1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  fs/eventpoll.c (Efficient event retrieval implementation)
4 *  Copyright (C) 2001,...,2009	 Davide Libenzi
5 *
6 *  Davide Libenzi <davidel@xmailserver.org>
7 */
8
9#include <linux/init.h>
10#include <linux/kernel.h>
11#include <linux/sched/signal.h>
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
29#include <linux/mutex.h>
30#include <linux/anon_inodes.h>
31#include <linux/device.h>
32#include <linux/uaccess.h>
33#include <asm/io.h>
34#include <asm/mman.h>
35#include <linux/atomic.h>
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
38#include <linux/compat.h>
39#include <linux/rculist.h>
40#include <linux/capability.h>
41#include <net/busy_poll.h>
42
43/*
44 * LOCKING:
45 * There are three level of locking required by epoll :
46 *
47 * 1) epnested_mutex (mutex)
48 * 2) ep->mtx (mutex)
49 * 3) ep->lock (rwlock)
50 *
51 * The acquire order is the one listed above, from 1 to 3.
52 * We need a rwlock (ep->lock) because we manipulate objects
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61 * The epnested_mutex is acquired when inserting an epoll fd onto another
62 * epoll fd. We do this so that we walk the epoll tree and ensure that this
63 * insertion does not create a cycle of epoll file descriptors, which
64 * could lead to deadlock. We need a global mutex to prevent two
65 * simultaneous inserts (A into B and B into A) from racing and
66 * constructing a cycle without either insert observing that it is
67 * going to.
68 * It is necessary to acquire multiple "ep->mtx"es at once in the
69 * case when one epoll fd is added to another. In this case, we
70 * always acquire the locks in the order of nesting (i.e. after
71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72 * before e2->mtx). Since we disallow cycles of epoll file
73 * descriptors, this ensures that the mutexes are well-ordered. In
74 * order to communicate this nesting to lockdep, when walking a tree
75 * of epoll file descriptors, we use the current recursion depth as
76 * the lockdep subkey.
77 * It is possible to drop the "ep->mtx" and to use the global
78 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79 * but having "ep->mtx" will make the interface more scalable.
80 * Events that require holding "epnested_mutex" are very rare, while for
81 * normal operations the epoll private "ep->mtx" will guarantee
82 * a better scalability.
83 */
84
85/* Epoll private bits inside the event mask */
86#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87
88#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89
90#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92
93/* Maximum number of nesting allowed inside epoll sets */
94#define EP_MAX_NESTS 4
95
96#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97
98#define EP_UNACTIVE_PTR ((void *) -1L)
99
100#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101
102struct epoll_filefd {
103	struct file *file;
104	int fd;
105} __packed;
106
107/* Wait structure used by the poll hooks */
108struct eppoll_entry {
109	/* List header used to link this structure to the "struct epitem" */
110	struct eppoll_entry *next;
111
112	/* The "base" pointer is set to the container "struct epitem" */
113	struct epitem *base;
114
115	/*
116	 * Wait queue item that will be linked to the target file wait
117	 * queue head.
118	 */
119	wait_queue_entry_t wait;
120
121	/* The wait queue head that linked the "wait" wait queue item */
122	wait_queue_head_t *whead;
123};
124
125/*
126 * Each file descriptor added to the eventpoll interface will
127 * have an entry of this type linked to the "rbr" RB tree.
128 * Avoid increasing the size of this struct, there can be many thousands
129 * of these on a server and we do not want this to take another cache line.
130 */
131struct epitem {
132	union {
133		/* RB tree node links this structure to the eventpoll RB tree */
134		struct rb_node rbn;
135		/* Used to free the struct epitem */
136		struct rcu_head rcu;
137	};
138
139	/* List header used to link this structure to the eventpoll ready list */
140	struct list_head rdllink;
141
142	/*
143	 * Works together "struct eventpoll"->ovflist in keeping the
144	 * single linked chain of items.
145	 */
146	struct epitem *next;
147
148	/* The file descriptor information this item refers to */
149	struct epoll_filefd ffd;
150
151	/*
152	 * Protected by file->f_lock, true for to-be-released epitem already
153	 * removed from the "struct file" items list; together with
154	 * eventpoll->refcount orchestrates "struct eventpoll" disposal
155	 */
156	bool dying;
157
158	/* List containing poll wait queues */
159	struct eppoll_entry *pwqlist;
160
161	/* The "container" of this item */
162	struct eventpoll *ep;
163
164	/* List header used to link this item to the "struct file" items list */
165	struct hlist_node fllink;
166
167	/* wakeup_source used when EPOLLWAKEUP is set */
168	struct wakeup_source __rcu *ws;
169
170	/* The structure that describe the interested events and the source fd */
171	struct epoll_event event;
172};
173
174/*
175 * This structure is stored inside the "private_data" member of the file
176 * structure and represents the main data structure for the eventpoll
177 * interface.
178 */
179struct eventpoll {
180	/*
181	 * This mutex is used to ensure that files are not removed
182	 * while epoll is using them. This is held during the event
183	 * collection loop, the file cleanup path, the epoll file exit
184	 * code and the ctl operations.
185	 */
186	struct mutex mtx;
187
188	/* Wait queue used by sys_epoll_wait() */
189	wait_queue_head_t wq;
190
191	/* Wait queue used by file->poll() */
192	wait_queue_head_t poll_wait;
193
194	/* List of ready file descriptors */
195	struct list_head rdllist;
196
197	/* Lock which protects rdllist and ovflist */
198	rwlock_t lock;
199
200	/* RB tree root used to store monitored fd structs */
201	struct rb_root_cached rbr;
202
203	/*
204	 * This is a single linked list that chains all the "struct epitem" that
205	 * happened while transferring ready events to userspace w/out
206	 * holding ->lock.
207	 */
208	struct epitem *ovflist;
209
210	/* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211	struct wakeup_source *ws;
212
213	/* The user that created the eventpoll descriptor */
214	struct user_struct *user;
215
216	struct file *file;
217
218	/* used to optimize loop detection check */
219	u64 gen;
220	struct hlist_head refs;
221
222	/*
223	 * usage count, used together with epitem->dying to
224	 * orchestrate the disposal of this struct
225	 */
226	refcount_t refcount;
227
228#ifdef CONFIG_NET_RX_BUSY_POLL
229	/* used to track busy poll napi_id */
230	unsigned int napi_id;
231	/* busy poll timeout */
232	u32 busy_poll_usecs;
233	/* busy poll packet budget */
234	u16 busy_poll_budget;
235	bool prefer_busy_poll;
236#endif
237
238#ifdef CONFIG_DEBUG_LOCK_ALLOC
239	/* tracks wakeup nests for lockdep validation */
240	u8 nests;
241#endif
242};
243
244/* Wrapper struct used by poll queueing */
245struct ep_pqueue {
246	poll_table pt;
247	struct epitem *epi;
248};
249
250/*
251 * Configuration options available inside /proc/sys/fs/epoll/
252 */
253/* Maximum number of epoll watched descriptors, per user */
254static long max_user_watches __read_mostly;
255
256/* Used for cycles detection */
257static DEFINE_MUTEX(epnested_mutex);
258
259static u64 loop_check_gen = 0;
260
261/* Used to check for epoll file descriptor inclusion loops */
262static struct eventpoll *inserting_into;
263
264/* Slab cache used to allocate "struct epitem" */
265static struct kmem_cache *epi_cache __ro_after_init;
266
267/* Slab cache used to allocate "struct eppoll_entry" */
268static struct kmem_cache *pwq_cache __ro_after_init;
269
270/*
271 * List of files with newly added links, where we may need to limit the number
272 * of emanating paths. Protected by the epnested_mutex.
273 */
274struct epitems_head {
275	struct hlist_head epitems;
276	struct epitems_head *next;
277};
278static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
279
280static struct kmem_cache *ephead_cache __ro_after_init;
281
282static inline void free_ephead(struct epitems_head *head)
283{
284	if (head)
285		kmem_cache_free(ephead_cache, head);
286}
287
288static void list_file(struct file *file)
289{
290	struct epitems_head *head;
291
292	head = container_of(file->f_ep, struct epitems_head, epitems);
293	if (!head->next) {
294		head->next = tfile_check_list;
295		tfile_check_list = head;
296	}
297}
298
299static void unlist_file(struct epitems_head *head)
300{
301	struct epitems_head *to_free = head;
302	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
303	if (p) {
304		struct epitem *epi= container_of(p, struct epitem, fllink);
305		spin_lock(&epi->ffd.file->f_lock);
306		if (!hlist_empty(&head->epitems))
307			to_free = NULL;
308		head->next = NULL;
309		spin_unlock(&epi->ffd.file->f_lock);
310	}
311	free_ephead(to_free);
312}
313
314#ifdef CONFIG_SYSCTL
315
316#include <linux/sysctl.h>
317
318static long long_zero;
319static long long_max = LONG_MAX;
320
321static struct ctl_table epoll_table[] = {
322	{
323		.procname	= "max_user_watches",
324		.data		= &max_user_watches,
325		.maxlen		= sizeof(max_user_watches),
326		.mode		= 0644,
327		.proc_handler	= proc_doulongvec_minmax,
328		.extra1		= &long_zero,
329		.extra2		= &long_max,
330	},
331};
332
333static void __init epoll_sysctls_init(void)
334{
335	register_sysctl("fs/epoll", epoll_table);
336}
337#else
338#define epoll_sysctls_init() do { } while (0)
339#endif /* CONFIG_SYSCTL */
340
341static const struct file_operations eventpoll_fops;
342
343static inline int is_file_epoll(struct file *f)
344{
345	return f->f_op == &eventpoll_fops;
346}
347
348/* Setup the structure that is used as key for the RB tree */
349static inline void ep_set_ffd(struct epoll_filefd *ffd,
350			      struct file *file, int fd)
351{
352	ffd->file = file;
353	ffd->fd = fd;
354}
355
356/* Compare RB tree keys */
357static inline int ep_cmp_ffd(struct epoll_filefd *p1,
358			     struct epoll_filefd *p2)
359{
360	return (p1->file > p2->file ? +1:
361	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
362}
363
364/* Tells us if the item is currently linked */
365static inline int ep_is_linked(struct epitem *epi)
366{
367	return !list_empty(&epi->rdllink);
368}
369
370static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
371{
372	return container_of(p, struct eppoll_entry, wait);
373}
374
375/* Get the "struct epitem" from a wait queue pointer */
376static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
377{
378	return container_of(p, struct eppoll_entry, wait)->base;
379}
380
381/**
382 * ep_events_available - Checks if ready events might be available.
383 *
384 * @ep: Pointer to the eventpoll context.
385 *
386 * Return: a value different than %zero if ready events are available,
387 *          or %zero otherwise.
388 */
389static inline int ep_events_available(struct eventpoll *ep)
390{
391	return !list_empty_careful(&ep->rdllist) ||
392		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
393}
394
395#ifdef CONFIG_NET_RX_BUSY_POLL
396/**
397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
398 * from the epoll instance ep is preferred, but if it is not set fallback to
399 * the system-wide global via busy_loop_timeout.
400 *
401 * @start_time: The start time used to compute the remaining time until timeout.
402 * @ep: Pointer to the eventpoll context.
403 *
404 * Return: true if the timeout has expired, false otherwise.
405 */
406static bool busy_loop_ep_timeout(unsigned long start_time,
407				 struct eventpoll *ep)
408{
409	unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
410
411	if (bp_usec) {
412		unsigned long end_time = start_time + bp_usec;
413		unsigned long now = busy_loop_current_time();
414
415		return time_after(now, end_time);
416	} else {
417		return busy_loop_timeout(start_time);
418	}
419}
420
421static bool ep_busy_loop_on(struct eventpoll *ep)
422{
423	return !!ep->busy_poll_usecs || net_busy_loop_on();
424}
425
426static bool ep_busy_loop_end(void *p, unsigned long start_time)
427{
428	struct eventpoll *ep = p;
429
430	return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
431}
432
433/*
434 * Busy poll if globally on and supporting sockets found && no events,
435 * busy loop will return if need_resched or ep_events_available.
436 *
437 * we must do our busy polling with irqs enabled
438 */
439static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
440{
441	unsigned int napi_id = READ_ONCE(ep->napi_id);
442	u16 budget = READ_ONCE(ep->busy_poll_budget);
443	bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
444
445	if (!budget)
446		budget = BUSY_POLL_BUDGET;
447
448	if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) {
449		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end,
450			       ep, prefer_busy_poll, budget);
451		if (ep_events_available(ep))
452			return true;
453		/*
454		 * Busy poll timed out.  Drop NAPI ID for now, we can add
455		 * it back in when we have moved a socket with a valid NAPI
456		 * ID onto the ready list.
457		 */
458		ep->napi_id = 0;
459		return false;
460	}
461	return false;
462}
463
464/*
465 * Set epoll busy poll NAPI ID from sk.
466 */
467static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
468{
469	struct eventpoll *ep = epi->ep;
470	unsigned int napi_id;
471	struct socket *sock;
472	struct sock *sk;
473
474	if (!ep_busy_loop_on(ep))
475		return;
476
477	sock = sock_from_file(epi->ffd.file);
478	if (!sock)
479		return;
480
481	sk = sock->sk;
482	if (!sk)
483		return;
484
485	napi_id = READ_ONCE(sk->sk_napi_id);
486
487	/* Non-NAPI IDs can be rejected
488	 *	or
489	 * Nothing to do if we already have this ID
490	 */
491	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
492		return;
493
494	/* record NAPI ID for use in next busy poll */
495	ep->napi_id = napi_id;
496}
497
498static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
499				  unsigned long arg)
500{
501	struct eventpoll *ep = file->private_data;
502	void __user *uarg = (void __user *)arg;
503	struct epoll_params epoll_params;
504
505	switch (cmd) {
506	case EPIOCSPARAMS:
507		if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
508			return -EFAULT;
509
510		/* pad byte must be zero */
511		if (epoll_params.__pad)
512			return -EINVAL;
513
514		if (epoll_params.busy_poll_usecs > S32_MAX)
515			return -EINVAL;
516
517		if (epoll_params.prefer_busy_poll > 1)
518			return -EINVAL;
519
520		if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
521		    !capable(CAP_NET_ADMIN))
522			return -EPERM;
523
524		WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
525		WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
526		WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
527		return 0;
528	case EPIOCGPARAMS:
529		memset(&epoll_params, 0, sizeof(epoll_params));
530		epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
531		epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
532		epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
533		if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
534			return -EFAULT;
535		return 0;
536	default:
537		return -ENOIOCTLCMD;
538	}
539}
540
541#else
542
543static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
544{
545	return false;
546}
547
548static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
549{
550}
551
552static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
553				  unsigned long arg)
554{
555	return -EOPNOTSUPP;
556}
557
558#endif /* CONFIG_NET_RX_BUSY_POLL */
559
560/*
561 * As described in commit 0ccf831cb lockdep: annotate epoll
562 * the use of wait queues used by epoll is done in a very controlled
563 * manner. Wake ups can nest inside each other, but are never done
564 * with the same locking. For example:
565 *
566 *   dfd = socket(...);
567 *   efd1 = epoll_create();
568 *   efd2 = epoll_create();
569 *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
570 *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
571 *
572 * When a packet arrives to the device underneath "dfd", the net code will
573 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
574 * callback wakeup entry on that queue, and the wake_up() performed by the
575 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
576 * (efd1) notices that it may have some event ready, so it needs to wake up
577 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
578 * that ends up in another wake_up(), after having checked about the
579 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
580 * stack blasting.
581 *
582 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
583 * this special case of epoll.
584 */
585#ifdef CONFIG_DEBUG_LOCK_ALLOC
586
587static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
588			     unsigned pollflags)
589{
590	struct eventpoll *ep_src;
591	unsigned long flags;
592	u8 nests = 0;
593
594	/*
595	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
596	 * it might be natural to create a per-cpu nest count. However, since
597	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
598	 * schedule() in the -rt kernel, the per-cpu variable are no longer
599	 * protected. Thus, we are introducing a per eventpoll nest field.
600	 * If we are not being call from ep_poll_callback(), epi is NULL and
601	 * we are at the first level of nesting, 0. Otherwise, we are being
602	 * called from ep_poll_callback() and if a previous wakeup source is
603	 * not an epoll file itself, we are at depth 1 since the wakeup source
604	 * is depth 0. If the wakeup source is a previous epoll file in the
605	 * wakeup chain then we use its nests value and record ours as
606	 * nests + 1. The previous epoll file nests value is stable since its
607	 * already holding its own poll_wait.lock.
608	 */
609	if (epi) {
610		if ((is_file_epoll(epi->ffd.file))) {
611			ep_src = epi->ffd.file->private_data;
612			nests = ep_src->nests;
613		} else {
614			nests = 1;
615		}
616	}
617	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
618	ep->nests = nests + 1;
619	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
620	ep->nests = 0;
621	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
622}
623
624#else
625
626static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
627			     __poll_t pollflags)
628{
629	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
630}
631
632#endif
633
634static void ep_remove_wait_queue(struct eppoll_entry *pwq)
635{
636	wait_queue_head_t *whead;
637
638	rcu_read_lock();
639	/*
640	 * If it is cleared by POLLFREE, it should be rcu-safe.
641	 * If we read NULL we need a barrier paired with
642	 * smp_store_release() in ep_poll_callback(), otherwise
643	 * we rely on whead->lock.
644	 */
645	whead = smp_load_acquire(&pwq->whead);
646	if (whead)
647		remove_wait_queue(whead, &pwq->wait);
648	rcu_read_unlock();
649}
650
651/*
652 * This function unregisters poll callbacks from the associated file
653 * descriptor.  Must be called with "mtx" held.
654 */
655static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
656{
657	struct eppoll_entry **p = &epi->pwqlist;
658	struct eppoll_entry *pwq;
659
660	while ((pwq = *p) != NULL) {
661		*p = pwq->next;
662		ep_remove_wait_queue(pwq);
663		kmem_cache_free(pwq_cache, pwq);
664	}
665}
666
667/* call only when ep->mtx is held */
668static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
669{
670	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
671}
672
673/* call only when ep->mtx is held */
674static inline void ep_pm_stay_awake(struct epitem *epi)
675{
676	struct wakeup_source *ws = ep_wakeup_source(epi);
677
678	if (ws)
679		__pm_stay_awake(ws);
680}
681
682static inline bool ep_has_wakeup_source(struct epitem *epi)
683{
684	return rcu_access_pointer(epi->ws) ? true : false;
685}
686
687/* call when ep->mtx cannot be held (ep_poll_callback) */
688static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
689{
690	struct wakeup_source *ws;
691
692	rcu_read_lock();
693	ws = rcu_dereference(epi->ws);
694	if (ws)
695		__pm_stay_awake(ws);
696	rcu_read_unlock();
697}
698
699
700/*
701 * ep->mutex needs to be held because we could be hit by
702 * eventpoll_release_file() and epoll_ctl().
703 */
704static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
705{
706	/*
707	 * Steal the ready list, and re-init the original one to the
708	 * empty list. Also, set ep->ovflist to NULL so that events
709	 * happening while looping w/out locks, are not lost. We cannot
710	 * have the poll callback to queue directly on ep->rdllist,
711	 * because we want the "sproc" callback to be able to do it
712	 * in a lockless way.
713	 */
714	lockdep_assert_irqs_enabled();
715	write_lock_irq(&ep->lock);
716	list_splice_init(&ep->rdllist, txlist);
717	WRITE_ONCE(ep->ovflist, NULL);
718	write_unlock_irq(&ep->lock);
719}
720
721static void ep_done_scan(struct eventpoll *ep,
722			 struct list_head *txlist)
723{
724	struct epitem *epi, *nepi;
725
726	write_lock_irq(&ep->lock);
727	/*
728	 * During the time we spent inside the "sproc" callback, some
729	 * other events might have been queued by the poll callback.
730	 * We re-insert them inside the main ready-list here.
731	 */
732	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
733	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
734		/*
735		 * We need to check if the item is already in the list.
736		 * During the "sproc" callback execution time, items are
737		 * queued into ->ovflist but the "txlist" might already
738		 * contain them, and the list_splice() below takes care of them.
739		 */
740		if (!ep_is_linked(epi)) {
741			/*
742			 * ->ovflist is LIFO, so we have to reverse it in order
743			 * to keep in FIFO.
744			 */
745			list_add(&epi->rdllink, &ep->rdllist);
746			ep_pm_stay_awake(epi);
747		}
748	}
749	/*
750	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
751	 * releasing the lock, events will be queued in the normal way inside
752	 * ep->rdllist.
753	 */
754	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
755
756	/*
757	 * Quickly re-inject items left on "txlist".
758	 */
759	list_splice(txlist, &ep->rdllist);
760	__pm_relax(ep->ws);
761
762	if (!list_empty(&ep->rdllist)) {
763		if (waitqueue_active(&ep->wq))
764			wake_up(&ep->wq);
765	}
766
767	write_unlock_irq(&ep->lock);
768}
769
770static void ep_get(struct eventpoll *ep)
771{
772	refcount_inc(&ep->refcount);
773}
774
775/*
776 * Returns true if the event poll can be disposed
777 */
778static bool ep_refcount_dec_and_test(struct eventpoll *ep)
779{
780	if (!refcount_dec_and_test(&ep->refcount))
781		return false;
782
783	WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
784	return true;
785}
786
787static void ep_free(struct eventpoll *ep)
788{
789	mutex_destroy(&ep->mtx);
790	free_uid(ep->user);
791	wakeup_source_unregister(ep->ws);
792	kfree(ep);
793}
794
795/*
796 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
797 * all the associated resources. Must be called with "mtx" held.
798 * If the dying flag is set, do the removal only if force is true.
799 * This prevents ep_clear_and_put() from dropping all the ep references
800 * while running concurrently with eventpoll_release_file().
801 * Returns true if the eventpoll can be disposed.
802 */
803static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
804{
805	struct file *file = epi->ffd.file;
806	struct epitems_head *to_free;
807	struct hlist_head *head;
808
809	lockdep_assert_irqs_enabled();
810
811	/*
812	 * Removes poll wait queue hooks.
813	 */
814	ep_unregister_pollwait(ep, epi);
815
816	/* Remove the current item from the list of epoll hooks */
817	spin_lock(&file->f_lock);
818	if (epi->dying && !force) {
819		spin_unlock(&file->f_lock);
820		return false;
821	}
822
823	to_free = NULL;
824	head = file->f_ep;
825	if (head->first == &epi->fllink && !epi->fllink.next) {
826		file->f_ep = NULL;
827		if (!is_file_epoll(file)) {
828			struct epitems_head *v;
829			v = container_of(head, struct epitems_head, epitems);
830			if (!smp_load_acquire(&v->next))
831				to_free = v;
832		}
833	}
834	hlist_del_rcu(&epi->fllink);
835	spin_unlock(&file->f_lock);
836	free_ephead(to_free);
837
838	rb_erase_cached(&epi->rbn, &ep->rbr);
839
840	write_lock_irq(&ep->lock);
841	if (ep_is_linked(epi))
842		list_del_init(&epi->rdllink);
843	write_unlock_irq(&ep->lock);
844
845	wakeup_source_unregister(ep_wakeup_source(epi));
846	/*
847	 * At this point it is safe to free the eventpoll item. Use the union
848	 * field epi->rcu, since we are trying to minimize the size of
849	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
850	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
851	 * use of the rbn field.
852	 */
853	kfree_rcu(epi, rcu);
854
855	percpu_counter_dec(&ep->user->epoll_watches);
856	return ep_refcount_dec_and_test(ep);
857}
858
859/*
860 * ep_remove variant for callers owing an additional reference to the ep
861 */
862static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
863{
864	WARN_ON_ONCE(__ep_remove(ep, epi, false));
865}
866
867static void ep_clear_and_put(struct eventpoll *ep)
868{
869	struct rb_node *rbp, *next;
870	struct epitem *epi;
871	bool dispose;
872
873	/* We need to release all tasks waiting for these file */
874	if (waitqueue_active(&ep->poll_wait))
875		ep_poll_safewake(ep, NULL, 0);
876
877	mutex_lock(&ep->mtx);
878
879	/*
880	 * Walks through the whole tree by unregistering poll callbacks.
881	 */
882	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
883		epi = rb_entry(rbp, struct epitem, rbn);
884
885		ep_unregister_pollwait(ep, epi);
886		cond_resched();
887	}
888
889	/*
890	 * Walks through the whole tree and try to free each "struct epitem".
891	 * Note that ep_remove_safe() will not remove the epitem in case of a
892	 * racing eventpoll_release_file(); the latter will do the removal.
893	 * At this point we are sure no poll callbacks will be lingering around.
894	 * Since we still own a reference to the eventpoll struct, the loop can't
895	 * dispose it.
896	 */
897	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
898		next = rb_next(rbp);
899		epi = rb_entry(rbp, struct epitem, rbn);
900		ep_remove_safe(ep, epi);
901		cond_resched();
902	}
903
904	dispose = ep_refcount_dec_and_test(ep);
905	mutex_unlock(&ep->mtx);
906
907	if (dispose)
908		ep_free(ep);
909}
910
911static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
912			       unsigned long arg)
913{
914	int ret;
915
916	if (!is_file_epoll(file))
917		return -EINVAL;
918
919	switch (cmd) {
920	case EPIOCSPARAMS:
921	case EPIOCGPARAMS:
922		ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
923		break;
924	default:
925		ret = -EINVAL;
926		break;
927	}
928
929	return ret;
930}
931
932static int ep_eventpoll_release(struct inode *inode, struct file *file)
933{
934	struct eventpoll *ep = file->private_data;
935
936	if (ep)
937		ep_clear_and_put(ep);
938
939	return 0;
940}
941
942static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
943
944static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
945{
946	struct eventpoll *ep = file->private_data;
947	LIST_HEAD(txlist);
948	struct epitem *epi, *tmp;
949	poll_table pt;
950	__poll_t res = 0;
951
952	init_poll_funcptr(&pt, NULL);
953
954	/* Insert inside our poll wait queue */
955	poll_wait(file, &ep->poll_wait, wait);
956
957	/*
958	 * Proceed to find out if wanted events are really available inside
959	 * the ready list.
960	 */
961	mutex_lock_nested(&ep->mtx, depth);
962	ep_start_scan(ep, &txlist);
963	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
964		if (ep_item_poll(epi, &pt, depth + 1)) {
965			res = EPOLLIN | EPOLLRDNORM;
966			break;
967		} else {
968			/*
969			 * Item has been dropped into the ready list by the poll
970			 * callback, but it's not actually ready, as far as
971			 * caller requested events goes. We can remove it here.
972			 */
973			__pm_relax(ep_wakeup_source(epi));
974			list_del_init(&epi->rdllink);
975		}
976	}
977	ep_done_scan(ep, &txlist);
978	mutex_unlock(&ep->mtx);
979	return res;
980}
981
982/*
983 * Differs from ep_eventpoll_poll() in that internal callers already have
984 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
985 * is correctly annotated.
986 */
987static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
988				 int depth)
989{
990	struct file *file = epi->ffd.file;
991	__poll_t res;
992
993	pt->_key = epi->event.events;
994	if (!is_file_epoll(file))
995		res = vfs_poll(file, pt);
996	else
997		res = __ep_eventpoll_poll(file, pt, depth);
998	return res & epi->event.events;
999}
1000
1001static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1002{
1003	return __ep_eventpoll_poll(file, wait, 0);
1004}
1005
1006#ifdef CONFIG_PROC_FS
1007static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1008{
1009	struct eventpoll *ep = f->private_data;
1010	struct rb_node *rbp;
1011
1012	mutex_lock(&ep->mtx);
1013	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1014		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1015		struct inode *inode = file_inode(epi->ffd.file);
1016
1017		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1018			   " pos:%lli ino:%lx sdev:%x\n",
1019			   epi->ffd.fd, epi->event.events,
1020			   (long long)epi->event.data,
1021			   (long long)epi->ffd.file->f_pos,
1022			   inode->i_ino, inode->i_sb->s_dev);
1023		if (seq_has_overflowed(m))
1024			break;
1025	}
1026	mutex_unlock(&ep->mtx);
1027}
1028#endif
1029
1030/* File callbacks that implement the eventpoll file behaviour */
1031static const struct file_operations eventpoll_fops = {
1032#ifdef CONFIG_PROC_FS
1033	.show_fdinfo	= ep_show_fdinfo,
1034#endif
1035	.release	= ep_eventpoll_release,
1036	.poll		= ep_eventpoll_poll,
1037	.llseek		= noop_llseek,
1038	.unlocked_ioctl	= ep_eventpoll_ioctl,
1039	.compat_ioctl   = compat_ptr_ioctl,
1040};
1041
1042/*
1043 * This is called from eventpoll_release() to unlink files from the eventpoll
1044 * interface. We need to have this facility to cleanup correctly files that are
1045 * closed without being removed from the eventpoll interface.
1046 */
1047void eventpoll_release_file(struct file *file)
1048{
1049	struct eventpoll *ep;
1050	struct epitem *epi;
1051	bool dispose;
1052
1053	/*
1054	 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1055	 * touching the epitems list before eventpoll_release_file() can access
1056	 * the ep->mtx.
1057	 */
1058again:
1059	spin_lock(&file->f_lock);
1060	if (file->f_ep && file->f_ep->first) {
1061		epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1062		epi->dying = true;
1063		spin_unlock(&file->f_lock);
1064
1065		/*
1066		 * ep access is safe as we still own a reference to the ep
1067		 * struct
1068		 */
1069		ep = epi->ep;
1070		mutex_lock(&ep->mtx);
1071		dispose = __ep_remove(ep, epi, true);
1072		mutex_unlock(&ep->mtx);
1073
1074		if (dispose)
1075			ep_free(ep);
1076		goto again;
1077	}
1078	spin_unlock(&file->f_lock);
1079}
1080
1081static int ep_alloc(struct eventpoll **pep)
1082{
1083	struct eventpoll *ep;
1084
1085	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1086	if (unlikely(!ep))
1087		return -ENOMEM;
1088
1089	mutex_init(&ep->mtx);
1090	rwlock_init(&ep->lock);
1091	init_waitqueue_head(&ep->wq);
1092	init_waitqueue_head(&ep->poll_wait);
1093	INIT_LIST_HEAD(&ep->rdllist);
1094	ep->rbr = RB_ROOT_CACHED;
1095	ep->ovflist = EP_UNACTIVE_PTR;
1096	ep->user = get_current_user();
1097	refcount_set(&ep->refcount, 1);
1098
1099	*pep = ep;
1100
1101	return 0;
1102}
1103
1104/*
1105 * Search the file inside the eventpoll tree. The RB tree operations
1106 * are protected by the "mtx" mutex, and ep_find() must be called with
1107 * "mtx" held.
1108 */
1109static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1110{
1111	int kcmp;
1112	struct rb_node *rbp;
1113	struct epitem *epi, *epir = NULL;
1114	struct epoll_filefd ffd;
1115
1116	ep_set_ffd(&ffd, file, fd);
1117	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1118		epi = rb_entry(rbp, struct epitem, rbn);
1119		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1120		if (kcmp > 0)
1121			rbp = rbp->rb_right;
1122		else if (kcmp < 0)
1123			rbp = rbp->rb_left;
1124		else {
1125			epir = epi;
1126			break;
1127		}
1128	}
1129
1130	return epir;
1131}
1132
1133#ifdef CONFIG_KCMP
1134static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1135{
1136	struct rb_node *rbp;
1137	struct epitem *epi;
1138
1139	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1140		epi = rb_entry(rbp, struct epitem, rbn);
1141		if (epi->ffd.fd == tfd) {
1142			if (toff == 0)
1143				return epi;
1144			else
1145				toff--;
1146		}
1147		cond_resched();
1148	}
1149
1150	return NULL;
1151}
1152
1153struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1154				     unsigned long toff)
1155{
1156	struct file *file_raw;
1157	struct eventpoll *ep;
1158	struct epitem *epi;
1159
1160	if (!is_file_epoll(file))
1161		return ERR_PTR(-EINVAL);
1162
1163	ep = file->private_data;
1164
1165	mutex_lock(&ep->mtx);
1166	epi = ep_find_tfd(ep, tfd, toff);
1167	if (epi)
1168		file_raw = epi->ffd.file;
1169	else
1170		file_raw = ERR_PTR(-ENOENT);
1171	mutex_unlock(&ep->mtx);
1172
1173	return file_raw;
1174}
1175#endif /* CONFIG_KCMP */
1176
1177/*
1178 * Adds a new entry to the tail of the list in a lockless way, i.e.
1179 * multiple CPUs are allowed to call this function concurrently.
1180 *
1181 * Beware: it is necessary to prevent any other modifications of the
1182 *         existing list until all changes are completed, in other words
1183 *         concurrent list_add_tail_lockless() calls should be protected
1184 *         with a read lock, where write lock acts as a barrier which
1185 *         makes sure all list_add_tail_lockless() calls are fully
1186 *         completed.
1187 *
1188 *        Also an element can be locklessly added to the list only in one
1189 *        direction i.e. either to the tail or to the head, otherwise
1190 *        concurrent access will corrupt the list.
1191 *
1192 * Return: %false if element has been already added to the list, %true
1193 * otherwise.
1194 */
1195static inline bool list_add_tail_lockless(struct list_head *new,
1196					  struct list_head *head)
1197{
1198	struct list_head *prev;
1199
1200	/*
1201	 * This is simple 'new->next = head' operation, but cmpxchg()
1202	 * is used in order to detect that same element has been just
1203	 * added to the list from another CPU: the winner observes
1204	 * new->next == new.
1205	 */
1206	if (!try_cmpxchg(&new->next, &new, head))
1207		return false;
1208
1209	/*
1210	 * Initially ->next of a new element must be updated with the head
1211	 * (we are inserting to the tail) and only then pointers are atomically
1212	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1213	 * updated before pointers are actually swapped and pointers are
1214	 * swapped before prev->next is updated.
1215	 */
1216
1217	prev = xchg(&head->prev, new);
1218
1219	/*
1220	 * It is safe to modify prev->next and new->prev, because a new element
1221	 * is added only to the tail and new->next is updated before XCHG.
1222	 */
1223
1224	prev->next = new;
1225	new->prev = prev;
1226
1227	return true;
1228}
1229
1230/*
1231 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1232 * i.e. multiple CPUs are allowed to call this function concurrently.
1233 *
1234 * Return: %false if epi element has been already chained, %true otherwise.
1235 */
1236static inline bool chain_epi_lockless(struct epitem *epi)
1237{
1238	struct eventpoll *ep = epi->ep;
1239
1240	/* Fast preliminary check */
1241	if (epi->next != EP_UNACTIVE_PTR)
1242		return false;
1243
1244	/* Check that the same epi has not been just chained from another CPU */
1245	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1246		return false;
1247
1248	/* Atomically exchange tail */
1249	epi->next = xchg(&ep->ovflist, epi);
1250
1251	return true;
1252}
1253
1254/*
1255 * This is the callback that is passed to the wait queue wakeup
1256 * mechanism. It is called by the stored file descriptors when they
1257 * have events to report.
1258 *
1259 * This callback takes a read lock in order not to contend with concurrent
1260 * events from another file descriptor, thus all modifications to ->rdllist
1261 * or ->ovflist are lockless.  Read lock is paired with the write lock from
1262 * ep_start/done_scan(), which stops all list modifications and guarantees
1263 * that lists state is seen correctly.
1264 *
1265 * Another thing worth to mention is that ep_poll_callback() can be called
1266 * concurrently for the same @epi from different CPUs if poll table was inited
1267 * with several wait queues entries.  Plural wakeup from different CPUs of a
1268 * single wait queue is serialized by wq.lock, but the case when multiple wait
1269 * queues are used should be detected accordingly.  This is detected using
1270 * cmpxchg() operation.
1271 */
1272static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1273{
1274	int pwake = 0;
1275	struct epitem *epi = ep_item_from_wait(wait);
1276	struct eventpoll *ep = epi->ep;
1277	__poll_t pollflags = key_to_poll(key);
1278	unsigned long flags;
1279	int ewake = 0;
1280
1281	read_lock_irqsave(&ep->lock, flags);
1282
1283	ep_set_busy_poll_napi_id(epi);
1284
1285	/*
1286	 * If the event mask does not contain any poll(2) event, we consider the
1287	 * descriptor to be disabled. This condition is likely the effect of the
1288	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1289	 * until the next EPOLL_CTL_MOD will be issued.
1290	 */
1291	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1292		goto out_unlock;
1293
1294	/*
1295	 * Check the events coming with the callback. At this stage, not
1296	 * every device reports the events in the "key" parameter of the
1297	 * callback. We need to be able to handle both cases here, hence the
1298	 * test for "key" != NULL before the event match test.
1299	 */
1300	if (pollflags && !(pollflags & epi->event.events))
1301		goto out_unlock;
1302
1303	/*
1304	 * If we are transferring events to userspace, we can hold no locks
1305	 * (because we're accessing user memory, and because of linux f_op->poll()
1306	 * semantics). All the events that happen during that period of time are
1307	 * chained in ep->ovflist and requeued later on.
1308	 */
1309	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1310		if (chain_epi_lockless(epi))
1311			ep_pm_stay_awake_rcu(epi);
1312	} else if (!ep_is_linked(epi)) {
1313		/* In the usual case, add event to ready list. */
1314		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1315			ep_pm_stay_awake_rcu(epi);
1316	}
1317
1318	/*
1319	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1320	 * wait list.
1321	 */
1322	if (waitqueue_active(&ep->wq)) {
1323		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1324					!(pollflags & POLLFREE)) {
1325			switch (pollflags & EPOLLINOUT_BITS) {
1326			case EPOLLIN:
1327				if (epi->event.events & EPOLLIN)
1328					ewake = 1;
1329				break;
1330			case EPOLLOUT:
1331				if (epi->event.events & EPOLLOUT)
1332					ewake = 1;
1333				break;
1334			case 0:
1335				ewake = 1;
1336				break;
1337			}
1338		}
1339		wake_up(&ep->wq);
1340	}
1341	if (waitqueue_active(&ep->poll_wait))
1342		pwake++;
1343
1344out_unlock:
1345	read_unlock_irqrestore(&ep->lock, flags);
1346
1347	/* We have to call this outside the lock */
1348	if (pwake)
1349		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1350
1351	if (!(epi->event.events & EPOLLEXCLUSIVE))
1352		ewake = 1;
1353
1354	if (pollflags & POLLFREE) {
1355		/*
1356		 * If we race with ep_remove_wait_queue() it can miss
1357		 * ->whead = NULL and do another remove_wait_queue() after
1358		 * us, so we can't use __remove_wait_queue().
1359		 */
1360		list_del_init(&wait->entry);
1361		/*
1362		 * ->whead != NULL protects us from the race with
1363		 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1364		 * takes whead->lock held by the caller. Once we nullify it,
1365		 * nothing protects ep/epi or even wait.
1366		 */
1367		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1368	}
1369
1370	return ewake;
1371}
1372
1373/*
1374 * This is the callback that is used to add our wait queue to the
1375 * target file wakeup lists.
1376 */
1377static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1378				 poll_table *pt)
1379{
1380	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1381	struct epitem *epi = epq->epi;
1382	struct eppoll_entry *pwq;
1383
1384	if (unlikely(!epi))	// an earlier allocation has failed
1385		return;
1386
1387	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1388	if (unlikely(!pwq)) {
1389		epq->epi = NULL;
1390		return;
1391	}
1392
1393	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1394	pwq->whead = whead;
1395	pwq->base = epi;
1396	if (epi->event.events & EPOLLEXCLUSIVE)
1397		add_wait_queue_exclusive(whead, &pwq->wait);
1398	else
1399		add_wait_queue(whead, &pwq->wait);
1400	pwq->next = epi->pwqlist;
1401	epi->pwqlist = pwq;
1402}
1403
1404static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1405{
1406	int kcmp;
1407	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1408	struct epitem *epic;
1409	bool leftmost = true;
1410
1411	while (*p) {
1412		parent = *p;
1413		epic = rb_entry(parent, struct epitem, rbn);
1414		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1415		if (kcmp > 0) {
1416			p = &parent->rb_right;
1417			leftmost = false;
1418		} else
1419			p = &parent->rb_left;
1420	}
1421	rb_link_node(&epi->rbn, parent, p);
1422	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1423}
1424
1425
1426
1427#define PATH_ARR_SIZE 5
1428/*
1429 * These are the number paths of length 1 to 5, that we are allowing to emanate
1430 * from a single file of interest. For example, we allow 1000 paths of length
1431 * 1, to emanate from each file of interest. This essentially represents the
1432 * potential wakeup paths, which need to be limited in order to avoid massive
1433 * uncontrolled wakeup storms. The common use case should be a single ep which
1434 * is connected to n file sources. In this case each file source has 1 path
1435 * of length 1. Thus, the numbers below should be more than sufficient. These
1436 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1437 * and delete can't add additional paths. Protected by the epnested_mutex.
1438 */
1439static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1440static int path_count[PATH_ARR_SIZE];
1441
1442static int path_count_inc(int nests)
1443{
1444	/* Allow an arbitrary number of depth 1 paths */
1445	if (nests == 0)
1446		return 0;
1447
1448	if (++path_count[nests] > path_limits[nests])
1449		return -1;
1450	return 0;
1451}
1452
1453static void path_count_init(void)
1454{
1455	int i;
1456
1457	for (i = 0; i < PATH_ARR_SIZE; i++)
1458		path_count[i] = 0;
1459}
1460
1461static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1462{
1463	int error = 0;
1464	struct epitem *epi;
1465
1466	if (depth > EP_MAX_NESTS) /* too deep nesting */
1467		return -1;
1468
1469	/* CTL_DEL can remove links here, but that can't increase our count */
1470	hlist_for_each_entry_rcu(epi, refs, fllink) {
1471		struct hlist_head *refs = &epi->ep->refs;
1472		if (hlist_empty(refs))
1473			error = path_count_inc(depth);
1474		else
1475			error = reverse_path_check_proc(refs, depth + 1);
1476		if (error != 0)
1477			break;
1478	}
1479	return error;
1480}
1481
1482/**
1483 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1484 *                      links that are proposed to be newly added. We need to
1485 *                      make sure that those added links don't add too many
1486 *                      paths such that we will spend all our time waking up
1487 *                      eventpoll objects.
1488 *
1489 * Return: %zero if the proposed links don't create too many paths,
1490 *	    %-1 otherwise.
1491 */
1492static int reverse_path_check(void)
1493{
1494	struct epitems_head *p;
1495
1496	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1497		int error;
1498		path_count_init();
1499		rcu_read_lock();
1500		error = reverse_path_check_proc(&p->epitems, 0);
1501		rcu_read_unlock();
1502		if (error)
1503			return error;
1504	}
1505	return 0;
1506}
1507
1508static int ep_create_wakeup_source(struct epitem *epi)
1509{
1510	struct name_snapshot n;
1511	struct wakeup_source *ws;
1512
1513	if (!epi->ep->ws) {
1514		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1515		if (!epi->ep->ws)
1516			return -ENOMEM;
1517	}
1518
1519	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1520	ws = wakeup_source_register(NULL, n.name.name);
1521	release_dentry_name_snapshot(&n);
1522
1523	if (!ws)
1524		return -ENOMEM;
1525	rcu_assign_pointer(epi->ws, ws);
1526
1527	return 0;
1528}
1529
1530/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1531static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1532{
1533	struct wakeup_source *ws = ep_wakeup_source(epi);
1534
1535	RCU_INIT_POINTER(epi->ws, NULL);
1536
1537	/*
1538	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1539	 * used internally by wakeup_source_remove, too (called by
1540	 * wakeup_source_unregister), so we cannot use call_rcu
1541	 */
1542	synchronize_rcu();
1543	wakeup_source_unregister(ws);
1544}
1545
1546static int attach_epitem(struct file *file, struct epitem *epi)
1547{
1548	struct epitems_head *to_free = NULL;
1549	struct hlist_head *head = NULL;
1550	struct eventpoll *ep = NULL;
1551
1552	if (is_file_epoll(file))
1553		ep = file->private_data;
1554
1555	if (ep) {
1556		head = &ep->refs;
1557	} else if (!READ_ONCE(file->f_ep)) {
1558allocate:
1559		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1560		if (!to_free)
1561			return -ENOMEM;
1562		head = &to_free->epitems;
1563	}
1564	spin_lock(&file->f_lock);
1565	if (!file->f_ep) {
1566		if (unlikely(!head)) {
1567			spin_unlock(&file->f_lock);
1568			goto allocate;
1569		}
1570		file->f_ep = head;
1571		to_free = NULL;
1572	}
1573	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1574	spin_unlock(&file->f_lock);
1575	free_ephead(to_free);
1576	return 0;
1577}
1578
1579/*
1580 * Must be called with "mtx" held.
1581 */
1582static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1583		     struct file *tfile, int fd, int full_check)
1584{
1585	int error, pwake = 0;
1586	__poll_t revents;
1587	struct epitem *epi;
1588	struct ep_pqueue epq;
1589	struct eventpoll *tep = NULL;
1590
1591	if (is_file_epoll(tfile))
1592		tep = tfile->private_data;
1593
1594	lockdep_assert_irqs_enabled();
1595
1596	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1597					    max_user_watches) >= 0))
1598		return -ENOSPC;
1599	percpu_counter_inc(&ep->user->epoll_watches);
1600
1601	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1602		percpu_counter_dec(&ep->user->epoll_watches);
1603		return -ENOMEM;
1604	}
1605
1606	/* Item initialization follow here ... */
1607	INIT_LIST_HEAD(&epi->rdllink);
1608	epi->ep = ep;
1609	ep_set_ffd(&epi->ffd, tfile, fd);
1610	epi->event = *event;
1611	epi->next = EP_UNACTIVE_PTR;
1612
1613	if (tep)
1614		mutex_lock_nested(&tep->mtx, 1);
1615	/* Add the current item to the list of active epoll hook for this file */
1616	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1617		if (tep)
1618			mutex_unlock(&tep->mtx);
1619		kmem_cache_free(epi_cache, epi);
1620		percpu_counter_dec(&ep->user->epoll_watches);
1621		return -ENOMEM;
1622	}
1623
1624	if (full_check && !tep)
1625		list_file(tfile);
1626
1627	/*
1628	 * Add the current item to the RB tree. All RB tree operations are
1629	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1630	 */
1631	ep_rbtree_insert(ep, epi);
1632	if (tep)
1633		mutex_unlock(&tep->mtx);
1634
1635	/*
1636	 * ep_remove_safe() calls in the later error paths can't lead to
1637	 * ep_free() as the ep file itself still holds an ep reference.
1638	 */
1639	ep_get(ep);
1640
1641	/* now check if we've created too many backpaths */
1642	if (unlikely(full_check && reverse_path_check())) {
1643		ep_remove_safe(ep, epi);
1644		return -EINVAL;
1645	}
1646
1647	if (epi->event.events & EPOLLWAKEUP) {
1648		error = ep_create_wakeup_source(epi);
1649		if (error) {
1650			ep_remove_safe(ep, epi);
1651			return error;
1652		}
1653	}
1654
1655	/* Initialize the poll table using the queue callback */
1656	epq.epi = epi;
1657	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1658
1659	/*
1660	 * Attach the item to the poll hooks and get current event bits.
1661	 * We can safely use the file* here because its usage count has
1662	 * been increased by the caller of this function. Note that after
1663	 * this operation completes, the poll callback can start hitting
1664	 * the new item.
1665	 */
1666	revents = ep_item_poll(epi, &epq.pt, 1);
1667
1668	/*
1669	 * We have to check if something went wrong during the poll wait queue
1670	 * install process. Namely an allocation for a wait queue failed due
1671	 * high memory pressure.
1672	 */
1673	if (unlikely(!epq.epi)) {
1674		ep_remove_safe(ep, epi);
1675		return -ENOMEM;
1676	}
1677
1678	/* We have to drop the new item inside our item list to keep track of it */
1679	write_lock_irq(&ep->lock);
1680
1681	/* record NAPI ID of new item if present */
1682	ep_set_busy_poll_napi_id(epi);
1683
1684	/* If the file is already "ready" we drop it inside the ready list */
1685	if (revents && !ep_is_linked(epi)) {
1686		list_add_tail(&epi->rdllink, &ep->rdllist);
1687		ep_pm_stay_awake(epi);
1688
1689		/* Notify waiting tasks that events are available */
1690		if (waitqueue_active(&ep->wq))
1691			wake_up(&ep->wq);
1692		if (waitqueue_active(&ep->poll_wait))
1693			pwake++;
1694	}
1695
1696	write_unlock_irq(&ep->lock);
1697
1698	/* We have to call this outside the lock */
1699	if (pwake)
1700		ep_poll_safewake(ep, NULL, 0);
1701
1702	return 0;
1703}
1704
1705/*
1706 * Modify the interest event mask by dropping an event if the new mask
1707 * has a match in the current file status. Must be called with "mtx" held.
1708 */
1709static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1710		     const struct epoll_event *event)
1711{
1712	int pwake = 0;
1713	poll_table pt;
1714
1715	lockdep_assert_irqs_enabled();
1716
1717	init_poll_funcptr(&pt, NULL);
1718
1719	/*
1720	 * Set the new event interest mask before calling f_op->poll();
1721	 * otherwise we might miss an event that happens between the
1722	 * f_op->poll() call and the new event set registering.
1723	 */
1724	epi->event.events = event->events; /* need barrier below */
1725	epi->event.data = event->data; /* protected by mtx */
1726	if (epi->event.events & EPOLLWAKEUP) {
1727		if (!ep_has_wakeup_source(epi))
1728			ep_create_wakeup_source(epi);
1729	} else if (ep_has_wakeup_source(epi)) {
1730		ep_destroy_wakeup_source(epi);
1731	}
1732
1733	/*
1734	 * The following barrier has two effects:
1735	 *
1736	 * 1) Flush epi changes above to other CPUs.  This ensures
1737	 *    we do not miss events from ep_poll_callback if an
1738	 *    event occurs immediately after we call f_op->poll().
1739	 *    We need this because we did not take ep->lock while
1740	 *    changing epi above (but ep_poll_callback does take
1741	 *    ep->lock).
1742	 *
1743	 * 2) We also need to ensure we do not miss _past_ events
1744	 *    when calling f_op->poll().  This barrier also
1745	 *    pairs with the barrier in wq_has_sleeper (see
1746	 *    comments for wq_has_sleeper).
1747	 *
1748	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1749	 * (or both) will notice the readiness of an item.
1750	 */
1751	smp_mb();
1752
1753	/*
1754	 * Get current event bits. We can safely use the file* here because
1755	 * its usage count has been increased by the caller of this function.
1756	 * If the item is "hot" and it is not registered inside the ready
1757	 * list, push it inside.
1758	 */
1759	if (ep_item_poll(epi, &pt, 1)) {
1760		write_lock_irq(&ep->lock);
1761		if (!ep_is_linked(epi)) {
1762			list_add_tail(&epi->rdllink, &ep->rdllist);
1763			ep_pm_stay_awake(epi);
1764
1765			/* Notify waiting tasks that events are available */
1766			if (waitqueue_active(&ep->wq))
1767				wake_up(&ep->wq);
1768			if (waitqueue_active(&ep->poll_wait))
1769				pwake++;
1770		}
1771		write_unlock_irq(&ep->lock);
1772	}
1773
1774	/* We have to call this outside the lock */
1775	if (pwake)
1776		ep_poll_safewake(ep, NULL, 0);
1777
1778	return 0;
1779}
1780
1781static int ep_send_events(struct eventpoll *ep,
1782			  struct epoll_event __user *events, int maxevents)
1783{
1784	struct epitem *epi, *tmp;
1785	LIST_HEAD(txlist);
1786	poll_table pt;
1787	int res = 0;
1788
1789	/*
1790	 * Always short-circuit for fatal signals to allow threads to make a
1791	 * timely exit without the chance of finding more events available and
1792	 * fetching repeatedly.
1793	 */
1794	if (fatal_signal_pending(current))
1795		return -EINTR;
1796
1797	init_poll_funcptr(&pt, NULL);
1798
1799	mutex_lock(&ep->mtx);
1800	ep_start_scan(ep, &txlist);
1801
1802	/*
1803	 * We can loop without lock because we are passed a task private list.
1804	 * Items cannot vanish during the loop we are holding ep->mtx.
1805	 */
1806	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1807		struct wakeup_source *ws;
1808		__poll_t revents;
1809
1810		if (res >= maxevents)
1811			break;
1812
1813		/*
1814		 * Activate ep->ws before deactivating epi->ws to prevent
1815		 * triggering auto-suspend here (in case we reactive epi->ws
1816		 * below).
1817		 *
1818		 * This could be rearranged to delay the deactivation of epi->ws
1819		 * instead, but then epi->ws would temporarily be out of sync
1820		 * with ep_is_linked().
1821		 */
1822		ws = ep_wakeup_source(epi);
1823		if (ws) {
1824			if (ws->active)
1825				__pm_stay_awake(ep->ws);
1826			__pm_relax(ws);
1827		}
1828
1829		list_del_init(&epi->rdllink);
1830
1831		/*
1832		 * If the event mask intersect the caller-requested one,
1833		 * deliver the event to userspace. Again, we are holding ep->mtx,
1834		 * so no operations coming from userspace can change the item.
1835		 */
1836		revents = ep_item_poll(epi, &pt, 1);
1837		if (!revents)
1838			continue;
1839
1840		events = epoll_put_uevent(revents, epi->event.data, events);
1841		if (!events) {
1842			list_add(&epi->rdllink, &txlist);
1843			ep_pm_stay_awake(epi);
1844			if (!res)
1845				res = -EFAULT;
1846			break;
1847		}
1848		res++;
1849		if (epi->event.events & EPOLLONESHOT)
1850			epi->event.events &= EP_PRIVATE_BITS;
1851		else if (!(epi->event.events & EPOLLET)) {
1852			/*
1853			 * If this file has been added with Level
1854			 * Trigger mode, we need to insert back inside
1855			 * the ready list, so that the next call to
1856			 * epoll_wait() will check again the events
1857			 * availability. At this point, no one can insert
1858			 * into ep->rdllist besides us. The epoll_ctl()
1859			 * callers are locked out by
1860			 * ep_send_events() holding "mtx" and the
1861			 * poll callback will queue them in ep->ovflist.
1862			 */
1863			list_add_tail(&epi->rdllink, &ep->rdllist);
1864			ep_pm_stay_awake(epi);
1865		}
1866	}
1867	ep_done_scan(ep, &txlist);
1868	mutex_unlock(&ep->mtx);
1869
1870	return res;
1871}
1872
1873static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1874{
1875	struct timespec64 now;
1876
1877	if (ms < 0)
1878		return NULL;
1879
1880	if (!ms) {
1881		to->tv_sec = 0;
1882		to->tv_nsec = 0;
1883		return to;
1884	}
1885
1886	to->tv_sec = ms / MSEC_PER_SEC;
1887	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1888
1889	ktime_get_ts64(&now);
1890	*to = timespec64_add_safe(now, *to);
1891	return to;
1892}
1893
1894/*
1895 * autoremove_wake_function, but remove even on failure to wake up, because we
1896 * know that default_wake_function/ttwu will only fail if the thread is already
1897 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1898 * try to reuse it.
1899 */
1900static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1901				       unsigned int mode, int sync, void *key)
1902{
1903	int ret = default_wake_function(wq_entry, mode, sync, key);
1904
1905	/*
1906	 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1907	 * iterations see the cause of this wakeup.
1908	 */
1909	list_del_init_careful(&wq_entry->entry);
1910	return ret;
1911}
1912
1913/**
1914 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1915 *           event buffer.
1916 *
1917 * @ep: Pointer to the eventpoll context.
1918 * @events: Pointer to the userspace buffer where the ready events should be
1919 *          stored.
1920 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1921 * @timeout: Maximum timeout for the ready events fetch operation, in
1922 *           timespec. If the timeout is zero, the function will not block,
1923 *           while if the @timeout ptr is NULL, the function will block
1924 *           until at least one event has been retrieved (or an error
1925 *           occurred).
1926 *
1927 * Return: the number of ready events which have been fetched, or an
1928 *          error code, in case of error.
1929 */
1930static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1931		   int maxevents, struct timespec64 *timeout)
1932{
1933	int res, eavail, timed_out = 0;
1934	u64 slack = 0;
1935	wait_queue_entry_t wait;
1936	ktime_t expires, *to = NULL;
1937
1938	lockdep_assert_irqs_enabled();
1939
1940	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1941		slack = select_estimate_accuracy(timeout);
1942		to = &expires;
1943		*to = timespec64_to_ktime(*timeout);
1944	} else if (timeout) {
1945		/*
1946		 * Avoid the unnecessary trip to the wait queue loop, if the
1947		 * caller specified a non blocking operation.
1948		 */
1949		timed_out = 1;
1950	}
1951
1952	/*
1953	 * This call is racy: We may or may not see events that are being added
1954	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1955	 * with a non-zero timeout, this thread will check the ready list under
1956	 * lock and will add to the wait queue.  For cases with a zero
1957	 * timeout, the user by definition should not care and will have to
1958	 * recheck again.
1959	 */
1960	eavail = ep_events_available(ep);
1961
1962	while (1) {
1963		if (eavail) {
1964			/*
1965			 * Try to transfer events to user space. In case we get
1966			 * 0 events and there's still timeout left over, we go
1967			 * trying again in search of more luck.
1968			 */
1969			res = ep_send_events(ep, events, maxevents);
1970			if (res)
1971				return res;
1972		}
1973
1974		if (timed_out)
1975			return 0;
1976
1977		eavail = ep_busy_loop(ep, timed_out);
1978		if (eavail)
1979			continue;
1980
1981		if (signal_pending(current))
1982			return -EINTR;
1983
1984		/*
1985		 * Internally init_wait() uses autoremove_wake_function(),
1986		 * thus wait entry is removed from the wait queue on each
1987		 * wakeup. Why it is important? In case of several waiters
1988		 * each new wakeup will hit the next waiter, giving it the
1989		 * chance to harvest new event. Otherwise wakeup can be
1990		 * lost. This is also good performance-wise, because on
1991		 * normal wakeup path no need to call __remove_wait_queue()
1992		 * explicitly, thus ep->lock is not taken, which halts the
1993		 * event delivery.
1994		 *
1995		 * In fact, we now use an even more aggressive function that
1996		 * unconditionally removes, because we don't reuse the wait
1997		 * entry between loop iterations. This lets us also avoid the
1998		 * performance issue if a process is killed, causing all of its
1999		 * threads to wake up without being removed normally.
2000		 */
2001		init_wait(&wait);
2002		wait.func = ep_autoremove_wake_function;
2003
2004		write_lock_irq(&ep->lock);
2005		/*
2006		 * Barrierless variant, waitqueue_active() is called under
2007		 * the same lock on wakeup ep_poll_callback() side, so it
2008		 * is safe to avoid an explicit barrier.
2009		 */
2010		__set_current_state(TASK_INTERRUPTIBLE);
2011
2012		/*
2013		 * Do the final check under the lock. ep_start/done_scan()
2014		 * plays with two lists (->rdllist and ->ovflist) and there
2015		 * is always a race when both lists are empty for short
2016		 * period of time although events are pending, so lock is
2017		 * important.
2018		 */
2019		eavail = ep_events_available(ep);
2020		if (!eavail)
2021			__add_wait_queue_exclusive(&ep->wq, &wait);
2022
2023		write_unlock_irq(&ep->lock);
2024
2025		if (!eavail)
2026			timed_out = !schedule_hrtimeout_range(to, slack,
2027							      HRTIMER_MODE_ABS);
2028		__set_current_state(TASK_RUNNING);
2029
2030		/*
2031		 * We were woken up, thus go and try to harvest some events.
2032		 * If timed out and still on the wait queue, recheck eavail
2033		 * carefully under lock, below.
2034		 */
2035		eavail = 1;
2036
2037		if (!list_empty_careful(&wait.entry)) {
2038			write_lock_irq(&ep->lock);
2039			/*
2040			 * If the thread timed out and is not on the wait queue,
2041			 * it means that the thread was woken up after its
2042			 * timeout expired before it could reacquire the lock.
2043			 * Thus, when wait.entry is empty, it needs to harvest
2044			 * events.
2045			 */
2046			if (timed_out)
2047				eavail = list_empty(&wait.entry);
2048			__remove_wait_queue(&ep->wq, &wait);
2049			write_unlock_irq(&ep->lock);
2050		}
2051	}
2052}
2053
2054/**
2055 * ep_loop_check_proc - verify that adding an epoll file inside another
2056 *                      epoll structure does not violate the constraints, in
2057 *                      terms of closed loops, or too deep chains (which can
2058 *                      result in excessive stack usage).
2059 *
2060 * @ep: the &struct eventpoll to be currently checked.
2061 * @depth: Current depth of the path being checked.
2062 *
2063 * Return: %zero if adding the epoll @file inside current epoll
2064 *          structure @ep does not violate the constraints, or %-1 otherwise.
2065 */
2066static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2067{
2068	int error = 0;
2069	struct rb_node *rbp;
2070	struct epitem *epi;
2071
2072	mutex_lock_nested(&ep->mtx, depth + 1);
2073	ep->gen = loop_check_gen;
2074	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2075		epi = rb_entry(rbp, struct epitem, rbn);
2076		if (unlikely(is_file_epoll(epi->ffd.file))) {
2077			struct eventpoll *ep_tovisit;
2078			ep_tovisit = epi->ffd.file->private_data;
2079			if (ep_tovisit->gen == loop_check_gen)
2080				continue;
2081			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2082				error = -1;
2083			else
2084				error = ep_loop_check_proc(ep_tovisit, depth + 1);
2085			if (error != 0)
2086				break;
2087		} else {
2088			/*
2089			 * If we've reached a file that is not associated with
2090			 * an ep, then we need to check if the newly added
2091			 * links are going to add too many wakeup paths. We do
2092			 * this by adding it to the tfile_check_list, if it's
2093			 * not already there, and calling reverse_path_check()
2094			 * during ep_insert().
2095			 */
2096			list_file(epi->ffd.file);
2097		}
2098	}
2099	mutex_unlock(&ep->mtx);
2100
2101	return error;
2102}
2103
2104/**
2105 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2106 *                 into another epoll file (represented by @ep) does not create
2107 *                 closed loops or too deep chains.
2108 *
2109 * @ep: Pointer to the epoll we are inserting into.
2110 * @to: Pointer to the epoll to be inserted.
2111 *
2112 * Return: %zero if adding the epoll @to inside the epoll @from
2113 * does not violate the constraints, or %-1 otherwise.
2114 */
2115static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2116{
2117	inserting_into = ep;
2118	return ep_loop_check_proc(to, 0);
2119}
2120
2121static void clear_tfile_check_list(void)
2122{
2123	rcu_read_lock();
2124	while (tfile_check_list != EP_UNACTIVE_PTR) {
2125		struct epitems_head *head = tfile_check_list;
2126		tfile_check_list = head->next;
2127		unlist_file(head);
2128	}
2129	rcu_read_unlock();
2130}
2131
2132/*
2133 * Open an eventpoll file descriptor.
2134 */
2135static int do_epoll_create(int flags)
2136{
2137	int error, fd;
2138	struct eventpoll *ep = NULL;
2139	struct file *file;
2140
2141	/* Check the EPOLL_* constant for consistency.  */
2142	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2143
2144	if (flags & ~EPOLL_CLOEXEC)
2145		return -EINVAL;
2146	/*
2147	 * Create the internal data structure ("struct eventpoll").
2148	 */
2149	error = ep_alloc(&ep);
2150	if (error < 0)
2151		return error;
2152	/*
2153	 * Creates all the items needed to setup an eventpoll file. That is,
2154	 * a file structure and a free file descriptor.
2155	 */
2156	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2157	if (fd < 0) {
2158		error = fd;
2159		goto out_free_ep;
2160	}
2161	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2162				 O_RDWR | (flags & O_CLOEXEC));
2163	if (IS_ERR(file)) {
2164		error = PTR_ERR(file);
2165		goto out_free_fd;
2166	}
2167#ifdef CONFIG_NET_RX_BUSY_POLL
2168	ep->busy_poll_usecs = 0;
2169	ep->busy_poll_budget = 0;
2170	ep->prefer_busy_poll = false;
2171#endif
2172	ep->file = file;
2173	fd_install(fd, file);
2174	return fd;
2175
2176out_free_fd:
2177	put_unused_fd(fd);
2178out_free_ep:
2179	ep_clear_and_put(ep);
2180	return error;
2181}
2182
2183SYSCALL_DEFINE1(epoll_create1, int, flags)
2184{
2185	return do_epoll_create(flags);
2186}
2187
2188SYSCALL_DEFINE1(epoll_create, int, size)
2189{
2190	if (size <= 0)
2191		return -EINVAL;
2192
2193	return do_epoll_create(0);
2194}
2195
2196#ifdef CONFIG_PM_SLEEP
2197static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2198{
2199	if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2200		epev->events &= ~EPOLLWAKEUP;
2201}
2202#else
2203static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2204{
2205	epev->events &= ~EPOLLWAKEUP;
2206}
2207#endif
2208
2209static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2210				   bool nonblock)
2211{
2212	if (!nonblock) {
2213		mutex_lock_nested(mutex, depth);
2214		return 0;
2215	}
2216	if (mutex_trylock(mutex))
2217		return 0;
2218	return -EAGAIN;
2219}
2220
2221int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2222		 bool nonblock)
2223{
2224	int error;
2225	int full_check = 0;
2226	struct fd f, tf;
2227	struct eventpoll *ep;
2228	struct epitem *epi;
2229	struct eventpoll *tep = NULL;
2230
2231	error = -EBADF;
2232	f = fdget(epfd);
2233	if (!f.file)
2234		goto error_return;
2235
2236	/* Get the "struct file *" for the target file */
2237	tf = fdget(fd);
2238	if (!tf.file)
2239		goto error_fput;
2240
2241	/* The target file descriptor must support poll */
2242	error = -EPERM;
2243	if (!file_can_poll(tf.file))
2244		goto error_tgt_fput;
2245
2246	/* Check if EPOLLWAKEUP is allowed */
2247	if (ep_op_has_event(op))
2248		ep_take_care_of_epollwakeup(epds);
2249
2250	/*
2251	 * We have to check that the file structure underneath the file descriptor
2252	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2253	 * adding an epoll file descriptor inside itself.
2254	 */
2255	error = -EINVAL;
2256	if (f.file == tf.file || !is_file_epoll(f.file))
2257		goto error_tgt_fput;
2258
2259	/*
2260	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2261	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2262	 * Also, we do not currently supported nested exclusive wakeups.
2263	 */
2264	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2265		if (op == EPOLL_CTL_MOD)
2266			goto error_tgt_fput;
2267		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2268				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2269			goto error_tgt_fput;
2270	}
2271
2272	/*
2273	 * At this point it is safe to assume that the "private_data" contains
2274	 * our own data structure.
2275	 */
2276	ep = f.file->private_data;
2277
2278	/*
2279	 * When we insert an epoll file descriptor inside another epoll file
2280	 * descriptor, there is the chance of creating closed loops, which are
2281	 * better be handled here, than in more critical paths. While we are
2282	 * checking for loops we also determine the list of files reachable
2283	 * and hang them on the tfile_check_list, so we can check that we
2284	 * haven't created too many possible wakeup paths.
2285	 *
2286	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2287	 * the epoll file descriptor is attaching directly to a wakeup source,
2288	 * unless the epoll file descriptor is nested. The purpose of taking the
2289	 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2290	 * deep wakeup paths from forming in parallel through multiple
2291	 * EPOLL_CTL_ADD operations.
2292	 */
2293	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2294	if (error)
2295		goto error_tgt_fput;
2296	if (op == EPOLL_CTL_ADD) {
2297		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2298		    is_file_epoll(tf.file)) {
2299			mutex_unlock(&ep->mtx);
2300			error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2301			if (error)
2302				goto error_tgt_fput;
2303			loop_check_gen++;
2304			full_check = 1;
2305			if (is_file_epoll(tf.file)) {
2306				tep = tf.file->private_data;
2307				error = -ELOOP;
2308				if (ep_loop_check(ep, tep) != 0)
2309					goto error_tgt_fput;
2310			}
2311			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2312			if (error)
2313				goto error_tgt_fput;
2314		}
2315	}
2316
2317	/*
2318	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2319	 * above, we can be sure to be able to use the item looked up by
2320	 * ep_find() till we release the mutex.
2321	 */
2322	epi = ep_find(ep, tf.file, fd);
2323
2324	error = -EINVAL;
2325	switch (op) {
2326	case EPOLL_CTL_ADD:
2327		if (!epi) {
2328			epds->events |= EPOLLERR | EPOLLHUP;
2329			error = ep_insert(ep, epds, tf.file, fd, full_check);
2330		} else
2331			error = -EEXIST;
2332		break;
2333	case EPOLL_CTL_DEL:
2334		if (epi) {
2335			/*
2336			 * The eventpoll itself is still alive: the refcount
2337			 * can't go to zero here.
2338			 */
2339			ep_remove_safe(ep, epi);
2340			error = 0;
2341		} else {
2342			error = -ENOENT;
2343		}
2344		break;
2345	case EPOLL_CTL_MOD:
2346		if (epi) {
2347			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2348				epds->events |= EPOLLERR | EPOLLHUP;
2349				error = ep_modify(ep, epi, epds);
2350			}
2351		} else
2352			error = -ENOENT;
2353		break;
2354	}
2355	mutex_unlock(&ep->mtx);
2356
2357error_tgt_fput:
2358	if (full_check) {
2359		clear_tfile_check_list();
2360		loop_check_gen++;
2361		mutex_unlock(&epnested_mutex);
2362	}
2363
2364	fdput(tf);
2365error_fput:
2366	fdput(f);
2367error_return:
2368
2369	return error;
2370}
2371
2372/*
2373 * The following function implements the controller interface for
2374 * the eventpoll file that enables the insertion/removal/change of
2375 * file descriptors inside the interest set.
2376 */
2377SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2378		struct epoll_event __user *, event)
2379{
2380	struct epoll_event epds;
2381
2382	if (ep_op_has_event(op) &&
2383	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2384		return -EFAULT;
2385
2386	return do_epoll_ctl(epfd, op, fd, &epds, false);
2387}
2388
2389/*
2390 * Implement the event wait interface for the eventpoll file. It is the kernel
2391 * part of the user space epoll_wait(2).
2392 */
2393static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2394			 int maxevents, struct timespec64 *to)
2395{
2396	int error;
2397	struct fd f;
2398	struct eventpoll *ep;
2399
2400	/* The maximum number of event must be greater than zero */
2401	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2402		return -EINVAL;
2403
2404	/* Verify that the area passed by the user is writeable */
2405	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2406		return -EFAULT;
2407
2408	/* Get the "struct file *" for the eventpoll file */
2409	f = fdget(epfd);
2410	if (!f.file)
2411		return -EBADF;
2412
2413	/*
2414	 * We have to check that the file structure underneath the fd
2415	 * the user passed to us _is_ an eventpoll file.
2416	 */
2417	error = -EINVAL;
2418	if (!is_file_epoll(f.file))
2419		goto error_fput;
2420
2421	/*
2422	 * At this point it is safe to assume that the "private_data" contains
2423	 * our own data structure.
2424	 */
2425	ep = f.file->private_data;
2426
2427	/* Time to fish for events ... */
2428	error = ep_poll(ep, events, maxevents, to);
2429
2430error_fput:
2431	fdput(f);
2432	return error;
2433}
2434
2435SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2436		int, maxevents, int, timeout)
2437{
2438	struct timespec64 to;
2439
2440	return do_epoll_wait(epfd, events, maxevents,
2441			     ep_timeout_to_timespec(&to, timeout));
2442}
2443
2444/*
2445 * Implement the event wait interface for the eventpoll file. It is the kernel
2446 * part of the user space epoll_pwait(2).
2447 */
2448static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2449			  int maxevents, struct timespec64 *to,
2450			  const sigset_t __user *sigmask, size_t sigsetsize)
2451{
2452	int error;
2453
2454	/*
2455	 * If the caller wants a certain signal mask to be set during the wait,
2456	 * we apply it here.
2457	 */
2458	error = set_user_sigmask(sigmask, sigsetsize);
2459	if (error)
2460		return error;
2461
2462	error = do_epoll_wait(epfd, events, maxevents, to);
2463
2464	restore_saved_sigmask_unless(error == -EINTR);
2465
2466	return error;
2467}
2468
2469SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2470		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2471		size_t, sigsetsize)
2472{
2473	struct timespec64 to;
2474
2475	return do_epoll_pwait(epfd, events, maxevents,
2476			      ep_timeout_to_timespec(&to, timeout),
2477			      sigmask, sigsetsize);
2478}
2479
2480SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2481		int, maxevents, const struct __kernel_timespec __user *, timeout,
2482		const sigset_t __user *, sigmask, size_t, sigsetsize)
2483{
2484	struct timespec64 ts, *to = NULL;
2485
2486	if (timeout) {
2487		if (get_timespec64(&ts, timeout))
2488			return -EFAULT;
2489		to = &ts;
2490		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2491			return -EINVAL;
2492	}
2493
2494	return do_epoll_pwait(epfd, events, maxevents, to,
2495			      sigmask, sigsetsize);
2496}
2497
2498#ifdef CONFIG_COMPAT
2499static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2500				 int maxevents, struct timespec64 *timeout,
2501				 const compat_sigset_t __user *sigmask,
2502				 compat_size_t sigsetsize)
2503{
2504	long err;
2505
2506	/*
2507	 * If the caller wants a certain signal mask to be set during the wait,
2508	 * we apply it here.
2509	 */
2510	err = set_compat_user_sigmask(sigmask, sigsetsize);
2511	if (err)
2512		return err;
2513
2514	err = do_epoll_wait(epfd, events, maxevents, timeout);
2515
2516	restore_saved_sigmask_unless(err == -EINTR);
2517
2518	return err;
2519}
2520
2521COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2522		       struct epoll_event __user *, events,
2523		       int, maxevents, int, timeout,
2524		       const compat_sigset_t __user *, sigmask,
2525		       compat_size_t, sigsetsize)
2526{
2527	struct timespec64 to;
2528
2529	return do_compat_epoll_pwait(epfd, events, maxevents,
2530				     ep_timeout_to_timespec(&to, timeout),
2531				     sigmask, sigsetsize);
2532}
2533
2534COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2535		       struct epoll_event __user *, events,
2536		       int, maxevents,
2537		       const struct __kernel_timespec __user *, timeout,
2538		       const compat_sigset_t __user *, sigmask,
2539		       compat_size_t, sigsetsize)
2540{
2541	struct timespec64 ts, *to = NULL;
2542
2543	if (timeout) {
2544		if (get_timespec64(&ts, timeout))
2545			return -EFAULT;
2546		to = &ts;
2547		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2548			return -EINVAL;
2549	}
2550
2551	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2552				     sigmask, sigsetsize);
2553}
2554
2555#endif
2556
2557static int __init eventpoll_init(void)
2558{
2559	struct sysinfo si;
2560
2561	si_meminfo(&si);
2562	/*
2563	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2564	 */
2565	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2566		EP_ITEM_COST;
2567	BUG_ON(max_user_watches < 0);
2568
2569	/*
2570	 * We can have many thousands of epitems, so prevent this from
2571	 * using an extra cache line on 64-bit (and smaller) CPUs
2572	 */
2573	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2574
2575	/* Allocates slab cache used to allocate "struct epitem" items */
2576	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2577			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2578
2579	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2580	pwq_cache = kmem_cache_create("eventpoll_pwq",
2581		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2582	epoll_sysctls_init();
2583
2584	ephead_cache = kmem_cache_create("ep_head",
2585		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2586
2587	return 0;
2588}
2589fs_initcall(eventpoll_init);
2590