1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
9 * 04Jul2002	Andrew Morton
10 *		Initial version
11 * 11Sep2002	janetinc@us.ibm.com
12 * 		added readv/writev support.
13 * 29Oct2002	Andrew Morton
14 *		rewrote bio_add_page() support.
15 * 30Oct2002	pbadari@us.ibm.com
16 *		added support for non-aligned IO.
17 * 06Nov2002	pbadari@us.ibm.com
18 *		added asynchronous IO support.
19 * 21Jul2003	nathans@sgi.com
20 *		added IO completion notifier.
21 */
22
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/mm.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/pagemap.h>
31#include <linux/task_io_accounting_ops.h>
32#include <linux/bio.h>
33#include <linux/wait.h>
34#include <linux/err.h>
35#include <linux/blkdev.h>
36#include <linux/buffer_head.h>
37#include <linux/rwsem.h>
38#include <linux/uio.h>
39#include <linux/atomic.h>
40#include <linux/prefetch.h>
41
42#include "internal.h"
43
44/*
45 * How many user pages to map in one call to iov_iter_extract_pages().  This
46 * determines the size of a structure in the slab cache
47 */
48#define DIO_PAGES	64
49
50/*
51 * Flags for dio_complete()
52 */
53#define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
54#define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
55
56/*
57 * This code generally works in units of "dio_blocks".  A dio_block is
58 * somewhere between the hard sector size and the filesystem block size.  it
59 * is determined on a per-invocation basis.   When talking to the filesystem
60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
62 * to bio_block quantities by shifting left by blkfactor.
63 *
64 * If blkfactor is zero then the user's request was aligned to the filesystem's
65 * blocksize.
66 */
67
68/* dio_state only used in the submission path */
69
70struct dio_submit {
71	struct bio *bio;		/* bio under assembly */
72	unsigned blkbits;		/* doesn't change */
73	unsigned blkfactor;		/* When we're using an alignment which
74					   is finer than the filesystem's soft
75					   blocksize, this specifies how much
76					   finer.  blkfactor=2 means 1/4-block
77					   alignment.  Does not change */
78	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79					   been performed at the start of a
80					   write */
81	int pages_in_io;		/* approximate total IO pages */
82	sector_t block_in_file;		/* Current offset into the underlying
83					   file in dio_block units. */
84	unsigned blocks_available;	/* At block_in_file.  changes */
85	int reap_counter;		/* rate limit reaping */
86	sector_t final_block_in_request;/* doesn't change */
87	int boundary;			/* prev block is at a boundary */
88	get_block_t *get_block;		/* block mapping function */
89
90	loff_t logical_offset_in_bio;	/* current first logical block in bio */
91	sector_t final_block_in_bio;	/* current final block in bio + 1 */
92	sector_t next_block_for_io;	/* next block to be put under IO,
93					   in dio_blocks units */
94
95	/*
96	 * Deferred addition of a page to the dio.  These variables are
97	 * private to dio_send_cur_page(), submit_page_section() and
98	 * dio_bio_add_page().
99	 */
100	struct page *cur_page;		/* The page */
101	unsigned cur_page_offset;	/* Offset into it, in bytes */
102	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
103	sector_t cur_page_block;	/* Where it starts */
104	loff_t cur_page_fs_offset;	/* Offset in file */
105
106	struct iov_iter *iter;
107	/*
108	 * Page queue.  These variables belong to dio_refill_pages() and
109	 * dio_get_page().
110	 */
111	unsigned head;			/* next page to process */
112	unsigned tail;			/* last valid page + 1 */
113	size_t from, to;
114};
115
116/* dio_state communicated between submission path and end_io */
117struct dio {
118	int flags;			/* doesn't change */
119	blk_opf_t opf;			/* request operation type and flags */
120	struct gendisk *bio_disk;
121	struct inode *inode;
122	loff_t i_size;			/* i_size when submitted */
123	dio_iodone_t *end_io;		/* IO completion function */
124	bool is_pinned;			/* T if we have pins on the pages */
125
126	void *private;			/* copy from map_bh.b_private */
127
128	/* BIO completion state */
129	spinlock_t bio_lock;		/* protects BIO fields below */
130	int page_errors;		/* err from iov_iter_extract_pages() */
131	int is_async;			/* is IO async ? */
132	bool defer_completion;		/* defer AIO completion to workqueue? */
133	bool should_dirty;		/* if pages should be dirtied */
134	int io_error;			/* IO error in completion path */
135	unsigned long refcount;		/* direct_io_worker() and bios */
136	struct bio *bio_list;		/* singly linked via bi_private */
137	struct task_struct *waiter;	/* waiting task (NULL if none) */
138
139	/* AIO related stuff */
140	struct kiocb *iocb;		/* kiocb */
141	ssize_t result;                 /* IO result */
142
143	/*
144	 * pages[] (and any fields placed after it) are not zeroed out at
145	 * allocation time.  Don't add new fields after pages[] unless you
146	 * wish that they not be zeroed.
147	 */
148	union {
149		struct page *pages[DIO_PAGES];	/* page buffer */
150		struct work_struct complete_work;/* deferred AIO completion */
151	};
152} ____cacheline_aligned_in_smp;
153
154static struct kmem_cache *dio_cache __ro_after_init;
155
156/*
157 * How many pages are in the queue?
158 */
159static inline unsigned dio_pages_present(struct dio_submit *sdio)
160{
161	return sdio->tail - sdio->head;
162}
163
164/*
165 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
166 */
167static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168{
169	struct page **pages = dio->pages;
170	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
171	ssize_t ret;
172
173	ret = iov_iter_extract_pages(sdio->iter, &pages, LONG_MAX,
174				     DIO_PAGES, 0, &sdio->from);
175
176	if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
177		/*
178		 * A memory fault, but the filesystem has some outstanding
179		 * mapped blocks.  We need to use those blocks up to avoid
180		 * leaking stale data in the file.
181		 */
182		if (dio->page_errors == 0)
183			dio->page_errors = ret;
184		dio->pages[0] = ZERO_PAGE(0);
185		sdio->head = 0;
186		sdio->tail = 1;
187		sdio->from = 0;
188		sdio->to = PAGE_SIZE;
189		return 0;
190	}
191
192	if (ret >= 0) {
193		ret += sdio->from;
194		sdio->head = 0;
195		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197		return 0;
198	}
199	return ret;
200}
201
202/*
203 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
204 * buffered inside the dio so that we can call iov_iter_extract_pages()
205 * against a decent number of pages, less frequently.  To provide nicer use of
206 * the L1 cache.
207 */
208static inline struct page *dio_get_page(struct dio *dio,
209					struct dio_submit *sdio)
210{
211	if (dio_pages_present(sdio) == 0) {
212		int ret;
213
214		ret = dio_refill_pages(dio, sdio);
215		if (ret)
216			return ERR_PTR(ret);
217		BUG_ON(dio_pages_present(sdio) == 0);
218	}
219	return dio->pages[sdio->head];
220}
221
222static void dio_pin_page(struct dio *dio, struct page *page)
223{
224	if (dio->is_pinned)
225		folio_add_pin(page_folio(page));
226}
227
228static void dio_unpin_page(struct dio *dio, struct page *page)
229{
230	if (dio->is_pinned)
231		unpin_user_page(page);
232}
233
234/*
235 * dio_complete() - called when all DIO BIO I/O has been completed
236 *
237 * This drops i_dio_count, lets interested parties know that a DIO operation
238 * has completed, and calculates the resulting return code for the operation.
239 *
240 * It lets the filesystem know if it registered an interest earlier via
241 * get_block.  Pass the private field of the map buffer_head so that
242 * filesystems can use it to hold additional state between get_block calls and
243 * dio_complete.
244 */
245static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
246{
247	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
248	loff_t offset = dio->iocb->ki_pos;
249	ssize_t transferred = 0;
250	int err;
251
252	/*
253	 * AIO submission can race with bio completion to get here while
254	 * expecting to have the last io completed by bio completion.
255	 * In that case -EIOCBQUEUED is in fact not an error we want
256	 * to preserve through this call.
257	 */
258	if (ret == -EIOCBQUEUED)
259		ret = 0;
260
261	if (dio->result) {
262		transferred = dio->result;
263
264		/* Check for short read case */
265		if (dio_op == REQ_OP_READ &&
266		    ((offset + transferred) > dio->i_size))
267			transferred = dio->i_size - offset;
268		/* ignore EFAULT if some IO has been done */
269		if (unlikely(ret == -EFAULT) && transferred)
270			ret = 0;
271	}
272
273	if (ret == 0)
274		ret = dio->page_errors;
275	if (ret == 0)
276		ret = dio->io_error;
277	if (ret == 0)
278		ret = transferred;
279
280	if (dio->end_io) {
281		// XXX: ki_pos??
282		err = dio->end_io(dio->iocb, offset, ret, dio->private);
283		if (err)
284			ret = err;
285	}
286
287	/*
288	 * Try again to invalidate clean pages which might have been cached by
289	 * non-direct readahead, or faulted in by get_user_pages() if the source
290	 * of the write was an mmap'ed region of the file we're writing.  Either
291	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
292	 * this invalidation fails, tough, the write still worked...
293	 *
294	 * And this page cache invalidation has to be after dio->end_io(), as
295	 * some filesystems convert unwritten extents to real allocations in
296	 * end_io() when necessary, otherwise a racing buffer read would cache
297	 * zeros from unwritten extents.
298	 */
299	if (flags & DIO_COMPLETE_INVALIDATE &&
300	    ret > 0 && dio_op == REQ_OP_WRITE)
301		kiocb_invalidate_post_direct_write(dio->iocb, ret);
302
303	inode_dio_end(dio->inode);
304
305	if (flags & DIO_COMPLETE_ASYNC) {
306		/*
307		 * generic_write_sync expects ki_pos to have been updated
308		 * already, but the submission path only does this for
309		 * synchronous I/O.
310		 */
311		dio->iocb->ki_pos += transferred;
312
313		if (ret > 0 && dio_op == REQ_OP_WRITE)
314			ret = generic_write_sync(dio->iocb, ret);
315		dio->iocb->ki_complete(dio->iocb, ret);
316	}
317
318	kmem_cache_free(dio_cache, dio);
319	return ret;
320}
321
322static void dio_aio_complete_work(struct work_struct *work)
323{
324	struct dio *dio = container_of(work, struct dio, complete_work);
325
326	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
327}
328
329static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
330
331/*
332 * Asynchronous IO callback.
333 */
334static void dio_bio_end_aio(struct bio *bio)
335{
336	struct dio *dio = bio->bi_private;
337	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
338	unsigned long remaining;
339	unsigned long flags;
340	bool defer_completion = false;
341
342	/* cleanup the bio */
343	dio_bio_complete(dio, bio);
344
345	spin_lock_irqsave(&dio->bio_lock, flags);
346	remaining = --dio->refcount;
347	if (remaining == 1 && dio->waiter)
348		wake_up_process(dio->waiter);
349	spin_unlock_irqrestore(&dio->bio_lock, flags);
350
351	if (remaining == 0) {
352		/*
353		 * Defer completion when defer_completion is set or
354		 * when the inode has pages mapped and this is AIO write.
355		 * We need to invalidate those pages because there is a
356		 * chance they contain stale data in the case buffered IO
357		 * went in between AIO submission and completion into the
358		 * same region.
359		 */
360		if (dio->result)
361			defer_completion = dio->defer_completion ||
362					   (dio_op == REQ_OP_WRITE &&
363					    dio->inode->i_mapping->nrpages);
364		if (defer_completion) {
365			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
366			queue_work(dio->inode->i_sb->s_dio_done_wq,
367				   &dio->complete_work);
368		} else {
369			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
370		}
371	}
372}
373
374/*
375 * The BIO completion handler simply queues the BIO up for the process-context
376 * handler.
377 *
378 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
379 * implement a singly-linked list of completed BIOs, at dio->bio_list.
380 */
381static void dio_bio_end_io(struct bio *bio)
382{
383	struct dio *dio = bio->bi_private;
384	unsigned long flags;
385
386	spin_lock_irqsave(&dio->bio_lock, flags);
387	bio->bi_private = dio->bio_list;
388	dio->bio_list = bio;
389	if (--dio->refcount == 1 && dio->waiter)
390		wake_up_process(dio->waiter);
391	spin_unlock_irqrestore(&dio->bio_lock, flags);
392}
393
394static inline void
395dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
396	      struct block_device *bdev,
397	      sector_t first_sector, int nr_vecs)
398{
399	struct bio *bio;
400
401	/*
402	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
403	 * we request a valid number of vectors.
404	 */
405	bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
406	bio->bi_iter.bi_sector = first_sector;
407	if (dio->is_async)
408		bio->bi_end_io = dio_bio_end_aio;
409	else
410		bio->bi_end_io = dio_bio_end_io;
411	if (dio->is_pinned)
412		bio_set_flag(bio, BIO_PAGE_PINNED);
413	bio->bi_write_hint = file_inode(dio->iocb->ki_filp)->i_write_hint;
414
415	sdio->bio = bio;
416	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
417}
418
419/*
420 * In the AIO read case we speculatively dirty the pages before starting IO.
421 * During IO completion, any of these pages which happen to have been written
422 * back will be redirtied by bio_check_pages_dirty().
423 *
424 * bios hold a dio reference between submit_bio and ->end_io.
425 */
426static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
427{
428	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
429	struct bio *bio = sdio->bio;
430	unsigned long flags;
431
432	bio->bi_private = dio;
433
434	spin_lock_irqsave(&dio->bio_lock, flags);
435	dio->refcount++;
436	spin_unlock_irqrestore(&dio->bio_lock, flags);
437
438	if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
439		bio_set_pages_dirty(bio);
440
441	dio->bio_disk = bio->bi_bdev->bd_disk;
442
443	submit_bio(bio);
444
445	sdio->bio = NULL;
446	sdio->boundary = 0;
447	sdio->logical_offset_in_bio = 0;
448}
449
450/*
451 * Release any resources in case of a failure
452 */
453static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
454{
455	if (dio->is_pinned)
456		unpin_user_pages(dio->pages + sdio->head,
457				 sdio->tail - sdio->head);
458	sdio->head = sdio->tail;
459}
460
461/*
462 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
463 * returned once all BIOs have been completed.  This must only be called once
464 * all bios have been issued so that dio->refcount can only decrease.  This
465 * requires that the caller hold a reference on the dio.
466 */
467static struct bio *dio_await_one(struct dio *dio)
468{
469	unsigned long flags;
470	struct bio *bio = NULL;
471
472	spin_lock_irqsave(&dio->bio_lock, flags);
473
474	/*
475	 * Wait as long as the list is empty and there are bios in flight.  bio
476	 * completion drops the count, maybe adds to the list, and wakes while
477	 * holding the bio_lock so we don't need set_current_state()'s barrier
478	 * and can call it after testing our condition.
479	 */
480	while (dio->refcount > 1 && dio->bio_list == NULL) {
481		__set_current_state(TASK_UNINTERRUPTIBLE);
482		dio->waiter = current;
483		spin_unlock_irqrestore(&dio->bio_lock, flags);
484		blk_io_schedule();
485		/* wake up sets us TASK_RUNNING */
486		spin_lock_irqsave(&dio->bio_lock, flags);
487		dio->waiter = NULL;
488	}
489	if (dio->bio_list) {
490		bio = dio->bio_list;
491		dio->bio_list = bio->bi_private;
492	}
493	spin_unlock_irqrestore(&dio->bio_lock, flags);
494	return bio;
495}
496
497/*
498 * Process one completed BIO.  No locks are held.
499 */
500static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
501{
502	blk_status_t err = bio->bi_status;
503	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
504	bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
505
506	if (err) {
507		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
508			dio->io_error = -EAGAIN;
509		else
510			dio->io_error = -EIO;
511	}
512
513	if (dio->is_async && should_dirty) {
514		bio_check_pages_dirty(bio);	/* transfers ownership */
515	} else {
516		bio_release_pages(bio, should_dirty);
517		bio_put(bio);
518	}
519	return err;
520}
521
522/*
523 * Wait on and process all in-flight BIOs.  This must only be called once
524 * all bios have been issued so that the refcount can only decrease.
525 * This just waits for all bios to make it through dio_bio_complete.  IO
526 * errors are propagated through dio->io_error and should be propagated via
527 * dio_complete().
528 */
529static void dio_await_completion(struct dio *dio)
530{
531	struct bio *bio;
532	do {
533		bio = dio_await_one(dio);
534		if (bio)
535			dio_bio_complete(dio, bio);
536	} while (bio);
537}
538
539/*
540 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
541 * to keep the memory consumption sane we periodically reap any completed BIOs
542 * during the BIO generation phase.
543 *
544 * This also helps to limit the peak amount of pinned userspace memory.
545 */
546static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
547{
548	int ret = 0;
549
550	if (sdio->reap_counter++ >= 64) {
551		while (dio->bio_list) {
552			unsigned long flags;
553			struct bio *bio;
554			int ret2;
555
556			spin_lock_irqsave(&dio->bio_lock, flags);
557			bio = dio->bio_list;
558			dio->bio_list = bio->bi_private;
559			spin_unlock_irqrestore(&dio->bio_lock, flags);
560			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
561			if (ret == 0)
562				ret = ret2;
563		}
564		sdio->reap_counter = 0;
565	}
566	return ret;
567}
568
569static int dio_set_defer_completion(struct dio *dio)
570{
571	struct super_block *sb = dio->inode->i_sb;
572
573	if (dio->defer_completion)
574		return 0;
575	dio->defer_completion = true;
576	if (!sb->s_dio_done_wq)
577		return sb_init_dio_done_wq(sb);
578	return 0;
579}
580
581/*
582 * Call into the fs to map some more disk blocks.  We record the current number
583 * of available blocks at sdio->blocks_available.  These are in units of the
584 * fs blocksize, i_blocksize(inode).
585 *
586 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
587 * it uses the passed inode-relative block number as the file offset, as usual.
588 *
589 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
590 * has remaining to do.  The fs should not map more than this number of blocks.
591 *
592 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
593 * indicate how much contiguous disk space has been made available at
594 * bh->b_blocknr.
595 *
596 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
597 * This isn't very efficient...
598 *
599 * In the case of filesystem holes: the fs may return an arbitrarily-large
600 * hole by returning an appropriate value in b_size and by clearing
601 * buffer_mapped().  However the direct-io code will only process holes one
602 * block at a time - it will repeatedly call get_block() as it walks the hole.
603 */
604static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
605			   struct buffer_head *map_bh)
606{
607	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
608	int ret;
609	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
610	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
611	unsigned long fs_count;	/* Number of filesystem-sized blocks */
612	int create;
613	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
614	loff_t i_size;
615
616	/*
617	 * If there was a memory error and we've overwritten all the
618	 * mapped blocks then we can now return that memory error
619	 */
620	ret = dio->page_errors;
621	if (ret == 0) {
622		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
623		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
624		fs_endblk = (sdio->final_block_in_request - 1) >>
625					sdio->blkfactor;
626		fs_count = fs_endblk - fs_startblk + 1;
627
628		map_bh->b_state = 0;
629		map_bh->b_size = fs_count << i_blkbits;
630
631		/*
632		 * For writes that could fill holes inside i_size on a
633		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
634		 * overwrites are permitted. We will return early to the caller
635		 * once we see an unmapped buffer head returned, and the caller
636		 * will fall back to buffered I/O.
637		 *
638		 * Otherwise the decision is left to the get_blocks method,
639		 * which may decide to handle it or also return an unmapped
640		 * buffer head.
641		 */
642		create = dio_op == REQ_OP_WRITE;
643		if (dio->flags & DIO_SKIP_HOLES) {
644			i_size = i_size_read(dio->inode);
645			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
646				create = 0;
647		}
648
649		ret = (*sdio->get_block)(dio->inode, fs_startblk,
650						map_bh, create);
651
652		/* Store for completion */
653		dio->private = map_bh->b_private;
654
655		if (ret == 0 && buffer_defer_completion(map_bh))
656			ret = dio_set_defer_completion(dio);
657	}
658	return ret;
659}
660
661/*
662 * There is no bio.  Make one now.
663 */
664static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
665		sector_t start_sector, struct buffer_head *map_bh)
666{
667	sector_t sector;
668	int ret, nr_pages;
669
670	ret = dio_bio_reap(dio, sdio);
671	if (ret)
672		goto out;
673	sector = start_sector << (sdio->blkbits - 9);
674	nr_pages = bio_max_segs(sdio->pages_in_io);
675	BUG_ON(nr_pages <= 0);
676	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
677	sdio->boundary = 0;
678out:
679	return ret;
680}
681
682/*
683 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
684 * that was successful then update final_block_in_bio and take a ref against
685 * the just-added page.
686 *
687 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
688 */
689static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio)
690{
691	int ret;
692
693	ret = bio_add_page(sdio->bio, sdio->cur_page,
694			sdio->cur_page_len, sdio->cur_page_offset);
695	if (ret == sdio->cur_page_len) {
696		/*
697		 * Decrement count only, if we are done with this page
698		 */
699		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
700			sdio->pages_in_io--;
701		dio_pin_page(dio, sdio->cur_page);
702		sdio->final_block_in_bio = sdio->cur_page_block +
703			(sdio->cur_page_len >> sdio->blkbits);
704		ret = 0;
705	} else {
706		ret = 1;
707	}
708	return ret;
709}
710
711/*
712 * Put cur_page under IO.  The section of cur_page which is described by
713 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
714 * starts on-disk at cur_page_block.
715 *
716 * We take a ref against the page here (on behalf of its presence in the bio).
717 *
718 * The caller of this function is responsible for removing cur_page from the
719 * dio, and for dropping the refcount which came from that presence.
720 */
721static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
722		struct buffer_head *map_bh)
723{
724	int ret = 0;
725
726	if (sdio->bio) {
727		loff_t cur_offset = sdio->cur_page_fs_offset;
728		loff_t bio_next_offset = sdio->logical_offset_in_bio +
729			sdio->bio->bi_iter.bi_size;
730
731		/*
732		 * See whether this new request is contiguous with the old.
733		 *
734		 * Btrfs cannot handle having logically non-contiguous requests
735		 * submitted.  For example if you have
736		 *
737		 * Logical:  [0-4095][HOLE][8192-12287]
738		 * Physical: [0-4095]      [4096-8191]
739		 *
740		 * We cannot submit those pages together as one BIO.  So if our
741		 * current logical offset in the file does not equal what would
742		 * be the next logical offset in the bio, submit the bio we
743		 * have.
744		 */
745		if (sdio->final_block_in_bio != sdio->cur_page_block ||
746		    cur_offset != bio_next_offset)
747			dio_bio_submit(dio, sdio);
748	}
749
750	if (sdio->bio == NULL) {
751		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
752		if (ret)
753			goto out;
754	}
755
756	if (dio_bio_add_page(dio, sdio) != 0) {
757		dio_bio_submit(dio, sdio);
758		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
759		if (ret == 0) {
760			ret = dio_bio_add_page(dio, sdio);
761			BUG_ON(ret != 0);
762		}
763	}
764out:
765	return ret;
766}
767
768/*
769 * An autonomous function to put a chunk of a page under deferred IO.
770 *
771 * The caller doesn't actually know (or care) whether this piece of page is in
772 * a BIO, or is under IO or whatever.  We just take care of all possible
773 * situations here.  The separation between the logic of do_direct_IO() and
774 * that of submit_page_section() is important for clarity.  Please don't break.
775 *
776 * The chunk of page starts on-disk at blocknr.
777 *
778 * We perform deferred IO, by recording the last-submitted page inside our
779 * private part of the dio structure.  If possible, we just expand the IO
780 * across that page here.
781 *
782 * If that doesn't work out then we put the old page into the bio and add this
783 * page to the dio instead.
784 */
785static inline int
786submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
787		    unsigned offset, unsigned len, sector_t blocknr,
788		    struct buffer_head *map_bh)
789{
790	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
791	int ret = 0;
792	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
793
794	if (dio_op == REQ_OP_WRITE) {
795		/*
796		 * Read accounting is performed in submit_bio()
797		 */
798		task_io_account_write(len);
799	}
800
801	/*
802	 * Can we just grow the current page's presence in the dio?
803	 */
804	if (sdio->cur_page == page &&
805	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
806	    sdio->cur_page_block +
807	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
808		sdio->cur_page_len += len;
809		goto out;
810	}
811
812	/*
813	 * If there's a deferred page already there then send it.
814	 */
815	if (sdio->cur_page) {
816		ret = dio_send_cur_page(dio, sdio, map_bh);
817		dio_unpin_page(dio, sdio->cur_page);
818		sdio->cur_page = NULL;
819		if (ret)
820			return ret;
821	}
822
823	dio_pin_page(dio, page);		/* It is in dio */
824	sdio->cur_page = page;
825	sdio->cur_page_offset = offset;
826	sdio->cur_page_len = len;
827	sdio->cur_page_block = blocknr;
828	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
829out:
830	/*
831	 * If boundary then we want to schedule the IO now to
832	 * avoid metadata seeks.
833	 */
834	if (boundary) {
835		ret = dio_send_cur_page(dio, sdio, map_bh);
836		if (sdio->bio)
837			dio_bio_submit(dio, sdio);
838		dio_unpin_page(dio, sdio->cur_page);
839		sdio->cur_page = NULL;
840	}
841	return ret;
842}
843
844/*
845 * If we are not writing the entire block and get_block() allocated
846 * the block for us, we need to fill-in the unused portion of the
847 * block with zeros. This happens only if user-buffer, fileoffset or
848 * io length is not filesystem block-size multiple.
849 *
850 * `end' is zero if we're doing the start of the IO, 1 at the end of the
851 * IO.
852 */
853static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
854		int end, struct buffer_head *map_bh)
855{
856	unsigned dio_blocks_per_fs_block;
857	unsigned this_chunk_blocks;	/* In dio_blocks */
858	unsigned this_chunk_bytes;
859	struct page *page;
860
861	sdio->start_zero_done = 1;
862	if (!sdio->blkfactor || !buffer_new(map_bh))
863		return;
864
865	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
866	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
867
868	if (!this_chunk_blocks)
869		return;
870
871	/*
872	 * We need to zero out part of an fs block.  It is either at the
873	 * beginning or the end of the fs block.
874	 */
875	if (end)
876		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
877
878	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
879
880	page = ZERO_PAGE(0);
881	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
882				sdio->next_block_for_io, map_bh))
883		return;
884
885	sdio->next_block_for_io += this_chunk_blocks;
886}
887
888/*
889 * Walk the user pages, and the file, mapping blocks to disk and generating
890 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
891 * into submit_page_section(), which takes care of the next stage of submission
892 *
893 * Direct IO against a blockdev is different from a file.  Because we can
894 * happily perform page-sized but 512-byte aligned IOs.  It is important that
895 * blockdev IO be able to have fine alignment and large sizes.
896 *
897 * So what we do is to permit the ->get_block function to populate bh.b_size
898 * with the size of IO which is permitted at this offset and this i_blkbits.
899 *
900 * For best results, the blockdev should be set up with 512-byte i_blkbits and
901 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
902 * fine alignment but still allows this function to work in PAGE_SIZE units.
903 */
904static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
905			struct buffer_head *map_bh)
906{
907	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
908	const unsigned blkbits = sdio->blkbits;
909	const unsigned i_blkbits = blkbits + sdio->blkfactor;
910	int ret = 0;
911
912	while (sdio->block_in_file < sdio->final_block_in_request) {
913		struct page *page;
914		size_t from, to;
915
916		page = dio_get_page(dio, sdio);
917		if (IS_ERR(page)) {
918			ret = PTR_ERR(page);
919			goto out;
920		}
921		from = sdio->head ? 0 : sdio->from;
922		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
923		sdio->head++;
924
925		while (from < to) {
926			unsigned this_chunk_bytes;	/* # of bytes mapped */
927			unsigned this_chunk_blocks;	/* # of blocks */
928			unsigned u;
929
930			if (sdio->blocks_available == 0) {
931				/*
932				 * Need to go and map some more disk
933				 */
934				unsigned long blkmask;
935				unsigned long dio_remainder;
936
937				ret = get_more_blocks(dio, sdio, map_bh);
938				if (ret) {
939					dio_unpin_page(dio, page);
940					goto out;
941				}
942				if (!buffer_mapped(map_bh))
943					goto do_holes;
944
945				sdio->blocks_available =
946						map_bh->b_size >> blkbits;
947				sdio->next_block_for_io =
948					map_bh->b_blocknr << sdio->blkfactor;
949				if (buffer_new(map_bh)) {
950					clean_bdev_aliases(
951						map_bh->b_bdev,
952						map_bh->b_blocknr,
953						map_bh->b_size >> i_blkbits);
954				}
955
956				if (!sdio->blkfactor)
957					goto do_holes;
958
959				blkmask = (1 << sdio->blkfactor) - 1;
960				dio_remainder = (sdio->block_in_file & blkmask);
961
962				/*
963				 * If we are at the start of IO and that IO
964				 * starts partway into a fs-block,
965				 * dio_remainder will be non-zero.  If the IO
966				 * is a read then we can simply advance the IO
967				 * cursor to the first block which is to be
968				 * read.  But if the IO is a write and the
969				 * block was newly allocated we cannot do that;
970				 * the start of the fs block must be zeroed out
971				 * on-disk
972				 */
973				if (!buffer_new(map_bh))
974					sdio->next_block_for_io += dio_remainder;
975				sdio->blocks_available -= dio_remainder;
976			}
977do_holes:
978			/* Handle holes */
979			if (!buffer_mapped(map_bh)) {
980				loff_t i_size_aligned;
981
982				/* AKPM: eargh, -ENOTBLK is a hack */
983				if (dio_op == REQ_OP_WRITE) {
984					dio_unpin_page(dio, page);
985					return -ENOTBLK;
986				}
987
988				/*
989				 * Be sure to account for a partial block as the
990				 * last block in the file
991				 */
992				i_size_aligned = ALIGN(i_size_read(dio->inode),
993							1 << blkbits);
994				if (sdio->block_in_file >=
995						i_size_aligned >> blkbits) {
996					/* We hit eof */
997					dio_unpin_page(dio, page);
998					goto out;
999				}
1000				zero_user(page, from, 1 << blkbits);
1001				sdio->block_in_file++;
1002				from += 1 << blkbits;
1003				dio->result += 1 << blkbits;
1004				goto next_block;
1005			}
1006
1007			/*
1008			 * If we're performing IO which has an alignment which
1009			 * is finer than the underlying fs, go check to see if
1010			 * we must zero out the start of this block.
1011			 */
1012			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1013				dio_zero_block(dio, sdio, 0, map_bh);
1014
1015			/*
1016			 * Work out, in this_chunk_blocks, how much disk we
1017			 * can add to this page
1018			 */
1019			this_chunk_blocks = sdio->blocks_available;
1020			u = (to - from) >> blkbits;
1021			if (this_chunk_blocks > u)
1022				this_chunk_blocks = u;
1023			u = sdio->final_block_in_request - sdio->block_in_file;
1024			if (this_chunk_blocks > u)
1025				this_chunk_blocks = u;
1026			this_chunk_bytes = this_chunk_blocks << blkbits;
1027			BUG_ON(this_chunk_bytes == 0);
1028
1029			if (this_chunk_blocks == sdio->blocks_available)
1030				sdio->boundary = buffer_boundary(map_bh);
1031			ret = submit_page_section(dio, sdio, page,
1032						  from,
1033						  this_chunk_bytes,
1034						  sdio->next_block_for_io,
1035						  map_bh);
1036			if (ret) {
1037				dio_unpin_page(dio, page);
1038				goto out;
1039			}
1040			sdio->next_block_for_io += this_chunk_blocks;
1041
1042			sdio->block_in_file += this_chunk_blocks;
1043			from += this_chunk_bytes;
1044			dio->result += this_chunk_bytes;
1045			sdio->blocks_available -= this_chunk_blocks;
1046next_block:
1047			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1048			if (sdio->block_in_file == sdio->final_block_in_request)
1049				break;
1050		}
1051
1052		/* Drop the pin which was taken in get_user_pages() */
1053		dio_unpin_page(dio, page);
1054	}
1055out:
1056	return ret;
1057}
1058
1059static inline int drop_refcount(struct dio *dio)
1060{
1061	int ret2;
1062	unsigned long flags;
1063
1064	/*
1065	 * Sync will always be dropping the final ref and completing the
1066	 * operation.  AIO can if it was a broken operation described above or
1067	 * in fact if all the bios race to complete before we get here.  In
1068	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1069	 * return code that the caller will hand to ->complete().
1070	 *
1071	 * This is managed by the bio_lock instead of being an atomic_t so that
1072	 * completion paths can drop their ref and use the remaining count to
1073	 * decide to wake the submission path atomically.
1074	 */
1075	spin_lock_irqsave(&dio->bio_lock, flags);
1076	ret2 = --dio->refcount;
1077	spin_unlock_irqrestore(&dio->bio_lock, flags);
1078	return ret2;
1079}
1080
1081/*
1082 * This is a library function for use by filesystem drivers.
1083 *
1084 * The locking rules are governed by the flags parameter:
1085 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1086 *    scheme for dumb filesystems.
1087 *    For writes this function is called under i_mutex and returns with
1088 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1089 *    taken and dropped again before returning.
1090 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1091 *    internal locking but rather rely on the filesystem to synchronize
1092 *    direct I/O reads/writes versus each other and truncate.
1093 *
1094 * To help with locking against truncate we incremented the i_dio_count
1095 * counter before starting direct I/O, and decrement it once we are done.
1096 * Truncate can wait for it to reach zero to provide exclusion.  It is
1097 * expected that filesystem provide exclusion between new direct I/O
1098 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1099 * but other filesystems need to take care of this on their own.
1100 *
1101 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1102 * is always inlined. Otherwise gcc is unable to split the structure into
1103 * individual fields and will generate much worse code. This is important
1104 * for the whole file.
1105 */
1106ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1107		struct block_device *bdev, struct iov_iter *iter,
1108		get_block_t get_block, dio_iodone_t end_io,
1109		int flags)
1110{
1111	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1112	unsigned blkbits = i_blkbits;
1113	unsigned blocksize_mask = (1 << blkbits) - 1;
1114	ssize_t retval = -EINVAL;
1115	const size_t count = iov_iter_count(iter);
1116	loff_t offset = iocb->ki_pos;
1117	const loff_t end = offset + count;
1118	struct dio *dio;
1119	struct dio_submit sdio = { NULL, };
1120	struct buffer_head map_bh = { 0, };
1121	struct blk_plug plug;
1122	unsigned long align = offset | iov_iter_alignment(iter);
1123
1124	/*
1125	 * Avoid references to bdev if not absolutely needed to give
1126	 * the early prefetch in the caller enough time.
1127	 */
1128
1129	/* watch out for a 0 len io from a tricksy fs */
1130	if (iov_iter_rw(iter) == READ && !count)
1131		return 0;
1132
1133	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1134	if (!dio)
1135		return -ENOMEM;
1136	/*
1137	 * Believe it or not, zeroing out the page array caused a .5%
1138	 * performance regression in a database benchmark.  So, we take
1139	 * care to only zero out what's needed.
1140	 */
1141	memset(dio, 0, offsetof(struct dio, pages));
1142
1143	dio->flags = flags;
1144	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1145		/* will be released by direct_io_worker */
1146		inode_lock(inode);
1147	}
1148	dio->is_pinned = iov_iter_extract_will_pin(iter);
1149
1150	/* Once we sampled i_size check for reads beyond EOF */
1151	dio->i_size = i_size_read(inode);
1152	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1153		retval = 0;
1154		goto fail_dio;
1155	}
1156
1157	if (align & blocksize_mask) {
1158		if (bdev)
1159			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1160		blocksize_mask = (1 << blkbits) - 1;
1161		if (align & blocksize_mask)
1162			goto fail_dio;
1163	}
1164
1165	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1166		struct address_space *mapping = iocb->ki_filp->f_mapping;
1167
1168		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1169		if (retval)
1170			goto fail_dio;
1171	}
1172
1173	/*
1174	 * For file extending writes updating i_size before data writeouts
1175	 * complete can expose uninitialized blocks in dumb filesystems.
1176	 * In that case we need to wait for I/O completion even if asked
1177	 * for an asynchronous write.
1178	 */
1179	if (is_sync_kiocb(iocb))
1180		dio->is_async = false;
1181	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1182		dio->is_async = false;
1183	else
1184		dio->is_async = true;
1185
1186	dio->inode = inode;
1187	if (iov_iter_rw(iter) == WRITE) {
1188		dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1189		if (iocb->ki_flags & IOCB_NOWAIT)
1190			dio->opf |= REQ_NOWAIT;
1191	} else {
1192		dio->opf = REQ_OP_READ;
1193	}
1194
1195	/*
1196	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1197	 * so that we can call ->fsync.
1198	 */
1199	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1200		retval = 0;
1201		if (iocb_is_dsync(iocb))
1202			retval = dio_set_defer_completion(dio);
1203		else if (!dio->inode->i_sb->s_dio_done_wq) {
1204			/*
1205			 * In case of AIO write racing with buffered read we
1206			 * need to defer completion. We can't decide this now,
1207			 * however the workqueue needs to be initialized here.
1208			 */
1209			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1210		}
1211		if (retval)
1212			goto fail_dio;
1213	}
1214
1215	/*
1216	 * Will be decremented at I/O completion time.
1217	 */
1218	inode_dio_begin(inode);
1219
1220	retval = 0;
1221	sdio.blkbits = blkbits;
1222	sdio.blkfactor = i_blkbits - blkbits;
1223	sdio.block_in_file = offset >> blkbits;
1224
1225	sdio.get_block = get_block;
1226	dio->end_io = end_io;
1227	sdio.final_block_in_bio = -1;
1228	sdio.next_block_for_io = -1;
1229
1230	dio->iocb = iocb;
1231
1232	spin_lock_init(&dio->bio_lock);
1233	dio->refcount = 1;
1234
1235	dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1236	sdio.iter = iter;
1237	sdio.final_block_in_request = end >> blkbits;
1238
1239	/*
1240	 * In case of non-aligned buffers, we may need 2 more
1241	 * pages since we need to zero out first and last block.
1242	 */
1243	if (unlikely(sdio.blkfactor))
1244		sdio.pages_in_io = 2;
1245
1246	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1247
1248	blk_start_plug(&plug);
1249
1250	retval = do_direct_IO(dio, &sdio, &map_bh);
1251	if (retval)
1252		dio_cleanup(dio, &sdio);
1253
1254	if (retval == -ENOTBLK) {
1255		/*
1256		 * The remaining part of the request will be
1257		 * handled by buffered I/O when we return
1258		 */
1259		retval = 0;
1260	}
1261	/*
1262	 * There may be some unwritten disk at the end of a part-written
1263	 * fs-block-sized block.  Go zero that now.
1264	 */
1265	dio_zero_block(dio, &sdio, 1, &map_bh);
1266
1267	if (sdio.cur_page) {
1268		ssize_t ret2;
1269
1270		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1271		if (retval == 0)
1272			retval = ret2;
1273		dio_unpin_page(dio, sdio.cur_page);
1274		sdio.cur_page = NULL;
1275	}
1276	if (sdio.bio)
1277		dio_bio_submit(dio, &sdio);
1278
1279	blk_finish_plug(&plug);
1280
1281	/*
1282	 * It is possible that, we return short IO due to end of file.
1283	 * In that case, we need to release all the pages we got hold on.
1284	 */
1285	dio_cleanup(dio, &sdio);
1286
1287	/*
1288	 * All block lookups have been performed. For READ requests
1289	 * we can let i_mutex go now that its achieved its purpose
1290	 * of protecting us from looking up uninitialized blocks.
1291	 */
1292	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1293		inode_unlock(dio->inode);
1294
1295	/*
1296	 * The only time we want to leave bios in flight is when a successful
1297	 * partial aio read or full aio write have been setup.  In that case
1298	 * bio completion will call aio_complete.  The only time it's safe to
1299	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1300	 * This had *better* be the only place that raises -EIOCBQUEUED.
1301	 */
1302	BUG_ON(retval == -EIOCBQUEUED);
1303	if (dio->is_async && retval == 0 && dio->result &&
1304	    (iov_iter_rw(iter) == READ || dio->result == count))
1305		retval = -EIOCBQUEUED;
1306	else
1307		dio_await_completion(dio);
1308
1309	if (drop_refcount(dio) == 0) {
1310		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1311	} else
1312		BUG_ON(retval != -EIOCBQUEUED);
1313
1314	return retval;
1315
1316fail_dio:
1317	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1318		inode_unlock(inode);
1319
1320	kmem_cache_free(dio_cache, dio);
1321	return retval;
1322}
1323EXPORT_SYMBOL(__blockdev_direct_IO);
1324
1325static __init int dio_init(void)
1326{
1327	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1328	return 0;
1329}
1330module_init(dio_init)
1331