1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * eCryptfs: Linux filesystem encryption layer
4 *
5 * Copyright (C) 1997-2004 Erez Zadok
6 * Copyright (C) 2001-2004 Stony Brook University
7 * Copyright (C) 2004-2007 International Business Machines Corp.
8 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9 *   		Michael C. Thompson <mcthomps@us.ibm.com>
10 */
11
12#include <crypto/hash.h>
13#include <crypto/skcipher.h>
14#include <linux/fs.h>
15#include <linux/mount.h>
16#include <linux/pagemap.h>
17#include <linux/random.h>
18#include <linux/compiler.h>
19#include <linux/key.h>
20#include <linux/namei.h>
21#include <linux/file.h>
22#include <linux/scatterlist.h>
23#include <linux/slab.h>
24#include <asm/unaligned.h>
25#include <linux/kernel.h>
26#include <linux/xattr.h>
27#include "ecryptfs_kernel.h"
28
29#define DECRYPT		0
30#define ENCRYPT		1
31
32/**
33 * ecryptfs_from_hex
34 * @dst: Buffer to take the bytes from src hex; must be at least of
35 *       size (src_size / 2)
36 * @src: Buffer to be converted from a hex string representation to raw value
37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38 */
39void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40{
41	int x;
42	char tmp[3] = { 0, };
43
44	for (x = 0; x < dst_size; x++) {
45		tmp[0] = src[x * 2];
46		tmp[1] = src[x * 2 + 1];
47		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48	}
49}
50
51/**
52 * ecryptfs_calculate_md5 - calculates the md5 of @src
53 * @dst: Pointer to 16 bytes of allocated memory
54 * @crypt_stat: Pointer to crypt_stat struct for the current inode
55 * @src: Data to be md5'd
56 * @len: Length of @src
57 *
58 * Uses the allocated crypto context that crypt_stat references to
59 * generate the MD5 sum of the contents of src.
60 */
61static int ecryptfs_calculate_md5(char *dst,
62				  struct ecryptfs_crypt_stat *crypt_stat,
63				  char *src, int len)
64{
65	int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66
67	if (rc) {
68		printk(KERN_ERR
69		       "%s: Error computing crypto hash; rc = [%d]\n",
70		       __func__, rc);
71		goto out;
72	}
73out:
74	return rc;
75}
76
77static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78						  char *cipher_name,
79						  char *chaining_modifier)
80{
81	int cipher_name_len = strlen(cipher_name);
82	int chaining_modifier_len = strlen(chaining_modifier);
83	int algified_name_len;
84	int rc;
85
86	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88	if (!(*algified_name)) {
89		rc = -ENOMEM;
90		goto out;
91	}
92	snprintf((*algified_name), algified_name_len, "%s(%s)",
93		 chaining_modifier, cipher_name);
94	rc = 0;
95out:
96	return rc;
97}
98
99/**
100 * ecryptfs_derive_iv
101 * @iv: destination for the derived iv vale
102 * @crypt_stat: Pointer to crypt_stat struct for the current inode
103 * @offset: Offset of the extent whose IV we are to derive
104 *
105 * Generate the initialization vector from the given root IV and page
106 * offset.
107 *
108 * Returns zero on success; non-zero on error.
109 */
110int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111		       loff_t offset)
112{
113	int rc = 0;
114	char dst[MD5_DIGEST_SIZE];
115	char src[ECRYPTFS_MAX_IV_BYTES + 16];
116
117	if (unlikely(ecryptfs_verbosity > 0)) {
118		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120	}
121	/* TODO: It is probably secure to just cast the least
122	 * significant bits of the root IV into an unsigned long and
123	 * add the offset to that rather than go through all this
124	 * hashing business. -Halcrow */
125	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126	memset((src + crypt_stat->iv_bytes), 0, 16);
127	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128	if (unlikely(ecryptfs_verbosity > 0)) {
129		ecryptfs_printk(KERN_DEBUG, "source:\n");
130		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131	}
132	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133				    (crypt_stat->iv_bytes + 16));
134	if (rc) {
135		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136				"MD5 while generating IV for a page\n");
137		goto out;
138	}
139	memcpy(iv, dst, crypt_stat->iv_bytes);
140	if (unlikely(ecryptfs_verbosity > 0)) {
141		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143	}
144out:
145	return rc;
146}
147
148/**
149 * ecryptfs_init_crypt_stat
150 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151 *
152 * Initialize the crypt_stat structure.
153 */
154int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155{
156	struct crypto_shash *tfm;
157	int rc;
158
159	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160	if (IS_ERR(tfm)) {
161		rc = PTR_ERR(tfm);
162		ecryptfs_printk(KERN_ERR, "Error attempting to "
163				"allocate crypto context; rc = [%d]\n",
164				rc);
165		return rc;
166	}
167
168	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169	INIT_LIST_HEAD(&crypt_stat->keysig_list);
170	mutex_init(&crypt_stat->keysig_list_mutex);
171	mutex_init(&crypt_stat->cs_mutex);
172	mutex_init(&crypt_stat->cs_tfm_mutex);
173	crypt_stat->hash_tfm = tfm;
174	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175
176	return 0;
177}
178
179/**
180 * ecryptfs_destroy_crypt_stat
181 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182 *
183 * Releases all memory associated with a crypt_stat struct.
184 */
185void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186{
187	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188
189	crypto_free_skcipher(crypt_stat->tfm);
190	crypto_free_shash(crypt_stat->hash_tfm);
191	list_for_each_entry_safe(key_sig, key_sig_tmp,
192				 &crypt_stat->keysig_list, crypt_stat_list) {
193		list_del(&key_sig->crypt_stat_list);
194		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195	}
196	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197}
198
199void ecryptfs_destroy_mount_crypt_stat(
200	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201{
202	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203
204	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205		return;
206	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208				 &mount_crypt_stat->global_auth_tok_list,
209				 mount_crypt_stat_list) {
210		list_del(&auth_tok->mount_crypt_stat_list);
211		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212			key_put(auth_tok->global_auth_tok_key);
213		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214	}
215	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217}
218
219/**
220 * virt_to_scatterlist
221 * @addr: Virtual address
222 * @size: Size of data; should be an even multiple of the block size
223 * @sg: Pointer to scatterlist array; set to NULL to obtain only
224 *      the number of scatterlist structs required in array
225 * @sg_size: Max array size
226 *
227 * Fills in a scatterlist array with page references for a passed
228 * virtual address.
229 *
230 * Returns the number of scatterlist structs in array used
231 */
232int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233			int sg_size)
234{
235	int i = 0;
236	struct page *pg;
237	int offset;
238	int remainder_of_page;
239
240	sg_init_table(sg, sg_size);
241
242	while (size > 0 && i < sg_size) {
243		pg = virt_to_page(addr);
244		offset = offset_in_page(addr);
245		sg_set_page(&sg[i], pg, 0, offset);
246		remainder_of_page = PAGE_SIZE - offset;
247		if (size >= remainder_of_page) {
248			sg[i].length = remainder_of_page;
249			addr += remainder_of_page;
250			size -= remainder_of_page;
251		} else {
252			sg[i].length = size;
253			addr += size;
254			size = 0;
255		}
256		i++;
257	}
258	if (size > 0)
259		return -ENOMEM;
260	return i;
261}
262
263/**
264 * crypt_scatterlist
265 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
266 * @dst_sg: Destination of the data after performing the crypto operation
267 * @src_sg: Data to be encrypted or decrypted
268 * @size: Length of data
269 * @iv: IV to use
270 * @op: ENCRYPT or DECRYPT to indicate the desired operation
271 *
272 * Returns the number of bytes encrypted or decrypted; negative value on error
273 */
274static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
275			     struct scatterlist *dst_sg,
276			     struct scatterlist *src_sg, int size,
277			     unsigned char *iv, int op)
278{
279	struct skcipher_request *req = NULL;
280	DECLARE_CRYPTO_WAIT(ecr);
281	int rc = 0;
282
283	if (unlikely(ecryptfs_verbosity > 0)) {
284		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
285				crypt_stat->key_size);
286		ecryptfs_dump_hex(crypt_stat->key,
287				  crypt_stat->key_size);
288	}
289
290	mutex_lock(&crypt_stat->cs_tfm_mutex);
291	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
292	if (!req) {
293		mutex_unlock(&crypt_stat->cs_tfm_mutex);
294		rc = -ENOMEM;
295		goto out;
296	}
297
298	skcipher_request_set_callback(req,
299			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
300			crypto_req_done, &ecr);
301	/* Consider doing this once, when the file is opened */
302	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
303		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
304					    crypt_stat->key_size);
305		if (rc) {
306			ecryptfs_printk(KERN_ERR,
307					"Error setting key; rc = [%d]\n",
308					rc);
309			mutex_unlock(&crypt_stat->cs_tfm_mutex);
310			rc = -EINVAL;
311			goto out;
312		}
313		crypt_stat->flags |= ECRYPTFS_KEY_SET;
314	}
315	mutex_unlock(&crypt_stat->cs_tfm_mutex);
316	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
317	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
318			     crypto_skcipher_decrypt(req);
319	rc = crypto_wait_req(rc, &ecr);
320out:
321	skcipher_request_free(req);
322	return rc;
323}
324
325/*
326 * lower_offset_for_page
327 *
328 * Convert an eCryptfs page index into a lower byte offset
329 */
330static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
331				    struct page *page)
332{
333	return ecryptfs_lower_header_size(crypt_stat) +
334	       ((loff_t)page->index << PAGE_SHIFT);
335}
336
337/**
338 * crypt_extent
339 * @crypt_stat: crypt_stat containing cryptographic context for the
340 *              encryption operation
341 * @dst_page: The page to write the result into
342 * @src_page: The page to read from
343 * @extent_offset: Page extent offset for use in generating IV
344 * @op: ENCRYPT or DECRYPT to indicate the desired operation
345 *
346 * Encrypts or decrypts one extent of data.
347 *
348 * Return zero on success; non-zero otherwise
349 */
350static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
351			struct page *dst_page,
352			struct page *src_page,
353			unsigned long extent_offset, int op)
354{
355	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
356	loff_t extent_base;
357	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
358	struct scatterlist src_sg, dst_sg;
359	size_t extent_size = crypt_stat->extent_size;
360	int rc;
361
362	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
363	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
364				(extent_base + extent_offset));
365	if (rc) {
366		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
367			"extent [0x%.16llx]; rc = [%d]\n",
368			(unsigned long long)(extent_base + extent_offset), rc);
369		goto out;
370	}
371
372	sg_init_table(&src_sg, 1);
373	sg_init_table(&dst_sg, 1);
374
375	sg_set_page(&src_sg, src_page, extent_size,
376		    extent_offset * extent_size);
377	sg_set_page(&dst_sg, dst_page, extent_size,
378		    extent_offset * extent_size);
379
380	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
381			       extent_iv, op);
382	if (rc < 0) {
383		printk(KERN_ERR "%s: Error attempting to crypt page with "
384		       "page_index = [%ld], extent_offset = [%ld]; "
385		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
386		goto out;
387	}
388	rc = 0;
389out:
390	return rc;
391}
392
393/**
394 * ecryptfs_encrypt_page
395 * @page: Page mapped from the eCryptfs inode for the file; contains
396 *        decrypted content that needs to be encrypted (to a temporary
397 *        page; not in place) and written out to the lower file
398 *
399 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
400 * that eCryptfs pages may straddle the lower pages -- for instance,
401 * if the file was created on a machine with an 8K page size
402 * (resulting in an 8K header), and then the file is copied onto a
403 * host with a 32K page size, then when reading page 0 of the eCryptfs
404 * file, 24K of page 0 of the lower file will be read and decrypted,
405 * and then 8K of page 1 of the lower file will be read and decrypted.
406 *
407 * Returns zero on success; negative on error
408 */
409int ecryptfs_encrypt_page(struct page *page)
410{
411	struct inode *ecryptfs_inode;
412	struct ecryptfs_crypt_stat *crypt_stat;
413	char *enc_extent_virt;
414	struct page *enc_extent_page = NULL;
415	loff_t extent_offset;
416	loff_t lower_offset;
417	int rc = 0;
418
419	ecryptfs_inode = page->mapping->host;
420	crypt_stat =
421		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
422	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
423	enc_extent_page = alloc_page(GFP_USER);
424	if (!enc_extent_page) {
425		rc = -ENOMEM;
426		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
427				"encrypted extent\n");
428		goto out;
429	}
430
431	for (extent_offset = 0;
432	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
433	     extent_offset++) {
434		rc = crypt_extent(crypt_stat, enc_extent_page, page,
435				  extent_offset, ENCRYPT);
436		if (rc) {
437			printk(KERN_ERR "%s: Error encrypting extent; "
438			       "rc = [%d]\n", __func__, rc);
439			goto out;
440		}
441	}
442
443	lower_offset = lower_offset_for_page(crypt_stat, page);
444	enc_extent_virt = kmap_local_page(enc_extent_page);
445	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
446				  PAGE_SIZE);
447	kunmap_local(enc_extent_virt);
448	if (rc < 0) {
449		ecryptfs_printk(KERN_ERR,
450			"Error attempting to write lower page; rc = [%d]\n",
451			rc);
452		goto out;
453	}
454	rc = 0;
455out:
456	if (enc_extent_page) {
457		__free_page(enc_extent_page);
458	}
459	return rc;
460}
461
462/**
463 * ecryptfs_decrypt_page
464 * @page: Page mapped from the eCryptfs inode for the file; data read
465 *        and decrypted from the lower file will be written into this
466 *        page
467 *
468 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
469 * that eCryptfs pages may straddle the lower pages -- for instance,
470 * if the file was created on a machine with an 8K page size
471 * (resulting in an 8K header), and then the file is copied onto a
472 * host with a 32K page size, then when reading page 0 of the eCryptfs
473 * file, 24K of page 0 of the lower file will be read and decrypted,
474 * and then 8K of page 1 of the lower file will be read and decrypted.
475 *
476 * Returns zero on success; negative on error
477 */
478int ecryptfs_decrypt_page(struct page *page)
479{
480	struct inode *ecryptfs_inode;
481	struct ecryptfs_crypt_stat *crypt_stat;
482	char *page_virt;
483	unsigned long extent_offset;
484	loff_t lower_offset;
485	int rc = 0;
486
487	ecryptfs_inode = page->mapping->host;
488	crypt_stat =
489		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
490	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
491
492	lower_offset = lower_offset_for_page(crypt_stat, page);
493	page_virt = kmap_local_page(page);
494	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
495				 ecryptfs_inode);
496	kunmap_local(page_virt);
497	if (rc < 0) {
498		ecryptfs_printk(KERN_ERR,
499			"Error attempting to read lower page; rc = [%d]\n",
500			rc);
501		goto out;
502	}
503
504	for (extent_offset = 0;
505	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
506	     extent_offset++) {
507		rc = crypt_extent(crypt_stat, page, page,
508				  extent_offset, DECRYPT);
509		if (rc) {
510			printk(KERN_ERR "%s: Error decrypting extent; "
511			       "rc = [%d]\n", __func__, rc);
512			goto out;
513		}
514	}
515out:
516	return rc;
517}
518
519#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
520
521/**
522 * ecryptfs_init_crypt_ctx
523 * @crypt_stat: Uninitialized crypt stats structure
524 *
525 * Initialize the crypto context.
526 *
527 * TODO: Performance: Keep a cache of initialized cipher contexts;
528 * only init if needed
529 */
530int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
531{
532	char *full_alg_name;
533	int rc = -EINVAL;
534
535	ecryptfs_printk(KERN_DEBUG,
536			"Initializing cipher [%s]; strlen = [%d]; "
537			"key_size_bits = [%zd]\n",
538			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
539			crypt_stat->key_size << 3);
540	mutex_lock(&crypt_stat->cs_tfm_mutex);
541	if (crypt_stat->tfm) {
542		rc = 0;
543		goto out_unlock;
544	}
545	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
546						    crypt_stat->cipher, "cbc");
547	if (rc)
548		goto out_unlock;
549	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
550	if (IS_ERR(crypt_stat->tfm)) {
551		rc = PTR_ERR(crypt_stat->tfm);
552		crypt_stat->tfm = NULL;
553		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
554				"Error initializing cipher [%s]\n",
555				full_alg_name);
556		goto out_free;
557	}
558	crypto_skcipher_set_flags(crypt_stat->tfm,
559				  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
560	rc = 0;
561out_free:
562	kfree(full_alg_name);
563out_unlock:
564	mutex_unlock(&crypt_stat->cs_tfm_mutex);
565	return rc;
566}
567
568static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
569{
570	int extent_size_tmp;
571
572	crypt_stat->extent_mask = 0xFFFFFFFF;
573	crypt_stat->extent_shift = 0;
574	if (crypt_stat->extent_size == 0)
575		return;
576	extent_size_tmp = crypt_stat->extent_size;
577	while ((extent_size_tmp & 0x01) == 0) {
578		extent_size_tmp >>= 1;
579		crypt_stat->extent_mask <<= 1;
580		crypt_stat->extent_shift++;
581	}
582}
583
584void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
585{
586	/* Default values; may be overwritten as we are parsing the
587	 * packets. */
588	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
589	set_extent_mask_and_shift(crypt_stat);
590	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
591	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
592		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
593	else {
594		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
595			crypt_stat->metadata_size =
596				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
597		else
598			crypt_stat->metadata_size = PAGE_SIZE;
599	}
600}
601
602/*
603 * ecryptfs_compute_root_iv
604 *
605 * On error, sets the root IV to all 0's.
606 */
607int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
608{
609	int rc = 0;
610	char dst[MD5_DIGEST_SIZE];
611
612	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
613	BUG_ON(crypt_stat->iv_bytes <= 0);
614	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
615		rc = -EINVAL;
616		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
617				"cannot generate root IV\n");
618		goto out;
619	}
620	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
621				    crypt_stat->key_size);
622	if (rc) {
623		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
624				"MD5 while generating root IV\n");
625		goto out;
626	}
627	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
628out:
629	if (rc) {
630		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
631		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
632	}
633	return rc;
634}
635
636static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
637{
638	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
639	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
640	ecryptfs_compute_root_iv(crypt_stat);
641	if (unlikely(ecryptfs_verbosity > 0)) {
642		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
643		ecryptfs_dump_hex(crypt_stat->key,
644				  crypt_stat->key_size);
645	}
646}
647
648/**
649 * ecryptfs_copy_mount_wide_flags_to_inode_flags
650 * @crypt_stat: The inode's cryptographic context
651 * @mount_crypt_stat: The mount point's cryptographic context
652 *
653 * This function propagates the mount-wide flags to individual inode
654 * flags.
655 */
656static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
657	struct ecryptfs_crypt_stat *crypt_stat,
658	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
659{
660	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
661		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
662	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
663		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
664	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
665		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
666		if (mount_crypt_stat->flags
667		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
668			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
669		else if (mount_crypt_stat->flags
670			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
671			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
672	}
673}
674
675static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
676	struct ecryptfs_crypt_stat *crypt_stat,
677	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
678{
679	struct ecryptfs_global_auth_tok *global_auth_tok;
680	int rc = 0;
681
682	mutex_lock(&crypt_stat->keysig_list_mutex);
683	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
684
685	list_for_each_entry(global_auth_tok,
686			    &mount_crypt_stat->global_auth_tok_list,
687			    mount_crypt_stat_list) {
688		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
689			continue;
690		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
691		if (rc) {
692			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
693			goto out;
694		}
695	}
696
697out:
698	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
699	mutex_unlock(&crypt_stat->keysig_list_mutex);
700	return rc;
701}
702
703/**
704 * ecryptfs_set_default_crypt_stat_vals
705 * @crypt_stat: The inode's cryptographic context
706 * @mount_crypt_stat: The mount point's cryptographic context
707 *
708 * Default values in the event that policy does not override them.
709 */
710static void ecryptfs_set_default_crypt_stat_vals(
711	struct ecryptfs_crypt_stat *crypt_stat,
712	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
713{
714	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
715						      mount_crypt_stat);
716	ecryptfs_set_default_sizes(crypt_stat);
717	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
718	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
719	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
720	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
721	crypt_stat->mount_crypt_stat = mount_crypt_stat;
722}
723
724/**
725 * ecryptfs_new_file_context
726 * @ecryptfs_inode: The eCryptfs inode
727 *
728 * If the crypto context for the file has not yet been established,
729 * this is where we do that.  Establishing a new crypto context
730 * involves the following decisions:
731 *  - What cipher to use?
732 *  - What set of authentication tokens to use?
733 * Here we just worry about getting enough information into the
734 * authentication tokens so that we know that they are available.
735 * We associate the available authentication tokens with the new file
736 * via the set of signatures in the crypt_stat struct.  Later, when
737 * the headers are actually written out, we may again defer to
738 * userspace to perform the encryption of the session key; for the
739 * foreseeable future, this will be the case with public key packets.
740 *
741 * Returns zero on success; non-zero otherwise
742 */
743int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
744{
745	struct ecryptfs_crypt_stat *crypt_stat =
746	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
747	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
748	    &ecryptfs_superblock_to_private(
749		    ecryptfs_inode->i_sb)->mount_crypt_stat;
750	int cipher_name_len;
751	int rc = 0;
752
753	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
754	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
755	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
756						      mount_crypt_stat);
757	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
758							 mount_crypt_stat);
759	if (rc) {
760		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
761		       "to the inode key sigs; rc = [%d]\n", rc);
762		goto out;
763	}
764	cipher_name_len =
765		strlen(mount_crypt_stat->global_default_cipher_name);
766	memcpy(crypt_stat->cipher,
767	       mount_crypt_stat->global_default_cipher_name,
768	       cipher_name_len);
769	crypt_stat->cipher[cipher_name_len] = '\0';
770	crypt_stat->key_size =
771		mount_crypt_stat->global_default_cipher_key_size;
772	ecryptfs_generate_new_key(crypt_stat);
773	rc = ecryptfs_init_crypt_ctx(crypt_stat);
774	if (rc)
775		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
776				"context for cipher [%s]: rc = [%d]\n",
777				crypt_stat->cipher, rc);
778out:
779	return rc;
780}
781
782/**
783 * ecryptfs_validate_marker - check for the ecryptfs marker
784 * @data: The data block in which to check
785 *
786 * Returns zero if marker found; -EINVAL if not found
787 */
788static int ecryptfs_validate_marker(char *data)
789{
790	u32 m_1, m_2;
791
792	m_1 = get_unaligned_be32(data);
793	m_2 = get_unaligned_be32(data + 4);
794	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
795		return 0;
796	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
797			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
798			MAGIC_ECRYPTFS_MARKER);
799	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
800			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
801	return -EINVAL;
802}
803
804struct ecryptfs_flag_map_elem {
805	u32 file_flag;
806	u32 local_flag;
807};
808
809/* Add support for additional flags by adding elements here. */
810static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
811	{0x00000001, ECRYPTFS_ENABLE_HMAC},
812	{0x00000002, ECRYPTFS_ENCRYPTED},
813	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
814	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
815};
816
817/**
818 * ecryptfs_process_flags
819 * @crypt_stat: The cryptographic context
820 * @page_virt: Source data to be parsed
821 * @bytes_read: Updated with the number of bytes read
822 */
823static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
824				  char *page_virt, int *bytes_read)
825{
826	int i;
827	u32 flags;
828
829	flags = get_unaligned_be32(page_virt);
830	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
831		if (flags & ecryptfs_flag_map[i].file_flag) {
832			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
833		} else
834			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
835	/* Version is in top 8 bits of the 32-bit flag vector */
836	crypt_stat->file_version = ((flags >> 24) & 0xFF);
837	(*bytes_read) = 4;
838}
839
840/**
841 * write_ecryptfs_marker
842 * @page_virt: The pointer to in a page to begin writing the marker
843 * @written: Number of bytes written
844 *
845 * Marker = 0x3c81b7f5
846 */
847static void write_ecryptfs_marker(char *page_virt, size_t *written)
848{
849	u32 m_1, m_2;
850
851	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
852	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
853	put_unaligned_be32(m_1, page_virt);
854	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
855	put_unaligned_be32(m_2, page_virt);
856	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
857}
858
859void ecryptfs_write_crypt_stat_flags(char *page_virt,
860				     struct ecryptfs_crypt_stat *crypt_stat,
861				     size_t *written)
862{
863	u32 flags = 0;
864	int i;
865
866	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
867		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
868			flags |= ecryptfs_flag_map[i].file_flag;
869	/* Version is in top 8 bits of the 32-bit flag vector */
870	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
871	put_unaligned_be32(flags, page_virt);
872	(*written) = 4;
873}
874
875struct ecryptfs_cipher_code_str_map_elem {
876	char cipher_str[16];
877	u8 cipher_code;
878};
879
880/* Add support for additional ciphers by adding elements here. The
881 * cipher_code is whatever OpenPGP applications use to identify the
882 * ciphers. List in order of probability. */
883static struct ecryptfs_cipher_code_str_map_elem
884ecryptfs_cipher_code_str_map[] = {
885	{"aes",RFC2440_CIPHER_AES_128 },
886	{"blowfish", RFC2440_CIPHER_BLOWFISH},
887	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
888	{"cast5", RFC2440_CIPHER_CAST_5},
889	{"twofish", RFC2440_CIPHER_TWOFISH},
890	{"cast6", RFC2440_CIPHER_CAST_6},
891	{"aes", RFC2440_CIPHER_AES_192},
892	{"aes", RFC2440_CIPHER_AES_256}
893};
894
895/**
896 * ecryptfs_code_for_cipher_string
897 * @cipher_name: The string alias for the cipher
898 * @key_bytes: Length of key in bytes; used for AES code selection
899 *
900 * Returns zero on no match, or the cipher code on match
901 */
902u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
903{
904	int i;
905	u8 code = 0;
906	struct ecryptfs_cipher_code_str_map_elem *map =
907		ecryptfs_cipher_code_str_map;
908
909	if (strcmp(cipher_name, "aes") == 0) {
910		switch (key_bytes) {
911		case 16:
912			code = RFC2440_CIPHER_AES_128;
913			break;
914		case 24:
915			code = RFC2440_CIPHER_AES_192;
916			break;
917		case 32:
918			code = RFC2440_CIPHER_AES_256;
919		}
920	} else {
921		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
922			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
923				code = map[i].cipher_code;
924				break;
925			}
926	}
927	return code;
928}
929
930/**
931 * ecryptfs_cipher_code_to_string
932 * @str: Destination to write out the cipher name
933 * @cipher_code: The code to convert to cipher name string
934 *
935 * Returns zero on success
936 */
937int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
938{
939	int rc = 0;
940	int i;
941
942	str[0] = '\0';
943	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
944		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
945			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
946	if (str[0] == '\0') {
947		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
948				"[%d]\n", cipher_code);
949		rc = -EINVAL;
950	}
951	return rc;
952}
953
954int ecryptfs_read_and_validate_header_region(struct inode *inode)
955{
956	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
957	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
958	int rc;
959
960	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
961				 inode);
962	if (rc < 0)
963		return rc;
964	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
965		return -EINVAL;
966	rc = ecryptfs_validate_marker(marker);
967	if (!rc)
968		ecryptfs_i_size_init(file_size, inode);
969	return rc;
970}
971
972void
973ecryptfs_write_header_metadata(char *virt,
974			       struct ecryptfs_crypt_stat *crypt_stat,
975			       size_t *written)
976{
977	u32 header_extent_size;
978	u16 num_header_extents_at_front;
979
980	header_extent_size = (u32)crypt_stat->extent_size;
981	num_header_extents_at_front =
982		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
983	put_unaligned_be32(header_extent_size, virt);
984	virt += 4;
985	put_unaligned_be16(num_header_extents_at_front, virt);
986	(*written) = 6;
987}
988
989struct kmem_cache *ecryptfs_header_cache;
990
991/**
992 * ecryptfs_write_headers_virt
993 * @page_virt: The virtual address to write the headers to
994 * @max: The size of memory allocated at page_virt
995 * @size: Set to the number of bytes written by this function
996 * @crypt_stat: The cryptographic context
997 * @ecryptfs_dentry: The eCryptfs dentry
998 *
999 * Format version: 1
1000 *
1001 *   Header Extent:
1002 *     Octets 0-7:        Unencrypted file size (big-endian)
1003 *     Octets 8-15:       eCryptfs special marker
1004 *     Octets 16-19:      Flags
1005 *      Octet 16:         File format version number (between 0 and 255)
1006 *      Octets 17-18:     Reserved
1007 *      Octet 19:         Bit 1 (lsb): Reserved
1008 *                        Bit 2: Encrypted?
1009 *                        Bits 3-8: Reserved
1010 *     Octets 20-23:      Header extent size (big-endian)
1011 *     Octets 24-25:      Number of header extents at front of file
1012 *                        (big-endian)
1013 *     Octet  26:         Begin RFC 2440 authentication token packet set
1014 *   Data Extent 0:
1015 *     Lower data (CBC encrypted)
1016 *   Data Extent 1:
1017 *     Lower data (CBC encrypted)
1018 *   ...
1019 *
1020 * Returns zero on success
1021 */
1022static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1023				       size_t *size,
1024				       struct ecryptfs_crypt_stat *crypt_stat,
1025				       struct dentry *ecryptfs_dentry)
1026{
1027	int rc;
1028	size_t written;
1029	size_t offset;
1030
1031	offset = ECRYPTFS_FILE_SIZE_BYTES;
1032	write_ecryptfs_marker((page_virt + offset), &written);
1033	offset += written;
1034	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1035					&written);
1036	offset += written;
1037	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1038				       &written);
1039	offset += written;
1040	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1041					      ecryptfs_dentry, &written,
1042					      max - offset);
1043	if (rc)
1044		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1045				"set; rc = [%d]\n", rc);
1046	if (size) {
1047		offset += written;
1048		*size = offset;
1049	}
1050	return rc;
1051}
1052
1053static int
1054ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1055				    char *virt, size_t virt_len)
1056{
1057	int rc;
1058
1059	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1060				  0, virt_len);
1061	if (rc < 0)
1062		printk(KERN_ERR "%s: Error attempting to write header "
1063		       "information to lower file; rc = [%d]\n", __func__, rc);
1064	else
1065		rc = 0;
1066	return rc;
1067}
1068
1069static int
1070ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1071				 struct inode *ecryptfs_inode,
1072				 char *page_virt, size_t size)
1073{
1074	int rc;
1075	struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1076	struct inode *lower_inode = d_inode(lower_dentry);
1077
1078	if (!(lower_inode->i_opflags & IOP_XATTR)) {
1079		rc = -EOPNOTSUPP;
1080		goto out;
1081	}
1082
1083	inode_lock(lower_inode);
1084	rc = __vfs_setxattr(&nop_mnt_idmap, lower_dentry, lower_inode,
1085			    ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1086	if (!rc && ecryptfs_inode)
1087		fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1088	inode_unlock(lower_inode);
1089out:
1090	return rc;
1091}
1092
1093static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1094					       unsigned int order)
1095{
1096	struct page *page;
1097
1098	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1099	if (page)
1100		return (unsigned long) page_address(page);
1101	return 0;
1102}
1103
1104/**
1105 * ecryptfs_write_metadata
1106 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1107 * @ecryptfs_inode: The newly created eCryptfs inode
1108 *
1109 * Write the file headers out.  This will likely involve a userspace
1110 * callout, in which the session key is encrypted with one or more
1111 * public keys and/or the passphrase necessary to do the encryption is
1112 * retrieved via a prompt.  Exactly what happens at this point should
1113 * be policy-dependent.
1114 *
1115 * Returns zero on success; non-zero on error
1116 */
1117int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1118			    struct inode *ecryptfs_inode)
1119{
1120	struct ecryptfs_crypt_stat *crypt_stat =
1121		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1122	unsigned int order;
1123	char *virt;
1124	size_t virt_len;
1125	size_t size = 0;
1126	int rc = 0;
1127
1128	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1129		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1130			printk(KERN_ERR "Key is invalid; bailing out\n");
1131			rc = -EINVAL;
1132			goto out;
1133		}
1134	} else {
1135		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1136		       __func__);
1137		rc = -EINVAL;
1138		goto out;
1139	}
1140	virt_len = crypt_stat->metadata_size;
1141	order = get_order(virt_len);
1142	/* Released in this function */
1143	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1144	if (!virt) {
1145		printk(KERN_ERR "%s: Out of memory\n", __func__);
1146		rc = -ENOMEM;
1147		goto out;
1148	}
1149	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1150	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1151					 ecryptfs_dentry);
1152	if (unlikely(rc)) {
1153		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1154		       __func__, rc);
1155		goto out_free;
1156	}
1157	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1158		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1159						      virt, size);
1160	else
1161		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1162							 virt_len);
1163	if (rc) {
1164		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1165		       "rc = [%d]\n", __func__, rc);
1166		goto out_free;
1167	}
1168out_free:
1169	free_pages((unsigned long)virt, order);
1170out:
1171	return rc;
1172}
1173
1174#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1175#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1176static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1177				 char *virt, int *bytes_read,
1178				 int validate_header_size)
1179{
1180	int rc = 0;
1181	u32 header_extent_size;
1182	u16 num_header_extents_at_front;
1183
1184	header_extent_size = get_unaligned_be32(virt);
1185	virt += sizeof(__be32);
1186	num_header_extents_at_front = get_unaligned_be16(virt);
1187	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1188				     * (size_t)header_extent_size));
1189	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1190	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1191	    && (crypt_stat->metadata_size
1192		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1193		rc = -EINVAL;
1194		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1195		       crypt_stat->metadata_size);
1196	}
1197	return rc;
1198}
1199
1200/**
1201 * set_default_header_data
1202 * @crypt_stat: The cryptographic context
1203 *
1204 * For version 0 file format; this function is only for backwards
1205 * compatibility for files created with the prior versions of
1206 * eCryptfs.
1207 */
1208static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1209{
1210	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1211}
1212
1213void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1214{
1215	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1216	struct ecryptfs_crypt_stat *crypt_stat;
1217	u64 file_size;
1218
1219	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1220	mount_crypt_stat =
1221		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1222	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1223		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1224		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1225			file_size += crypt_stat->metadata_size;
1226	} else
1227		file_size = get_unaligned_be64(page_virt);
1228	i_size_write(inode, (loff_t)file_size);
1229	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1230}
1231
1232/**
1233 * ecryptfs_read_headers_virt
1234 * @page_virt: The virtual address into which to read the headers
1235 * @crypt_stat: The cryptographic context
1236 * @ecryptfs_dentry: The eCryptfs dentry
1237 * @validate_header_size: Whether to validate the header size while reading
1238 *
1239 * Read/parse the header data. The header format is detailed in the
1240 * comment block for the ecryptfs_write_headers_virt() function.
1241 *
1242 * Returns zero on success
1243 */
1244static int ecryptfs_read_headers_virt(char *page_virt,
1245				      struct ecryptfs_crypt_stat *crypt_stat,
1246				      struct dentry *ecryptfs_dentry,
1247				      int validate_header_size)
1248{
1249	int rc = 0;
1250	int offset;
1251	int bytes_read;
1252
1253	ecryptfs_set_default_sizes(crypt_stat);
1254	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1255		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1256	offset = ECRYPTFS_FILE_SIZE_BYTES;
1257	rc = ecryptfs_validate_marker(page_virt + offset);
1258	if (rc)
1259		goto out;
1260	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1261		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1262	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1263	ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1264	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1265		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1266				"file version [%d] is supported by this "
1267				"version of eCryptfs\n",
1268				crypt_stat->file_version,
1269				ECRYPTFS_SUPPORTED_FILE_VERSION);
1270		rc = -EINVAL;
1271		goto out;
1272	}
1273	offset += bytes_read;
1274	if (crypt_stat->file_version >= 1) {
1275		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1276					   &bytes_read, validate_header_size);
1277		if (rc) {
1278			ecryptfs_printk(KERN_WARNING, "Error reading header "
1279					"metadata; rc = [%d]\n", rc);
1280		}
1281		offset += bytes_read;
1282	} else
1283		set_default_header_data(crypt_stat);
1284	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1285				       ecryptfs_dentry);
1286out:
1287	return rc;
1288}
1289
1290/**
1291 * ecryptfs_read_xattr_region
1292 * @page_virt: The vitual address into which to read the xattr data
1293 * @ecryptfs_inode: The eCryptfs inode
1294 *
1295 * Attempts to read the crypto metadata from the extended attribute
1296 * region of the lower file.
1297 *
1298 * Returns zero on success; non-zero on error
1299 */
1300int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1301{
1302	struct dentry *lower_dentry =
1303		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1304	ssize_t size;
1305	int rc = 0;
1306
1307	size = ecryptfs_getxattr_lower(lower_dentry,
1308				       ecryptfs_inode_to_lower(ecryptfs_inode),
1309				       ECRYPTFS_XATTR_NAME,
1310				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1311	if (size < 0) {
1312		if (unlikely(ecryptfs_verbosity > 0))
1313			printk(KERN_INFO "Error attempting to read the [%s] "
1314			       "xattr from the lower file; return value = "
1315			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1316		rc = -EINVAL;
1317		goto out;
1318	}
1319out:
1320	return rc;
1321}
1322
1323int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1324					    struct inode *inode)
1325{
1326	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1327	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1328	int rc;
1329
1330	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1331				     ecryptfs_inode_to_lower(inode),
1332				     ECRYPTFS_XATTR_NAME, file_size,
1333				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1334	if (rc < 0)
1335		return rc;
1336	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1337		return -EINVAL;
1338	rc = ecryptfs_validate_marker(marker);
1339	if (!rc)
1340		ecryptfs_i_size_init(file_size, inode);
1341	return rc;
1342}
1343
1344/*
1345 * ecryptfs_read_metadata
1346 *
1347 * Common entry point for reading file metadata. From here, we could
1348 * retrieve the header information from the header region of the file,
1349 * the xattr region of the file, or some other repository that is
1350 * stored separately from the file itself. The current implementation
1351 * supports retrieving the metadata information from the file contents
1352 * and from the xattr region.
1353 *
1354 * Returns zero if valid headers found and parsed; non-zero otherwise
1355 */
1356int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1357{
1358	int rc;
1359	char *page_virt;
1360	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1361	struct ecryptfs_crypt_stat *crypt_stat =
1362	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1363	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1364		&ecryptfs_superblock_to_private(
1365			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1366
1367	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1368						      mount_crypt_stat);
1369	/* Read the first page from the underlying file */
1370	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1371	if (!page_virt) {
1372		rc = -ENOMEM;
1373		goto out;
1374	}
1375	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1376				 ecryptfs_inode);
1377	if (rc >= 0)
1378		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1379						ecryptfs_dentry,
1380						ECRYPTFS_VALIDATE_HEADER_SIZE);
1381	if (rc) {
1382		/* metadata is not in the file header, so try xattrs */
1383		memset(page_virt, 0, PAGE_SIZE);
1384		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1385		if (rc) {
1386			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1387			       "file header region or xattr region, inode %lu\n",
1388				ecryptfs_inode->i_ino);
1389			rc = -EINVAL;
1390			goto out;
1391		}
1392		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1393						ecryptfs_dentry,
1394						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1395		if (rc) {
1396			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1397			       "file xattr region either, inode %lu\n",
1398				ecryptfs_inode->i_ino);
1399			rc = -EINVAL;
1400		}
1401		if (crypt_stat->mount_crypt_stat->flags
1402		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1403			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1404		} else {
1405			printk(KERN_WARNING "Attempt to access file with "
1406			       "crypto metadata only in the extended attribute "
1407			       "region, but eCryptfs was mounted without "
1408			       "xattr support enabled. eCryptfs will not treat "
1409			       "this like an encrypted file, inode %lu\n",
1410				ecryptfs_inode->i_ino);
1411			rc = -EINVAL;
1412		}
1413	}
1414out:
1415	if (page_virt) {
1416		memset(page_virt, 0, PAGE_SIZE);
1417		kmem_cache_free(ecryptfs_header_cache, page_virt);
1418	}
1419	return rc;
1420}
1421
1422/*
1423 * ecryptfs_encrypt_filename - encrypt filename
1424 *
1425 * CBC-encrypts the filename. We do not want to encrypt the same
1426 * filename with the same key and IV, which may happen with hard
1427 * links, so we prepend random bits to each filename.
1428 *
1429 * Returns zero on success; non-zero otherwise
1430 */
1431static int
1432ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1433			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1434{
1435	int rc = 0;
1436
1437	filename->encrypted_filename = NULL;
1438	filename->encrypted_filename_size = 0;
1439	if (mount_crypt_stat && (mount_crypt_stat->flags
1440				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1441		size_t packet_size;
1442		size_t remaining_bytes;
1443
1444		rc = ecryptfs_write_tag_70_packet(
1445			NULL, NULL,
1446			&filename->encrypted_filename_size,
1447			mount_crypt_stat, NULL,
1448			filename->filename_size);
1449		if (rc) {
1450			printk(KERN_ERR "%s: Error attempting to get packet "
1451			       "size for tag 72; rc = [%d]\n", __func__,
1452			       rc);
1453			filename->encrypted_filename_size = 0;
1454			goto out;
1455		}
1456		filename->encrypted_filename =
1457			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1458		if (!filename->encrypted_filename) {
1459			rc = -ENOMEM;
1460			goto out;
1461		}
1462		remaining_bytes = filename->encrypted_filename_size;
1463		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1464						  &remaining_bytes,
1465						  &packet_size,
1466						  mount_crypt_stat,
1467						  filename->filename,
1468						  filename->filename_size);
1469		if (rc) {
1470			printk(KERN_ERR "%s: Error attempting to generate "
1471			       "tag 70 packet; rc = [%d]\n", __func__,
1472			       rc);
1473			kfree(filename->encrypted_filename);
1474			filename->encrypted_filename = NULL;
1475			filename->encrypted_filename_size = 0;
1476			goto out;
1477		}
1478		filename->encrypted_filename_size = packet_size;
1479	} else {
1480		printk(KERN_ERR "%s: No support for requested filename "
1481		       "encryption method in this release\n", __func__);
1482		rc = -EOPNOTSUPP;
1483		goto out;
1484	}
1485out:
1486	return rc;
1487}
1488
1489static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1490				  const char *name, size_t name_size)
1491{
1492	int rc = 0;
1493
1494	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1495	if (!(*copied_name)) {
1496		rc = -ENOMEM;
1497		goto out;
1498	}
1499	memcpy((void *)(*copied_name), (void *)name, name_size);
1500	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1501						 * in printing out the
1502						 * string in debug
1503						 * messages */
1504	(*copied_name_size) = name_size;
1505out:
1506	return rc;
1507}
1508
1509/**
1510 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1511 * @key_tfm: Crypto context for key material, set by this function
1512 * @cipher_name: Name of the cipher
1513 * @key_size: Size of the key in bytes
1514 *
1515 * Returns zero on success. Any crypto_tfm structs allocated here
1516 * should be released by other functions, such as on a superblock put
1517 * event, regardless of whether this function succeeds for fails.
1518 */
1519static int
1520ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1521			    char *cipher_name, size_t *key_size)
1522{
1523	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1524	char *full_alg_name = NULL;
1525	int rc;
1526
1527	*key_tfm = NULL;
1528	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1529		rc = -EINVAL;
1530		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1531		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1532		goto out;
1533	}
1534	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1535						    "ecb");
1536	if (rc)
1537		goto out;
1538	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1539	if (IS_ERR(*key_tfm)) {
1540		rc = PTR_ERR(*key_tfm);
1541		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1542		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1543		goto out;
1544	}
1545	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1546	if (*key_size == 0)
1547		*key_size = crypto_skcipher_max_keysize(*key_tfm);
1548	get_random_bytes(dummy_key, *key_size);
1549	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1550	if (rc) {
1551		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1552		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1553		       rc);
1554		rc = -EINVAL;
1555		goto out;
1556	}
1557out:
1558	kfree(full_alg_name);
1559	return rc;
1560}
1561
1562struct kmem_cache *ecryptfs_key_tfm_cache;
1563static struct list_head key_tfm_list;
1564DEFINE_MUTEX(key_tfm_list_mutex);
1565
1566int __init ecryptfs_init_crypto(void)
1567{
1568	INIT_LIST_HEAD(&key_tfm_list);
1569	return 0;
1570}
1571
1572/**
1573 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1574 *
1575 * Called only at module unload time
1576 */
1577int ecryptfs_destroy_crypto(void)
1578{
1579	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1580
1581	mutex_lock(&key_tfm_list_mutex);
1582	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1583				 key_tfm_list) {
1584		list_del(&key_tfm->key_tfm_list);
1585		crypto_free_skcipher(key_tfm->key_tfm);
1586		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1587	}
1588	mutex_unlock(&key_tfm_list_mutex);
1589	return 0;
1590}
1591
1592int
1593ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1594			 size_t key_size)
1595{
1596	struct ecryptfs_key_tfm *tmp_tfm;
1597	int rc = 0;
1598
1599	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1600
1601	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1602	if (key_tfm)
1603		(*key_tfm) = tmp_tfm;
1604	if (!tmp_tfm) {
1605		rc = -ENOMEM;
1606		goto out;
1607	}
1608	mutex_init(&tmp_tfm->key_tfm_mutex);
1609	strncpy(tmp_tfm->cipher_name, cipher_name,
1610		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1611	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1612	tmp_tfm->key_size = key_size;
1613	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1614					 tmp_tfm->cipher_name,
1615					 &tmp_tfm->key_size);
1616	if (rc) {
1617		printk(KERN_ERR "Error attempting to initialize key TFM "
1618		       "cipher with name = [%s]; rc = [%d]\n",
1619		       tmp_tfm->cipher_name, rc);
1620		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1621		if (key_tfm)
1622			(*key_tfm) = NULL;
1623		goto out;
1624	}
1625	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1626out:
1627	return rc;
1628}
1629
1630/**
1631 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1632 * @cipher_name: the name of the cipher to search for
1633 * @key_tfm: set to corresponding tfm if found
1634 *
1635 * Searches for cached key_tfm matching @cipher_name
1636 * Must be called with &key_tfm_list_mutex held
1637 * Returns 1 if found, with @key_tfm set
1638 * Returns 0 if not found, with @key_tfm set to NULL
1639 */
1640int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1641{
1642	struct ecryptfs_key_tfm *tmp_key_tfm;
1643
1644	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1645
1646	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1647		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1648			if (key_tfm)
1649				(*key_tfm) = tmp_key_tfm;
1650			return 1;
1651		}
1652	}
1653	if (key_tfm)
1654		(*key_tfm) = NULL;
1655	return 0;
1656}
1657
1658/**
1659 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1660 *
1661 * @tfm: set to cached tfm found, or new tfm created
1662 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1663 * @cipher_name: the name of the cipher to search for and/or add
1664 *
1665 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1666 * Searches for cached item first, and creates new if not found.
1667 * Returns 0 on success, non-zero if adding new cipher failed
1668 */
1669int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1670					       struct mutex **tfm_mutex,
1671					       char *cipher_name)
1672{
1673	struct ecryptfs_key_tfm *key_tfm;
1674	int rc = 0;
1675
1676	(*tfm) = NULL;
1677	(*tfm_mutex) = NULL;
1678
1679	mutex_lock(&key_tfm_list_mutex);
1680	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1681		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1682		if (rc) {
1683			printk(KERN_ERR "Error adding new key_tfm to list; "
1684					"rc = [%d]\n", rc);
1685			goto out;
1686		}
1687	}
1688	(*tfm) = key_tfm->key_tfm;
1689	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1690out:
1691	mutex_unlock(&key_tfm_list_mutex);
1692	return rc;
1693}
1694
1695/* 64 characters forming a 6-bit target field */
1696static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1697						 "EFGHIJKLMNOPQRST"
1698						 "UVWXYZabcdefghij"
1699						 "klmnopqrstuvwxyz");
1700
1701/* We could either offset on every reverse map or just pad some 0x00's
1702 * at the front here */
1703static const unsigned char filename_rev_map[256] = {
1704	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1705	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1706	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1707	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1708	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1709	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1710	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1711	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1712	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1713	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1714	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1715	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1716	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1717	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1718	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1719	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1720};
1721
1722/**
1723 * ecryptfs_encode_for_filename
1724 * @dst: Destination location for encoded filename
1725 * @dst_size: Size of the encoded filename in bytes
1726 * @src: Source location for the filename to encode
1727 * @src_size: Size of the source in bytes
1728 */
1729static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1730				  unsigned char *src, size_t src_size)
1731{
1732	size_t num_blocks;
1733	size_t block_num = 0;
1734	size_t dst_offset = 0;
1735	unsigned char last_block[3];
1736
1737	if (src_size == 0) {
1738		(*dst_size) = 0;
1739		goto out;
1740	}
1741	num_blocks = (src_size / 3);
1742	if ((src_size % 3) == 0) {
1743		memcpy(last_block, (&src[src_size - 3]), 3);
1744	} else {
1745		num_blocks++;
1746		last_block[2] = 0x00;
1747		switch (src_size % 3) {
1748		case 1:
1749			last_block[0] = src[src_size - 1];
1750			last_block[1] = 0x00;
1751			break;
1752		case 2:
1753			last_block[0] = src[src_size - 2];
1754			last_block[1] = src[src_size - 1];
1755		}
1756	}
1757	(*dst_size) = (num_blocks * 4);
1758	if (!dst)
1759		goto out;
1760	while (block_num < num_blocks) {
1761		unsigned char *src_block;
1762		unsigned char dst_block[4];
1763
1764		if (block_num == (num_blocks - 1))
1765			src_block = last_block;
1766		else
1767			src_block = &src[block_num * 3];
1768		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1769		dst_block[1] = (((src_block[0] << 4) & 0x30)
1770				| ((src_block[1] >> 4) & 0x0F));
1771		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1772				| ((src_block[2] >> 6) & 0x03));
1773		dst_block[3] = (src_block[2] & 0x3F);
1774		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1775		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1776		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1777		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1778		block_num++;
1779	}
1780out:
1781	return;
1782}
1783
1784static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1785{
1786	/* Not exact; conservatively long. Every block of 4
1787	 * encoded characters decodes into a block of 3
1788	 * decoded characters. This segment of code provides
1789	 * the caller with the maximum amount of allocated
1790	 * space that @dst will need to point to in a
1791	 * subsequent call. */
1792	return ((encoded_size + 1) * 3) / 4;
1793}
1794
1795/**
1796 * ecryptfs_decode_from_filename
1797 * @dst: If NULL, this function only sets @dst_size and returns. If
1798 *       non-NULL, this function decodes the encoded octets in @src
1799 *       into the memory that @dst points to.
1800 * @dst_size: Set to the size of the decoded string.
1801 * @src: The encoded set of octets to decode.
1802 * @src_size: The size of the encoded set of octets to decode.
1803 */
1804static void
1805ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1806			      const unsigned char *src, size_t src_size)
1807{
1808	u8 current_bit_offset = 0;
1809	size_t src_byte_offset = 0;
1810	size_t dst_byte_offset = 0;
1811
1812	if (!dst) {
1813		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1814		goto out;
1815	}
1816	while (src_byte_offset < src_size) {
1817		unsigned char src_byte =
1818				filename_rev_map[(int)src[src_byte_offset]];
1819
1820		switch (current_bit_offset) {
1821		case 0:
1822			dst[dst_byte_offset] = (src_byte << 2);
1823			current_bit_offset = 6;
1824			break;
1825		case 6:
1826			dst[dst_byte_offset++] |= (src_byte >> 4);
1827			dst[dst_byte_offset] = ((src_byte & 0xF)
1828						 << 4);
1829			current_bit_offset = 4;
1830			break;
1831		case 4:
1832			dst[dst_byte_offset++] |= (src_byte >> 2);
1833			dst[dst_byte_offset] = (src_byte << 6);
1834			current_bit_offset = 2;
1835			break;
1836		case 2:
1837			dst[dst_byte_offset++] |= (src_byte);
1838			current_bit_offset = 0;
1839			break;
1840		}
1841		src_byte_offset++;
1842	}
1843	(*dst_size) = dst_byte_offset;
1844out:
1845	return;
1846}
1847
1848/**
1849 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1850 * @encoded_name: The encrypted name
1851 * @encoded_name_size: Length of the encrypted name
1852 * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode
1853 * @name: The plaintext name
1854 * @name_size: The length of the plaintext name
1855 *
1856 * Encrypts and encodes a filename into something that constitutes a
1857 * valid filename for a filesystem, with printable characters.
1858 *
1859 * We assume that we have a properly initialized crypto context,
1860 * pointed to by crypt_stat->tfm.
1861 *
1862 * Returns zero on success; non-zero on otherwise
1863 */
1864int ecryptfs_encrypt_and_encode_filename(
1865	char **encoded_name,
1866	size_t *encoded_name_size,
1867	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1868	const char *name, size_t name_size)
1869{
1870	size_t encoded_name_no_prefix_size;
1871	int rc = 0;
1872
1873	(*encoded_name) = NULL;
1874	(*encoded_name_size) = 0;
1875	if (mount_crypt_stat && (mount_crypt_stat->flags
1876				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1877		struct ecryptfs_filename *filename;
1878
1879		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1880		if (!filename) {
1881			rc = -ENOMEM;
1882			goto out;
1883		}
1884		filename->filename = (char *)name;
1885		filename->filename_size = name_size;
1886		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1887		if (rc) {
1888			printk(KERN_ERR "%s: Error attempting to encrypt "
1889			       "filename; rc = [%d]\n", __func__, rc);
1890			kfree(filename);
1891			goto out;
1892		}
1893		ecryptfs_encode_for_filename(
1894			NULL, &encoded_name_no_prefix_size,
1895			filename->encrypted_filename,
1896			filename->encrypted_filename_size);
1897		if (mount_crypt_stat
1898			&& (mount_crypt_stat->flags
1899			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1900			(*encoded_name_size) =
1901				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1902				 + encoded_name_no_prefix_size);
1903		else
1904			(*encoded_name_size) =
1905				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1906				 + encoded_name_no_prefix_size);
1907		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1908		if (!(*encoded_name)) {
1909			rc = -ENOMEM;
1910			kfree(filename->encrypted_filename);
1911			kfree(filename);
1912			goto out;
1913		}
1914		if (mount_crypt_stat
1915			&& (mount_crypt_stat->flags
1916			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1917			memcpy((*encoded_name),
1918			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1919			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1920			ecryptfs_encode_for_filename(
1921			    ((*encoded_name)
1922			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1923			    &encoded_name_no_prefix_size,
1924			    filename->encrypted_filename,
1925			    filename->encrypted_filename_size);
1926			(*encoded_name_size) =
1927				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1928				 + encoded_name_no_prefix_size);
1929			(*encoded_name)[(*encoded_name_size)] = '\0';
1930		} else {
1931			rc = -EOPNOTSUPP;
1932		}
1933		if (rc) {
1934			printk(KERN_ERR "%s: Error attempting to encode "
1935			       "encrypted filename; rc = [%d]\n", __func__,
1936			       rc);
1937			kfree((*encoded_name));
1938			(*encoded_name) = NULL;
1939			(*encoded_name_size) = 0;
1940		}
1941		kfree(filename->encrypted_filename);
1942		kfree(filename);
1943	} else {
1944		rc = ecryptfs_copy_filename(encoded_name,
1945					    encoded_name_size,
1946					    name, name_size);
1947	}
1948out:
1949	return rc;
1950}
1951
1952/**
1953 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1954 * @plaintext_name: The plaintext name
1955 * @plaintext_name_size: The plaintext name size
1956 * @sb: Ecryptfs's super_block
1957 * @name: The filename in cipher text
1958 * @name_size: The cipher text name size
1959 *
1960 * Decrypts and decodes the filename.
1961 *
1962 * Returns zero on error; non-zero otherwise
1963 */
1964int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
1965					 size_t *plaintext_name_size,
1966					 struct super_block *sb,
1967					 const char *name, size_t name_size)
1968{
1969	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1970		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
1971	char *decoded_name;
1972	size_t decoded_name_size;
1973	size_t packet_size;
1974	int rc = 0;
1975
1976	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
1977	    !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
1978		if (is_dot_dotdot(name, name_size)) {
1979			rc = ecryptfs_copy_filename(plaintext_name,
1980						    plaintext_name_size,
1981						    name, name_size);
1982			goto out;
1983		}
1984
1985		if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
1986		    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1987			    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
1988			rc = -EINVAL;
1989			goto out;
1990		}
1991
1992		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1993		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1994		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
1995					      name, name_size);
1996		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
1997		if (!decoded_name) {
1998			rc = -ENOMEM;
1999			goto out;
2000		}
2001		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2002					      name, name_size);
2003		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2004						  plaintext_name_size,
2005						  &packet_size,
2006						  mount_crypt_stat,
2007						  decoded_name,
2008						  decoded_name_size);
2009		if (rc) {
2010			ecryptfs_printk(KERN_DEBUG,
2011					"%s: Could not parse tag 70 packet from filename\n",
2012					__func__);
2013			goto out_free;
2014		}
2015	} else {
2016		rc = ecryptfs_copy_filename(plaintext_name,
2017					    plaintext_name_size,
2018					    name, name_size);
2019		goto out;
2020	}
2021out_free:
2022	kfree(decoded_name);
2023out:
2024	return rc;
2025}
2026
2027#define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2028
2029int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2030			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2031{
2032	struct crypto_skcipher *tfm;
2033	struct mutex *tfm_mutex;
2034	size_t cipher_blocksize;
2035	int rc;
2036
2037	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2038		(*namelen) = lower_namelen;
2039		return 0;
2040	}
2041
2042	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2043			mount_crypt_stat->global_default_fn_cipher_name);
2044	if (unlikely(rc)) {
2045		(*namelen) = 0;
2046		return rc;
2047	}
2048
2049	mutex_lock(tfm_mutex);
2050	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2051	mutex_unlock(tfm_mutex);
2052
2053	/* Return an exact amount for the common cases */
2054	if (lower_namelen == NAME_MAX
2055	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2056		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2057		return 0;
2058	}
2059
2060	/* Return a safe estimate for the uncommon cases */
2061	(*namelen) = lower_namelen;
2062	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2063	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2064	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2065	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2066	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2067	/* Worst case is that the filename is padded nearly a full block size */
2068	(*namelen) -= cipher_blocksize - 1;
2069
2070	if ((*namelen) < 0)
2071		(*namelen) = 0;
2072
2073	return 0;
2074}
2075