1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * eCryptfs: Linux filesystem encryption layer
4 * In-kernel key management code.  Includes functions to parse and
5 * write authentication token-related packets with the underlying
6 * file.
7 *
8 * Copyright (C) 2004-2006 International Business Machines Corp.
9 *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
10 *              Michael C. Thompson <mcthomps@us.ibm.com>
11 *              Trevor S. Highland <trevor.highland@gmail.com>
12 */
13
14#include <crypto/hash.h>
15#include <crypto/skcipher.h>
16#include <linux/string.h>
17#include <linux/pagemap.h>
18#include <linux/key.h>
19#include <linux/random.h>
20#include <linux/scatterlist.h>
21#include <linux/slab.h>
22#include "ecryptfs_kernel.h"
23
24/*
25 * request_key returned an error instead of a valid key address;
26 * determine the type of error, make appropriate log entries, and
27 * return an error code.
28 */
29static int process_request_key_err(long err_code)
30{
31	int rc = 0;
32
33	switch (err_code) {
34	case -ENOKEY:
35		ecryptfs_printk(KERN_WARNING, "No key\n");
36		rc = -ENOENT;
37		break;
38	case -EKEYEXPIRED:
39		ecryptfs_printk(KERN_WARNING, "Key expired\n");
40		rc = -ETIME;
41		break;
42	case -EKEYREVOKED:
43		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
44		rc = -EINVAL;
45		break;
46	default:
47		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
48				"[0x%.16lx]\n", err_code);
49		rc = -EINVAL;
50	}
51	return rc;
52}
53
54static int process_find_global_auth_tok_for_sig_err(int err_code)
55{
56	int rc = err_code;
57
58	switch (err_code) {
59	case -ENOENT:
60		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
61		break;
62	case -EINVAL:
63		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
64		break;
65	default:
66		rc = process_request_key_err(err_code);
67		break;
68	}
69	return rc;
70}
71
72/**
73 * ecryptfs_parse_packet_length
74 * @data: Pointer to memory containing length at offset
75 * @size: This function writes the decoded size to this memory
76 *        address; zero on error
77 * @length_size: The number of bytes occupied by the encoded length
78 *
79 * Returns zero on success; non-zero on error
80 */
81int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
82				 size_t *length_size)
83{
84	int rc = 0;
85
86	(*length_size) = 0;
87	(*size) = 0;
88	if (data[0] < 192) {
89		/* One-byte length */
90		(*size) = data[0];
91		(*length_size) = 1;
92	} else if (data[0] < 224) {
93		/* Two-byte length */
94		(*size) = (data[0] - 192) * 256;
95		(*size) += data[1] + 192;
96		(*length_size) = 2;
97	} else if (data[0] == 255) {
98		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
99		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
100				"supported\n");
101		rc = -EINVAL;
102		goto out;
103	} else {
104		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
105		rc = -EINVAL;
106		goto out;
107	}
108out:
109	return rc;
110}
111
112/**
113 * ecryptfs_write_packet_length
114 * @dest: The byte array target into which to write the length. Must
115 *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
116 * @size: The length to write.
117 * @packet_size_length: The number of bytes used to encode the packet
118 *                      length is written to this address.
119 *
120 * Returns zero on success; non-zero on error.
121 */
122int ecryptfs_write_packet_length(char *dest, size_t size,
123				 size_t *packet_size_length)
124{
125	int rc = 0;
126
127	if (size < 192) {
128		dest[0] = size;
129		(*packet_size_length) = 1;
130	} else if (size < 65536) {
131		dest[0] = (((size - 192) / 256) + 192);
132		dest[1] = ((size - 192) % 256);
133		(*packet_size_length) = 2;
134	} else {
135		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
136		rc = -EINVAL;
137		ecryptfs_printk(KERN_WARNING,
138				"Unsupported packet size: [%zd]\n", size);
139	}
140	return rc;
141}
142
143static int
144write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
145		    char **packet, size_t *packet_len)
146{
147	size_t i = 0;
148	size_t data_len;
149	size_t packet_size_len;
150	char *message;
151	int rc;
152
153	/*
154	 *              ***** TAG 64 Packet Format *****
155	 *    | Content Type                       | 1 byte       |
156	 *    | Key Identifier Size                | 1 or 2 bytes |
157	 *    | Key Identifier                     | arbitrary    |
158	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
159	 *    | Encrypted File Encryption Key      | arbitrary    |
160	 */
161	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
162		    + session_key->encrypted_key_size);
163	*packet = kmalloc(data_len, GFP_KERNEL);
164	message = *packet;
165	if (!message) {
166		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
167		rc = -ENOMEM;
168		goto out;
169	}
170	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
171	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
172					  &packet_size_len);
173	if (rc) {
174		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
175				"header; cannot generate packet length\n");
176		goto out;
177	}
178	i += packet_size_len;
179	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
180	i += ECRYPTFS_SIG_SIZE_HEX;
181	rc = ecryptfs_write_packet_length(&message[i],
182					  session_key->encrypted_key_size,
183					  &packet_size_len);
184	if (rc) {
185		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
186				"header; cannot generate packet length\n");
187		goto out;
188	}
189	i += packet_size_len;
190	memcpy(&message[i], session_key->encrypted_key,
191	       session_key->encrypted_key_size);
192	i += session_key->encrypted_key_size;
193	*packet_len = i;
194out:
195	return rc;
196}
197
198static int
199parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
200		    struct ecryptfs_message *msg)
201{
202	size_t i = 0;
203	char *data;
204	size_t data_len;
205	size_t m_size;
206	size_t message_len;
207	u16 checksum = 0;
208	u16 expected_checksum = 0;
209	int rc;
210
211	/*
212	 *              ***** TAG 65 Packet Format *****
213	 *         | Content Type             | 1 byte       |
214	 *         | Status Indicator         | 1 byte       |
215	 *         | File Encryption Key Size | 1 or 2 bytes |
216	 *         | File Encryption Key      | arbitrary    |
217	 */
218	message_len = msg->data_len;
219	data = msg->data;
220	if (message_len < 4) {
221		rc = -EIO;
222		goto out;
223	}
224	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
225		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
226		rc = -EIO;
227		goto out;
228	}
229	if (data[i++]) {
230		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
231				"[%d]\n", data[i-1]);
232		rc = -EIO;
233		goto out;
234	}
235	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
236	if (rc) {
237		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
238				"rc = [%d]\n", rc);
239		goto out;
240	}
241	i += data_len;
242	if (message_len < (i + m_size)) {
243		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
244				"is shorter than expected\n");
245		rc = -EIO;
246		goto out;
247	}
248	if (m_size < 3) {
249		ecryptfs_printk(KERN_ERR,
250				"The decrypted key is not long enough to "
251				"include a cipher code and checksum\n");
252		rc = -EIO;
253		goto out;
254	}
255	*cipher_code = data[i++];
256	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
257	session_key->decrypted_key_size = m_size - 3;
258	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
259		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
260				"the maximum key size [%d]\n",
261				session_key->decrypted_key_size,
262				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
263		rc = -EIO;
264		goto out;
265	}
266	memcpy(session_key->decrypted_key, &data[i],
267	       session_key->decrypted_key_size);
268	i += session_key->decrypted_key_size;
269	expected_checksum += (unsigned char)(data[i++]) << 8;
270	expected_checksum += (unsigned char)(data[i++]);
271	for (i = 0; i < session_key->decrypted_key_size; i++)
272		checksum += session_key->decrypted_key[i];
273	if (expected_checksum != checksum) {
274		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
275				"encryption  key; expected [%x]; calculated "
276				"[%x]\n", expected_checksum, checksum);
277		rc = -EIO;
278	}
279out:
280	return rc;
281}
282
283
284static int
285write_tag_66_packet(char *signature, u8 cipher_code,
286		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
287		    size_t *packet_len)
288{
289	size_t i = 0;
290	size_t j;
291	size_t data_len;
292	size_t checksum = 0;
293	size_t packet_size_len;
294	char *message;
295	int rc;
296
297	/*
298	 *              ***** TAG 66 Packet Format *****
299	 *         | Content Type             | 1 byte       |
300	 *         | Key Identifier Size      | 1 or 2 bytes |
301	 *         | Key Identifier           | arbitrary    |
302	 *         | File Encryption Key Size | 1 or 2 bytes |
303	 *         | File Encryption Key      | arbitrary    |
304	 */
305	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
306	*packet = kmalloc(data_len, GFP_KERNEL);
307	message = *packet;
308	if (!message) {
309		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
310		rc = -ENOMEM;
311		goto out;
312	}
313	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
314	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
315					  &packet_size_len);
316	if (rc) {
317		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
318				"header; cannot generate packet length\n");
319		goto out;
320	}
321	i += packet_size_len;
322	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
323	i += ECRYPTFS_SIG_SIZE_HEX;
324	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
325	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
326					  &packet_size_len);
327	if (rc) {
328		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
329				"header; cannot generate packet length\n");
330		goto out;
331	}
332	i += packet_size_len;
333	message[i++] = cipher_code;
334	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
335	i += crypt_stat->key_size;
336	for (j = 0; j < crypt_stat->key_size; j++)
337		checksum += crypt_stat->key[j];
338	message[i++] = (checksum / 256) % 256;
339	message[i++] = (checksum % 256);
340	*packet_len = i;
341out:
342	return rc;
343}
344
345static int
346parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
347		    struct ecryptfs_message *msg)
348{
349	size_t i = 0;
350	char *data;
351	size_t data_len;
352	size_t message_len;
353	int rc;
354
355	/*
356	 *              ***** TAG 65 Packet Format *****
357	 *    | Content Type                       | 1 byte       |
358	 *    | Status Indicator                   | 1 byte       |
359	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
360	 *    | Encrypted File Encryption Key      | arbitrary    |
361	 */
362	message_len = msg->data_len;
363	data = msg->data;
364	/* verify that everything through the encrypted FEK size is present */
365	if (message_len < 4) {
366		rc = -EIO;
367		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
368		       "message length is [%d]\n", __func__, message_len, 4);
369		goto out;
370	}
371	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
372		rc = -EIO;
373		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
374		       __func__);
375		goto out;
376	}
377	if (data[i++]) {
378		rc = -EIO;
379		printk(KERN_ERR "%s: Status indicator has non zero "
380		       "value [%d]\n", __func__, data[i-1]);
381
382		goto out;
383	}
384	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
385					  &data_len);
386	if (rc) {
387		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
388				"rc = [%d]\n", rc);
389		goto out;
390	}
391	i += data_len;
392	if (message_len < (i + key_rec->enc_key_size)) {
393		rc = -EIO;
394		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
395		       __func__, message_len, (i + key_rec->enc_key_size));
396		goto out;
397	}
398	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
399		rc = -EIO;
400		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
401		       "the maximum key size [%d]\n", __func__,
402		       key_rec->enc_key_size,
403		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
404		goto out;
405	}
406	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
407out:
408	return rc;
409}
410
411/**
412 * ecryptfs_verify_version
413 * @version: The version number to confirm
414 *
415 * Returns zero on good version; non-zero otherwise
416 */
417static int ecryptfs_verify_version(u16 version)
418{
419	int rc = 0;
420	unsigned char major;
421	unsigned char minor;
422
423	major = ((version >> 8) & 0xFF);
424	minor = (version & 0xFF);
425	if (major != ECRYPTFS_VERSION_MAJOR) {
426		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
427				"Expected [%d]; got [%d]\n",
428				ECRYPTFS_VERSION_MAJOR, major);
429		rc = -EINVAL;
430		goto out;
431	}
432	if (minor != ECRYPTFS_VERSION_MINOR) {
433		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
434				"Expected [%d]; got [%d]\n",
435				ECRYPTFS_VERSION_MINOR, minor);
436		rc = -EINVAL;
437		goto out;
438	}
439out:
440	return rc;
441}
442
443/**
444 * ecryptfs_verify_auth_tok_from_key
445 * @auth_tok_key: key containing the authentication token
446 * @auth_tok: authentication token
447 *
448 * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
449 * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
450 */
451static int
452ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
453				  struct ecryptfs_auth_tok **auth_tok)
454{
455	int rc = 0;
456
457	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
458	if (IS_ERR(*auth_tok)) {
459		rc = PTR_ERR(*auth_tok);
460		*auth_tok = NULL;
461		goto out;
462	}
463
464	if (ecryptfs_verify_version((*auth_tok)->version)) {
465		printk(KERN_ERR "Data structure version mismatch. Userspace "
466		       "tools must match eCryptfs kernel module with major "
467		       "version [%d] and minor version [%d]\n",
468		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
469		rc = -EINVAL;
470		goto out;
471	}
472	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
473	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
474		printk(KERN_ERR "Invalid auth_tok structure "
475		       "returned from key query\n");
476		rc = -EINVAL;
477		goto out;
478	}
479out:
480	return rc;
481}
482
483static int
484ecryptfs_find_global_auth_tok_for_sig(
485	struct key **auth_tok_key,
486	struct ecryptfs_auth_tok **auth_tok,
487	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
488{
489	struct ecryptfs_global_auth_tok *walker;
490	int rc = 0;
491
492	(*auth_tok_key) = NULL;
493	(*auth_tok) = NULL;
494	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
495	list_for_each_entry(walker,
496			    &mount_crypt_stat->global_auth_tok_list,
497			    mount_crypt_stat_list) {
498		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
499			continue;
500
501		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
502			rc = -EINVAL;
503			goto out;
504		}
505
506		rc = key_validate(walker->global_auth_tok_key);
507		if (rc) {
508			if (rc == -EKEYEXPIRED)
509				goto out;
510			goto out_invalid_auth_tok;
511		}
512
513		down_write(&(walker->global_auth_tok_key->sem));
514		rc = ecryptfs_verify_auth_tok_from_key(
515				walker->global_auth_tok_key, auth_tok);
516		if (rc)
517			goto out_invalid_auth_tok_unlock;
518
519		(*auth_tok_key) = walker->global_auth_tok_key;
520		key_get(*auth_tok_key);
521		goto out;
522	}
523	rc = -ENOENT;
524	goto out;
525out_invalid_auth_tok_unlock:
526	up_write(&(walker->global_auth_tok_key->sem));
527out_invalid_auth_tok:
528	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
529	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
530	key_put(walker->global_auth_tok_key);
531	walker->global_auth_tok_key = NULL;
532out:
533	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
534	return rc;
535}
536
537/**
538 * ecryptfs_find_auth_tok_for_sig
539 * @auth_tok_key: key containing the authentication token
540 * @auth_tok: Set to the matching auth_tok; NULL if not found
541 * @mount_crypt_stat: inode crypt_stat crypto context
542 * @sig: Sig of auth_tok to find
543 *
544 * For now, this function simply looks at the registered auth_tok's
545 * linked off the mount_crypt_stat, so all the auth_toks that can be
546 * used must be registered at mount time. This function could
547 * potentially try a lot harder to find auth_tok's (e.g., by calling
548 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
549 * that static registration of auth_tok's will no longer be necessary.
550 *
551 * Returns zero on no error; non-zero on error
552 */
553static int
554ecryptfs_find_auth_tok_for_sig(
555	struct key **auth_tok_key,
556	struct ecryptfs_auth_tok **auth_tok,
557	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
558	char *sig)
559{
560	int rc = 0;
561
562	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
563						   mount_crypt_stat, sig);
564	if (rc == -ENOENT) {
565		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
566		 * mount_crypt_stat structure, we prevent to use auth toks that
567		 * are not inserted through the ecryptfs_add_global_auth_tok
568		 * function.
569		 */
570		if (mount_crypt_stat->flags
571				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
572			return -EINVAL;
573
574		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
575						       sig);
576	}
577	return rc;
578}
579
580/*
581 * write_tag_70_packet can gobble a lot of stack space. We stuff most
582 * of the function's parameters in a kmalloc'd struct to help reduce
583 * eCryptfs' overall stack usage.
584 */
585struct ecryptfs_write_tag_70_packet_silly_stack {
586	u8 cipher_code;
587	size_t max_packet_size;
588	size_t packet_size_len;
589	size_t block_aligned_filename_size;
590	size_t block_size;
591	size_t i;
592	size_t j;
593	size_t num_rand_bytes;
594	struct mutex *tfm_mutex;
595	char *block_aligned_filename;
596	struct ecryptfs_auth_tok *auth_tok;
597	struct scatterlist src_sg[2];
598	struct scatterlist dst_sg[2];
599	struct crypto_skcipher *skcipher_tfm;
600	struct skcipher_request *skcipher_req;
601	char iv[ECRYPTFS_MAX_IV_BYTES];
602	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
603	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
604	struct crypto_shash *hash_tfm;
605	struct shash_desc *hash_desc;
606};
607
608/*
609 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
610 * @filename: NULL-terminated filename string
611 *
612 * This is the simplest mechanism for achieving filename encryption in
613 * eCryptfs. It encrypts the given filename with the mount-wide
614 * filename encryption key (FNEK) and stores it in a packet to @dest,
615 * which the callee will encode and write directly into the dentry
616 * name.
617 */
618int
619ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
620			     size_t *packet_size,
621			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
622			     char *filename, size_t filename_size)
623{
624	struct ecryptfs_write_tag_70_packet_silly_stack *s;
625	struct key *auth_tok_key = NULL;
626	int rc = 0;
627
628	s = kzalloc(sizeof(*s), GFP_KERNEL);
629	if (!s)
630		return -ENOMEM;
631
632	(*packet_size) = 0;
633	rc = ecryptfs_find_auth_tok_for_sig(
634		&auth_tok_key,
635		&s->auth_tok, mount_crypt_stat,
636		mount_crypt_stat->global_default_fnek_sig);
637	if (rc) {
638		printk(KERN_ERR "%s: Error attempting to find auth tok for "
639		       "fnek sig [%s]; rc = [%d]\n", __func__,
640		       mount_crypt_stat->global_default_fnek_sig, rc);
641		goto out;
642	}
643	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
644		&s->skcipher_tfm,
645		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
646	if (unlikely(rc)) {
647		printk(KERN_ERR "Internal error whilst attempting to get "
648		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
649		       mount_crypt_stat->global_default_fn_cipher_name, rc);
650		goto out;
651	}
652	mutex_lock(s->tfm_mutex);
653	s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
654	/* Plus one for the \0 separator between the random prefix
655	 * and the plaintext filename */
656	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
657	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
658	if ((s->block_aligned_filename_size % s->block_size) != 0) {
659		s->num_rand_bytes += (s->block_size
660				      - (s->block_aligned_filename_size
661					 % s->block_size));
662		s->block_aligned_filename_size = (s->num_rand_bytes
663						  + filename_size);
664	}
665	/* Octet 0: Tag 70 identifier
666	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
667	 *              and block-aligned encrypted filename size)
668	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
669	 * Octet N2-N3: Cipher identifier (1 octet)
670	 * Octets N3-N4: Block-aligned encrypted filename
671	 *  - Consists of a minimum number of random characters, a \0
672	 *    separator, and then the filename */
673	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
674			      + s->block_aligned_filename_size);
675	if (!dest) {
676		(*packet_size) = s->max_packet_size;
677		goto out_unlock;
678	}
679	if (s->max_packet_size > (*remaining_bytes)) {
680		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
681		       "[%zd] available\n", __func__, s->max_packet_size,
682		       (*remaining_bytes));
683		rc = -EINVAL;
684		goto out_unlock;
685	}
686
687	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
688	if (!s->skcipher_req) {
689		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
690		       "skcipher_request_alloc for %s\n", __func__,
691		       crypto_skcipher_driver_name(s->skcipher_tfm));
692		rc = -ENOMEM;
693		goto out_unlock;
694	}
695
696	skcipher_request_set_callback(s->skcipher_req,
697				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
698
699	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
700					    GFP_KERNEL);
701	if (!s->block_aligned_filename) {
702		rc = -ENOMEM;
703		goto out_unlock;
704	}
705	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
706	rc = ecryptfs_write_packet_length(&dest[s->i],
707					  (ECRYPTFS_SIG_SIZE
708					   + 1 /* Cipher code */
709					   + s->block_aligned_filename_size),
710					  &s->packet_size_len);
711	if (rc) {
712		printk(KERN_ERR "%s: Error generating tag 70 packet "
713		       "header; cannot generate packet length; rc = [%d]\n",
714		       __func__, rc);
715		goto out_free_unlock;
716	}
717	s->i += s->packet_size_len;
718	ecryptfs_from_hex(&dest[s->i],
719			  mount_crypt_stat->global_default_fnek_sig,
720			  ECRYPTFS_SIG_SIZE);
721	s->i += ECRYPTFS_SIG_SIZE;
722	s->cipher_code = ecryptfs_code_for_cipher_string(
723		mount_crypt_stat->global_default_fn_cipher_name,
724		mount_crypt_stat->global_default_fn_cipher_key_bytes);
725	if (s->cipher_code == 0) {
726		printk(KERN_WARNING "%s: Unable to generate code for "
727		       "cipher [%s] with key bytes [%zd]\n", __func__,
728		       mount_crypt_stat->global_default_fn_cipher_name,
729		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
730		rc = -EINVAL;
731		goto out_free_unlock;
732	}
733	dest[s->i++] = s->cipher_code;
734	/* TODO: Support other key modules than passphrase for
735	 * filename encryption */
736	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
737		rc = -EOPNOTSUPP;
738		printk(KERN_INFO "%s: Filename encryption only supports "
739		       "password tokens\n", __func__);
740		goto out_free_unlock;
741	}
742	s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
743	if (IS_ERR(s->hash_tfm)) {
744			rc = PTR_ERR(s->hash_tfm);
745			printk(KERN_ERR "%s: Error attempting to "
746			       "allocate hash crypto context; rc = [%d]\n",
747			       __func__, rc);
748			goto out_free_unlock;
749	}
750
751	s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
752			       crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
753	if (!s->hash_desc) {
754		rc = -ENOMEM;
755		goto out_release_free_unlock;
756	}
757
758	s->hash_desc->tfm = s->hash_tfm;
759
760	rc = crypto_shash_digest(s->hash_desc,
761				 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
762				 s->auth_tok->token.password.session_key_encryption_key_bytes,
763				 s->hash);
764	if (rc) {
765		printk(KERN_ERR
766		       "%s: Error computing crypto hash; rc = [%d]\n",
767		       __func__, rc);
768		goto out_release_free_unlock;
769	}
770	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
771		s->block_aligned_filename[s->j] =
772			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
773		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
774		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
775			rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
776						ECRYPTFS_TAG_70_DIGEST_SIZE,
777						s->tmp_hash);
778			if (rc) {
779				printk(KERN_ERR
780				       "%s: Error computing crypto hash; "
781				       "rc = [%d]\n", __func__, rc);
782				goto out_release_free_unlock;
783			}
784			memcpy(s->hash, s->tmp_hash,
785			       ECRYPTFS_TAG_70_DIGEST_SIZE);
786		}
787		if (s->block_aligned_filename[s->j] == '\0')
788			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
789	}
790	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
791	       filename_size);
792	rc = virt_to_scatterlist(s->block_aligned_filename,
793				 s->block_aligned_filename_size, s->src_sg, 2);
794	if (rc < 1) {
795		printk(KERN_ERR "%s: Internal error whilst attempting to "
796		       "convert filename memory to scatterlist; rc = [%d]. "
797		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
798		       s->block_aligned_filename_size);
799		goto out_release_free_unlock;
800	}
801	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
802				 s->dst_sg, 2);
803	if (rc < 1) {
804		printk(KERN_ERR "%s: Internal error whilst attempting to "
805		       "convert encrypted filename memory to scatterlist; "
806		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
807		       __func__, rc, s->block_aligned_filename_size);
808		goto out_release_free_unlock;
809	}
810	/* The characters in the first block effectively do the job
811	 * of the IV here, so we just use 0's for the IV. Note the
812	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
813	 * >= ECRYPTFS_MAX_IV_BYTES. */
814	rc = crypto_skcipher_setkey(
815		s->skcipher_tfm,
816		s->auth_tok->token.password.session_key_encryption_key,
817		mount_crypt_stat->global_default_fn_cipher_key_bytes);
818	if (rc < 0) {
819		printk(KERN_ERR "%s: Error setting key for crypto context; "
820		       "rc = [%d]. s->auth_tok->token.password.session_key_"
821		       "encryption_key = [0x%p]; mount_crypt_stat->"
822		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
823		       rc,
824		       s->auth_tok->token.password.session_key_encryption_key,
825		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
826		goto out_release_free_unlock;
827	}
828	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
829				   s->block_aligned_filename_size, s->iv);
830	rc = crypto_skcipher_encrypt(s->skcipher_req);
831	if (rc) {
832		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
833		       "rc = [%d]\n", __func__, rc);
834		goto out_release_free_unlock;
835	}
836	s->i += s->block_aligned_filename_size;
837	(*packet_size) = s->i;
838	(*remaining_bytes) -= (*packet_size);
839out_release_free_unlock:
840	crypto_free_shash(s->hash_tfm);
841out_free_unlock:
842	kfree_sensitive(s->block_aligned_filename);
843out_unlock:
844	mutex_unlock(s->tfm_mutex);
845out:
846	if (auth_tok_key) {
847		up_write(&(auth_tok_key->sem));
848		key_put(auth_tok_key);
849	}
850	skcipher_request_free(s->skcipher_req);
851	kfree_sensitive(s->hash_desc);
852	kfree(s);
853	return rc;
854}
855
856struct ecryptfs_parse_tag_70_packet_silly_stack {
857	u8 cipher_code;
858	size_t max_packet_size;
859	size_t packet_size_len;
860	size_t parsed_tag_70_packet_size;
861	size_t block_aligned_filename_size;
862	size_t block_size;
863	size_t i;
864	struct mutex *tfm_mutex;
865	char *decrypted_filename;
866	struct ecryptfs_auth_tok *auth_tok;
867	struct scatterlist src_sg[2];
868	struct scatterlist dst_sg[2];
869	struct crypto_skcipher *skcipher_tfm;
870	struct skcipher_request *skcipher_req;
871	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
872	char iv[ECRYPTFS_MAX_IV_BYTES];
873	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
874};
875
876/**
877 * ecryptfs_parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
878 * @filename: This function kmalloc's the memory for the filename
879 * @filename_size: This function sets this to the amount of memory
880 *                 kmalloc'd for the filename
881 * @packet_size: This function sets this to the the number of octets
882 *               in the packet parsed
883 * @mount_crypt_stat: The mount-wide cryptographic context
884 * @data: The memory location containing the start of the tag 70
885 *        packet
886 * @max_packet_size: The maximum legal size of the packet to be parsed
887 *                   from @data
888 *
889 * Returns zero on success; non-zero otherwise
890 */
891int
892ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
893			     size_t *packet_size,
894			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
895			     char *data, size_t max_packet_size)
896{
897	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
898	struct key *auth_tok_key = NULL;
899	int rc = 0;
900
901	(*packet_size) = 0;
902	(*filename_size) = 0;
903	(*filename) = NULL;
904	s = kzalloc(sizeof(*s), GFP_KERNEL);
905	if (!s)
906		return -ENOMEM;
907
908	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
909		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
910		       "at least [%d]\n", __func__, max_packet_size,
911		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
912		rc = -EINVAL;
913		goto out;
914	}
915	/* Octet 0: Tag 70 identifier
916	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
917	 *              and block-aligned encrypted filename size)
918	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
919	 * Octet N2-N3: Cipher identifier (1 octet)
920	 * Octets N3-N4: Block-aligned encrypted filename
921	 *  - Consists of a minimum number of random numbers, a \0
922	 *    separator, and then the filename */
923	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
924		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
925		       "tag [0x%.2x]\n", __func__,
926		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
927		rc = -EINVAL;
928		goto out;
929	}
930	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
931					  &s->parsed_tag_70_packet_size,
932					  &s->packet_size_len);
933	if (rc) {
934		printk(KERN_WARNING "%s: Error parsing packet length; "
935		       "rc = [%d]\n", __func__, rc);
936		goto out;
937	}
938	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
939					  - ECRYPTFS_SIG_SIZE - 1);
940	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
941	    > max_packet_size) {
942		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
943		       "size is [%zd]\n", __func__, max_packet_size,
944		       (1 + s->packet_size_len + 1
945			+ s->block_aligned_filename_size));
946		rc = -EINVAL;
947		goto out;
948	}
949	(*packet_size) += s->packet_size_len;
950	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
951			ECRYPTFS_SIG_SIZE);
952	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
953	(*packet_size) += ECRYPTFS_SIG_SIZE;
954	s->cipher_code = data[(*packet_size)++];
955	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
956	if (rc) {
957		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
958		       __func__, s->cipher_code);
959		goto out;
960	}
961	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
962					    &s->auth_tok, mount_crypt_stat,
963					    s->fnek_sig_hex);
964	if (rc) {
965		printk(KERN_ERR "%s: Error attempting to find auth tok for "
966		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
967		       rc);
968		goto out;
969	}
970	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
971							&s->tfm_mutex,
972							s->cipher_string);
973	if (unlikely(rc)) {
974		printk(KERN_ERR "Internal error whilst attempting to get "
975		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
976		       s->cipher_string, rc);
977		goto out;
978	}
979	mutex_lock(s->tfm_mutex);
980	rc = virt_to_scatterlist(&data[(*packet_size)],
981				 s->block_aligned_filename_size, s->src_sg, 2);
982	if (rc < 1) {
983		printk(KERN_ERR "%s: Internal error whilst attempting to "
984		       "convert encrypted filename memory to scatterlist; "
985		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
986		       __func__, rc, s->block_aligned_filename_size);
987		goto out_unlock;
988	}
989	(*packet_size) += s->block_aligned_filename_size;
990	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
991					GFP_KERNEL);
992	if (!s->decrypted_filename) {
993		rc = -ENOMEM;
994		goto out_unlock;
995	}
996	rc = virt_to_scatterlist(s->decrypted_filename,
997				 s->block_aligned_filename_size, s->dst_sg, 2);
998	if (rc < 1) {
999		printk(KERN_ERR "%s: Internal error whilst attempting to "
1000		       "convert decrypted filename memory to scatterlist; "
1001		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1002		       __func__, rc, s->block_aligned_filename_size);
1003		goto out_free_unlock;
1004	}
1005
1006	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1007	if (!s->skcipher_req) {
1008		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1009		       "skcipher_request_alloc for %s\n", __func__,
1010		       crypto_skcipher_driver_name(s->skcipher_tfm));
1011		rc = -ENOMEM;
1012		goto out_free_unlock;
1013	}
1014
1015	skcipher_request_set_callback(s->skcipher_req,
1016				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1017
1018	/* The characters in the first block effectively do the job of
1019	 * the IV here, so we just use 0's for the IV. Note the
1020	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1021	 * >= ECRYPTFS_MAX_IV_BYTES. */
1022	/* TODO: Support other key modules than passphrase for
1023	 * filename encryption */
1024	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1025		rc = -EOPNOTSUPP;
1026		printk(KERN_INFO "%s: Filename encryption only supports "
1027		       "password tokens\n", __func__);
1028		goto out_free_unlock;
1029	}
1030	rc = crypto_skcipher_setkey(
1031		s->skcipher_tfm,
1032		s->auth_tok->token.password.session_key_encryption_key,
1033		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1034	if (rc < 0) {
1035		printk(KERN_ERR "%s: Error setting key for crypto context; "
1036		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1037		       "encryption_key = [0x%p]; mount_crypt_stat->"
1038		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1039		       rc,
1040		       s->auth_tok->token.password.session_key_encryption_key,
1041		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1042		goto out_free_unlock;
1043	}
1044	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1045				   s->block_aligned_filename_size, s->iv);
1046	rc = crypto_skcipher_decrypt(s->skcipher_req);
1047	if (rc) {
1048		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1049		       "rc = [%d]\n", __func__, rc);
1050		goto out_free_unlock;
1051	}
1052
1053	while (s->i < s->block_aligned_filename_size &&
1054	       s->decrypted_filename[s->i] != '\0')
1055		s->i++;
1056	if (s->i == s->block_aligned_filename_size) {
1057		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1058		       "find valid separator between random characters and "
1059		       "the filename\n", __func__);
1060		rc = -EINVAL;
1061		goto out_free_unlock;
1062	}
1063	s->i++;
1064	(*filename_size) = (s->block_aligned_filename_size - s->i);
1065	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1066		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1067		       "invalid\n", __func__, (*filename_size));
1068		rc = -EINVAL;
1069		goto out_free_unlock;
1070	}
1071	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1072	if (!(*filename)) {
1073		rc = -ENOMEM;
1074		goto out_free_unlock;
1075	}
1076	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1077	(*filename)[(*filename_size)] = '\0';
1078out_free_unlock:
1079	kfree(s->decrypted_filename);
1080out_unlock:
1081	mutex_unlock(s->tfm_mutex);
1082out:
1083	if (rc) {
1084		(*packet_size) = 0;
1085		(*filename_size) = 0;
1086		(*filename) = NULL;
1087	}
1088	if (auth_tok_key) {
1089		up_write(&(auth_tok_key->sem));
1090		key_put(auth_tok_key);
1091	}
1092	skcipher_request_free(s->skcipher_req);
1093	kfree(s);
1094	return rc;
1095}
1096
1097static int
1098ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1099{
1100	int rc = 0;
1101
1102	(*sig) = NULL;
1103	switch (auth_tok->token_type) {
1104	case ECRYPTFS_PASSWORD:
1105		(*sig) = auth_tok->token.password.signature;
1106		break;
1107	case ECRYPTFS_PRIVATE_KEY:
1108		(*sig) = auth_tok->token.private_key.signature;
1109		break;
1110	default:
1111		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1112		       auth_tok->token_type);
1113		rc = -EINVAL;
1114	}
1115	return rc;
1116}
1117
1118/**
1119 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1120 * @auth_tok: The key authentication token used to decrypt the session key
1121 * @crypt_stat: The cryptographic context
1122 *
1123 * Returns zero on success; non-zero error otherwise.
1124 */
1125static int
1126decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1127				  struct ecryptfs_crypt_stat *crypt_stat)
1128{
1129	u8 cipher_code = 0;
1130	struct ecryptfs_msg_ctx *msg_ctx;
1131	struct ecryptfs_message *msg = NULL;
1132	char *auth_tok_sig;
1133	char *payload = NULL;
1134	size_t payload_len = 0;
1135	int rc;
1136
1137	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1138	if (rc) {
1139		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1140		       auth_tok->token_type);
1141		goto out;
1142	}
1143	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1144				 &payload, &payload_len);
1145	if (rc) {
1146		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1147		goto out;
1148	}
1149	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1150	if (rc) {
1151		ecryptfs_printk(KERN_ERR, "Error sending message to "
1152				"ecryptfsd: %d\n", rc);
1153		goto out;
1154	}
1155	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1156	if (rc) {
1157		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1158				"from the user space daemon\n");
1159		rc = -EIO;
1160		goto out;
1161	}
1162	rc = parse_tag_65_packet(&(auth_tok->session_key),
1163				 &cipher_code, msg);
1164	if (rc) {
1165		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1166		       rc);
1167		goto out;
1168	}
1169	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1170	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1171	       auth_tok->session_key.decrypted_key_size);
1172	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1173	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1174	if (rc) {
1175		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1176				cipher_code);
1177		goto out;
1178	}
1179	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1180	if (ecryptfs_verbosity > 0) {
1181		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1182		ecryptfs_dump_hex(crypt_stat->key,
1183				  crypt_stat->key_size);
1184	}
1185out:
1186	kfree(msg);
1187	kfree(payload);
1188	return rc;
1189}
1190
1191static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1192{
1193	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1194	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1195
1196	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1197				 auth_tok_list_head, list) {
1198		list_del(&auth_tok_list_item->list);
1199		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1200				auth_tok_list_item);
1201	}
1202}
1203
1204struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1205
1206/**
1207 * parse_tag_1_packet
1208 * @crypt_stat: The cryptographic context to modify based on packet contents
1209 * @data: The raw bytes of the packet.
1210 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1211 *                 a new authentication token will be placed at the
1212 *                 end of this list for this packet.
1213 * @new_auth_tok: Pointer to a pointer to memory that this function
1214 *                allocates; sets the memory address of the pointer to
1215 *                NULL on error. This object is added to the
1216 *                auth_tok_list.
1217 * @packet_size: This function writes the size of the parsed packet
1218 *               into this memory location; zero on error.
1219 * @max_packet_size: The maximum allowable packet size
1220 *
1221 * Returns zero on success; non-zero on error.
1222 */
1223static int
1224parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1225		   unsigned char *data, struct list_head *auth_tok_list,
1226		   struct ecryptfs_auth_tok **new_auth_tok,
1227		   size_t *packet_size, size_t max_packet_size)
1228{
1229	size_t body_size;
1230	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1231	size_t length_size;
1232	int rc = 0;
1233
1234	(*packet_size) = 0;
1235	(*new_auth_tok) = NULL;
1236	/**
1237	 * This format is inspired by OpenPGP; see RFC 2440
1238	 * packet tag 1
1239	 *
1240	 * Tag 1 identifier (1 byte)
1241	 * Max Tag 1 packet size (max 3 bytes)
1242	 * Version (1 byte)
1243	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1244	 * Cipher identifier (1 byte)
1245	 * Encrypted key size (arbitrary)
1246	 *
1247	 * 12 bytes minimum packet size
1248	 */
1249	if (unlikely(max_packet_size < 12)) {
1250		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1251		rc = -EINVAL;
1252		goto out;
1253	}
1254	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1255		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1256		       ECRYPTFS_TAG_1_PACKET_TYPE);
1257		rc = -EINVAL;
1258		goto out;
1259	}
1260	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1261	 * at end of function upon failure */
1262	auth_tok_list_item =
1263		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1264				  GFP_KERNEL);
1265	if (!auth_tok_list_item) {
1266		printk(KERN_ERR "Unable to allocate memory\n");
1267		rc = -ENOMEM;
1268		goto out;
1269	}
1270	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1271	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1272					  &length_size);
1273	if (rc) {
1274		printk(KERN_WARNING "Error parsing packet length; "
1275		       "rc = [%d]\n", rc);
1276		goto out_free;
1277	}
1278	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1279		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1280		rc = -EINVAL;
1281		goto out_free;
1282	}
1283	(*packet_size) += length_size;
1284	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1285		printk(KERN_WARNING "Packet size exceeds max\n");
1286		rc = -EINVAL;
1287		goto out_free;
1288	}
1289	if (unlikely(data[(*packet_size)++] != 0x03)) {
1290		printk(KERN_WARNING "Unknown version number [%d]\n",
1291		       data[(*packet_size) - 1]);
1292		rc = -EINVAL;
1293		goto out_free;
1294	}
1295	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1296			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1297	*packet_size += ECRYPTFS_SIG_SIZE;
1298	/* This byte is skipped because the kernel does not need to
1299	 * know which public key encryption algorithm was used */
1300	(*packet_size)++;
1301	(*new_auth_tok)->session_key.encrypted_key_size =
1302		body_size - (ECRYPTFS_SIG_SIZE + 2);
1303	if ((*new_auth_tok)->session_key.encrypted_key_size
1304	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1305		printk(KERN_WARNING "Tag 1 packet contains key larger "
1306		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1307		rc = -EINVAL;
1308		goto out_free;
1309	}
1310	memcpy((*new_auth_tok)->session_key.encrypted_key,
1311	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1312	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1313	(*new_auth_tok)->session_key.flags &=
1314		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1315	(*new_auth_tok)->session_key.flags |=
1316		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1317	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1318	(*new_auth_tok)->flags = 0;
1319	(*new_auth_tok)->session_key.flags &=
1320		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1321	(*new_auth_tok)->session_key.flags &=
1322		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1323	list_add(&auth_tok_list_item->list, auth_tok_list);
1324	goto out;
1325out_free:
1326	(*new_auth_tok) = NULL;
1327	memset(auth_tok_list_item, 0,
1328	       sizeof(struct ecryptfs_auth_tok_list_item));
1329	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1330			auth_tok_list_item);
1331out:
1332	if (rc)
1333		(*packet_size) = 0;
1334	return rc;
1335}
1336
1337/**
1338 * parse_tag_3_packet
1339 * @crypt_stat: The cryptographic context to modify based on packet
1340 *              contents.
1341 * @data: The raw bytes of the packet.
1342 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1343 *                 a new authentication token will be placed at the end
1344 *                 of this list for this packet.
1345 * @new_auth_tok: Pointer to a pointer to memory that this function
1346 *                allocates; sets the memory address of the pointer to
1347 *                NULL on error. This object is added to the
1348 *                auth_tok_list.
1349 * @packet_size: This function writes the size of the parsed packet
1350 *               into this memory location; zero on error.
1351 * @max_packet_size: maximum number of bytes to parse
1352 *
1353 * Returns zero on success; non-zero on error.
1354 */
1355static int
1356parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1357		   unsigned char *data, struct list_head *auth_tok_list,
1358		   struct ecryptfs_auth_tok **new_auth_tok,
1359		   size_t *packet_size, size_t max_packet_size)
1360{
1361	size_t body_size;
1362	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1363	size_t length_size;
1364	int rc = 0;
1365
1366	(*packet_size) = 0;
1367	(*new_auth_tok) = NULL;
1368	/**
1369	 *This format is inspired by OpenPGP; see RFC 2440
1370	 * packet tag 3
1371	 *
1372	 * Tag 3 identifier (1 byte)
1373	 * Max Tag 3 packet size (max 3 bytes)
1374	 * Version (1 byte)
1375	 * Cipher code (1 byte)
1376	 * S2K specifier (1 byte)
1377	 * Hash identifier (1 byte)
1378	 * Salt (ECRYPTFS_SALT_SIZE)
1379	 * Hash iterations (1 byte)
1380	 * Encrypted key (arbitrary)
1381	 *
1382	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1383	 */
1384	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1385		printk(KERN_ERR "Max packet size too large\n");
1386		rc = -EINVAL;
1387		goto out;
1388	}
1389	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1390		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1391		       ECRYPTFS_TAG_3_PACKET_TYPE);
1392		rc = -EINVAL;
1393		goto out;
1394	}
1395	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1396	 * at end of function upon failure */
1397	auth_tok_list_item =
1398	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1399	if (!auth_tok_list_item) {
1400		printk(KERN_ERR "Unable to allocate memory\n");
1401		rc = -ENOMEM;
1402		goto out;
1403	}
1404	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1405	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1406					  &length_size);
1407	if (rc) {
1408		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1409		       rc);
1410		goto out_free;
1411	}
1412	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1413		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1414		rc = -EINVAL;
1415		goto out_free;
1416	}
1417	(*packet_size) += length_size;
1418	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1419		printk(KERN_ERR "Packet size exceeds max\n");
1420		rc = -EINVAL;
1421		goto out_free;
1422	}
1423	(*new_auth_tok)->session_key.encrypted_key_size =
1424		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1425	if ((*new_auth_tok)->session_key.encrypted_key_size
1426	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1427		printk(KERN_WARNING "Tag 3 packet contains key larger "
1428		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1429		rc = -EINVAL;
1430		goto out_free;
1431	}
1432	if (unlikely(data[(*packet_size)++] != 0x04)) {
1433		printk(KERN_WARNING "Unknown version number [%d]\n",
1434		       data[(*packet_size) - 1]);
1435		rc = -EINVAL;
1436		goto out_free;
1437	}
1438	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1439					    (u16)data[(*packet_size)]);
1440	if (rc)
1441		goto out_free;
1442	/* A little extra work to differentiate among the AES key
1443	 * sizes; see RFC2440 */
1444	switch(data[(*packet_size)++]) {
1445	case RFC2440_CIPHER_AES_192:
1446		crypt_stat->key_size = 24;
1447		break;
1448	default:
1449		crypt_stat->key_size =
1450			(*new_auth_tok)->session_key.encrypted_key_size;
1451	}
1452	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1453	if (rc)
1454		goto out_free;
1455	if (unlikely(data[(*packet_size)++] != 0x03)) {
1456		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1457		rc = -ENOSYS;
1458		goto out_free;
1459	}
1460	/* TODO: finish the hash mapping */
1461	switch (data[(*packet_size)++]) {
1462	case 0x01: /* See RFC2440 for these numbers and their mappings */
1463		/* Choose MD5 */
1464		memcpy((*new_auth_tok)->token.password.salt,
1465		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1466		(*packet_size) += ECRYPTFS_SALT_SIZE;
1467		/* This conversion was taken straight from RFC2440 */
1468		(*new_auth_tok)->token.password.hash_iterations =
1469			((u32) 16 + (data[(*packet_size)] & 15))
1470				<< ((data[(*packet_size)] >> 4) + 6);
1471		(*packet_size)++;
1472		/* Friendly reminder:
1473		 * (*new_auth_tok)->session_key.encrypted_key_size =
1474		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1475		memcpy((*new_auth_tok)->session_key.encrypted_key,
1476		       &data[(*packet_size)],
1477		       (*new_auth_tok)->session_key.encrypted_key_size);
1478		(*packet_size) +=
1479			(*new_auth_tok)->session_key.encrypted_key_size;
1480		(*new_auth_tok)->session_key.flags &=
1481			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1482		(*new_auth_tok)->session_key.flags |=
1483			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1484		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1485		break;
1486	default:
1487		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1488				"[%d]\n", data[(*packet_size) - 1]);
1489		rc = -ENOSYS;
1490		goto out_free;
1491	}
1492	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1493	/* TODO: Parametarize; we might actually want userspace to
1494	 * decrypt the session key. */
1495	(*new_auth_tok)->session_key.flags &=
1496			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1497	(*new_auth_tok)->session_key.flags &=
1498			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1499	list_add(&auth_tok_list_item->list, auth_tok_list);
1500	goto out;
1501out_free:
1502	(*new_auth_tok) = NULL;
1503	memset(auth_tok_list_item, 0,
1504	       sizeof(struct ecryptfs_auth_tok_list_item));
1505	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1506			auth_tok_list_item);
1507out:
1508	if (rc)
1509		(*packet_size) = 0;
1510	return rc;
1511}
1512
1513/**
1514 * parse_tag_11_packet
1515 * @data: The raw bytes of the packet
1516 * @contents: This function writes the data contents of the literal
1517 *            packet into this memory location
1518 * @max_contents_bytes: The maximum number of bytes that this function
1519 *                      is allowed to write into contents
1520 * @tag_11_contents_size: This function writes the size of the parsed
1521 *                        contents into this memory location; zero on
1522 *                        error
1523 * @packet_size: This function writes the size of the parsed packet
1524 *               into this memory location; zero on error
1525 * @max_packet_size: maximum number of bytes to parse
1526 *
1527 * Returns zero on success; non-zero on error.
1528 */
1529static int
1530parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1531		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1532		    size_t *packet_size, size_t max_packet_size)
1533{
1534	size_t body_size;
1535	size_t length_size;
1536	int rc = 0;
1537
1538	(*packet_size) = 0;
1539	(*tag_11_contents_size) = 0;
1540	/* This format is inspired by OpenPGP; see RFC 2440
1541	 * packet tag 11
1542	 *
1543	 * Tag 11 identifier (1 byte)
1544	 * Max Tag 11 packet size (max 3 bytes)
1545	 * Binary format specifier (1 byte)
1546	 * Filename length (1 byte)
1547	 * Filename ("_CONSOLE") (8 bytes)
1548	 * Modification date (4 bytes)
1549	 * Literal data (arbitrary)
1550	 *
1551	 * We need at least 16 bytes of data for the packet to even be
1552	 * valid.
1553	 */
1554	if (max_packet_size < 16) {
1555		printk(KERN_ERR "Maximum packet size too small\n");
1556		rc = -EINVAL;
1557		goto out;
1558	}
1559	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1560		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1561		rc = -EINVAL;
1562		goto out;
1563	}
1564	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1565					  &length_size);
1566	if (rc) {
1567		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1568		goto out;
1569	}
1570	if (body_size < 14) {
1571		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1572		rc = -EINVAL;
1573		goto out;
1574	}
1575	(*packet_size) += length_size;
1576	(*tag_11_contents_size) = (body_size - 14);
1577	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1578		printk(KERN_ERR "Packet size exceeds max\n");
1579		rc = -EINVAL;
1580		goto out;
1581	}
1582	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1583		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1584		       "expected size\n");
1585		rc = -EINVAL;
1586		goto out;
1587	}
1588	if (data[(*packet_size)++] != 0x62) {
1589		printk(KERN_WARNING "Unrecognizable packet\n");
1590		rc = -EINVAL;
1591		goto out;
1592	}
1593	if (data[(*packet_size)++] != 0x08) {
1594		printk(KERN_WARNING "Unrecognizable packet\n");
1595		rc = -EINVAL;
1596		goto out;
1597	}
1598	(*packet_size) += 12; /* Ignore filename and modification date */
1599	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1600	(*packet_size) += (*tag_11_contents_size);
1601out:
1602	if (rc) {
1603		(*packet_size) = 0;
1604		(*tag_11_contents_size) = 0;
1605	}
1606	return rc;
1607}
1608
1609int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1610				      struct ecryptfs_auth_tok **auth_tok,
1611				      char *sig)
1612{
1613	int rc = 0;
1614
1615	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1616	if (IS_ERR(*auth_tok_key)) {
1617		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1618		if (IS_ERR(*auth_tok_key)) {
1619			printk(KERN_ERR "Could not find key with description: [%s]\n",
1620			      sig);
1621			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1622			(*auth_tok_key) = NULL;
1623			goto out;
1624		}
1625	}
1626	down_write(&(*auth_tok_key)->sem);
1627	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1628	if (rc) {
1629		up_write(&(*auth_tok_key)->sem);
1630		key_put(*auth_tok_key);
1631		(*auth_tok_key) = NULL;
1632		goto out;
1633	}
1634out:
1635	return rc;
1636}
1637
1638/**
1639 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1640 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1641 * @crypt_stat: The cryptographic context
1642 *
1643 * Returns zero on success; non-zero error otherwise
1644 */
1645static int
1646decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1647					 struct ecryptfs_crypt_stat *crypt_stat)
1648{
1649	struct scatterlist dst_sg[2];
1650	struct scatterlist src_sg[2];
1651	struct mutex *tfm_mutex;
1652	struct crypto_skcipher *tfm;
1653	struct skcipher_request *req = NULL;
1654	int rc = 0;
1655
1656	if (unlikely(ecryptfs_verbosity > 0)) {
1657		ecryptfs_printk(
1658			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1659			auth_tok->token.password.session_key_encryption_key_bytes);
1660		ecryptfs_dump_hex(
1661			auth_tok->token.password.session_key_encryption_key,
1662			auth_tok->token.password.session_key_encryption_key_bytes);
1663	}
1664	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1665							crypt_stat->cipher);
1666	if (unlikely(rc)) {
1667		printk(KERN_ERR "Internal error whilst attempting to get "
1668		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1669		       crypt_stat->cipher, rc);
1670		goto out;
1671	}
1672	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1673				 auth_tok->session_key.encrypted_key_size,
1674				 src_sg, 2);
1675	if (rc < 1 || rc > 2) {
1676		printk(KERN_ERR "Internal error whilst attempting to convert "
1677			"auth_tok->session_key.encrypted_key to scatterlist; "
1678			"expected rc = 1; got rc = [%d]. "
1679		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1680			auth_tok->session_key.encrypted_key_size);
1681		goto out;
1682	}
1683	auth_tok->session_key.decrypted_key_size =
1684		auth_tok->session_key.encrypted_key_size;
1685	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1686				 auth_tok->session_key.decrypted_key_size,
1687				 dst_sg, 2);
1688	if (rc < 1 || rc > 2) {
1689		printk(KERN_ERR "Internal error whilst attempting to convert "
1690			"auth_tok->session_key.decrypted_key to scatterlist; "
1691			"expected rc = 1; got rc = [%d]\n", rc);
1692		goto out;
1693	}
1694	mutex_lock(tfm_mutex);
1695	req = skcipher_request_alloc(tfm, GFP_KERNEL);
1696	if (!req) {
1697		mutex_unlock(tfm_mutex);
1698		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1699		       "skcipher_request_alloc for %s\n", __func__,
1700		       crypto_skcipher_driver_name(tfm));
1701		rc = -ENOMEM;
1702		goto out;
1703	}
1704
1705	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1706				      NULL, NULL);
1707	rc = crypto_skcipher_setkey(
1708		tfm, auth_tok->token.password.session_key_encryption_key,
1709		crypt_stat->key_size);
1710	if (unlikely(rc < 0)) {
1711		mutex_unlock(tfm_mutex);
1712		printk(KERN_ERR "Error setting key for crypto context\n");
1713		rc = -EINVAL;
1714		goto out;
1715	}
1716	skcipher_request_set_crypt(req, src_sg, dst_sg,
1717				   auth_tok->session_key.encrypted_key_size,
1718				   NULL);
1719	rc = crypto_skcipher_decrypt(req);
1720	mutex_unlock(tfm_mutex);
1721	if (unlikely(rc)) {
1722		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1723		goto out;
1724	}
1725	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1726	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1727	       auth_tok->session_key.decrypted_key_size);
1728	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1729	if (unlikely(ecryptfs_verbosity > 0)) {
1730		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1731				crypt_stat->key_size);
1732		ecryptfs_dump_hex(crypt_stat->key,
1733				  crypt_stat->key_size);
1734	}
1735out:
1736	skcipher_request_free(req);
1737	return rc;
1738}
1739
1740/**
1741 * ecryptfs_parse_packet_set
1742 * @crypt_stat: The cryptographic context
1743 * @src: Virtual address of region of memory containing the packets
1744 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1745 *
1746 * Get crypt_stat to have the file's session key if the requisite key
1747 * is available to decrypt the session key.
1748 *
1749 * Returns Zero if a valid authentication token was retrieved and
1750 * processed; negative value for file not encrypted or for error
1751 * conditions.
1752 */
1753int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1754			      unsigned char *src,
1755			      struct dentry *ecryptfs_dentry)
1756{
1757	size_t i = 0;
1758	size_t found_auth_tok;
1759	size_t next_packet_is_auth_tok_packet;
1760	struct list_head auth_tok_list;
1761	struct ecryptfs_auth_tok *matching_auth_tok;
1762	struct ecryptfs_auth_tok *candidate_auth_tok;
1763	char *candidate_auth_tok_sig;
1764	size_t packet_size;
1765	struct ecryptfs_auth_tok *new_auth_tok;
1766	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1767	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1768	size_t tag_11_contents_size;
1769	size_t tag_11_packet_size;
1770	struct key *auth_tok_key = NULL;
1771	int rc = 0;
1772
1773	INIT_LIST_HEAD(&auth_tok_list);
1774	/* Parse the header to find as many packets as we can; these will be
1775	 * added the our &auth_tok_list */
1776	next_packet_is_auth_tok_packet = 1;
1777	while (next_packet_is_auth_tok_packet) {
1778		size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1779
1780		switch (src[i]) {
1781		case ECRYPTFS_TAG_3_PACKET_TYPE:
1782			rc = parse_tag_3_packet(crypt_stat,
1783						(unsigned char *)&src[i],
1784						&auth_tok_list, &new_auth_tok,
1785						&packet_size, max_packet_size);
1786			if (rc) {
1787				ecryptfs_printk(KERN_ERR, "Error parsing "
1788						"tag 3 packet\n");
1789				rc = -EIO;
1790				goto out_wipe_list;
1791			}
1792			i += packet_size;
1793			rc = parse_tag_11_packet((unsigned char *)&src[i],
1794						 sig_tmp_space,
1795						 ECRYPTFS_SIG_SIZE,
1796						 &tag_11_contents_size,
1797						 &tag_11_packet_size,
1798						 max_packet_size);
1799			if (rc) {
1800				ecryptfs_printk(KERN_ERR, "No valid "
1801						"(ecryptfs-specific) literal "
1802						"packet containing "
1803						"authentication token "
1804						"signature found after "
1805						"tag 3 packet\n");
1806				rc = -EIO;
1807				goto out_wipe_list;
1808			}
1809			i += tag_11_packet_size;
1810			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1811				ecryptfs_printk(KERN_ERR, "Expected "
1812						"signature of size [%d]; "
1813						"read size [%zd]\n",
1814						ECRYPTFS_SIG_SIZE,
1815						tag_11_contents_size);
1816				rc = -EIO;
1817				goto out_wipe_list;
1818			}
1819			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1820					sig_tmp_space, tag_11_contents_size);
1821			new_auth_tok->token.password.signature[
1822				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1823			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1824			break;
1825		case ECRYPTFS_TAG_1_PACKET_TYPE:
1826			rc = parse_tag_1_packet(crypt_stat,
1827						(unsigned char *)&src[i],
1828						&auth_tok_list, &new_auth_tok,
1829						&packet_size, max_packet_size);
1830			if (rc) {
1831				ecryptfs_printk(KERN_ERR, "Error parsing "
1832						"tag 1 packet\n");
1833				rc = -EIO;
1834				goto out_wipe_list;
1835			}
1836			i += packet_size;
1837			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1838			break;
1839		case ECRYPTFS_TAG_11_PACKET_TYPE:
1840			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1841					"(Tag 11 not allowed by itself)\n");
1842			rc = -EIO;
1843			goto out_wipe_list;
1844		default:
1845			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1846					"of the file header; hex value of "
1847					"character is [0x%.2x]\n", i, src[i]);
1848			next_packet_is_auth_tok_packet = 0;
1849		}
1850	}
1851	if (list_empty(&auth_tok_list)) {
1852		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1853		       "eCryptfs file; this is not supported in this version "
1854		       "of the eCryptfs kernel module\n");
1855		rc = -EINVAL;
1856		goto out;
1857	}
1858	/* auth_tok_list contains the set of authentication tokens
1859	 * parsed from the metadata. We need to find a matching
1860	 * authentication token that has the secret component(s)
1861	 * necessary to decrypt the EFEK in the auth_tok parsed from
1862	 * the metadata. There may be several potential matches, but
1863	 * just one will be sufficient to decrypt to get the FEK. */
1864find_next_matching_auth_tok:
1865	found_auth_tok = 0;
1866	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1867		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1868		if (unlikely(ecryptfs_verbosity > 0)) {
1869			ecryptfs_printk(KERN_DEBUG,
1870					"Considering candidate auth tok:\n");
1871			ecryptfs_dump_auth_tok(candidate_auth_tok);
1872		}
1873		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1874					       candidate_auth_tok);
1875		if (rc) {
1876			printk(KERN_ERR
1877			       "Unrecognized candidate auth tok type: [%d]\n",
1878			       candidate_auth_tok->token_type);
1879			rc = -EINVAL;
1880			goto out_wipe_list;
1881		}
1882		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1883					       &matching_auth_tok,
1884					       crypt_stat->mount_crypt_stat,
1885					       candidate_auth_tok_sig);
1886		if (!rc) {
1887			found_auth_tok = 1;
1888			goto found_matching_auth_tok;
1889		}
1890	}
1891	if (!found_auth_tok) {
1892		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1893				"authentication token\n");
1894		rc = -EIO;
1895		goto out_wipe_list;
1896	}
1897found_matching_auth_tok:
1898	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1899		memcpy(&(candidate_auth_tok->token.private_key),
1900		       &(matching_auth_tok->token.private_key),
1901		       sizeof(struct ecryptfs_private_key));
1902		up_write(&(auth_tok_key->sem));
1903		key_put(auth_tok_key);
1904		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1905						       crypt_stat);
1906	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1907		memcpy(&(candidate_auth_tok->token.password),
1908		       &(matching_auth_tok->token.password),
1909		       sizeof(struct ecryptfs_password));
1910		up_write(&(auth_tok_key->sem));
1911		key_put(auth_tok_key);
1912		rc = decrypt_passphrase_encrypted_session_key(
1913			candidate_auth_tok, crypt_stat);
1914	} else {
1915		up_write(&(auth_tok_key->sem));
1916		key_put(auth_tok_key);
1917		rc = -EINVAL;
1918	}
1919	if (rc) {
1920		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1921
1922		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1923				"session key for authentication token with sig "
1924				"[%.*s]; rc = [%d]. Removing auth tok "
1925				"candidate from the list and searching for "
1926				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1927				candidate_auth_tok_sig,	rc);
1928		list_for_each_entry_safe(auth_tok_list_item,
1929					 auth_tok_list_item_tmp,
1930					 &auth_tok_list, list) {
1931			if (candidate_auth_tok
1932			    == &auth_tok_list_item->auth_tok) {
1933				list_del(&auth_tok_list_item->list);
1934				kmem_cache_free(
1935					ecryptfs_auth_tok_list_item_cache,
1936					auth_tok_list_item);
1937				goto find_next_matching_auth_tok;
1938			}
1939		}
1940		BUG();
1941	}
1942	rc = ecryptfs_compute_root_iv(crypt_stat);
1943	if (rc) {
1944		ecryptfs_printk(KERN_ERR, "Error computing "
1945				"the root IV\n");
1946		goto out_wipe_list;
1947	}
1948	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1949	if (rc) {
1950		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1951				"context for cipher [%s]; rc = [%d]\n",
1952				crypt_stat->cipher, rc);
1953	}
1954out_wipe_list:
1955	wipe_auth_tok_list(&auth_tok_list);
1956out:
1957	return rc;
1958}
1959
1960static int
1961pki_encrypt_session_key(struct key *auth_tok_key,
1962			struct ecryptfs_auth_tok *auth_tok,
1963			struct ecryptfs_crypt_stat *crypt_stat,
1964			struct ecryptfs_key_record *key_rec)
1965{
1966	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1967	char *payload = NULL;
1968	size_t payload_len = 0;
1969	struct ecryptfs_message *msg;
1970	int rc;
1971
1972	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1973				 ecryptfs_code_for_cipher_string(
1974					 crypt_stat->cipher,
1975					 crypt_stat->key_size),
1976				 crypt_stat, &payload, &payload_len);
1977	up_write(&(auth_tok_key->sem));
1978	key_put(auth_tok_key);
1979	if (rc) {
1980		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1981		goto out;
1982	}
1983	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1984	if (rc) {
1985		ecryptfs_printk(KERN_ERR, "Error sending message to "
1986				"ecryptfsd: %d\n", rc);
1987		goto out;
1988	}
1989	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1990	if (rc) {
1991		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1992				"from the user space daemon\n");
1993		rc = -EIO;
1994		goto out;
1995	}
1996	rc = parse_tag_67_packet(key_rec, msg);
1997	if (rc)
1998		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1999	kfree(msg);
2000out:
2001	kfree(payload);
2002	return rc;
2003}
2004/**
2005 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2006 * @dest: Buffer into which to write the packet
2007 * @remaining_bytes: Maximum number of bytes that can be writtn
2008 * @auth_tok_key: The authentication token key to unlock and put when done with
2009 *                @auth_tok
2010 * @auth_tok: The authentication token used for generating the tag 1 packet
2011 * @crypt_stat: The cryptographic context
2012 * @key_rec: The key record struct for the tag 1 packet
2013 * @packet_size: This function will write the number of bytes that end
2014 *               up constituting the packet; set to zero on error
2015 *
2016 * Returns zero on success; non-zero on error.
2017 */
2018static int
2019write_tag_1_packet(char *dest, size_t *remaining_bytes,
2020		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2021		   struct ecryptfs_crypt_stat *crypt_stat,
2022		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2023{
2024	size_t i;
2025	size_t encrypted_session_key_valid = 0;
2026	size_t packet_size_length;
2027	size_t max_packet_size;
2028	int rc = 0;
2029
2030	(*packet_size) = 0;
2031	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2032			  ECRYPTFS_SIG_SIZE);
2033	encrypted_session_key_valid = 0;
2034	for (i = 0; i < crypt_stat->key_size; i++)
2035		encrypted_session_key_valid |=
2036			auth_tok->session_key.encrypted_key[i];
2037	if (encrypted_session_key_valid) {
2038		memcpy(key_rec->enc_key,
2039		       auth_tok->session_key.encrypted_key,
2040		       auth_tok->session_key.encrypted_key_size);
2041		up_write(&(auth_tok_key->sem));
2042		key_put(auth_tok_key);
2043		goto encrypted_session_key_set;
2044	}
2045	if (auth_tok->session_key.encrypted_key_size == 0)
2046		auth_tok->session_key.encrypted_key_size =
2047			auth_tok->token.private_key.key_size;
2048	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2049				     key_rec);
2050	if (rc) {
2051		printk(KERN_ERR "Failed to encrypt session key via a key "
2052		       "module; rc = [%d]\n", rc);
2053		goto out;
2054	}
2055	if (ecryptfs_verbosity > 0) {
2056		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2057		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2058	}
2059encrypted_session_key_set:
2060	/* This format is inspired by OpenPGP; see RFC 2440
2061	 * packet tag 1 */
2062	max_packet_size = (1                         /* Tag 1 identifier */
2063			   + 3                       /* Max Tag 1 packet size */
2064			   + 1                       /* Version */
2065			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2066			   + 1                       /* Cipher identifier */
2067			   + key_rec->enc_key_size); /* Encrypted key size */
2068	if (max_packet_size > (*remaining_bytes)) {
2069		printk(KERN_ERR "Packet length larger than maximum allowable; "
2070		       "need up to [%td] bytes, but there are only [%td] "
2071		       "available\n", max_packet_size, (*remaining_bytes));
2072		rc = -EINVAL;
2073		goto out;
2074	}
2075	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2076	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2077					  (max_packet_size - 4),
2078					  &packet_size_length);
2079	if (rc) {
2080		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2081				"header; cannot generate packet length\n");
2082		goto out;
2083	}
2084	(*packet_size) += packet_size_length;
2085	dest[(*packet_size)++] = 0x03; /* version 3 */
2086	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2087	(*packet_size) += ECRYPTFS_SIG_SIZE;
2088	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2089	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2090	       key_rec->enc_key_size);
2091	(*packet_size) += key_rec->enc_key_size;
2092out:
2093	if (rc)
2094		(*packet_size) = 0;
2095	else
2096		(*remaining_bytes) -= (*packet_size);
2097	return rc;
2098}
2099
2100/**
2101 * write_tag_11_packet
2102 * @dest: Target into which Tag 11 packet is to be written
2103 * @remaining_bytes: Maximum packet length
2104 * @contents: Byte array of contents to copy in
2105 * @contents_length: Number of bytes in contents
2106 * @packet_length: Length of the Tag 11 packet written; zero on error
2107 *
2108 * Returns zero on success; non-zero on error.
2109 */
2110static int
2111write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2112		    size_t contents_length, size_t *packet_length)
2113{
2114	size_t packet_size_length;
2115	size_t max_packet_size;
2116	int rc = 0;
2117
2118	(*packet_length) = 0;
2119	/* This format is inspired by OpenPGP; see RFC 2440
2120	 * packet tag 11 */
2121	max_packet_size = (1                   /* Tag 11 identifier */
2122			   + 3                 /* Max Tag 11 packet size */
2123			   + 1                 /* Binary format specifier */
2124			   + 1                 /* Filename length */
2125			   + 8                 /* Filename ("_CONSOLE") */
2126			   + 4                 /* Modification date */
2127			   + contents_length); /* Literal data */
2128	if (max_packet_size > (*remaining_bytes)) {
2129		printk(KERN_ERR "Packet length larger than maximum allowable; "
2130		       "need up to [%td] bytes, but there are only [%td] "
2131		       "available\n", max_packet_size, (*remaining_bytes));
2132		rc = -EINVAL;
2133		goto out;
2134	}
2135	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2136	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2137					  (max_packet_size - 4),
2138					  &packet_size_length);
2139	if (rc) {
2140		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2141		       "generate packet length. rc = [%d]\n", rc);
2142		goto out;
2143	}
2144	(*packet_length) += packet_size_length;
2145	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2146	dest[(*packet_length)++] = 8;
2147	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2148	(*packet_length) += 8;
2149	memset(&dest[(*packet_length)], 0x00, 4);
2150	(*packet_length) += 4;
2151	memcpy(&dest[(*packet_length)], contents, contents_length);
2152	(*packet_length) += contents_length;
2153 out:
2154	if (rc)
2155		(*packet_length) = 0;
2156	else
2157		(*remaining_bytes) -= (*packet_length);
2158	return rc;
2159}
2160
2161/**
2162 * write_tag_3_packet
2163 * @dest: Buffer into which to write the packet
2164 * @remaining_bytes: Maximum number of bytes that can be written
2165 * @auth_tok: Authentication token
2166 * @crypt_stat: The cryptographic context
2167 * @key_rec: encrypted key
2168 * @packet_size: This function will write the number of bytes that end
2169 *               up constituting the packet; set to zero on error
2170 *
2171 * Returns zero on success; non-zero on error.
2172 */
2173static int
2174write_tag_3_packet(char *dest, size_t *remaining_bytes,
2175		   struct ecryptfs_auth_tok *auth_tok,
2176		   struct ecryptfs_crypt_stat *crypt_stat,
2177		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2178{
2179	size_t i;
2180	size_t encrypted_session_key_valid = 0;
2181	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2182	struct scatterlist dst_sg[2];
2183	struct scatterlist src_sg[2];
2184	struct mutex *tfm_mutex = NULL;
2185	u8 cipher_code;
2186	size_t packet_size_length;
2187	size_t max_packet_size;
2188	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2189		crypt_stat->mount_crypt_stat;
2190	struct crypto_skcipher *tfm;
2191	struct skcipher_request *req;
2192	int rc = 0;
2193
2194	(*packet_size) = 0;
2195	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2196			  ECRYPTFS_SIG_SIZE);
2197	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2198							crypt_stat->cipher);
2199	if (unlikely(rc)) {
2200		printk(KERN_ERR "Internal error whilst attempting to get "
2201		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2202		       crypt_stat->cipher, rc);
2203		goto out;
2204	}
2205	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2206		printk(KERN_WARNING "No key size specified at mount; "
2207		       "defaulting to [%d]\n",
2208		       crypto_skcipher_max_keysize(tfm));
2209		mount_crypt_stat->global_default_cipher_key_size =
2210			crypto_skcipher_max_keysize(tfm);
2211	}
2212	if (crypt_stat->key_size == 0)
2213		crypt_stat->key_size =
2214			mount_crypt_stat->global_default_cipher_key_size;
2215	if (auth_tok->session_key.encrypted_key_size == 0)
2216		auth_tok->session_key.encrypted_key_size =
2217			crypt_stat->key_size;
2218	if (crypt_stat->key_size == 24
2219	    && strcmp("aes", crypt_stat->cipher) == 0) {
2220		memset((crypt_stat->key + 24), 0, 8);
2221		auth_tok->session_key.encrypted_key_size = 32;
2222	} else
2223		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2224	key_rec->enc_key_size =
2225		auth_tok->session_key.encrypted_key_size;
2226	encrypted_session_key_valid = 0;
2227	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2228		encrypted_session_key_valid |=
2229			auth_tok->session_key.encrypted_key[i];
2230	if (encrypted_session_key_valid) {
2231		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2232				"using auth_tok->session_key.encrypted_key, "
2233				"where key_rec->enc_key_size = [%zd]\n",
2234				key_rec->enc_key_size);
2235		memcpy(key_rec->enc_key,
2236		       auth_tok->session_key.encrypted_key,
2237		       key_rec->enc_key_size);
2238		goto encrypted_session_key_set;
2239	}
2240	if (auth_tok->token.password.flags &
2241	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2242		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2243				"session key encryption key of size [%d]\n",
2244				auth_tok->token.password.
2245				session_key_encryption_key_bytes);
2246		memcpy(session_key_encryption_key,
2247		       auth_tok->token.password.session_key_encryption_key,
2248		       crypt_stat->key_size);
2249		ecryptfs_printk(KERN_DEBUG,
2250				"Cached session key encryption key:\n");
2251		if (ecryptfs_verbosity > 0)
2252			ecryptfs_dump_hex(session_key_encryption_key, 16);
2253	}
2254	if (unlikely(ecryptfs_verbosity > 0)) {
2255		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2256		ecryptfs_dump_hex(session_key_encryption_key, 16);
2257	}
2258	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2259				 src_sg, 2);
2260	if (rc < 1 || rc > 2) {
2261		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2262				"for crypt_stat session key; expected rc = 1; "
2263				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2264				rc, key_rec->enc_key_size);
2265		rc = -ENOMEM;
2266		goto out;
2267	}
2268	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2269				 dst_sg, 2);
2270	if (rc < 1 || rc > 2) {
2271		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2272				"for crypt_stat encrypted session key; "
2273				"expected rc = 1; got rc = [%d]. "
2274				"key_rec->enc_key_size = [%zd]\n", rc,
2275				key_rec->enc_key_size);
2276		rc = -ENOMEM;
2277		goto out;
2278	}
2279	mutex_lock(tfm_mutex);
2280	rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2281				    crypt_stat->key_size);
2282	if (rc < 0) {
2283		mutex_unlock(tfm_mutex);
2284		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2285				"context; rc = [%d]\n", rc);
2286		goto out;
2287	}
2288
2289	req = skcipher_request_alloc(tfm, GFP_KERNEL);
2290	if (!req) {
2291		mutex_unlock(tfm_mutex);
2292		ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2293				"attempting to skcipher_request_alloc for "
2294				"%s\n", crypto_skcipher_driver_name(tfm));
2295		rc = -ENOMEM;
2296		goto out;
2297	}
2298
2299	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2300				      NULL, NULL);
2301
2302	rc = 0;
2303	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2304			crypt_stat->key_size);
2305	skcipher_request_set_crypt(req, src_sg, dst_sg,
2306				   (*key_rec).enc_key_size, NULL);
2307	rc = crypto_skcipher_encrypt(req);
2308	mutex_unlock(tfm_mutex);
2309	skcipher_request_free(req);
2310	if (rc) {
2311		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2312		goto out;
2313	}
2314	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2315	if (ecryptfs_verbosity > 0) {
2316		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2317				key_rec->enc_key_size);
2318		ecryptfs_dump_hex(key_rec->enc_key,
2319				  key_rec->enc_key_size);
2320	}
2321encrypted_session_key_set:
2322	/* This format is inspired by OpenPGP; see RFC 2440
2323	 * packet tag 3 */
2324	max_packet_size = (1                         /* Tag 3 identifier */
2325			   + 3                       /* Max Tag 3 packet size */
2326			   + 1                       /* Version */
2327			   + 1                       /* Cipher code */
2328			   + 1                       /* S2K specifier */
2329			   + 1                       /* Hash identifier */
2330			   + ECRYPTFS_SALT_SIZE      /* Salt */
2331			   + 1                       /* Hash iterations */
2332			   + key_rec->enc_key_size); /* Encrypted key size */
2333	if (max_packet_size > (*remaining_bytes)) {
2334		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2335		       "there are only [%td] available\n", max_packet_size,
2336		       (*remaining_bytes));
2337		rc = -EINVAL;
2338		goto out;
2339	}
2340	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2341	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2342	 * to get the number of octets in the actual Tag 3 packet */
2343	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2344					  (max_packet_size - 4),
2345					  &packet_size_length);
2346	if (rc) {
2347		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2348		       "generate packet length. rc = [%d]\n", rc);
2349		goto out;
2350	}
2351	(*packet_size) += packet_size_length;
2352	dest[(*packet_size)++] = 0x04; /* version 4 */
2353	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2354	 * specified with strings */
2355	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2356						      crypt_stat->key_size);
2357	if (cipher_code == 0) {
2358		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2359				"cipher [%s]\n", crypt_stat->cipher);
2360		rc = -EINVAL;
2361		goto out;
2362	}
2363	dest[(*packet_size)++] = cipher_code;
2364	dest[(*packet_size)++] = 0x03;	/* S2K */
2365	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2366	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2367	       ECRYPTFS_SALT_SIZE);
2368	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2369	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2370	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2371	       key_rec->enc_key_size);
2372	(*packet_size) += key_rec->enc_key_size;
2373out:
2374	if (rc)
2375		(*packet_size) = 0;
2376	else
2377		(*remaining_bytes) -= (*packet_size);
2378	return rc;
2379}
2380
2381struct kmem_cache *ecryptfs_key_record_cache;
2382
2383/**
2384 * ecryptfs_generate_key_packet_set
2385 * @dest_base: Virtual address from which to write the key record set
2386 * @crypt_stat: The cryptographic context from which the
2387 *              authentication tokens will be retrieved
2388 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2389 *                   for the global parameters
2390 * @len: The amount written
2391 * @max: The maximum amount of data allowed to be written
2392 *
2393 * Generates a key packet set and writes it to the virtual address
2394 * passed in.
2395 *
2396 * Returns zero on success; non-zero on error.
2397 */
2398int
2399ecryptfs_generate_key_packet_set(char *dest_base,
2400				 struct ecryptfs_crypt_stat *crypt_stat,
2401				 struct dentry *ecryptfs_dentry, size_t *len,
2402				 size_t max)
2403{
2404	struct ecryptfs_auth_tok *auth_tok;
2405	struct key *auth_tok_key = NULL;
2406	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2407		&ecryptfs_superblock_to_private(
2408			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2409	size_t written;
2410	struct ecryptfs_key_record *key_rec;
2411	struct ecryptfs_key_sig *key_sig;
2412	int rc = 0;
2413
2414	(*len) = 0;
2415	mutex_lock(&crypt_stat->keysig_list_mutex);
2416	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2417	if (!key_rec) {
2418		rc = -ENOMEM;
2419		goto out;
2420	}
2421	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2422			    crypt_stat_list) {
2423		memset(key_rec, 0, sizeof(*key_rec));
2424		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2425							   &auth_tok,
2426							   mount_crypt_stat,
2427							   key_sig->keysig);
2428		if (rc) {
2429			printk(KERN_WARNING "Unable to retrieve auth tok with "
2430			       "sig = [%s]\n", key_sig->keysig);
2431			rc = process_find_global_auth_tok_for_sig_err(rc);
2432			goto out_free;
2433		}
2434		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2435			rc = write_tag_3_packet((dest_base + (*len)),
2436						&max, auth_tok,
2437						crypt_stat, key_rec,
2438						&written);
2439			up_write(&(auth_tok_key->sem));
2440			key_put(auth_tok_key);
2441			if (rc) {
2442				ecryptfs_printk(KERN_WARNING, "Error "
2443						"writing tag 3 packet\n");
2444				goto out_free;
2445			}
2446			(*len) += written;
2447			/* Write auth tok signature packet */
2448			rc = write_tag_11_packet((dest_base + (*len)), &max,
2449						 key_rec->sig,
2450						 ECRYPTFS_SIG_SIZE, &written);
2451			if (rc) {
2452				ecryptfs_printk(KERN_ERR, "Error writing "
2453						"auth tok signature packet\n");
2454				goto out_free;
2455			}
2456			(*len) += written;
2457		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2458			rc = write_tag_1_packet(dest_base + (*len), &max,
2459						auth_tok_key, auth_tok,
2460						crypt_stat, key_rec, &written);
2461			if (rc) {
2462				ecryptfs_printk(KERN_WARNING, "Error "
2463						"writing tag 1 packet\n");
2464				goto out_free;
2465			}
2466			(*len) += written;
2467		} else {
2468			up_write(&(auth_tok_key->sem));
2469			key_put(auth_tok_key);
2470			ecryptfs_printk(KERN_WARNING, "Unsupported "
2471					"authentication token type\n");
2472			rc = -EINVAL;
2473			goto out_free;
2474		}
2475	}
2476	if (likely(max > 0)) {
2477		dest_base[(*len)] = 0x00;
2478	} else {
2479		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2480		rc = -EIO;
2481	}
2482out_free:
2483	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2484out:
2485	if (rc)
2486		(*len) = 0;
2487	mutex_unlock(&crypt_stat->keysig_list_mutex);
2488	return rc;
2489}
2490
2491struct kmem_cache *ecryptfs_key_sig_cache;
2492
2493int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2494{
2495	struct ecryptfs_key_sig *new_key_sig;
2496
2497	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2498	if (!new_key_sig)
2499		return -ENOMEM;
2500
2501	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2502	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2503	/* Caller must hold keysig_list_mutex */
2504	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2505
2506	return 0;
2507}
2508
2509struct kmem_cache *ecryptfs_global_auth_tok_cache;
2510
2511int
2512ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2513			     char *sig, u32 global_auth_tok_flags)
2514{
2515	struct ecryptfs_global_auth_tok *new_auth_tok;
2516
2517	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2518					GFP_KERNEL);
2519	if (!new_auth_tok)
2520		return -ENOMEM;
2521
2522	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2523	new_auth_tok->flags = global_auth_tok_flags;
2524	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2525	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2526	list_add(&new_auth_tok->mount_crypt_stat_list,
2527		 &mount_crypt_stat->global_auth_tok_list);
2528	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2529	return 0;
2530}
2531
2532