->start_time;
1133		tsk->start_boottime = leader->start_boottime;
1134
1135		BUG_ON(!same_thread_group(leader, tsk));
1136		/*
1137		 * An exec() starts a new thread group with the
1138		 * TGID of the previous thread group. Rehash the
1139		 * two threads with a switched PID, and release
1140		 * the former thread group leader:
1141		 */
1142
1143		/* Become a process group leader with the old leader's pid.
1144		 * The old leader becomes a thread of the this thread group.
1145		 */
1146		exchange_tids(tsk, leader);
1147		transfer_pid(leader, tsk, PIDTYPE_TGID);
1148		transfer_pid(leader, tsk, PIDTYPE_PGID);
1149		transfer_pid(leader, tsk, PIDTYPE_SID);
1150
1151		list_replace_rcu(&leader->tasks, &tsk->tasks);
1152		list_replace_init(&leader->sibling, &tsk->sibling);
1153
1154		tsk->group_leader = tsk;
1155		leader->group_leader = tsk;
1156
1157		tsk->exit_signal = SIGCHLD;
1158		leader->exit_signal = -1;
1159
1160		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1161		leader->exit_state = EXIT_DEAD;
1162		/*
1163		 * We are going to release_task()->ptrace_unlink() silently,
1164		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1165		 * the tracer won't block again waiting for this thread.
1166		 */
1167		if (unlikely(leader->ptrace))
1168			__wake_up_parent(leader, leader->parent);
1169		write_unlock_irq(&tasklist_lock);
1170		cgroup_threadgroup_change_end(tsk);
1171
1172		release_task(leader);
1173	}
1174
1175	sig->group_exec_task = NULL;
1176	sig->notify_count = 0;
1177
1178no_thread_group:
1179	/* we have changed execution domain */
1180	tsk->exit_signal = SIGCHLD;
1181
1182	BUG_ON(!thread_group_leader(tsk));
1183	return 0;
1184
1185killed:
1186	/* protects against exit_notify() and __exit_signal() */
1187	read_lock(&tasklist_lock);
1188	sig->group_exec_task = NULL;
1189	sig->notify_count = 0;
1190	read_unlock(&tasklist_lock);
1191	return -EAGAIN;
1192}
1193
1194
1195/*
1196 * This function makes sure the current process has its own signal table,
1197 * so that flush_signal_handlers can later reset the handlers without
1198 * disturbing other processes.  (Other processes might share the signal
1199 * table via the CLONE_SIGHAND option to clone().)
1200 */
1201static int unshare_sighand(struct task_struct *me)
1202{
1203	struct sighand_struct *oldsighand = me->sighand;
1204
1205	if (refcount_read(&oldsighand->count) != 1) {
1206		struct sighand_struct *newsighand;
1207		/*
1208		 * This ->sighand is shared with the CLONE_SIGHAND
1209		 * but not CLONE_THREAD task, switch to the new one.
1210		 */
1211		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1212		if (!newsighand)
1213			return -ENOMEM;
1214
1215		refcount_set(&newsighand->count, 1);
1216
1217		write_lock_irq(&tasklist_lock);
1218		spin_lock(&oldsighand->siglock);
1219		memcpy(newsighand->action, oldsighand->action,
1220		       sizeof(newsighand->action));
1221		rcu_assign_pointer(me->sighand, newsighand);
1222		spin_unlock(&oldsighand->siglock);
1223		write_unlock_irq(&tasklist_lock);
1224
1225		__cleanup_sighand(oldsighand);
1226	}
1227	return 0;
1228}
1229
1230char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1231{
1232	task_lock(tsk);
1233	/* Always NUL terminated and zero-padded */
1234	strscpy_pad(buf, tsk->comm, buf_size);
1235	task_unlock(tsk);
1236	return buf;
1237}
1238EXPORT_SYMBOL_GPL(__get_task_comm);
1239
1240/*
1241 * These functions flushes out all traces of the currently running executable
1242 * so that a new one can be started
1243 */
1244
1245void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1246{
1247	task_lock(tsk);
1248	trace_task_rename(tsk, buf);
1249	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1250	task_unlock(tsk);
1251	perf_event_comm(tsk, exec);
1252}
1253
1254/*
1255 * Calling this is the point of no return. None of the failures will be
1256 * seen by userspace since either the process is already taking a fatal
1257 * signal (via de_thread() or coredump), or will have SEGV raised
1258 * (after exec_mmap()) by search_binary_handler (see below).
1259 */
1260int begin_new_exec(struct linux_binprm * bprm)
1261{
1262	struct task_struct *me = current;
1263	int retval;
1264
1265	/* Once we are committed compute the creds */
1266	retval = bprm_creds_from_file(bprm);
1267	if (retval)
1268		return retval;
1269
1270	/*
1271	 * Ensure all future errors are fatal.
1272	 */
1273	bprm->point_of_no_return = true;
1274
1275	/*
1276	 * Make this the only thread in the thread group.
1277	 */
1278	retval = de_thread(me);
1279	if (retval)
1280		goto out;
1281
1282	/*
1283	 * Cancel any io_uring activity across execve
1284	 */
1285	io_uring_task_cancel();
1286
1287	/* Ensure the files table is not shared. */
1288	retval = unshare_files();
1289	if (retval)
1290		goto out;
1291
1292	/*
1293	 * Must be called _before_ exec_mmap() as bprm->mm is
1294	 * not visible until then. Doing it here also ensures
1295	 * we don't race against replace_mm_exe_file().
1296	 */
1297	retval = set_mm_exe_file(bprm->mm, bprm->file);
1298	if (retval)
1299		goto out;
1300
1301	/* If the binary is not readable then enforce mm->dumpable=0 */
1302	would_dump(bprm, bprm->file);
1303	if (bprm->have_execfd)
1304		would_dump(bprm, bprm->executable);
1305
1306	/*
1307	 * Release all of the old mmap stuff
1308	 */
1309	acct_arg_size(bprm, 0);
1310	retval = exec_mmap(bprm->mm);
1311	if (retval)
1312		goto out;
1313
1314	bprm->mm = NULL;
1315
1316	retval = exec_task_namespaces();
1317	if (retval)
1318		goto out_unlock;
1319
1320#ifdef CONFIG_POSIX_TIMERS
1321	spin_lock_irq(&me->sighand->siglock);
1322	posix_cpu_timers_exit(me);
1323	spin_unlock_irq(&me->sighand->siglock);
1324	exit_itimers(me);
1325	flush_itimer_signals();
1326#endif
1327
1328	/*
1329	 * Make the signal table private.
1330	 */
1331	retval = unshare_sighand(me);
1332	if (retval)
1333		goto out_unlock;
1334
1335	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1336					PF_NOFREEZE | PF_NO_SETAFFINITY);
1337	flush_thread();
1338	me->personality &= ~bprm->per_clear;
1339
1340	clear_syscall_work_syscall_user_dispatch(me);
1341
1342	/*
1343	 * We have to apply CLOEXEC before we change whether the process is
1344	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1345	 * trying to access the should-be-closed file descriptors of a process
1346	 * undergoing exec(2).
1347	 */
1348	do_close_on_exec(me->files);
1349
1350	if (bprm->secureexec) {
1351		/* Make sure parent cannot signal privileged process. */
1352		me->pdeath_signal = 0;
1353
1354		/*
1355		 * For secureexec, reset the stack limit to sane default to
1356		 * avoid bad behavior from the prior rlimits. This has to
1357		 * happen before arch_pick_mmap_layout(), which examines
1358		 * RLIMIT_STACK, but after the point of no return to avoid
1359		 * needing to clean up the change on failure.
1360		 */
1361		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1362			bprm->rlim_stack.rlim_cur = _STK_LIM;
1363	}
1364
1365	me->sas_ss_sp = me->sas_ss_size = 0;
1366
1367	/*
1368	 * Figure out dumpability. Note that this checking only of current
1369	 * is wrong, but userspace depends on it. This should be testing
1370	 * bprm->secureexec instead.
1371	 */
1372	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1373	    !(uid_eq(current_euid(), current_uid()) &&
1374	      gid_eq(current_egid(), current_gid())))
1375		set_dumpable(current->mm, suid_dumpable);
1376	else
1377		set_dumpable(current->mm, SUID_DUMP_USER);
1378
1379	perf_event_exec();
1380	__set_task_comm(me, kbasename(bprm->filename), true);
1381
1382	/* An exec changes our domain. We are no longer part of the thread
1383	   group */
1384	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1385	flush_signal_handlers(me, 0);
1386
1387	retval = set_cred_ucounts(bprm->cred);
1388	if (retval < 0)
1389		goto out_unlock;
1390
1391	/*
1392	 * install the new credentials for this executable
1393	 */
1394	security_bprm_committing_creds(bprm);
1395
1396	commit_creds(bprm->cred);
1397	bprm->cred = NULL;
1398
1399	/*
1400	 * Disable monitoring for regular users
1401	 * when executing setuid binaries. Must
1402	 * wait until new credentials are committed
1403	 * by commit_creds() above
1404	 */
1405	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1406		perf_event_exit_task(me);
1407	/*
1408	 * cred_guard_mutex must be held at least to this point to prevent
1409	 * ptrace_attach() from altering our determination of the task's
1410	 * credentials; any time after this it may be unlocked.
1411	 */
1412	security_bprm_committed_creds(bprm);
1413
1414	/* Pass the opened binary to the interpreter. */
1415	if (bprm->have_execfd) {
1416		retval = get_unused_fd_flags(0);
1417		if (retval < 0)
1418			goto out_unlock;
1419		fd_install(retval, bprm->executable);
1420		bprm->executable = NULL;
1421		bprm->execfd = retval;
1422	}
1423	return 0;
1424
1425out_unlock:
1426	up_write(&me->signal->exec_update_lock);
1427	if (!bprm->cred)
1428		mutex_unlock(&me->signal->cred_guard_mutex);
1429
1430out:
1431	return retval;
1432}
1433EXPORT_SYMBOL(begin_new_exec);
1434
1435void would_dump(struct linux_binprm *bprm, struct file *file)
1436{
1437	struct inode *inode = file_inode(file);
1438	struct mnt_idmap *idmap = file_mnt_idmap(file);
1439	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1440		struct user_namespace *old, *user_ns;
1441		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1442
1443		/* Ensure mm->user_ns contains the executable */
1444		user_ns = old = bprm->mm->user_ns;
1445		while ((user_ns != &init_user_ns) &&
1446		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1447			user_ns = user_ns->parent;
1448
1449		if (old != user_ns) {
1450			bprm->mm->user_ns = get_user_ns(user_ns);
1451			put_user_ns(old);
1452		}
1453	}
1454}
1455EXPORT_SYMBOL(would_dump);
1456
1457void setup_new_exec(struct linux_binprm * bprm)
1458{
1459	/* Setup things that can depend upon the personality */
1460	struct task_struct *me = current;
1461
1462	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1463
1464	arch_setup_new_exec();
1465
1466	/* Set the new mm task size. We have to do that late because it may
1467	 * depend on TIF_32BIT which is only updated in flush_thread() on
1468	 * some architectures like powerpc
1469	 */
1470	me->mm->task_size = TASK_SIZE;
1471	up_write(&me->signal->exec_update_lock);
1472	mutex_unlock(&me->signal->cred_guard_mutex);
1473}
1474EXPORT_SYMBOL(setup_new_exec);
1475
1476/* Runs immediately before start_thread() takes over. */
1477void finalize_exec(struct linux_binprm *bprm)
1478{
1479	/* Store any stack rlimit changes before starting thread. */
1480	task_lock(current->group_leader);
1481	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1482	task_unlock(current->group_leader);
1483}
1484EXPORT_SYMBOL(finalize_exec);
1485
1486/*
1487 * Prepare credentials and lock ->cred_guard_mutex.
1488 * setup_new_exec() commits the new creds and drops the lock.
1489 * Or, if exec fails before, free_bprm() should release ->cred
1490 * and unlock.
1491 */
1492static int prepare_bprm_creds(struct linux_binprm *bprm)
1493{
1494	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1495		return -ERESTARTNOINTR;
1496
1497	bprm->cred = prepare_exec_creds();
1498	if (likely(bprm->cred))
1499		return 0;
1500
1501	mutex_unlock(&current->signal->cred_guard_mutex);
1502	return -ENOMEM;
1503}
1504
1505/* Matches do_open_execat() */
1506static void do_close_execat(struct file *file)
1507{
1508	if (!file)
1509		return;
1510	allow_write_access(file);
1511	fput(file);
1512}
1513
1514static void free_bprm(struct linux_binprm *bprm)
1515{
1516	if (bprm->mm) {
1517		acct_arg_size(bprm, 0);
1518		mmput(bprm->mm);
1519	}
1520	free_arg_pages(bprm);
1521	if (bprm->cred) {
1522		mutex_unlock(&current->signal->cred_guard_mutex);
1523		abort_creds(bprm->cred);
1524	}
1525	do_close_execat(bprm->file);
1526	if (bprm->executable)
1527		fput(bprm->executable);
1528	/* If a binfmt changed the interp, free it. */
1529	if (bprm->interp != bprm->filename)
1530		kfree(bprm->interp);
1531	kfree(bprm->fdpath);
1532	kfree(bprm);
1533}
1534
1535static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1536{
1537	struct linux_binprm *bprm;
1538	struct file *file;
1539	int retval = -ENOMEM;
1540
1541	file = do_open_execat(fd, filename, flags);
1542	if (IS_ERR(file))
1543		return ERR_CAST(file);
1544
1545	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1546	if (!bprm) {
1547		do_close_execat(file);
1548		return ERR_PTR(-ENOMEM);
1549	}
1550
1551	bprm->file = file;
1552
1553	if (fd == AT_FDCWD || filename->name[0] == '/') {
1554		bprm->filename = filename->name;
1555	} else {
1556		if (filename->name[0] == '\0')
1557			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1558		else
1559			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1560						  fd, filename->name);
1561		if (!bprm->fdpath)
1562			goto out_free;
1563
1564		/*
1565		 * Record that a name derived from an O_CLOEXEC fd will be
1566		 * inaccessible after exec.  This allows the code in exec to
1567		 * choose to fail when the executable is not mmaped into the
1568		 * interpreter and an open file descriptor is not passed to
1569		 * the interpreter.  This makes for a better user experience
1570		 * than having the interpreter start and then immediately fail
1571		 * when it finds the executable is inaccessible.
1572		 */
1573		if (get_close_on_exec(fd))
1574			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1575
1576		bprm->filename = bprm->fdpath;
1577	}
1578	bprm->interp = bprm->filename;
1579
1580	retval = bprm_mm_init(bprm);
1581	if (!retval)
1582		return bprm;
1583
1584out_free:
1585	free_bprm(bprm);
1586	return ERR_PTR(retval);
1587}
1588
1589int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1590{
1591	/* If a binfmt changed the interp, free it first. */
1592	if (bprm->interp != bprm->filename)
1593		kfree(bprm->interp);
1594	bprm->interp = kstrdup(interp, GFP_KERNEL);
1595	if (!bprm->interp)
1596		return -ENOMEM;
1597	return 0;
1598}
1599EXPORT_SYMBOL(bprm_change_interp);
1600
1601/*
1602 * determine how safe it is to execute the proposed program
1603 * - the caller must hold ->cred_guard_mutex to protect against
1604 *   PTRACE_ATTACH or seccomp thread-sync
1605 */
1606static void check_unsafe_exec(struct linux_binprm *bprm)
1607{
1608	struct task_struct *p = current, *t;
1609	unsigned n_fs;
1610
1611	if (p->ptrace)
1612		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1613
1614	/*
1615	 * This isn't strictly necessary, but it makes it harder for LSMs to
1616	 * mess up.
1617	 */
1618	if (task_no_new_privs(current))
1619		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1620
1621	/*
1622	 * If another task is sharing our fs, we cannot safely
1623	 * suid exec because the differently privileged task
1624	 * will be able to manipulate the current directory, etc.
1625	 * It would be nice to force an unshare instead...
1626	 */
1627	n_fs = 1;
1628	spin_lock(&p->fs->lock);
1629	rcu_read_lock();
1630	for_other_threads(p, t) {
1631		if (t->fs == p->fs)
1632			n_fs++;
1633	}
1634	rcu_read_unlock();
1635
1636	/* "users" and "in_exec" locked for copy_fs() */
1637	if (p->fs->users > n_fs)
1638		bprm->unsafe |= LSM_UNSAFE_SHARE;
1639	else
1640		p->fs->in_exec = 1;
1641	spin_unlock(&p->fs->lock);
1642}
1643
1644static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1645{
1646	/* Handle suid and sgid on files */
1647	struct mnt_idmap *idmap;
1648	struct inode *inode = file_inode(file);
1649	unsigned int mode;
1650	vfsuid_t vfsuid;
1651	vfsgid_t vfsgid;
1652
1653	if (!mnt_may_suid(file->f_path.mnt))
1654		return;
1655
1656	if (task_no_new_privs(current))
1657		return;
1658
1659	mode = READ_ONCE(inode->i_mode);
1660	if (!(mode & (S_ISUID|S_ISGID)))
1661		return;
1662
1663	idmap = file_mnt_idmap(file);
1664
1665	/* Be careful if suid/sgid is set */
1666	inode_lock(inode);
1667
1668	/* reload atomically mode/uid/gid now that lock held */
1669	mode = inode->i_mode;
1670	vfsuid = i_uid_into_vfsuid(idmap, inode);
1671	vfsgid = i_gid_into_vfsgid(idmap, inode);
1672	inode_unlock(inode);
1673
1674	/* We ignore suid/sgid if there are no mappings for them in the ns */
1675	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1676	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1677		return;
1678
1679	if (mode & S_ISUID) {
1680		bprm->per_clear |= PER_CLEAR_ON_SETID;
1681		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1682	}
1683
1684	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1685		bprm->per_clear |= PER_CLEAR_ON_SETID;
1686		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1687	}
1688}
1689
1690/*
1691 * Compute brpm->cred based upon the final binary.
1692 */
1693static int bprm_creds_from_file(struct linux_binprm *bprm)
1694{
1695	/* Compute creds based on which file? */
1696	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1697
1698	bprm_fill_uid(bprm, file);
1699	return security_bprm_creds_from_file(bprm, file);
1700}
1701
1702/*
1703 * Fill the binprm structure from the inode.
1704 * Read the first BINPRM_BUF_SIZE bytes
1705 *
1706 * This may be called multiple times for binary chains (scripts for example).
1707 */
1708static int prepare_binprm(struct linux_binprm *bprm)
1709{
1710	loff_t pos = 0;
1711
1712	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1713	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1714}
1715
1716/*
1717 * Arguments are '\0' separated strings found at the location bprm->p
1718 * points to; chop off the first by relocating brpm->p to right after
1719 * the first '\0' encountered.
1720 */
1721int remove_arg_zero(struct linux_binprm *bprm)
1722{
1723	unsigned long offset;
1724	char *kaddr;
1725	struct page *page;
1726
1727	if (!bprm->argc)
1728		return 0;
1729
1730	do {
1731		offset = bprm->p & ~PAGE_MASK;
1732		page = get_arg_page(bprm, bprm->p, 0);
1733		if (!page)
1734			return -EFAULT;
1735		kaddr = kmap_local_page(page);
1736
1737		for (; offset < PAGE_SIZE && kaddr[offset];
1738				offset++, bprm->p++)
1739			;
1740
1741		kunmap_local(kaddr);
1742		put_arg_page(page);
1743	} while (offset == PAGE_SIZE);
1744
1745	bprm->p++;
1746	bprm->argc--;
1747
1748	return 0;
1749}
1750EXPORT_SYMBOL(remove_arg_zero);
1751
1752#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1753/*
1754 * cycle the list of binary formats handler, until one recognizes the image
1755 */
1756static int search_binary_handler(struct linux_binprm *bprm)
1757{
1758	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1759	struct linux_binfmt *fmt;
1760	int retval;
1761
1762	retval = prepare_binprm(bprm);
1763	if (retval < 0)
1764		return retval;
1765
1766	retval = security_bprm_check(bprm);
1767	if (retval)
1768		return retval;
1769
1770	retval = -ENOENT;
1771 retry:
1772	read_lock(&binfmt_lock);
1773	list_for_each_entry(fmt, &formats, lh) {
1774		if (!try_module_get(fmt->module))
1775			continue;
1776		read_unlock(&binfmt_lock);
1777
1778		retval = fmt->load_binary(bprm);
1779
1780		read_lock(&binfmt_lock);
1781		put_binfmt(fmt);
1782		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1783			read_unlock(&binfmt_lock);
1784			return retval;
1785		}
1786	}
1787	read_unlock(&binfmt_lock);
1788
1789	if (need_retry) {
1790		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1791		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1792			return retval;
1793		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1794			return retval;
1795		need_retry = false;
1796		goto retry;
1797	}
1798
1799	return retval;
1800}
1801
1802/* binfmt handlers will call back into begin_new_exec() on success. */
1803static int exec_binprm(struct linux_binprm *bprm)
1804{
1805	pid_t old_pid, old_vpid;
1806	int ret, depth;
1807
1808	/* Need to fetch pid before load_binary changes it */
1809	old_pid = current->pid;
1810	rcu_read_lock();
1811	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1812	rcu_read_unlock();
1813
1814	/* This allows 4 levels of binfmt rewrites before failing hard. */
1815	for (depth = 0;; depth++) {
1816		struct file *exec;
1817		if (depth > 5)
1818			return -ELOOP;
1819
1820		ret = search_binary_handler(bprm);
1821		if (ret < 0)
1822			return ret;
1823		if (!bprm->interpreter)
1824			break;
1825
1826		exec = bprm->file;
1827		bprm->file = bprm->interpreter;
1828		bprm->interpreter = NULL;
1829
1830		allow_write_access(exec);
1831		if (unlikely(bprm->have_execfd)) {
1832			if (bprm->executable) {
1833				fput(exec);
1834				return -ENOEXEC;
1835			}
1836			bprm->executable = exec;
1837		} else
1838			fput(exec);
1839	}
1840
1841	audit_bprm(bprm);
1842	trace_sched_process_exec(current, old_pid, bprm);
1843	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1844	proc_exec_connector(current);
1845	return 0;
1846}
1847
1848static int bprm_execve(struct linux_binprm *bprm)
1849{
1850	int retval;
1851
1852	retval = prepare_bprm_creds(bprm);
1853	if (retval)
1854		return retval;
1855
1856	/*
1857	 * Check for unsafe execution states before exec_binprm(), which
1858	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1859	 * where setuid-ness is evaluated.
1860	 */
1861	check_unsafe_exec(bprm);
1862	current->in_execve = 1;
1863	sched_mm_cid_before_execve(current);
1864
1865	sched_exec();
1866
1867	/* Set the unchanging part of bprm->cred */
1868	retval = security_bprm_creds_for_exec(bprm);
1869	if (retval)
1870		goto out;
1871
1872	retval = exec_binprm(bprm);
1873	if (retval < 0)
1874		goto out;
1875
1876	sched_mm_cid_after_execve(current);
1877	/* execve succeeded */
1878	current->fs->in_exec = 0;
1879	current->in_execve = 0;
1880	rseq_execve(current);
1881	user_events_execve(current);
1882	acct_update_integrals(current);
1883	task_numa_free(current, false);
1884	return retval;
1885
1886out:
1887	/*
1888	 * If past the point of no return ensure the code never
1889	 * returns to the userspace process.  Use an existing fatal
1890	 * signal if present otherwise terminate the process with
1891	 * SIGSEGV.
1892	 */
1893	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1894		force_fatal_sig(SIGSEGV);
1895
1896	sched_mm_cid_after_execve(current);
1897	current->fs->in_exec = 0;
1898	current->in_execve = 0;
1899
1900	return retval;
1901}
1902
1903static int do_execveat_common(int fd, struct filename *filename,
1904			      struct user_arg_ptr argv,
1905			      struct user_arg_ptr envp,
1906			      int flags)
1907{
1908	struct linux_binprm *bprm;
1909	int retval;
1910
1911	if (IS_ERR(filename))
1912		return PTR_ERR(filename);
1913
1914	/*
1915	 * We move the actual failure in case of RLIMIT_NPROC excess from
1916	 * set*uid() to execve() because too many poorly written programs
1917	 * don't check setuid() return code.  Here we additionally recheck
1918	 * whether NPROC limit is still exceeded.
1919	 */
1920	if ((current->flags & PF_NPROC_EXCEEDED) &&
1921	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1922		retval = -EAGAIN;
1923		goto out_ret;
1924	}
1925
1926	/* We're below the limit (still or again), so we don't want to make
1927	 * further execve() calls fail. */
1928	current->flags &= ~PF_NPROC_EXCEEDED;
1929
1930	bprm = alloc_bprm(fd, filename, flags);
1931	if (IS_ERR(bprm)) {
1932		retval = PTR_ERR(bprm);
1933		goto out_ret;
1934	}
1935
1936	retval = count(argv, MAX_ARG_STRINGS);
1937	if (retval == 0)
1938		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1939			     current->comm, bprm->filename);
1940	if (retval < 0)
1941		goto out_free;
1942	bprm->argc = retval;
1943
1944	retval = count(envp, MAX_ARG_STRINGS);
1945	if (retval < 0)
1946		goto out_free;
1947	bprm->envc = retval;
1948
1949	retval = bprm_stack_limits(bprm);
1950	if (retval < 0)
1951		goto out_free;
1952
1953	retval = copy_string_kernel(bprm->filename, bprm);
1954	if (retval < 0)
1955		goto out_free;
1956	bprm->exec = bprm->p;
1957
1958	retval = copy_strings(bprm->envc, envp, bprm);
1959	if (retval < 0)
1960		goto out_free;
1961
1962	retval = copy_strings(bprm->argc, argv, bprm);
1963	if (retval < 0)
1964		goto out_free;
1965
1966	/*
1967	 * When argv is empty, add an empty string ("") as argv[0] to
1968	 * ensure confused userspace programs that start processing
1969	 * from argv[1] won't end up walking envp. See also
1970	 * bprm_stack_limits().
1971	 */
1972	if (bprm->argc == 0) {
1973		retval = copy_string_kernel("", bprm);
1974		if (retval < 0)
1975			goto out_free;
1976		bprm->argc = 1;
1977	}
1978
1979	retval = bprm_execve(bprm);
1980out_free:
1981	free_bprm(bprm);
1982
1983out_ret:
1984	putname(filename);
1985	return retval;
1986}
1987
1988int kernel_execve(const char *kernel_filename,
1989		  const char *const *argv, const char *const *envp)
1990{
1991	struct filename *filename;
1992	struct linux_binprm *bprm;
1993	int fd = AT_FDCWD;
1994	int retval;
1995
1996	/* It is non-sense for kernel threads to call execve */
1997	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1998		return -EINVAL;
1999
2000	filename = getname_kernel(kernel_filename);
2001	if (IS_ERR(filename))
2002		return PTR_ERR(filename);
2003
2004	bprm = alloc_bprm(fd, filename, 0);
2005	if (IS_ERR(bprm)) {
2006		retval = PTR_ERR(bprm);
2007		goto out_ret;
2008	}
2009
2010	retval = count_strings_kernel(argv);
2011	if (WARN_ON_ONCE(retval == 0))
2012		retval = -EINVAL;
2013	if (retval < 0)
2014		goto out_free;
2015	bprm->argc = retval;
2016
2017	retval = count_strings_kernel(envp);
2018	if (retval < 0)
2019		goto out_free;
2020	bprm->envc = retval;
2021
2022	retval = bprm_stack_limits(bprm);
2023	if (retval < 0)
2024		goto out_free;
2025
2026	retval = copy_string_kernel(bprm->filename, bprm);
2027	if (retval < 0)
2028		goto out_free;
2029	bprm->exec = bprm->p;
2030
2031	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2032	if (retval < 0)
2033		goto out_free;
2034
2035	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2036	if (retval < 0)
2037		goto out_free;
2038
2039	retval = bprm_execve(bprm);
2040out_free:
2041	free_bprm(bprm);
2042out_ret:
2043	putname(filename);
2044	return retval;
2045}
2046
2047static int do_execve(struct filename *filename,
2048	const char __user *const __user *__argv,
2049	const char __user *const __user *__envp)
2050{
2051	struct user_arg_ptr argv = { .ptr.native = __argv };
2052	struct user_arg_ptr envp = { .ptr.native = __envp };
2053	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2054}
2055
2056static int do_execveat(int fd, struct filename *filename,
2057		const char __user *const __user *__argv,
2058		const char __user *const __user *__envp,
2059		int flags)
2060{
2061	struct user_arg_ptr argv = { .ptr.native = __argv };
2062	struct user_arg_ptr envp = { .ptr.native = __envp };
2063
2064	return do_execveat_common(fd, filename, argv, envp, flags);
2065}
2066
2067#ifdef CONFIG_COMPAT
2068static int compat_do_execve(struct filename *filename,
2069	const compat_uptr_t __user *__argv,
2070	const compat_uptr_t __user *__envp)
2071{
2072	struct user_arg_ptr argv = {
2073		.is_compat = true,
2074		.ptr.compat = __argv,
2075	};
2076	struct user_arg_ptr envp = {
2077		.is_compat = true,
2078		.ptr.compat = __envp,
2079	};
2080	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2081}
2082
2083static int compat_do_execveat(int fd, struct filename *filename,
2084			      const compat_uptr_t __user *__argv,
2085			      const compat_uptr_t __user *__envp,
2086			      int flags)
2087{
2088	struct user_arg_ptr argv = {
2089		.is_compat = true,
2090		.ptr.compat = __argv,
2091	};
2092	struct user_arg_ptr envp = {
2093		.is_compat = true,
2094		.ptr.compat = __envp,
2095	};
2096	return do_execveat_common(fd, filename, argv, envp, flags);
2097}
2098#endif
2099
2100void set_binfmt(struct linux_binfmt *new)
2101{
2102	struct mm_struct *mm = current->mm;
2103
2104	if (mm->binfmt)
2105		module_put(mm->binfmt->module);
2106
2107	mm->binfmt = new;
2108	if (new)
2109		__module_get(new->module);
2110}
2111EXPORT_SYMBOL(set_binfmt);
2112
2113/*
2114 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2115 */
2116void set_dumpable(struct mm_struct *mm, int value)
2117{
2118	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2119		return;
2120
2121	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2122}
2123
2124SYSCALL_DEFINE3(execve,
2125		const char __user *, filename,
2126		const char __user *const __user *, argv,
2127		const char __user *const __user *, envp)
2128{
2129	return do_execve(getname(filename), argv, envp);
2130}
2131
2132SYSCALL_DEFINE5(execveat,
2133		int, fd, const char __user *, filename,
2134		const char __user *const __user *, argv,
2135		const char __user *const __user *, envp,
2136		int, flags)
2137{
2138	return do_execveat(fd,
2139			   getname_uflags(filename, flags),
2140			   argv, envp, flags);
2141}
2142
2143#ifdef CONFIG_COMPAT
2144COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2145	const compat_uptr_t __user *, argv,
2146	const compat_uptr_t __user *, envp)
2147{
2148	return compat_do_execve(getname(filename), argv, envp);
2149}
2150
2151COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2152		       const char __user *, filename,
2153		       const compat_uptr_t __user *, argv,
2154		       const compat_uptr_t __user *, envp,
2155		       int,  flags)
2156{
2157	return compat_do_execveat(fd,
2158				  getname_uflags(filename, flags),
2159				  argv, envp, flags);
2160}
2161#endif
2162
2163#ifdef CONFIG_SYSCTL
2164
2165static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2166		void *buffer, size_t *lenp, loff_t *ppos)
2167{
2168	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2169
2170	if (!error)
2171		validate_coredump_safety();
2172	return error;
2173}
2174
2175static struct ctl_table fs_exec_sysctls[] = {
2176	{
2177		.procname	= "suid_dumpable",
2178		.data		= &suid_dumpable,
2179		.maxlen		= sizeof(int),
2180		.mode		= 0644,
2181		.proc_handler	= proc_dointvec_minmax_coredump,
2182		.extra1		= SYSCTL_ZERO,
2183		.extra2		= SYSCTL_TWO,
2184	},
2185};
2186
2187static int __init init_fs_exec_sysctls(void)
2188{
2189	register_sysctl_init("fs", fs_exec_sysctls);
2190	return 0;
2191}
2192
2193fs_initcall(init_fs_exec_sysctls);
2194#endif /* CONFIG_SYSCTL */
2195