1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18#include <linux/ratelimit.h>
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
22#include <linux/fscrypt.h>
23#include <linux/fsnotify.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/hash.h>
27#include <linux/cache.h>
28#include <linux/export.h>
29#include <linux/security.h>
30#include <linux/seqlock.h>
31#include <linux/memblock.h>
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
34#include <linux/list_lru.h>
35#include "internal.h"
36#include "mount.h"
37
38/*
39 * Usage:
40 * dcache->d_inode->i_lock protects:
41 *   - i_dentry, d_u.d_alias, d_inode of aliases
42 * dcache_hash_bucket lock protects:
43 *   - the dcache hash table
44 * s_roots bl list spinlock protects:
45 *   - the s_roots list (see __d_drop)
46 * dentry->d_sb->s_dentry_lru_lock protects:
47 *   - the dcache lru lists and counters
48 * d_lock protects:
49 *   - d_flags
50 *   - d_name
51 *   - d_lru
52 *   - d_count
53 *   - d_unhashed()
54 *   - d_parent and d_chilren
55 *   - childrens' d_sib and d_parent
56 *   - d_u.d_alias, d_inode
57 *
58 * Ordering:
59 * dentry->d_inode->i_lock
60 *   dentry->d_lock
61 *     dentry->d_sb->s_dentry_lru_lock
62 *     dcache_hash_bucket lock
63 *     s_roots lock
64 *
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 *   ...
68 *     dentry->d_parent->d_lock
69 *       dentry->d_lock
70 *
71 * If no ancestor relationship:
72 * arbitrary, since it's serialized on rename_lock
73 */
74int sysctl_vfs_cache_pressure __read_mostly = 100;
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79EXPORT_SYMBOL(rename_lock);
80
81static struct kmem_cache *dentry_cache __ro_after_init;
82
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
87const struct qstr dotdot_name = QSTR_INIT("..", 2);
88EXPORT_SYMBOL(dotdot_name);
89
90/*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
98
99static unsigned int d_hash_shift __ro_after_init;
100
101static struct hlist_bl_head *dentry_hashtable __ro_after_init;
102
103static inline struct hlist_bl_head *d_hash(unsigned int hash)
104{
105	return dentry_hashtable + (hash >> d_hash_shift);
106}
107
108#define IN_LOOKUP_SHIFT 10
109static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112					unsigned int hash)
113{
114	hash += (unsigned long) parent / L1_CACHE_BYTES;
115	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116}
117
118struct dentry_stat_t {
119	long nr_dentry;
120	long nr_unused;
121	long age_limit;		/* age in seconds */
122	long want_pages;	/* pages requested by system */
123	long nr_negative;	/* # of unused negative dentries */
124	long dummy;		/* Reserved for future use */
125};
126
127static DEFINE_PER_CPU(long, nr_dentry);
128static DEFINE_PER_CPU(long, nr_dentry_unused);
129static DEFINE_PER_CPU(long, nr_dentry_negative);
130
131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132/* Statistics gathering. */
133static struct dentry_stat_t dentry_stat = {
134	.age_limit = 45,
135};
136
137/*
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
141 *
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
145 *
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
148 */
149static long get_nr_dentry(void)
150{
151	int i;
152	long sum = 0;
153	for_each_possible_cpu(i)
154		sum += per_cpu(nr_dentry, i);
155	return sum < 0 ? 0 : sum;
156}
157
158static long get_nr_dentry_unused(void)
159{
160	int i;
161	long sum = 0;
162	for_each_possible_cpu(i)
163		sum += per_cpu(nr_dentry_unused, i);
164	return sum < 0 ? 0 : sum;
165}
166
167static long get_nr_dentry_negative(void)
168{
169	int i;
170	long sum = 0;
171
172	for_each_possible_cpu(i)
173		sum += per_cpu(nr_dentry_negative, i);
174	return sum < 0 ? 0 : sum;
175}
176
177static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178			  size_t *lenp, loff_t *ppos)
179{
180	dentry_stat.nr_dentry = get_nr_dentry();
181	dentry_stat.nr_unused = get_nr_dentry_unused();
182	dentry_stat.nr_negative = get_nr_dentry_negative();
183	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184}
185
186static struct ctl_table fs_dcache_sysctls[] = {
187	{
188		.procname	= "dentry-state",
189		.data		= &dentry_stat,
190		.maxlen		= 6*sizeof(long),
191		.mode		= 0444,
192		.proc_handler	= proc_nr_dentry,
193	},
194};
195
196static int __init init_fs_dcache_sysctls(void)
197{
198	register_sysctl_init("fs", fs_dcache_sysctls);
199	return 0;
200}
201fs_initcall(init_fs_dcache_sysctls);
202#endif
203
204/*
205 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
206 * The strings are both count bytes long, and count is non-zero.
207 */
208#ifdef CONFIG_DCACHE_WORD_ACCESS
209
210#include <asm/word-at-a-time.h>
211/*
212 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
213 * aligned allocation for this particular component. We don't
214 * strictly need the load_unaligned_zeropad() safety, but it
215 * doesn't hurt either.
216 *
217 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
218 * need the careful unaligned handling.
219 */
220static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
221{
222	unsigned long a,b,mask;
223
224	for (;;) {
225		a = read_word_at_a_time(cs);
226		b = load_unaligned_zeropad(ct);
227		if (tcount < sizeof(unsigned long))
228			break;
229		if (unlikely(a != b))
230			return 1;
231		cs += sizeof(unsigned long);
232		ct += sizeof(unsigned long);
233		tcount -= sizeof(unsigned long);
234		if (!tcount)
235			return 0;
236	}
237	mask = bytemask_from_count(tcount);
238	return unlikely(!!((a ^ b) & mask));
239}
240
241#else
242
243static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
244{
245	do {
246		if (*cs != *ct)
247			return 1;
248		cs++;
249		ct++;
250		tcount--;
251	} while (tcount);
252	return 0;
253}
254
255#endif
256
257static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
258{
259	/*
260	 * Be careful about RCU walk racing with rename:
261	 * use 'READ_ONCE' to fetch the name pointer.
262	 *
263	 * NOTE! Even if a rename will mean that the length
264	 * was not loaded atomically, we don't care. The
265	 * RCU walk will check the sequence count eventually,
266	 * and catch it. And we won't overrun the buffer,
267	 * because we're reading the name pointer atomically,
268	 * and a dentry name is guaranteed to be properly
269	 * terminated with a NUL byte.
270	 *
271	 * End result: even if 'len' is wrong, we'll exit
272	 * early because the data cannot match (there can
273	 * be no NUL in the ct/tcount data)
274	 */
275	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
276
277	return dentry_string_cmp(cs, ct, tcount);
278}
279
280struct external_name {
281	union {
282		atomic_t count;
283		struct rcu_head head;
284	} u;
285	unsigned char name[];
286};
287
288static inline struct external_name *external_name(struct dentry *dentry)
289{
290	return container_of(dentry->d_name.name, struct external_name, name[0]);
291}
292
293static void __d_free(struct rcu_head *head)
294{
295	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
296
297	kmem_cache_free(dentry_cache, dentry);
298}
299
300static void __d_free_external(struct rcu_head *head)
301{
302	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
303	kfree(external_name(dentry));
304	kmem_cache_free(dentry_cache, dentry);
305}
306
307static inline int dname_external(const struct dentry *dentry)
308{
309	return dentry->d_name.name != dentry->d_iname;
310}
311
312void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
313{
314	spin_lock(&dentry->d_lock);
315	name->name = dentry->d_name;
316	if (unlikely(dname_external(dentry))) {
317		atomic_inc(&external_name(dentry)->u.count);
318	} else {
319		memcpy(name->inline_name, dentry->d_iname,
320		       dentry->d_name.len + 1);
321		name->name.name = name->inline_name;
322	}
323	spin_unlock(&dentry->d_lock);
324}
325EXPORT_SYMBOL(take_dentry_name_snapshot);
326
327void release_dentry_name_snapshot(struct name_snapshot *name)
328{
329	if (unlikely(name->name.name != name->inline_name)) {
330		struct external_name *p;
331		p = container_of(name->name.name, struct external_name, name[0]);
332		if (unlikely(atomic_dec_and_test(&p->u.count)))
333			kfree_rcu(p, u.head);
334	}
335}
336EXPORT_SYMBOL(release_dentry_name_snapshot);
337
338static inline void __d_set_inode_and_type(struct dentry *dentry,
339					  struct inode *inode,
340					  unsigned type_flags)
341{
342	unsigned flags;
343
344	dentry->d_inode = inode;
345	flags = READ_ONCE(dentry->d_flags);
346	flags &= ~DCACHE_ENTRY_TYPE;
347	flags |= type_flags;
348	smp_store_release(&dentry->d_flags, flags);
349}
350
351static inline void __d_clear_type_and_inode(struct dentry *dentry)
352{
353	unsigned flags = READ_ONCE(dentry->d_flags);
354
355	flags &= ~DCACHE_ENTRY_TYPE;
356	WRITE_ONCE(dentry->d_flags, flags);
357	dentry->d_inode = NULL;
358	if (dentry->d_flags & DCACHE_LRU_LIST)
359		this_cpu_inc(nr_dentry_negative);
360}
361
362static void dentry_free(struct dentry *dentry)
363{
364	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
365	if (unlikely(dname_external(dentry))) {
366		struct external_name *p = external_name(dentry);
367		if (likely(atomic_dec_and_test(&p->u.count))) {
368			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
369			return;
370		}
371	}
372	/* if dentry was never visible to RCU, immediate free is OK */
373	if (dentry->d_flags & DCACHE_NORCU)
374		__d_free(&dentry->d_u.d_rcu);
375	else
376		call_rcu(&dentry->d_u.d_rcu, __d_free);
377}
378
379/*
380 * Release the dentry's inode, using the filesystem
381 * d_iput() operation if defined.
382 */
383static void dentry_unlink_inode(struct dentry * dentry)
384	__releases(dentry->d_lock)
385	__releases(dentry->d_inode->i_lock)
386{
387	struct inode *inode = dentry->d_inode;
388
389	raw_write_seqcount_begin(&dentry->d_seq);
390	__d_clear_type_and_inode(dentry);
391	hlist_del_init(&dentry->d_u.d_alias);
392	raw_write_seqcount_end(&dentry->d_seq);
393	spin_unlock(&dentry->d_lock);
394	spin_unlock(&inode->i_lock);
395	if (!inode->i_nlink)
396		fsnotify_inoderemove(inode);
397	if (dentry->d_op && dentry->d_op->d_iput)
398		dentry->d_op->d_iput(dentry, inode);
399	else
400		iput(inode);
401}
402
403/*
404 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
405 * is in use - which includes both the "real" per-superblock
406 * LRU list _and_ the DCACHE_SHRINK_LIST use.
407 *
408 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
409 * on the shrink list (ie not on the superblock LRU list).
410 *
411 * The per-cpu "nr_dentry_unused" counters are updated with
412 * the DCACHE_LRU_LIST bit.
413 *
414 * The per-cpu "nr_dentry_negative" counters are only updated
415 * when deleted from or added to the per-superblock LRU list, not
416 * from/to the shrink list. That is to avoid an unneeded dec/inc
417 * pair when moving from LRU to shrink list in select_collect().
418 *
419 * These helper functions make sure we always follow the
420 * rules. d_lock must be held by the caller.
421 */
422#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
423static void d_lru_add(struct dentry *dentry)
424{
425	D_FLAG_VERIFY(dentry, 0);
426	dentry->d_flags |= DCACHE_LRU_LIST;
427	this_cpu_inc(nr_dentry_unused);
428	if (d_is_negative(dentry))
429		this_cpu_inc(nr_dentry_negative);
430	WARN_ON_ONCE(!list_lru_add_obj(
431			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432}
433
434static void d_lru_del(struct dentry *dentry)
435{
436	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437	dentry->d_flags &= ~DCACHE_LRU_LIST;
438	this_cpu_dec(nr_dentry_unused);
439	if (d_is_negative(dentry))
440		this_cpu_dec(nr_dentry_negative);
441	WARN_ON_ONCE(!list_lru_del_obj(
442			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
443}
444
445static void d_shrink_del(struct dentry *dentry)
446{
447	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
448	list_del_init(&dentry->d_lru);
449	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
450	this_cpu_dec(nr_dentry_unused);
451}
452
453static void d_shrink_add(struct dentry *dentry, struct list_head *list)
454{
455	D_FLAG_VERIFY(dentry, 0);
456	list_add(&dentry->d_lru, list);
457	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
458	this_cpu_inc(nr_dentry_unused);
459}
460
461/*
462 * These can only be called under the global LRU lock, ie during the
463 * callback for freeing the LRU list. "isolate" removes it from the
464 * LRU lists entirely, while shrink_move moves it to the indicated
465 * private list.
466 */
467static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
468{
469	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
470	dentry->d_flags &= ~DCACHE_LRU_LIST;
471	this_cpu_dec(nr_dentry_unused);
472	if (d_is_negative(dentry))
473		this_cpu_dec(nr_dentry_negative);
474	list_lru_isolate(lru, &dentry->d_lru);
475}
476
477static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
478			      struct list_head *list)
479{
480	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
481	dentry->d_flags |= DCACHE_SHRINK_LIST;
482	if (d_is_negative(dentry))
483		this_cpu_dec(nr_dentry_negative);
484	list_lru_isolate_move(lru, &dentry->d_lru, list);
485}
486
487static void ___d_drop(struct dentry *dentry)
488{
489	struct hlist_bl_head *b;
490	/*
491	 * Hashed dentries are normally on the dentry hashtable,
492	 * with the exception of those newly allocated by
493	 * d_obtain_root, which are always IS_ROOT:
494	 */
495	if (unlikely(IS_ROOT(dentry)))
496		b = &dentry->d_sb->s_roots;
497	else
498		b = d_hash(dentry->d_name.hash);
499
500	hlist_bl_lock(b);
501	__hlist_bl_del(&dentry->d_hash);
502	hlist_bl_unlock(b);
503}
504
505void __d_drop(struct dentry *dentry)
506{
507	if (!d_unhashed(dentry)) {
508		___d_drop(dentry);
509		dentry->d_hash.pprev = NULL;
510		write_seqcount_invalidate(&dentry->d_seq);
511	}
512}
513EXPORT_SYMBOL(__d_drop);
514
515/**
516 * d_drop - drop a dentry
517 * @dentry: dentry to drop
518 *
519 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
520 * be found through a VFS lookup any more. Note that this is different from
521 * deleting the dentry - d_delete will try to mark the dentry negative if
522 * possible, giving a successful _negative_ lookup, while d_drop will
523 * just make the cache lookup fail.
524 *
525 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
526 * reason (NFS timeouts or autofs deletes).
527 *
528 * __d_drop requires dentry->d_lock
529 *
530 * ___d_drop doesn't mark dentry as "unhashed"
531 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
532 */
533void d_drop(struct dentry *dentry)
534{
535	spin_lock(&dentry->d_lock);
536	__d_drop(dentry);
537	spin_unlock(&dentry->d_lock);
538}
539EXPORT_SYMBOL(d_drop);
540
541static inline void dentry_unlist(struct dentry *dentry)
542{
543	struct dentry *next;
544	/*
545	 * Inform d_walk() and shrink_dentry_list() that we are no longer
546	 * attached to the dentry tree
547	 */
548	dentry->d_flags |= DCACHE_DENTRY_KILLED;
549	if (unlikely(hlist_unhashed(&dentry->d_sib)))
550		return;
551	__hlist_del(&dentry->d_sib);
552	/*
553	 * Cursors can move around the list of children.  While we'd been
554	 * a normal list member, it didn't matter - ->d_sib.next would've
555	 * been updated.  However, from now on it won't be and for the
556	 * things like d_walk() it might end up with a nasty surprise.
557	 * Normally d_walk() doesn't care about cursors moving around -
558	 * ->d_lock on parent prevents that and since a cursor has no children
559	 * of its own, we get through it without ever unlocking the parent.
560	 * There is one exception, though - if we ascend from a child that
561	 * gets killed as soon as we unlock it, the next sibling is found
562	 * using the value left in its ->d_sib.next.  And if _that_
563	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
564	 * before d_walk() regains parent->d_lock, we'll end up skipping
565	 * everything the cursor had been moved past.
566	 *
567	 * Solution: make sure that the pointer left behind in ->d_sib.next
568	 * points to something that won't be moving around.  I.e. skip the
569	 * cursors.
570	 */
571	while (dentry->d_sib.next) {
572		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
573		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
574			break;
575		dentry->d_sib.next = next->d_sib.next;
576	}
577}
578
579static struct dentry *__dentry_kill(struct dentry *dentry)
580{
581	struct dentry *parent = NULL;
582	bool can_free = true;
583
584	/*
585	 * The dentry is now unrecoverably dead to the world.
586	 */
587	lockref_mark_dead(&dentry->d_lockref);
588
589	/*
590	 * inform the fs via d_prune that this dentry is about to be
591	 * unhashed and destroyed.
592	 */
593	if (dentry->d_flags & DCACHE_OP_PRUNE)
594		dentry->d_op->d_prune(dentry);
595
596	if (dentry->d_flags & DCACHE_LRU_LIST) {
597		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
598			d_lru_del(dentry);
599	}
600	/* if it was on the hash then remove it */
601	__d_drop(dentry);
602	if (dentry->d_inode)
603		dentry_unlink_inode(dentry);
604	else
605		spin_unlock(&dentry->d_lock);
606	this_cpu_dec(nr_dentry);
607	if (dentry->d_op && dentry->d_op->d_release)
608		dentry->d_op->d_release(dentry);
609
610	cond_resched();
611	/* now that it's negative, ->d_parent is stable */
612	if (!IS_ROOT(dentry)) {
613		parent = dentry->d_parent;
614		spin_lock(&parent->d_lock);
615	}
616	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
617	dentry_unlist(dentry);
618	if (dentry->d_flags & DCACHE_SHRINK_LIST)
619		can_free = false;
620	spin_unlock(&dentry->d_lock);
621	if (likely(can_free))
622		dentry_free(dentry);
623	if (parent && --parent->d_lockref.count) {
624		spin_unlock(&parent->d_lock);
625		return NULL;
626	}
627	return parent;
628}
629
630/*
631 * Lock a dentry for feeding it to __dentry_kill().
632 * Called under rcu_read_lock() and dentry->d_lock; the former
633 * guarantees that nothing we access will be freed under us.
634 * Note that dentry is *not* protected from concurrent dentry_kill(),
635 * d_delete(), etc.
636 *
637 * Return false if dentry is busy.  Otherwise, return true and have
638 * that dentry's inode locked.
639 */
640
641static bool lock_for_kill(struct dentry *dentry)
642{
643	struct inode *inode = dentry->d_inode;
644
645	if (unlikely(dentry->d_lockref.count))
646		return false;
647
648	if (!inode || likely(spin_trylock(&inode->i_lock)))
649		return true;
650
651	do {
652		spin_unlock(&dentry->d_lock);
653		spin_lock(&inode->i_lock);
654		spin_lock(&dentry->d_lock);
655		if (likely(inode == dentry->d_inode))
656			break;
657		spin_unlock(&inode->i_lock);
658		inode = dentry->d_inode;
659	} while (inode);
660	if (likely(!dentry->d_lockref.count))
661		return true;
662	if (inode)
663		spin_unlock(&inode->i_lock);
664	return false;
665}
666
667/*
668 * Decide if dentry is worth retaining.  Usually this is called with dentry
669 * locked; if not locked, we are more limited and might not be able to tell
670 * without a lock.  False in this case means "punt to locked path and recheck".
671 *
672 * In case we aren't locked, these predicates are not "stable". However, it is
673 * sufficient that at some point after we dropped the reference the dentry was
674 * hashed and the flags had the proper value. Other dentry users may have
675 * re-gotten a reference to the dentry and change that, but our work is done -
676 * we can leave the dentry around with a zero refcount.
677 */
678static inline bool retain_dentry(struct dentry *dentry, bool locked)
679{
680	unsigned int d_flags;
681
682	smp_rmb();
683	d_flags = READ_ONCE(dentry->d_flags);
684
685	// Unreachable? Nobody would be able to look it up, no point retaining
686	if (unlikely(d_unhashed(dentry)))
687		return false;
688
689	// Same if it's disconnected
690	if (unlikely(d_flags & DCACHE_DISCONNECTED))
691		return false;
692
693	// ->d_delete() might tell us not to bother, but that requires
694	// ->d_lock; can't decide without it
695	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
696		if (!locked || dentry->d_op->d_delete(dentry))
697			return false;
698	}
699
700	// Explicitly told not to bother
701	if (unlikely(d_flags & DCACHE_DONTCACHE))
702		return false;
703
704	// At this point it looks like we ought to keep it.  We also might
705	// need to do something - put it on LRU if it wasn't there already
706	// and mark it referenced if it was on LRU, but not marked yet.
707	// Unfortunately, both actions require ->d_lock, so in lockless
708	// case we'd have to punt rather than doing those.
709	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
710		if (!locked)
711			return false;
712		d_lru_add(dentry);
713	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
714		if (!locked)
715			return false;
716		dentry->d_flags |= DCACHE_REFERENCED;
717	}
718	return true;
719}
720
721void d_mark_dontcache(struct inode *inode)
722{
723	struct dentry *de;
724
725	spin_lock(&inode->i_lock);
726	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
727		spin_lock(&de->d_lock);
728		de->d_flags |= DCACHE_DONTCACHE;
729		spin_unlock(&de->d_lock);
730	}
731	inode->i_state |= I_DONTCACHE;
732	spin_unlock(&inode->i_lock);
733}
734EXPORT_SYMBOL(d_mark_dontcache);
735
736/*
737 * Try to do a lockless dput(), and return whether that was successful.
738 *
739 * If unsuccessful, we return false, having already taken the dentry lock.
740 * In that case refcount is guaranteed to be zero and we have already
741 * decided that it's not worth keeping around.
742 *
743 * The caller needs to hold the RCU read lock, so that the dentry is
744 * guaranteed to stay around even if the refcount goes down to zero!
745 */
746static inline bool fast_dput(struct dentry *dentry)
747{
748	int ret;
749
750	/*
751	 * try to decrement the lockref optimistically.
752	 */
753	ret = lockref_put_return(&dentry->d_lockref);
754
755	/*
756	 * If the lockref_put_return() failed due to the lock being held
757	 * by somebody else, the fast path has failed. We will need to
758	 * get the lock, and then check the count again.
759	 */
760	if (unlikely(ret < 0)) {
761		spin_lock(&dentry->d_lock);
762		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
763			spin_unlock(&dentry->d_lock);
764			return true;
765		}
766		dentry->d_lockref.count--;
767		goto locked;
768	}
769
770	/*
771	 * If we weren't the last ref, we're done.
772	 */
773	if (ret)
774		return true;
775
776	/*
777	 * Can we decide that decrement of refcount is all we needed without
778	 * taking the lock?  There's a very common case when it's all we need -
779	 * dentry looks like it ought to be retained and there's nothing else
780	 * to do.
781	 */
782	if (retain_dentry(dentry, false))
783		return true;
784
785	/*
786	 * Either not worth retaining or we can't tell without the lock.
787	 * Get the lock, then.  We've already decremented the refcount to 0,
788	 * but we'll need to re-check the situation after getting the lock.
789	 */
790	spin_lock(&dentry->d_lock);
791
792	/*
793	 * Did somebody else grab a reference to it in the meantime, and
794	 * we're no longer the last user after all? Alternatively, somebody
795	 * else could have killed it and marked it dead. Either way, we
796	 * don't need to do anything else.
797	 */
798locked:
799	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
800		spin_unlock(&dentry->d_lock);
801		return true;
802	}
803	return false;
804}
805
806
807/*
808 * This is dput
809 *
810 * This is complicated by the fact that we do not want to put
811 * dentries that are no longer on any hash chain on the unused
812 * list: we'd much rather just get rid of them immediately.
813 *
814 * However, that implies that we have to traverse the dentry
815 * tree upwards to the parents which might _also_ now be
816 * scheduled for deletion (it may have been only waiting for
817 * its last child to go away).
818 *
819 * This tail recursion is done by hand as we don't want to depend
820 * on the compiler to always get this right (gcc generally doesn't).
821 * Real recursion would eat up our stack space.
822 */
823
824/*
825 * dput - release a dentry
826 * @dentry: dentry to release
827 *
828 * Release a dentry. This will drop the usage count and if appropriate
829 * call the dentry unlink method as well as removing it from the queues and
830 * releasing its resources. If the parent dentries were scheduled for release
831 * they too may now get deleted.
832 */
833void dput(struct dentry *dentry)
834{
835	if (!dentry)
836		return;
837	might_sleep();
838	rcu_read_lock();
839	if (likely(fast_dput(dentry))) {
840		rcu_read_unlock();
841		return;
842	}
843	while (lock_for_kill(dentry)) {
844		rcu_read_unlock();
845		dentry = __dentry_kill(dentry);
846		if (!dentry)
847			return;
848		if (retain_dentry(dentry, true)) {
849			spin_unlock(&dentry->d_lock);
850			return;
851		}
852		rcu_read_lock();
853	}
854	rcu_read_unlock();
855	spin_unlock(&dentry->d_lock);
856}
857EXPORT_SYMBOL(dput);
858
859static void to_shrink_list(struct dentry *dentry, struct list_head *list)
860__must_hold(&dentry->d_lock)
861{
862	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
863		if (dentry->d_flags & DCACHE_LRU_LIST)
864			d_lru_del(dentry);
865		d_shrink_add(dentry, list);
866	}
867}
868
869void dput_to_list(struct dentry *dentry, struct list_head *list)
870{
871	rcu_read_lock();
872	if (likely(fast_dput(dentry))) {
873		rcu_read_unlock();
874		return;
875	}
876	rcu_read_unlock();
877	to_shrink_list(dentry, list);
878	spin_unlock(&dentry->d_lock);
879}
880
881struct dentry *dget_parent(struct dentry *dentry)
882{
883	int gotref;
884	struct dentry *ret;
885	unsigned seq;
886
887	/*
888	 * Do optimistic parent lookup without any
889	 * locking.
890	 */
891	rcu_read_lock();
892	seq = raw_seqcount_begin(&dentry->d_seq);
893	ret = READ_ONCE(dentry->d_parent);
894	gotref = lockref_get_not_zero(&ret->d_lockref);
895	rcu_read_unlock();
896	if (likely(gotref)) {
897		if (!read_seqcount_retry(&dentry->d_seq, seq))
898			return ret;
899		dput(ret);
900	}
901
902repeat:
903	/*
904	 * Don't need rcu_dereference because we re-check it was correct under
905	 * the lock.
906	 */
907	rcu_read_lock();
908	ret = dentry->d_parent;
909	spin_lock(&ret->d_lock);
910	if (unlikely(ret != dentry->d_parent)) {
911		spin_unlock(&ret->d_lock);
912		rcu_read_unlock();
913		goto repeat;
914	}
915	rcu_read_unlock();
916	BUG_ON(!ret->d_lockref.count);
917	ret->d_lockref.count++;
918	spin_unlock(&ret->d_lock);
919	return ret;
920}
921EXPORT_SYMBOL(dget_parent);
922
923static struct dentry * __d_find_any_alias(struct inode *inode)
924{
925	struct dentry *alias;
926
927	if (hlist_empty(&inode->i_dentry))
928		return NULL;
929	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
930	lockref_get(&alias->d_lockref);
931	return alias;
932}
933
934/**
935 * d_find_any_alias - find any alias for a given inode
936 * @inode: inode to find an alias for
937 *
938 * If any aliases exist for the given inode, take and return a
939 * reference for one of them.  If no aliases exist, return %NULL.
940 */
941struct dentry *d_find_any_alias(struct inode *inode)
942{
943	struct dentry *de;
944
945	spin_lock(&inode->i_lock);
946	de = __d_find_any_alias(inode);
947	spin_unlock(&inode->i_lock);
948	return de;
949}
950EXPORT_SYMBOL(d_find_any_alias);
951
952static struct dentry *__d_find_alias(struct inode *inode)
953{
954	struct dentry *alias;
955
956	if (S_ISDIR(inode->i_mode))
957		return __d_find_any_alias(inode);
958
959	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
960		spin_lock(&alias->d_lock);
961 		if (!d_unhashed(alias)) {
962			dget_dlock(alias);
963			spin_unlock(&alias->d_lock);
964			return alias;
965		}
966		spin_unlock(&alias->d_lock);
967	}
968	return NULL;
969}
970
971/**
972 * d_find_alias - grab a hashed alias of inode
973 * @inode: inode in question
974 *
975 * If inode has a hashed alias, or is a directory and has any alias,
976 * acquire the reference to alias and return it. Otherwise return NULL.
977 * Notice that if inode is a directory there can be only one alias and
978 * it can be unhashed only if it has no children, or if it is the root
979 * of a filesystem, or if the directory was renamed and d_revalidate
980 * was the first vfs operation to notice.
981 *
982 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
983 * any other hashed alias over that one.
984 */
985struct dentry *d_find_alias(struct inode *inode)
986{
987	struct dentry *de = NULL;
988
989	if (!hlist_empty(&inode->i_dentry)) {
990		spin_lock(&inode->i_lock);
991		de = __d_find_alias(inode);
992		spin_unlock(&inode->i_lock);
993	}
994	return de;
995}
996EXPORT_SYMBOL(d_find_alias);
997
998/*
999 *  Caller MUST be holding rcu_read_lock() and be guaranteed
1000 *  that inode won't get freed until rcu_read_unlock().
1001 */
1002struct dentry *d_find_alias_rcu(struct inode *inode)
1003{
1004	struct hlist_head *l = &inode->i_dentry;
1005	struct dentry *de = NULL;
1006
1007	spin_lock(&inode->i_lock);
1008	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1009	// used without having I_FREEING set, which means no aliases left
1010	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1011		if (S_ISDIR(inode->i_mode)) {
1012			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1013		} else {
1014			hlist_for_each_entry(de, l, d_u.d_alias)
1015				if (!d_unhashed(de))
1016					break;
1017		}
1018	}
1019	spin_unlock(&inode->i_lock);
1020	return de;
1021}
1022
1023/*
1024 *	Try to kill dentries associated with this inode.
1025 * WARNING: you must own a reference to inode.
1026 */
1027void d_prune_aliases(struct inode *inode)
1028{
1029	LIST_HEAD(dispose);
1030	struct dentry *dentry;
1031
1032	spin_lock(&inode->i_lock);
1033	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1034		spin_lock(&dentry->d_lock);
1035		if (!dentry->d_lockref.count)
1036			to_shrink_list(dentry, &dispose);
1037		spin_unlock(&dentry->d_lock);
1038	}
1039	spin_unlock(&inode->i_lock);
1040	shrink_dentry_list(&dispose);
1041}
1042EXPORT_SYMBOL(d_prune_aliases);
1043
1044static inline void shrink_kill(struct dentry *victim)
1045{
1046	do {
1047		rcu_read_unlock();
1048		victim = __dentry_kill(victim);
1049		rcu_read_lock();
1050	} while (victim && lock_for_kill(victim));
1051	rcu_read_unlock();
1052	if (victim)
1053		spin_unlock(&victim->d_lock);
1054}
1055
1056void shrink_dentry_list(struct list_head *list)
1057{
1058	while (!list_empty(list)) {
1059		struct dentry *dentry;
1060
1061		dentry = list_entry(list->prev, struct dentry, d_lru);
1062		spin_lock(&dentry->d_lock);
1063		rcu_read_lock();
1064		if (!lock_for_kill(dentry)) {
1065			bool can_free;
1066			rcu_read_unlock();
1067			d_shrink_del(dentry);
1068			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1069			spin_unlock(&dentry->d_lock);
1070			if (can_free)
1071				dentry_free(dentry);
1072			continue;
1073		}
1074		d_shrink_del(dentry);
1075		shrink_kill(dentry);
1076	}
1077}
1078
1079static enum lru_status dentry_lru_isolate(struct list_head *item,
1080		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1081{
1082	struct list_head *freeable = arg;
1083	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1084
1085
1086	/*
1087	 * we are inverting the lru lock/dentry->d_lock here,
1088	 * so use a trylock. If we fail to get the lock, just skip
1089	 * it
1090	 */
1091	if (!spin_trylock(&dentry->d_lock))
1092		return LRU_SKIP;
1093
1094	/*
1095	 * Referenced dentries are still in use. If they have active
1096	 * counts, just remove them from the LRU. Otherwise give them
1097	 * another pass through the LRU.
1098	 */
1099	if (dentry->d_lockref.count) {
1100		d_lru_isolate(lru, dentry);
1101		spin_unlock(&dentry->d_lock);
1102		return LRU_REMOVED;
1103	}
1104
1105	if (dentry->d_flags & DCACHE_REFERENCED) {
1106		dentry->d_flags &= ~DCACHE_REFERENCED;
1107		spin_unlock(&dentry->d_lock);
1108
1109		/*
1110		 * The list move itself will be made by the common LRU code. At
1111		 * this point, we've dropped the dentry->d_lock but keep the
1112		 * lru lock. This is safe to do, since every list movement is
1113		 * protected by the lru lock even if both locks are held.
1114		 *
1115		 * This is guaranteed by the fact that all LRU management
1116		 * functions are intermediated by the LRU API calls like
1117		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1118		 * only ever occur through this functions or through callbacks
1119		 * like this one, that are called from the LRU API.
1120		 *
1121		 * The only exceptions to this are functions like
1122		 * shrink_dentry_list, and code that first checks for the
1123		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1124		 * operating only with stack provided lists after they are
1125		 * properly isolated from the main list.  It is thus, always a
1126		 * local access.
1127		 */
1128		return LRU_ROTATE;
1129	}
1130
1131	d_lru_shrink_move(lru, dentry, freeable);
1132	spin_unlock(&dentry->d_lock);
1133
1134	return LRU_REMOVED;
1135}
1136
1137/**
1138 * prune_dcache_sb - shrink the dcache
1139 * @sb: superblock
1140 * @sc: shrink control, passed to list_lru_shrink_walk()
1141 *
1142 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1143 * is done when we need more memory and called from the superblock shrinker
1144 * function.
1145 *
1146 * This function may fail to free any resources if all the dentries are in
1147 * use.
1148 */
1149long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1150{
1151	LIST_HEAD(dispose);
1152	long freed;
1153
1154	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1155				     dentry_lru_isolate, &dispose);
1156	shrink_dentry_list(&dispose);
1157	return freed;
1158}
1159
1160static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1161		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1162{
1163	struct list_head *freeable = arg;
1164	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1165
1166	/*
1167	 * we are inverting the lru lock/dentry->d_lock here,
1168	 * so use a trylock. If we fail to get the lock, just skip
1169	 * it
1170	 */
1171	if (!spin_trylock(&dentry->d_lock))
1172		return LRU_SKIP;
1173
1174	d_lru_shrink_move(lru, dentry, freeable);
1175	spin_unlock(&dentry->d_lock);
1176
1177	return LRU_REMOVED;
1178}
1179
1180
1181/**
1182 * shrink_dcache_sb - shrink dcache for a superblock
1183 * @sb: superblock
1184 *
1185 * Shrink the dcache for the specified super block. This is used to free
1186 * the dcache before unmounting a file system.
1187 */
1188void shrink_dcache_sb(struct super_block *sb)
1189{
1190	do {
1191		LIST_HEAD(dispose);
1192
1193		list_lru_walk(&sb->s_dentry_lru,
1194			dentry_lru_isolate_shrink, &dispose, 1024);
1195		shrink_dentry_list(&dispose);
1196	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1197}
1198EXPORT_SYMBOL(shrink_dcache_sb);
1199
1200/**
1201 * enum d_walk_ret - action to talke during tree walk
1202 * @D_WALK_CONTINUE:	contrinue walk
1203 * @D_WALK_QUIT:	quit walk
1204 * @D_WALK_NORETRY:	quit when retry is needed
1205 * @D_WALK_SKIP:	skip this dentry and its children
1206 */
1207enum d_walk_ret {
1208	D_WALK_CONTINUE,
1209	D_WALK_QUIT,
1210	D_WALK_NORETRY,
1211	D_WALK_SKIP,
1212};
1213
1214/**
1215 * d_walk - walk the dentry tree
1216 * @parent:	start of walk
1217 * @data:	data passed to @enter() and @finish()
1218 * @enter:	callback when first entering the dentry
1219 *
1220 * The @enter() callbacks are called with d_lock held.
1221 */
1222static void d_walk(struct dentry *parent, void *data,
1223		   enum d_walk_ret (*enter)(void *, struct dentry *))
1224{
1225	struct dentry *this_parent, *dentry;
1226	unsigned seq = 0;
1227	enum d_walk_ret ret;
1228	bool retry = true;
1229
1230again:
1231	read_seqbegin_or_lock(&rename_lock, &seq);
1232	this_parent = parent;
1233	spin_lock(&this_parent->d_lock);
1234
1235	ret = enter(data, this_parent);
1236	switch (ret) {
1237	case D_WALK_CONTINUE:
1238		break;
1239	case D_WALK_QUIT:
1240	case D_WALK_SKIP:
1241		goto out_unlock;
1242	case D_WALK_NORETRY:
1243		retry = false;
1244		break;
1245	}
1246repeat:
1247	dentry = d_first_child(this_parent);
1248resume:
1249	hlist_for_each_entry_from(dentry, d_sib) {
1250		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1251			continue;
1252
1253		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1254
1255		ret = enter(data, dentry);
1256		switch (ret) {
1257		case D_WALK_CONTINUE:
1258			break;
1259		case D_WALK_QUIT:
1260			spin_unlock(&dentry->d_lock);
1261			goto out_unlock;
1262		case D_WALK_NORETRY:
1263			retry = false;
1264			break;
1265		case D_WALK_SKIP:
1266			spin_unlock(&dentry->d_lock);
1267			continue;
1268		}
1269
1270		if (!hlist_empty(&dentry->d_children)) {
1271			spin_unlock(&this_parent->d_lock);
1272			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1273			this_parent = dentry;
1274			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1275			goto repeat;
1276		}
1277		spin_unlock(&dentry->d_lock);
1278	}
1279	/*
1280	 * All done at this level ... ascend and resume the search.
1281	 */
1282	rcu_read_lock();
1283ascend:
1284	if (this_parent != parent) {
1285		dentry = this_parent;
1286		this_parent = dentry->d_parent;
1287
1288		spin_unlock(&dentry->d_lock);
1289		spin_lock(&this_parent->d_lock);
1290
1291		/* might go back up the wrong parent if we have had a rename. */
1292		if (need_seqretry(&rename_lock, seq))
1293			goto rename_retry;
1294		/* go into the first sibling still alive */
1295		hlist_for_each_entry_continue(dentry, d_sib) {
1296			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1297				rcu_read_unlock();
1298				goto resume;
1299			}
1300		}
1301		goto ascend;
1302	}
1303	if (need_seqretry(&rename_lock, seq))
1304		goto rename_retry;
1305	rcu_read_unlock();
1306
1307out_unlock:
1308	spin_unlock(&this_parent->d_lock);
1309	done_seqretry(&rename_lock, seq);
1310	return;
1311
1312rename_retry:
1313	spin_unlock(&this_parent->d_lock);
1314	rcu_read_unlock();
1315	BUG_ON(seq & 1);
1316	if (!retry)
1317		return;
1318	seq = 1;
1319	goto again;
1320}
1321
1322struct check_mount {
1323	struct vfsmount *mnt;
1324	unsigned int mounted;
1325};
1326
1327static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1328{
1329	struct check_mount *info = data;
1330	struct path path = { .mnt = info->mnt, .dentry = dentry };
1331
1332	if (likely(!d_mountpoint(dentry)))
1333		return D_WALK_CONTINUE;
1334	if (__path_is_mountpoint(&path)) {
1335		info->mounted = 1;
1336		return D_WALK_QUIT;
1337	}
1338	return D_WALK_CONTINUE;
1339}
1340
1341/**
1342 * path_has_submounts - check for mounts over a dentry in the
1343 *                      current namespace.
1344 * @parent: path to check.
1345 *
1346 * Return true if the parent or its subdirectories contain
1347 * a mount point in the current namespace.
1348 */
1349int path_has_submounts(const struct path *parent)
1350{
1351	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1352
1353	read_seqlock_excl(&mount_lock);
1354	d_walk(parent->dentry, &data, path_check_mount);
1355	read_sequnlock_excl(&mount_lock);
1356
1357	return data.mounted;
1358}
1359EXPORT_SYMBOL(path_has_submounts);
1360
1361/*
1362 * Called by mount code to set a mountpoint and check if the mountpoint is
1363 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1364 * subtree can become unreachable).
1365 *
1366 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1367 * this reason take rename_lock and d_lock on dentry and ancestors.
1368 */
1369int d_set_mounted(struct dentry *dentry)
1370{
1371	struct dentry *p;
1372	int ret = -ENOENT;
1373	write_seqlock(&rename_lock);
1374	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1375		/* Need exclusion wrt. d_invalidate() */
1376		spin_lock(&p->d_lock);
1377		if (unlikely(d_unhashed(p))) {
1378			spin_unlock(&p->d_lock);
1379			goto out;
1380		}
1381		spin_unlock(&p->d_lock);
1382	}
1383	spin_lock(&dentry->d_lock);
1384	if (!d_unlinked(dentry)) {
1385		ret = -EBUSY;
1386		if (!d_mountpoint(dentry)) {
1387			dentry->d_flags |= DCACHE_MOUNTED;
1388			ret = 0;
1389		}
1390	}
1391 	spin_unlock(&dentry->d_lock);
1392out:
1393	write_sequnlock(&rename_lock);
1394	return ret;
1395}
1396
1397/*
1398 * Search the dentry child list of the specified parent,
1399 * and move any unused dentries to the end of the unused
1400 * list for prune_dcache(). We descend to the next level
1401 * whenever the d_children list is non-empty and continue
1402 * searching.
1403 *
1404 * It returns zero iff there are no unused children,
1405 * otherwise  it returns the number of children moved to
1406 * the end of the unused list. This may not be the total
1407 * number of unused children, because select_parent can
1408 * drop the lock and return early due to latency
1409 * constraints.
1410 */
1411
1412struct select_data {
1413	struct dentry *start;
1414	union {
1415		long found;
1416		struct dentry *victim;
1417	};
1418	struct list_head dispose;
1419};
1420
1421static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1422{
1423	struct select_data *data = _data;
1424	enum d_walk_ret ret = D_WALK_CONTINUE;
1425
1426	if (data->start == dentry)
1427		goto out;
1428
1429	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1430		data->found++;
1431	} else if (!dentry->d_lockref.count) {
1432		to_shrink_list(dentry, &data->dispose);
1433		data->found++;
1434	} else if (dentry->d_lockref.count < 0) {
1435		data->found++;
1436	}
1437	/*
1438	 * We can return to the caller if we have found some (this
1439	 * ensures forward progress). We'll be coming back to find
1440	 * the rest.
1441	 */
1442	if (!list_empty(&data->dispose))
1443		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1444out:
1445	return ret;
1446}
1447
1448static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1449{
1450	struct select_data *data = _data;
1451	enum d_walk_ret ret = D_WALK_CONTINUE;
1452
1453	if (data->start == dentry)
1454		goto out;
1455
1456	if (!dentry->d_lockref.count) {
1457		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1458			rcu_read_lock();
1459			data->victim = dentry;
1460			return D_WALK_QUIT;
1461		}
1462		to_shrink_list(dentry, &data->dispose);
1463	}
1464	/*
1465	 * We can return to the caller if we have found some (this
1466	 * ensures forward progress). We'll be coming back to find
1467	 * the rest.
1468	 */
1469	if (!list_empty(&data->dispose))
1470		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1471out:
1472	return ret;
1473}
1474
1475/**
1476 * shrink_dcache_parent - prune dcache
1477 * @parent: parent of entries to prune
1478 *
1479 * Prune the dcache to remove unused children of the parent dentry.
1480 */
1481void shrink_dcache_parent(struct dentry *parent)
1482{
1483	for (;;) {
1484		struct select_data data = {.start = parent};
1485
1486		INIT_LIST_HEAD(&data.dispose);
1487		d_walk(parent, &data, select_collect);
1488
1489		if (!list_empty(&data.dispose)) {
1490			shrink_dentry_list(&data.dispose);
1491			continue;
1492		}
1493
1494		cond_resched();
1495		if (!data.found)
1496			break;
1497		data.victim = NULL;
1498		d_walk(parent, &data, select_collect2);
1499		if (data.victim) {
1500			spin_lock(&data.victim->d_lock);
1501			if (!lock_for_kill(data.victim)) {
1502				spin_unlock(&data.victim->d_lock);
1503				rcu_read_unlock();
1504			} else {
1505				shrink_kill(data.victim);
1506			}
1507		}
1508		if (!list_empty(&data.dispose))
1509			shrink_dentry_list(&data.dispose);
1510	}
1511}
1512EXPORT_SYMBOL(shrink_dcache_parent);
1513
1514static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1515{
1516	/* it has busy descendents; complain about those instead */
1517	if (!hlist_empty(&dentry->d_children))
1518		return D_WALK_CONTINUE;
1519
1520	/* root with refcount 1 is fine */
1521	if (dentry == _data && dentry->d_lockref.count == 1)
1522		return D_WALK_CONTINUE;
1523
1524	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1525			" still in use (%d) [unmount of %s %s]\n",
1526		       dentry,
1527		       dentry->d_inode ?
1528		       dentry->d_inode->i_ino : 0UL,
1529		       dentry,
1530		       dentry->d_lockref.count,
1531		       dentry->d_sb->s_type->name,
1532		       dentry->d_sb->s_id);
1533	return D_WALK_CONTINUE;
1534}
1535
1536static void do_one_tree(struct dentry *dentry)
1537{
1538	shrink_dcache_parent(dentry);
1539	d_walk(dentry, dentry, umount_check);
1540	d_drop(dentry);
1541	dput(dentry);
1542}
1543
1544/*
1545 * destroy the dentries attached to a superblock on unmounting
1546 */
1547void shrink_dcache_for_umount(struct super_block *sb)
1548{
1549	struct dentry *dentry;
1550
1551	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1552
1553	dentry = sb->s_root;
1554	sb->s_root = NULL;
1555	do_one_tree(dentry);
1556
1557	while (!hlist_bl_empty(&sb->s_roots)) {
1558		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1559		do_one_tree(dentry);
1560	}
1561}
1562
1563static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1564{
1565	struct dentry **victim = _data;
1566	if (d_mountpoint(dentry)) {
1567		*victim = dget_dlock(dentry);
1568		return D_WALK_QUIT;
1569	}
1570	return D_WALK_CONTINUE;
1571}
1572
1573/**
1574 * d_invalidate - detach submounts, prune dcache, and drop
1575 * @dentry: dentry to invalidate (aka detach, prune and drop)
1576 */
1577void d_invalidate(struct dentry *dentry)
1578{
1579	bool had_submounts = false;
1580	spin_lock(&dentry->d_lock);
1581	if (d_unhashed(dentry)) {
1582		spin_unlock(&dentry->d_lock);
1583		return;
1584	}
1585	__d_drop(dentry);
1586	spin_unlock(&dentry->d_lock);
1587
1588	/* Negative dentries can be dropped without further checks */
1589	if (!dentry->d_inode)
1590		return;
1591
1592	shrink_dcache_parent(dentry);
1593	for (;;) {
1594		struct dentry *victim = NULL;
1595		d_walk(dentry, &victim, find_submount);
1596		if (!victim) {
1597			if (had_submounts)
1598				shrink_dcache_parent(dentry);
1599			return;
1600		}
1601		had_submounts = true;
1602		detach_mounts(victim);
1603		dput(victim);
1604	}
1605}
1606EXPORT_SYMBOL(d_invalidate);
1607
1608/**
1609 * __d_alloc	-	allocate a dcache entry
1610 * @sb: filesystem it will belong to
1611 * @name: qstr of the name
1612 *
1613 * Allocates a dentry. It returns %NULL if there is insufficient memory
1614 * available. On a success the dentry is returned. The name passed in is
1615 * copied and the copy passed in may be reused after this call.
1616 */
1617
1618static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1619{
1620	struct dentry *dentry;
1621	char *dname;
1622	int err;
1623
1624	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1625				      GFP_KERNEL);
1626	if (!dentry)
1627		return NULL;
1628
1629	/*
1630	 * We guarantee that the inline name is always NUL-terminated.
1631	 * This way the memcpy() done by the name switching in rename
1632	 * will still always have a NUL at the end, even if we might
1633	 * be overwriting an internal NUL character
1634	 */
1635	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1636	if (unlikely(!name)) {
1637		name = &slash_name;
1638		dname = dentry->d_iname;
1639	} else if (name->len > DNAME_INLINE_LEN-1) {
1640		size_t size = offsetof(struct external_name, name[1]);
1641		struct external_name *p = kmalloc(size + name->len,
1642						  GFP_KERNEL_ACCOUNT |
1643						  __GFP_RECLAIMABLE);
1644		if (!p) {
1645			kmem_cache_free(dentry_cache, dentry);
1646			return NULL;
1647		}
1648		atomic_set(&p->u.count, 1);
1649		dname = p->name;
1650	} else  {
1651		dname = dentry->d_iname;
1652	}
1653
1654	dentry->d_name.len = name->len;
1655	dentry->d_name.hash = name->hash;
1656	memcpy(dname, name->name, name->len);
1657	dname[name->len] = 0;
1658
1659	/* Make sure we always see the terminating NUL character */
1660	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1661
1662	dentry->d_lockref.count = 1;
1663	dentry->d_flags = 0;
1664	spin_lock_init(&dentry->d_lock);
1665	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1666	dentry->d_inode = NULL;
1667	dentry->d_parent = dentry;
1668	dentry->d_sb = sb;
1669	dentry->d_op = NULL;
1670	dentry->d_fsdata = NULL;
1671	INIT_HLIST_BL_NODE(&dentry->d_hash);
1672	INIT_LIST_HEAD(&dentry->d_lru);
1673	INIT_HLIST_HEAD(&dentry->d_children);
1674	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1675	INIT_HLIST_NODE(&dentry->d_sib);
1676	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1677
1678	if (dentry->d_op && dentry->d_op->d_init) {
1679		err = dentry->d_op->d_init(dentry);
1680		if (err) {
1681			if (dname_external(dentry))
1682				kfree(external_name(dentry));
1683			kmem_cache_free(dentry_cache, dentry);
1684			return NULL;
1685		}
1686	}
1687
1688	this_cpu_inc(nr_dentry);
1689
1690	return dentry;
1691}
1692
1693/**
1694 * d_alloc	-	allocate a dcache entry
1695 * @parent: parent of entry to allocate
1696 * @name: qstr of the name
1697 *
1698 * Allocates a dentry. It returns %NULL if there is insufficient memory
1699 * available. On a success the dentry is returned. The name passed in is
1700 * copied and the copy passed in may be reused after this call.
1701 */
1702struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1703{
1704	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1705	if (!dentry)
1706		return NULL;
1707	spin_lock(&parent->d_lock);
1708	/*
1709	 * don't need child lock because it is not subject
1710	 * to concurrency here
1711	 */
1712	dentry->d_parent = dget_dlock(parent);
1713	hlist_add_head(&dentry->d_sib, &parent->d_children);
1714	spin_unlock(&parent->d_lock);
1715
1716	return dentry;
1717}
1718EXPORT_SYMBOL(d_alloc);
1719
1720struct dentry *d_alloc_anon(struct super_block *sb)
1721{
1722	return __d_alloc(sb, NULL);
1723}
1724EXPORT_SYMBOL(d_alloc_anon);
1725
1726struct dentry *d_alloc_cursor(struct dentry * parent)
1727{
1728	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1729	if (dentry) {
1730		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1731		dentry->d_parent = dget(parent);
1732	}
1733	return dentry;
1734}
1735
1736/**
1737 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1738 * @sb: the superblock
1739 * @name: qstr of the name
1740 *
1741 * For a filesystem that just pins its dentries in memory and never
1742 * performs lookups at all, return an unhashed IS_ROOT dentry.
1743 * This is used for pipes, sockets et.al. - the stuff that should
1744 * never be anyone's children or parents.  Unlike all other
1745 * dentries, these will not have RCU delay between dropping the
1746 * last reference and freeing them.
1747 *
1748 * The only user is alloc_file_pseudo() and that's what should
1749 * be considered a public interface.  Don't use directly.
1750 */
1751struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1752{
1753	static const struct dentry_operations anon_ops = {
1754		.d_dname = simple_dname
1755	};
1756	struct dentry *dentry = __d_alloc(sb, name);
1757	if (likely(dentry)) {
1758		dentry->d_flags |= DCACHE_NORCU;
1759		if (!sb->s_d_op)
1760			d_set_d_op(dentry, &anon_ops);
1761	}
1762	return dentry;
1763}
1764
1765struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1766{
1767	struct qstr q;
1768
1769	q.name = name;
1770	q.hash_len = hashlen_string(parent, name);
1771	return d_alloc(parent, &q);
1772}
1773EXPORT_SYMBOL(d_alloc_name);
1774
1775void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1776{
1777	WARN_ON_ONCE(dentry->d_op);
1778	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1779				DCACHE_OP_COMPARE	|
1780				DCACHE_OP_REVALIDATE	|
1781				DCACHE_OP_WEAK_REVALIDATE	|
1782				DCACHE_OP_DELETE	|
1783				DCACHE_OP_REAL));
1784	dentry->d_op = op;
1785	if (!op)
1786		return;
1787	if (op->d_hash)
1788		dentry->d_flags |= DCACHE_OP_HASH;
1789	if (op->d_compare)
1790		dentry->d_flags |= DCACHE_OP_COMPARE;
1791	if (op->d_revalidate)
1792		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1793	if (op->d_weak_revalidate)
1794		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1795	if (op->d_delete)
1796		dentry->d_flags |= DCACHE_OP_DELETE;
1797	if (op->d_prune)
1798		dentry->d_flags |= DCACHE_OP_PRUNE;
1799	if (op->d_real)
1800		dentry->d_flags |= DCACHE_OP_REAL;
1801
1802}
1803EXPORT_SYMBOL(d_set_d_op);
1804
1805static unsigned d_flags_for_inode(struct inode *inode)
1806{
1807	unsigned add_flags = DCACHE_REGULAR_TYPE;
1808
1809	if (!inode)
1810		return DCACHE_MISS_TYPE;
1811
1812	if (S_ISDIR(inode->i_mode)) {
1813		add_flags = DCACHE_DIRECTORY_TYPE;
1814		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1815			if (unlikely(!inode->i_op->lookup))
1816				add_flags = DCACHE_AUTODIR_TYPE;
1817			else
1818				inode->i_opflags |= IOP_LOOKUP;
1819		}
1820		goto type_determined;
1821	}
1822
1823	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1824		if (unlikely(inode->i_op->get_link)) {
1825			add_flags = DCACHE_SYMLINK_TYPE;
1826			goto type_determined;
1827		}
1828		inode->i_opflags |= IOP_NOFOLLOW;
1829	}
1830
1831	if (unlikely(!S_ISREG(inode->i_mode)))
1832		add_flags = DCACHE_SPECIAL_TYPE;
1833
1834type_determined:
1835	if (unlikely(IS_AUTOMOUNT(inode)))
1836		add_flags |= DCACHE_NEED_AUTOMOUNT;
1837	return add_flags;
1838}
1839
1840static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1841{
1842	unsigned add_flags = d_flags_for_inode(inode);
1843	WARN_ON(d_in_lookup(dentry));
1844
1845	spin_lock(&dentry->d_lock);
1846	/*
1847	 * Decrement negative dentry count if it was in the LRU list.
1848	 */
1849	if (dentry->d_flags & DCACHE_LRU_LIST)
1850		this_cpu_dec(nr_dentry_negative);
1851	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1852	raw_write_seqcount_begin(&dentry->d_seq);
1853	__d_set_inode_and_type(dentry, inode, add_flags);
1854	raw_write_seqcount_end(&dentry->d_seq);
1855	fsnotify_update_flags(dentry);
1856	spin_unlock(&dentry->d_lock);
1857}
1858
1859/**
1860 * d_instantiate - fill in inode information for a dentry
1861 * @entry: dentry to complete
1862 * @inode: inode to attach to this dentry
1863 *
1864 * Fill in inode information in the entry.
1865 *
1866 * This turns negative dentries into productive full members
1867 * of society.
1868 *
1869 * NOTE! This assumes that the inode count has been incremented
1870 * (or otherwise set) by the caller to indicate that it is now
1871 * in use by the dcache.
1872 */
1873
1874void d_instantiate(struct dentry *entry, struct inode * inode)
1875{
1876	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1877	if (inode) {
1878		security_d_instantiate(entry, inode);
1879		spin_lock(&inode->i_lock);
1880		__d_instantiate(entry, inode);
1881		spin_unlock(&inode->i_lock);
1882	}
1883}
1884EXPORT_SYMBOL(d_instantiate);
1885
1886/*
1887 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1888 * with lockdep-related part of unlock_new_inode() done before
1889 * anything else.  Use that instead of open-coding d_instantiate()/
1890 * unlock_new_inode() combinations.
1891 */
1892void d_instantiate_new(struct dentry *entry, struct inode *inode)
1893{
1894	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1895	BUG_ON(!inode);
1896	lockdep_annotate_inode_mutex_key(inode);
1897	security_d_instantiate(entry, inode);
1898	spin_lock(&inode->i_lock);
1899	__d_instantiate(entry, inode);
1900	WARN_ON(!(inode->i_state & I_NEW));
1901	inode->i_state &= ~I_NEW & ~I_CREATING;
1902	smp_mb();
1903	wake_up_bit(&inode->i_state, __I_NEW);
1904	spin_unlock(&inode->i_lock);
1905}
1906EXPORT_SYMBOL(d_instantiate_new);
1907
1908struct dentry *d_make_root(struct inode *root_inode)
1909{
1910	struct dentry *res = NULL;
1911
1912	if (root_inode) {
1913		res = d_alloc_anon(root_inode->i_sb);
1914		if (res)
1915			d_instantiate(res, root_inode);
1916		else
1917			iput(root_inode);
1918	}
1919	return res;
1920}
1921EXPORT_SYMBOL(d_make_root);
1922
1923static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1924{
1925	struct super_block *sb;
1926	struct dentry *new, *res;
1927
1928	if (!inode)
1929		return ERR_PTR(-ESTALE);
1930	if (IS_ERR(inode))
1931		return ERR_CAST(inode);
1932
1933	sb = inode->i_sb;
1934
1935	res = d_find_any_alias(inode); /* existing alias? */
1936	if (res)
1937		goto out;
1938
1939	new = d_alloc_anon(sb);
1940	if (!new) {
1941		res = ERR_PTR(-ENOMEM);
1942		goto out;
1943	}
1944
1945	security_d_instantiate(new, inode);
1946	spin_lock(&inode->i_lock);
1947	res = __d_find_any_alias(inode); /* recheck under lock */
1948	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1949		unsigned add_flags = d_flags_for_inode(inode);
1950
1951		if (disconnected)
1952			add_flags |= DCACHE_DISCONNECTED;
1953
1954		spin_lock(&new->d_lock);
1955		__d_set_inode_and_type(new, inode, add_flags);
1956		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1957		if (!disconnected) {
1958			hlist_bl_lock(&sb->s_roots);
1959			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1960			hlist_bl_unlock(&sb->s_roots);
1961		}
1962		spin_unlock(&new->d_lock);
1963		spin_unlock(&inode->i_lock);
1964		inode = NULL; /* consumed by new->d_inode */
1965		res = new;
1966	} else {
1967		spin_unlock(&inode->i_lock);
1968		dput(new);
1969	}
1970
1971 out:
1972	iput(inode);
1973	return res;
1974}
1975
1976/**
1977 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1978 * @inode: inode to allocate the dentry for
1979 *
1980 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1981 * similar open by handle operations.  The returned dentry may be anonymous,
1982 * or may have a full name (if the inode was already in the cache).
1983 *
1984 * When called on a directory inode, we must ensure that the inode only ever
1985 * has one dentry.  If a dentry is found, that is returned instead of
1986 * allocating a new one.
1987 *
1988 * On successful return, the reference to the inode has been transferred
1989 * to the dentry.  In case of an error the reference on the inode is released.
1990 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1991 * be passed in and the error will be propagated to the return value,
1992 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1993 */
1994struct dentry *d_obtain_alias(struct inode *inode)
1995{
1996	return __d_obtain_alias(inode, true);
1997}
1998EXPORT_SYMBOL(d_obtain_alias);
1999
2000/**
2001 * d_obtain_root - find or allocate a dentry for a given inode
2002 * @inode: inode to allocate the dentry for
2003 *
2004 * Obtain an IS_ROOT dentry for the root of a filesystem.
2005 *
2006 * We must ensure that directory inodes only ever have one dentry.  If a
2007 * dentry is found, that is returned instead of allocating a new one.
2008 *
2009 * On successful return, the reference to the inode has been transferred
2010 * to the dentry.  In case of an error the reference on the inode is
2011 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2012 * error will be propagate to the return value, with a %NULL @inode
2013 * replaced by ERR_PTR(-ESTALE).
2014 */
2015struct dentry *d_obtain_root(struct inode *inode)
2016{
2017	return __d_obtain_alias(inode, false);
2018}
2019EXPORT_SYMBOL(d_obtain_root);
2020
2021/**
2022 * d_add_ci - lookup or allocate new dentry with case-exact name
2023 * @inode:  the inode case-insensitive lookup has found
2024 * @dentry: the negative dentry that was passed to the parent's lookup func
2025 * @name:   the case-exact name to be associated with the returned dentry
2026 *
2027 * This is to avoid filling the dcache with case-insensitive names to the
2028 * same inode, only the actual correct case is stored in the dcache for
2029 * case-insensitive filesystems.
2030 *
2031 * For a case-insensitive lookup match and if the case-exact dentry
2032 * already exists in the dcache, use it and return it.
2033 *
2034 * If no entry exists with the exact case name, allocate new dentry with
2035 * the exact case, and return the spliced entry.
2036 */
2037struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2038			struct qstr *name)
2039{
2040	struct dentry *found, *res;
2041
2042	/*
2043	 * First check if a dentry matching the name already exists,
2044	 * if not go ahead and create it now.
2045	 */
2046	found = d_hash_and_lookup(dentry->d_parent, name);
2047	if (found) {
2048		iput(inode);
2049		return found;
2050	}
2051	if (d_in_lookup(dentry)) {
2052		found = d_alloc_parallel(dentry->d_parent, name,
2053					dentry->d_wait);
2054		if (IS_ERR(found) || !d_in_lookup(found)) {
2055			iput(inode);
2056			return found;
2057		}
2058	} else {
2059		found = d_alloc(dentry->d_parent, name);
2060		if (!found) {
2061			iput(inode);
2062			return ERR_PTR(-ENOMEM);
2063		}
2064	}
2065	res = d_splice_alias(inode, found);
2066	if (res) {
2067		d_lookup_done(found);
2068		dput(found);
2069		return res;
2070	}
2071	return found;
2072}
2073EXPORT_SYMBOL(d_add_ci);
2074
2075/**
2076 * d_same_name - compare dentry name with case-exact name
2077 * @parent: parent dentry
2078 * @dentry: the negative dentry that was passed to the parent's lookup func
2079 * @name:   the case-exact name to be associated with the returned dentry
2080 *
2081 * Return: true if names are same, or false
2082 */
2083bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2084		 const struct qstr *name)
2085{
2086	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2087		if (dentry->d_name.len != name->len)
2088			return false;
2089		return dentry_cmp(dentry, name->name, name->len) == 0;
2090	}
2091	return parent->d_op->d_compare(dentry,
2092				       dentry->d_name.len, dentry->d_name.name,
2093				       name) == 0;
2094}
2095EXPORT_SYMBOL_GPL(d_same_name);
2096
2097/*
2098 * This is __d_lookup_rcu() when the parent dentry has
2099 * DCACHE_OP_COMPARE, which makes things much nastier.
2100 */
2101static noinline struct dentry *__d_lookup_rcu_op_compare(
2102	const struct dentry *parent,
2103	const struct qstr *name,
2104	unsigned *seqp)
2105{
2106	u64 hashlen = name->hash_len;
2107	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2108	struct hlist_bl_node *node;
2109	struct dentry *dentry;
2110
2111	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2112		int tlen;
2113		const char *tname;
2114		unsigned seq;
2115
2116seqretry:
2117		seq = raw_seqcount_begin(&dentry->d_seq);
2118		if (dentry->d_parent != parent)
2119			continue;
2120		if (d_unhashed(dentry))
2121			continue;
2122		if (dentry->d_name.hash != hashlen_hash(hashlen))
2123			continue;
2124		tlen = dentry->d_name.len;
2125		tname = dentry->d_name.name;
2126		/* we want a consistent (name,len) pair */
2127		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2128			cpu_relax();
2129			goto seqretry;
2130		}
2131		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2132			continue;
2133		*seqp = seq;
2134		return dentry;
2135	}
2136	return NULL;
2137}
2138
2139/**
2140 * __d_lookup_rcu - search for a dentry (racy, store-free)
2141 * @parent: parent dentry
2142 * @name: qstr of name we wish to find
2143 * @seqp: returns d_seq value at the point where the dentry was found
2144 * Returns: dentry, or NULL
2145 *
2146 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2147 * resolution (store-free path walking) design described in
2148 * Documentation/filesystems/path-lookup.txt.
2149 *
2150 * This is not to be used outside core vfs.
2151 *
2152 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2153 * held, and rcu_read_lock held. The returned dentry must not be stored into
2154 * without taking d_lock and checking d_seq sequence count against @seq
2155 * returned here.
2156 *
2157 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2158 * function.
2159 *
2160 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2161 * the returned dentry, so long as its parent's seqlock is checked after the
2162 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2163 * is formed, giving integrity down the path walk.
2164 *
2165 * NOTE! The caller *has* to check the resulting dentry against the sequence
2166 * number we've returned before using any of the resulting dentry state!
2167 */
2168struct dentry *__d_lookup_rcu(const struct dentry *parent,
2169				const struct qstr *name,
2170				unsigned *seqp)
2171{
2172	u64 hashlen = name->hash_len;
2173	const unsigned char *str = name->name;
2174	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2175	struct hlist_bl_node *node;
2176	struct dentry *dentry;
2177
2178	/*
2179	 * Note: There is significant duplication with __d_lookup_rcu which is
2180	 * required to prevent single threaded performance regressions
2181	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2182	 * Keep the two functions in sync.
2183	 */
2184
2185	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2186		return __d_lookup_rcu_op_compare(parent, name, seqp);
2187
2188	/*
2189	 * The hash list is protected using RCU.
2190	 *
2191	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2192	 * races with d_move().
2193	 *
2194	 * It is possible that concurrent renames can mess up our list
2195	 * walk here and result in missing our dentry, resulting in the
2196	 * false-negative result. d_lookup() protects against concurrent
2197	 * renames using rename_lock seqlock.
2198	 *
2199	 * See Documentation/filesystems/path-lookup.txt for more details.
2200	 */
2201	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2202		unsigned seq;
2203
2204		/*
2205		 * The dentry sequence count protects us from concurrent
2206		 * renames, and thus protects parent and name fields.
2207		 *
2208		 * The caller must perform a seqcount check in order
2209		 * to do anything useful with the returned dentry.
2210		 *
2211		 * NOTE! We do a "raw" seqcount_begin here. That means that
2212		 * we don't wait for the sequence count to stabilize if it
2213		 * is in the middle of a sequence change. If we do the slow
2214		 * dentry compare, we will do seqretries until it is stable,
2215		 * and if we end up with a successful lookup, we actually
2216		 * want to exit RCU lookup anyway.
2217		 *
2218		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2219		 * we are still guaranteed NUL-termination of ->d_name.name.
2220		 */
2221		seq = raw_seqcount_begin(&dentry->d_seq);
2222		if (dentry->d_parent != parent)
2223			continue;
2224		if (d_unhashed(dentry))
2225			continue;
2226		if (dentry->d_name.hash_len != hashlen)
2227			continue;
2228		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2229			continue;
2230		*seqp = seq;
2231		return dentry;
2232	}
2233	return NULL;
2234}
2235
2236/**
2237 * d_lookup - search for a dentry
2238 * @parent: parent dentry
2239 * @name: qstr of name we wish to find
2240 * Returns: dentry, or NULL
2241 *
2242 * d_lookup searches the children of the parent dentry for the name in
2243 * question. If the dentry is found its reference count is incremented and the
2244 * dentry is returned. The caller must use dput to free the entry when it has
2245 * finished using it. %NULL is returned if the dentry does not exist.
2246 */
2247struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2248{
2249	struct dentry *dentry;
2250	unsigned seq;
2251
2252	do {
2253		seq = read_seqbegin(&rename_lock);
2254		dentry = __d_lookup(parent, name);
2255		if (dentry)
2256			break;
2257	} while (read_seqretry(&rename_lock, seq));
2258	return dentry;
2259}
2260EXPORT_SYMBOL(d_lookup);
2261
2262/**
2263 * __d_lookup - search for a dentry (racy)
2264 * @parent: parent dentry
2265 * @name: qstr of name we wish to find
2266 * Returns: dentry, or NULL
2267 *
2268 * __d_lookup is like d_lookup, however it may (rarely) return a
2269 * false-negative result due to unrelated rename activity.
2270 *
2271 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2272 * however it must be used carefully, eg. with a following d_lookup in
2273 * the case of failure.
2274 *
2275 * __d_lookup callers must be commented.
2276 */
2277struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2278{
2279	unsigned int hash = name->hash;
2280	struct hlist_bl_head *b = d_hash(hash);
2281	struct hlist_bl_node *node;
2282	struct dentry *found = NULL;
2283	struct dentry *dentry;
2284
2285	/*
2286	 * Note: There is significant duplication with __d_lookup_rcu which is
2287	 * required to prevent single threaded performance regressions
2288	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2289	 * Keep the two functions in sync.
2290	 */
2291
2292	/*
2293	 * The hash list is protected using RCU.
2294	 *
2295	 * Take d_lock when comparing a candidate dentry, to avoid races
2296	 * with d_move().
2297	 *
2298	 * It is possible that concurrent renames can mess up our list
2299	 * walk here and result in missing our dentry, resulting in the
2300	 * false-negative result. d_lookup() protects against concurrent
2301	 * renames using rename_lock seqlock.
2302	 *
2303	 * See Documentation/filesystems/path-lookup.txt for more details.
2304	 */
2305	rcu_read_lock();
2306
2307	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2308
2309		if (dentry->d_name.hash != hash)
2310			continue;
2311
2312		spin_lock(&dentry->d_lock);
2313		if (dentry->d_parent != parent)
2314			goto next;
2315		if (d_unhashed(dentry))
2316			goto next;
2317
2318		if (!d_same_name(dentry, parent, name))
2319			goto next;
2320
2321		dentry->d_lockref.count++;
2322		found = dentry;
2323		spin_unlock(&dentry->d_lock);
2324		break;
2325next:
2326		spin_unlock(&dentry->d_lock);
2327 	}
2328 	rcu_read_unlock();
2329
2330 	return found;
2331}
2332
2333/**
2334 * d_hash_and_lookup - hash the qstr then search for a dentry
2335 * @dir: Directory to search in
2336 * @name: qstr of name we wish to find
2337 *
2338 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2339 */
2340struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2341{
2342	/*
2343	 * Check for a fs-specific hash function. Note that we must
2344	 * calculate the standard hash first, as the d_op->d_hash()
2345	 * routine may choose to leave the hash value unchanged.
2346	 */
2347	name->hash = full_name_hash(dir, name->name, name->len);
2348	if (dir->d_flags & DCACHE_OP_HASH) {
2349		int err = dir->d_op->d_hash(dir, name);
2350		if (unlikely(err < 0))
2351			return ERR_PTR(err);
2352	}
2353	return d_lookup(dir, name);
2354}
2355EXPORT_SYMBOL(d_hash_and_lookup);
2356
2357/*
2358 * When a file is deleted, we have two options:
2359 * - turn this dentry into a negative dentry
2360 * - unhash this dentry and free it.
2361 *
2362 * Usually, we want to just turn this into
2363 * a negative dentry, but if anybody else is
2364 * currently using the dentry or the inode
2365 * we can't do that and we fall back on removing
2366 * it from the hash queues and waiting for
2367 * it to be deleted later when it has no users
2368 */
2369
2370/**
2371 * d_delete - delete a dentry
2372 * @dentry: The dentry to delete
2373 *
2374 * Turn the dentry into a negative dentry if possible, otherwise
2375 * remove it from the hash queues so it can be deleted later
2376 */
2377
2378void d_delete(struct dentry * dentry)
2379{
2380	struct inode *inode = dentry->d_inode;
2381
2382	spin_lock(&inode->i_lock);
2383	spin_lock(&dentry->d_lock);
2384	/*
2385	 * Are we the only user?
2386	 */
2387	if (dentry->d_lockref.count == 1) {
2388		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2389		dentry_unlink_inode(dentry);
2390	} else {
2391		__d_drop(dentry);
2392		spin_unlock(&dentry->d_lock);
2393		spin_unlock(&inode->i_lock);
2394	}
2395}
2396EXPORT_SYMBOL(d_delete);
2397
2398static void __d_rehash(struct dentry *entry)
2399{
2400	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2401
2402	hlist_bl_lock(b);
2403	hlist_bl_add_head_rcu(&entry->d_hash, b);
2404	hlist_bl_unlock(b);
2405}
2406
2407/**
2408 * d_rehash	- add an entry back to the hash
2409 * @entry: dentry to add to the hash
2410 *
2411 * Adds a dentry to the hash according to its name.
2412 */
2413
2414void d_rehash(struct dentry * entry)
2415{
2416	spin_lock(&entry->d_lock);
2417	__d_rehash(entry);
2418	spin_unlock(&entry->d_lock);
2419}
2420EXPORT_SYMBOL(d_rehash);
2421
2422static inline unsigned start_dir_add(struct inode *dir)
2423{
2424	preempt_disable_nested();
2425	for (;;) {
2426		unsigned n = dir->i_dir_seq;
2427		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2428			return n;
2429		cpu_relax();
2430	}
2431}
2432
2433static inline void end_dir_add(struct inode *dir, unsigned int n,
2434			       wait_queue_head_t *d_wait)
2435{
2436	smp_store_release(&dir->i_dir_seq, n + 2);
2437	preempt_enable_nested();
2438	wake_up_all(d_wait);
2439}
2440
2441static void d_wait_lookup(struct dentry *dentry)
2442{
2443	if (d_in_lookup(dentry)) {
2444		DECLARE_WAITQUEUE(wait, current);
2445		add_wait_queue(dentry->d_wait, &wait);
2446		do {
2447			set_current_state(TASK_UNINTERRUPTIBLE);
2448			spin_unlock(&dentry->d_lock);
2449			schedule();
2450			spin_lock(&dentry->d_lock);
2451		} while (d_in_lookup(dentry));
2452	}
2453}
2454
2455struct dentry *d_alloc_parallel(struct dentry *parent,
2456				const struct qstr *name,
2457				wait_queue_head_t *wq)
2458{
2459	unsigned int hash = name->hash;
2460	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2461	struct hlist_bl_node *node;
2462	struct dentry *new = d_alloc(parent, name);
2463	struct dentry *dentry;
2464	unsigned seq, r_seq, d_seq;
2465
2466	if (unlikely(!new))
2467		return ERR_PTR(-ENOMEM);
2468
2469retry:
2470	rcu_read_lock();
2471	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2472	r_seq = read_seqbegin(&rename_lock);
2473	dentry = __d_lookup_rcu(parent, name, &d_seq);
2474	if (unlikely(dentry)) {
2475		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2476			rcu_read_unlock();
2477			goto retry;
2478		}
2479		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2480			rcu_read_unlock();
2481			dput(dentry);
2482			goto retry;
2483		}
2484		rcu_read_unlock();
2485		dput(new);
2486		return dentry;
2487	}
2488	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2489		rcu_read_unlock();
2490		goto retry;
2491	}
2492
2493	if (unlikely(seq & 1)) {
2494		rcu_read_unlock();
2495		goto retry;
2496	}
2497
2498	hlist_bl_lock(b);
2499	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2500		hlist_bl_unlock(b);
2501		rcu_read_unlock();
2502		goto retry;
2503	}
2504	/*
2505	 * No changes for the parent since the beginning of d_lookup().
2506	 * Since all removals from the chain happen with hlist_bl_lock(),
2507	 * any potential in-lookup matches are going to stay here until
2508	 * we unlock the chain.  All fields are stable in everything
2509	 * we encounter.
2510	 */
2511	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2512		if (dentry->d_name.hash != hash)
2513			continue;
2514		if (dentry->d_parent != parent)
2515			continue;
2516		if (!d_same_name(dentry, parent, name))
2517			continue;
2518		hlist_bl_unlock(b);
2519		/* now we can try to grab a reference */
2520		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2521			rcu_read_unlock();
2522			goto retry;
2523		}
2524
2525		rcu_read_unlock();
2526		/*
2527		 * somebody is likely to be still doing lookup for it;
2528		 * wait for them to finish
2529		 */
2530		spin_lock(&dentry->d_lock);
2531		d_wait_lookup(dentry);
2532		/*
2533		 * it's not in-lookup anymore; in principle we should repeat
2534		 * everything from dcache lookup, but it's likely to be what
2535		 * d_lookup() would've found anyway.  If it is, just return it;
2536		 * otherwise we really have to repeat the whole thing.
2537		 */
2538		if (unlikely(dentry->d_name.hash != hash))
2539			goto mismatch;
2540		if (unlikely(dentry->d_parent != parent))
2541			goto mismatch;
2542		if (unlikely(d_unhashed(dentry)))
2543			goto mismatch;
2544		if (unlikely(!d_same_name(dentry, parent, name)))
2545			goto mismatch;
2546		/* OK, it *is* a hashed match; return it */
2547		spin_unlock(&dentry->d_lock);
2548		dput(new);
2549		return dentry;
2550	}
2551	rcu_read_unlock();
2552	/* we can't take ->d_lock here; it's OK, though. */
2553	new->d_flags |= DCACHE_PAR_LOOKUP;
2554	new->d_wait = wq;
2555	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2556	hlist_bl_unlock(b);
2557	return new;
2558mismatch:
2559	spin_unlock(&dentry->d_lock);
2560	dput(dentry);
2561	goto retry;
2562}
2563EXPORT_SYMBOL(d_alloc_parallel);
2564
2565/*
2566 * - Unhash the dentry
2567 * - Retrieve and clear the waitqueue head in dentry
2568 * - Return the waitqueue head
2569 */
2570static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2571{
2572	wait_queue_head_t *d_wait;
2573	struct hlist_bl_head *b;
2574
2575	lockdep_assert_held(&dentry->d_lock);
2576
2577	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2578	hlist_bl_lock(b);
2579	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2580	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2581	d_wait = dentry->d_wait;
2582	dentry->d_wait = NULL;
2583	hlist_bl_unlock(b);
2584	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2585	INIT_LIST_HEAD(&dentry->d_lru);
2586	return d_wait;
2587}
2588
2589void __d_lookup_unhash_wake(struct dentry *dentry)
2590{
2591	spin_lock(&dentry->d_lock);
2592	wake_up_all(__d_lookup_unhash(dentry));
2593	spin_unlock(&dentry->d_lock);
2594}
2595EXPORT_SYMBOL(__d_lookup_unhash_wake);
2596
2597/* inode->i_lock held if inode is non-NULL */
2598
2599static inline void __d_add(struct dentry *dentry, struct inode *inode)
2600{
2601	wait_queue_head_t *d_wait;
2602	struct inode *dir = NULL;
2603	unsigned n;
2604	spin_lock(&dentry->d_lock);
2605	if (unlikely(d_in_lookup(dentry))) {
2606		dir = dentry->d_parent->d_inode;
2607		n = start_dir_add(dir);
2608		d_wait = __d_lookup_unhash(dentry);
2609	}
2610	if (inode) {
2611		unsigned add_flags = d_flags_for_inode(inode);
2612		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2613		raw_write_seqcount_begin(&dentry->d_seq);
2614		__d_set_inode_and_type(dentry, inode, add_flags);
2615		raw_write_seqcount_end(&dentry->d_seq);
2616		fsnotify_update_flags(dentry);
2617	}
2618	__d_rehash(dentry);
2619	if (dir)
2620		end_dir_add(dir, n, d_wait);
2621	spin_unlock(&dentry->d_lock);
2622	if (inode)
2623		spin_unlock(&inode->i_lock);
2624}
2625
2626/**
2627 * d_add - add dentry to hash queues
2628 * @entry: dentry to add
2629 * @inode: The inode to attach to this dentry
2630 *
2631 * This adds the entry to the hash queues and initializes @inode.
2632 * The entry was actually filled in earlier during d_alloc().
2633 */
2634
2635void d_add(struct dentry *entry, struct inode *inode)
2636{
2637	if (inode) {
2638		security_d_instantiate(entry, inode);
2639		spin_lock(&inode->i_lock);
2640	}
2641	__d_add(entry, inode);
2642}
2643EXPORT_SYMBOL(d_add);
2644
2645/**
2646 * d_exact_alias - find and hash an exact unhashed alias
2647 * @entry: dentry to add
2648 * @inode: The inode to go with this dentry
2649 *
2650 * If an unhashed dentry with the same name/parent and desired
2651 * inode already exists, hash and return it.  Otherwise, return
2652 * NULL.
2653 *
2654 * Parent directory should be locked.
2655 */
2656struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2657{
2658	struct dentry *alias;
2659	unsigned int hash = entry->d_name.hash;
2660
2661	spin_lock(&inode->i_lock);
2662	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2663		/*
2664		 * Don't need alias->d_lock here, because aliases with
2665		 * d_parent == entry->d_parent are not subject to name or
2666		 * parent changes, because the parent inode i_mutex is held.
2667		 */
2668		if (alias->d_name.hash != hash)
2669			continue;
2670		if (alias->d_parent != entry->d_parent)
2671			continue;
2672		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2673			continue;
2674		spin_lock(&alias->d_lock);
2675		if (!d_unhashed(alias)) {
2676			spin_unlock(&alias->d_lock);
2677			alias = NULL;
2678		} else {
2679			dget_dlock(alias);
2680			__d_rehash(alias);
2681			spin_unlock(&alias->d_lock);
2682		}
2683		spin_unlock(&inode->i_lock);
2684		return alias;
2685	}
2686	spin_unlock(&inode->i_lock);
2687	return NULL;
2688}
2689EXPORT_SYMBOL(d_exact_alias);
2690
2691static void swap_names(struct dentry *dentry, struct dentry *target)
2692{
2693	if (unlikely(dname_external(target))) {
2694		if (unlikely(dname_external(dentry))) {
2695			/*
2696			 * Both external: swap the pointers
2697			 */
2698			swap(target->d_name.name, dentry->d_name.name);
2699		} else {
2700			/*
2701			 * dentry:internal, target:external.  Steal target's
2702			 * storage and make target internal.
2703			 */
2704			memcpy(target->d_iname, dentry->d_name.name,
2705					dentry->d_name.len + 1);
2706			dentry->d_name.name = target->d_name.name;
2707			target->d_name.name = target->d_iname;
2708		}
2709	} else {
2710		if (unlikely(dname_external(dentry))) {
2711			/*
2712			 * dentry:external, target:internal.  Give dentry's
2713			 * storage to target and make dentry internal
2714			 */
2715			memcpy(dentry->d_iname, target->d_name.name,
2716					target->d_name.len + 1);
2717			target->d_name.name = dentry->d_name.name;
2718			dentry->d_name.name = dentry->d_iname;
2719		} else {
2720			/*
2721			 * Both are internal.
2722			 */
2723			unsigned int i;
2724			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2725			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2726				swap(((long *) &dentry->d_iname)[i],
2727				     ((long *) &target->d_iname)[i]);
2728			}
2729		}
2730	}
2731	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2732}
2733
2734static void copy_name(struct dentry *dentry, struct dentry *target)
2735{
2736	struct external_name *old_name = NULL;
2737	if (unlikely(dname_external(dentry)))
2738		old_name = external_name(dentry);
2739	if (unlikely(dname_external(target))) {
2740		atomic_inc(&external_name(target)->u.count);
2741		dentry->d_name = target->d_name;
2742	} else {
2743		memcpy(dentry->d_iname, target->d_name.name,
2744				target->d_name.len + 1);
2745		dentry->d_name.name = dentry->d_iname;
2746		dentry->d_name.hash_len = target->d_name.hash_len;
2747	}
2748	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2749		kfree_rcu(old_name, u.head);
2750}
2751
2752/*
2753 * __d_move - move a dentry
2754 * @dentry: entry to move
2755 * @target: new dentry
2756 * @exchange: exchange the two dentries
2757 *
2758 * Update the dcache to reflect the move of a file name. Negative
2759 * dcache entries should not be moved in this way. Caller must hold
2760 * rename_lock, the i_mutex of the source and target directories,
2761 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2762 */
2763static void __d_move(struct dentry *dentry, struct dentry *target,
2764		     bool exchange)
2765{
2766	struct dentry *old_parent, *p;
2767	wait_queue_head_t *d_wait;
2768	struct inode *dir = NULL;
2769	unsigned n;
2770
2771	WARN_ON(!dentry->d_inode);
2772	if (WARN_ON(dentry == target))
2773		return;
2774
2775	BUG_ON(d_ancestor(target, dentry));
2776	old_parent = dentry->d_parent;
2777	p = d_ancestor(old_parent, target);
2778	if (IS_ROOT(dentry)) {
2779		BUG_ON(p);
2780		spin_lock(&target->d_parent->d_lock);
2781	} else if (!p) {
2782		/* target is not a descendent of dentry->d_parent */
2783		spin_lock(&target->d_parent->d_lock);
2784		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2785	} else {
2786		BUG_ON(p == dentry);
2787		spin_lock(&old_parent->d_lock);
2788		if (p != target)
2789			spin_lock_nested(&target->d_parent->d_lock,
2790					DENTRY_D_LOCK_NESTED);
2791	}
2792	spin_lock_nested(&dentry->d_lock, 2);
2793	spin_lock_nested(&target->d_lock, 3);
2794
2795	if (unlikely(d_in_lookup(target))) {
2796		dir = target->d_parent->d_inode;
2797		n = start_dir_add(dir);
2798		d_wait = __d_lookup_unhash(target);
2799	}
2800
2801	write_seqcount_begin(&dentry->d_seq);
2802	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2803
2804	/* unhash both */
2805	if (!d_unhashed(dentry))
2806		___d_drop(dentry);
2807	if (!d_unhashed(target))
2808		___d_drop(target);
2809
2810	/* ... and switch them in the tree */
2811	dentry->d_parent = target->d_parent;
2812	if (!exchange) {
2813		copy_name(dentry, target);
2814		target->d_hash.pprev = NULL;
2815		dentry->d_parent->d_lockref.count++;
2816		if (dentry != old_parent) /* wasn't IS_ROOT */
2817			WARN_ON(!--old_parent->d_lockref.count);
2818	} else {
2819		target->d_parent = old_parent;
2820		swap_names(dentry, target);
2821		if (!hlist_unhashed(&target->d_sib))
2822			__hlist_del(&target->d_sib);
2823		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2824		__d_rehash(target);
2825		fsnotify_update_flags(target);
2826	}
2827	if (!hlist_unhashed(&dentry->d_sib))
2828		__hlist_del(&dentry->d_sib);
2829	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2830	__d_rehash(dentry);
2831	fsnotify_update_flags(dentry);
2832	fscrypt_handle_d_move(dentry);
2833
2834	write_seqcount_end(&target->d_seq);
2835	write_seqcount_end(&dentry->d_seq);
2836
2837	if (dir)
2838		end_dir_add(dir, n, d_wait);
2839
2840	if (dentry->d_parent != old_parent)
2841		spin_unlock(&dentry->d_parent->d_lock);
2842	if (dentry != old_parent)
2843		spin_unlock(&old_parent->d_lock);
2844	spin_unlock(&target->d_lock);
2845	spin_unlock(&dentry->d_lock);
2846}
2847
2848/*
2849 * d_move - move a dentry
2850 * @dentry: entry to move
2851 * @target: new dentry
2852 *
2853 * Update the dcache to reflect the move of a file name. Negative
2854 * dcache entries should not be moved in this way. See the locking
2855 * requirements for __d_move.
2856 */
2857void d_move(struct dentry *dentry, struct dentry *target)
2858{
2859	write_seqlock(&rename_lock);
2860	__d_move(dentry, target, false);
2861	write_sequnlock(&rename_lock);
2862}
2863EXPORT_SYMBOL(d_move);
2864
2865/*
2866 * d_exchange - exchange two dentries
2867 * @dentry1: first dentry
2868 * @dentry2: second dentry
2869 */
2870void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2871{
2872	write_seqlock(&rename_lock);
2873
2874	WARN_ON(!dentry1->d_inode);
2875	WARN_ON(!dentry2->d_inode);
2876	WARN_ON(IS_ROOT(dentry1));
2877	WARN_ON(IS_ROOT(dentry2));
2878
2879	__d_move(dentry1, dentry2, true);
2880
2881	write_sequnlock(&rename_lock);
2882}
2883
2884/**
2885 * d_ancestor - search for an ancestor
2886 * @p1: ancestor dentry
2887 * @p2: child dentry
2888 *
2889 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2890 * an ancestor of p2, else NULL.
2891 */
2892struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2893{
2894	struct dentry *p;
2895
2896	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2897		if (p->d_parent == p1)
2898			return p;
2899	}
2900	return NULL;
2901}
2902
2903/*
2904 * This helper attempts to cope with remotely renamed directories
2905 *
2906 * It assumes that the caller is already holding
2907 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2908 *
2909 * Note: If ever the locking in lock_rename() changes, then please
2910 * remember to update this too...
2911 */
2912static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2913{
2914	struct mutex *m1 = NULL;
2915	struct rw_semaphore *m2 = NULL;
2916	int ret = -ESTALE;
2917
2918	/* If alias and dentry share a parent, then no extra locks required */
2919	if (alias->d_parent == dentry->d_parent)
2920		goto out_unalias;
2921
2922	/* See lock_rename() */
2923	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2924		goto out_err;
2925	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2926	if (!inode_trylock_shared(alias->d_parent->d_inode))
2927		goto out_err;
2928	m2 = &alias->d_parent->d_inode->i_rwsem;
2929out_unalias:
2930	__d_move(alias, dentry, false);
2931	ret = 0;
2932out_err:
2933	if (m2)
2934		up_read(m2);
2935	if (m1)
2936		mutex_unlock(m1);
2937	return ret;
2938}
2939
2940/**
2941 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2942 * @inode:  the inode which may have a disconnected dentry
2943 * @dentry: a negative dentry which we want to point to the inode.
2944 *
2945 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2946 * place of the given dentry and return it, else simply d_add the inode
2947 * to the dentry and return NULL.
2948 *
2949 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2950 * we should error out: directories can't have multiple aliases.
2951 *
2952 * This is needed in the lookup routine of any filesystem that is exportable
2953 * (via knfsd) so that we can build dcache paths to directories effectively.
2954 *
2955 * If a dentry was found and moved, then it is returned.  Otherwise NULL
2956 * is returned.  This matches the expected return value of ->lookup.
2957 *
2958 * Cluster filesystems may call this function with a negative, hashed dentry.
2959 * In that case, we know that the inode will be a regular file, and also this
2960 * will only occur during atomic_open. So we need to check for the dentry
2961 * being already hashed only in the final case.
2962 */
2963struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2964{
2965	if (IS_ERR(inode))
2966		return ERR_CAST(inode);
2967
2968	BUG_ON(!d_unhashed(dentry));
2969
2970	if (!inode)
2971		goto out;
2972
2973	security_d_instantiate(dentry, inode);
2974	spin_lock(&inode->i_lock);
2975	if (S_ISDIR(inode->i_mode)) {
2976		struct dentry *new = __d_find_any_alias(inode);
2977		if (unlikely(new)) {
2978			/* The reference to new ensures it remains an alias */
2979			spin_unlock(&inode->i_lock);
2980			write_seqlock(&rename_lock);
2981			if (unlikely(d_ancestor(new, dentry))) {
2982				write_sequnlock(&rename_lock);
2983				dput(new);
2984				new = ERR_PTR(-ELOOP);
2985				pr_warn_ratelimited(
2986					"VFS: Lookup of '%s' in %s %s"
2987					" would have caused loop\n",
2988					dentry->d_name.name,
2989					inode->i_sb->s_type->name,
2990					inode->i_sb->s_id);
2991			} else if (!IS_ROOT(new)) {
2992				struct dentry *old_parent = dget(new->d_parent);
2993				int err = __d_unalias(dentry, new);
2994				write_sequnlock(&rename_lock);
2995				if (err) {
2996					dput(new);
2997					new = ERR_PTR(err);
2998				}
2999				dput(old_parent);
3000			} else {
3001				__d_move(new, dentry, false);
3002				write_sequnlock(&rename_lock);
3003			}
3004			iput(inode);
3005			return new;
3006		}
3007	}
3008out:
3009	__d_add(dentry, inode);
3010	return NULL;
3011}
3012EXPORT_SYMBOL(d_splice_alias);
3013
3014/*
3015 * Test whether new_dentry is a subdirectory of old_dentry.
3016 *
3017 * Trivially implemented using the dcache structure
3018 */
3019
3020/**
3021 * is_subdir - is new dentry a subdirectory of old_dentry
3022 * @new_dentry: new dentry
3023 * @old_dentry: old dentry
3024 *
3025 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3026 * Returns false otherwise.
3027 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3028 */
3029
3030bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3031{
3032	bool result;
3033	unsigned seq;
3034
3035	if (new_dentry == old_dentry)
3036		return true;
3037
3038	do {
3039		/* for restarting inner loop in case of seq retry */
3040		seq = read_seqbegin(&rename_lock);
3041		/*
3042		 * Need rcu_readlock to protect against the d_parent trashing
3043		 * due to d_move
3044		 */
3045		rcu_read_lock();
3046		if (d_ancestor(old_dentry, new_dentry))
3047			result = true;
3048		else
3049			result = false;
3050		rcu_read_unlock();
3051	} while (read_seqretry(&rename_lock, seq));
3052
3053	return result;
3054}
3055EXPORT_SYMBOL(is_subdir);
3056
3057static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3058{
3059	struct dentry *root = data;
3060	if (dentry != root) {
3061		if (d_unhashed(dentry) || !dentry->d_inode)
3062			return D_WALK_SKIP;
3063
3064		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3065			dentry->d_flags |= DCACHE_GENOCIDE;
3066			dentry->d_lockref.count--;
3067		}
3068	}
3069	return D_WALK_CONTINUE;
3070}
3071
3072void d_genocide(struct dentry *parent)
3073{
3074	d_walk(parent, parent, d_genocide_kill);
3075}
3076
3077void d_mark_tmpfile(struct file *file, struct inode *inode)
3078{
3079	struct dentry *dentry = file->f_path.dentry;
3080
3081	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3082		!hlist_unhashed(&dentry->d_u.d_alias) ||
3083		!d_unlinked(dentry));
3084	spin_lock(&dentry->d_parent->d_lock);
3085	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3086	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3087				(unsigned long long)inode->i_ino);
3088	spin_unlock(&dentry->d_lock);
3089	spin_unlock(&dentry->d_parent->d_lock);
3090}
3091EXPORT_SYMBOL(d_mark_tmpfile);
3092
3093void d_tmpfile(struct file *file, struct inode *inode)
3094{
3095	struct dentry *dentry = file->f_path.dentry;
3096
3097	inode_dec_link_count(inode);
3098	d_mark_tmpfile(file, inode);
3099	d_instantiate(dentry, inode);
3100}
3101EXPORT_SYMBOL(d_tmpfile);
3102
3103static __initdata unsigned long dhash_entries;
3104static int __init set_dhash_entries(char *str)
3105{
3106	if (!str)
3107		return 0;
3108	dhash_entries = simple_strtoul(str, &str, 0);
3109	return 1;
3110}
3111__setup("dhash_entries=", set_dhash_entries);
3112
3113static void __init dcache_init_early(void)
3114{
3115	/* If hashes are distributed across NUMA nodes, defer
3116	 * hash allocation until vmalloc space is available.
3117	 */
3118	if (hashdist)
3119		return;
3120
3121	dentry_hashtable =
3122		alloc_large_system_hash("Dentry cache",
3123					sizeof(struct hlist_bl_head),
3124					dhash_entries,
3125					13,
3126					HASH_EARLY | HASH_ZERO,
3127					&d_hash_shift,
3128					NULL,
3129					0,
3130					0);
3131	d_hash_shift = 32 - d_hash_shift;
3132}
3133
3134static void __init dcache_init(void)
3135{
3136	/*
3137	 * A constructor could be added for stable state like the lists,
3138	 * but it is probably not worth it because of the cache nature
3139	 * of the dcache.
3140	 */
3141	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3142		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3143		d_iname);
3144
3145	/* Hash may have been set up in dcache_init_early */
3146	if (!hashdist)
3147		return;
3148
3149	dentry_hashtable =
3150		alloc_large_system_hash("Dentry cache",
3151					sizeof(struct hlist_bl_head),
3152					dhash_entries,
3153					13,
3154					HASH_ZERO,
3155					&d_hash_shift,
3156					NULL,
3157					0,
3158					0);
3159	d_hash_shift = 32 - d_hash_shift;
3160}
3161
3162/* SLAB cache for __getname() consumers */
3163struct kmem_cache *names_cachep __ro_after_init;
3164EXPORT_SYMBOL(names_cachep);
3165
3166void __init vfs_caches_init_early(void)
3167{
3168	int i;
3169
3170	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3171		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3172
3173	dcache_init_early();
3174	inode_init_early();
3175}
3176
3177void __init vfs_caches_init(void)
3178{
3179	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3180			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3181
3182	dcache_init();
3183	inode_init();
3184	files_init();
3185	files_maxfiles_init();
3186	mnt_init();
3187	bdev_cache_init();
3188	chrdev_init();
3189}
3190