1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/crypto/hooks.c
4 *
5 * Encryption hooks for higher-level filesystem operations.
6 */
7
8#include "fscrypt_private.h"
9
10/**
11 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
12 * @inode: the inode being opened
13 * @filp: the struct file being set up
14 *
15 * Currently, an encrypted regular file can only be opened if its encryption key
16 * is available; access to the raw encrypted contents is not supported.
17 * Therefore, we first set up the inode's encryption key (if not already done)
18 * and return an error if it's unavailable.
19 *
20 * We also verify that if the parent directory (from the path via which the file
21 * is being opened) is encrypted, then the inode being opened uses the same
22 * encryption policy.  This is needed as part of the enforcement that all files
23 * in an encrypted directory tree use the same encryption policy, as a
24 * protection against certain types of offline attacks.  Note that this check is
25 * needed even when opening an *unencrypted* file, since it's forbidden to have
26 * an unencrypted file in an encrypted directory.
27 *
28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
29 */
30int fscrypt_file_open(struct inode *inode, struct file *filp)
31{
32	int err;
33	struct dentry *dir;
34
35	err = fscrypt_require_key(inode);
36	if (err)
37		return err;
38
39	dir = dget_parent(file_dentry(filp));
40	if (IS_ENCRYPTED(d_inode(dir)) &&
41	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
42		fscrypt_warn(inode,
43			     "Inconsistent encryption context (parent directory: %lu)",
44			     d_inode(dir)->i_ino);
45		err = -EPERM;
46	}
47	dput(dir);
48	return err;
49}
50EXPORT_SYMBOL_GPL(fscrypt_file_open);
51
52int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
53			   struct dentry *dentry)
54{
55	if (fscrypt_is_nokey_name(dentry))
56		return -ENOKEY;
57	/*
58	 * We don't need to separately check that the directory inode's key is
59	 * available, as it's implied by the dentry not being a no-key name.
60	 */
61
62	if (!fscrypt_has_permitted_context(dir, inode))
63		return -EXDEV;
64
65	return 0;
66}
67EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
68
69int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
70			     struct inode *new_dir, struct dentry *new_dentry,
71			     unsigned int flags)
72{
73	if (fscrypt_is_nokey_name(old_dentry) ||
74	    fscrypt_is_nokey_name(new_dentry))
75		return -ENOKEY;
76	/*
77	 * We don't need to separately check that the directory inodes' keys are
78	 * available, as it's implied by the dentries not being no-key names.
79	 */
80
81	if (old_dir != new_dir) {
82		if (IS_ENCRYPTED(new_dir) &&
83		    !fscrypt_has_permitted_context(new_dir,
84						   d_inode(old_dentry)))
85			return -EXDEV;
86
87		if ((flags & RENAME_EXCHANGE) &&
88		    IS_ENCRYPTED(old_dir) &&
89		    !fscrypt_has_permitted_context(old_dir,
90						   d_inode(new_dentry)))
91			return -EXDEV;
92	}
93	return 0;
94}
95EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
96
97int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
98			     struct fscrypt_name *fname)
99{
100	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
101
102	if (err && err != -ENOENT)
103		return err;
104
105	fscrypt_prepare_dentry(dentry, fname->is_nokey_name);
106
107	return err;
108}
109EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
110
111/**
112 * fscrypt_prepare_lookup_partial() - prepare lookup without filename setup
113 * @dir: the encrypted directory being searched
114 * @dentry: the dentry being looked up in @dir
115 *
116 * This function should be used by the ->lookup and ->atomic_open methods of
117 * filesystems that handle filename encryption and no-key name encoding
118 * themselves and thus can't use fscrypt_prepare_lookup().  Like
119 * fscrypt_prepare_lookup(), this will try to set up the directory's encryption
120 * key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable.
121 * However, this function doesn't set up a struct fscrypt_name for the filename.
122 *
123 * Return: 0 on success; -errno on error.  Note that the encryption key being
124 *	   unavailable is not considered an error.  It is also not an error if
125 *	   the encryption policy is unsupported by this kernel; that is treated
126 *	   like the key being unavailable, so that files can still be deleted.
127 */
128int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry)
129{
130	int err = fscrypt_get_encryption_info(dir, true);
131	bool is_nokey_name = (!err && !fscrypt_has_encryption_key(dir));
132
133	fscrypt_prepare_dentry(dentry, is_nokey_name);
134
135	return err;
136}
137EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial);
138
139int __fscrypt_prepare_readdir(struct inode *dir)
140{
141	return fscrypt_get_encryption_info(dir, true);
142}
143EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
144
145int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
146{
147	if (attr->ia_valid & ATTR_SIZE)
148		return fscrypt_require_key(d_inode(dentry));
149	return 0;
150}
151EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
152
153/**
154 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
155 * @inode: the inode on which flags are being changed
156 * @oldflags: the old flags
157 * @flags: the new flags
158 *
159 * The caller should be holding i_rwsem for write.
160 *
161 * Return: 0 on success; -errno if the flags change isn't allowed or if
162 *	   another error occurs.
163 */
164int fscrypt_prepare_setflags(struct inode *inode,
165			     unsigned int oldflags, unsigned int flags)
166{
167	struct fscrypt_inode_info *ci;
168	struct fscrypt_master_key *mk;
169	int err;
170
171	/*
172	 * When the CASEFOLD flag is set on an encrypted directory, we must
173	 * derive the secret key needed for the dirhash.  This is only possible
174	 * if the directory uses a v2 encryption policy.
175	 */
176	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
177		err = fscrypt_require_key(inode);
178		if (err)
179			return err;
180		ci = inode->i_crypt_info;
181		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
182			return -EINVAL;
183		mk = ci->ci_master_key;
184		down_read(&mk->mk_sem);
185		if (mk->mk_present)
186			err = fscrypt_derive_dirhash_key(ci, mk);
187		else
188			err = -ENOKEY;
189		up_read(&mk->mk_sem);
190		return err;
191	}
192	return 0;
193}
194
195/**
196 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
197 * @dir: directory in which the symlink is being created
198 * @target: plaintext symlink target
199 * @len: length of @target excluding null terminator
200 * @max_len: space the filesystem has available to store the symlink target
201 * @disk_link: (out) the on-disk symlink target being prepared
202 *
203 * This function computes the size the symlink target will require on-disk,
204 * stores it in @disk_link->len, and validates it against @max_len.  An
205 * encrypted symlink may be longer than the original.
206 *
207 * Additionally, @disk_link->name is set to @target if the symlink will be
208 * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
209 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
210 * on-disk target later.  (The reason for the two-step process is that some
211 * filesystems need to know the size of the symlink target before creating the
212 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
213 *
214 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
215 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
216 * occurred while setting up the encryption key.
217 */
218int fscrypt_prepare_symlink(struct inode *dir, const char *target,
219			    unsigned int len, unsigned int max_len,
220			    struct fscrypt_str *disk_link)
221{
222	const union fscrypt_policy *policy;
223
224	/*
225	 * To calculate the size of the encrypted symlink target we need to know
226	 * the amount of NUL padding, which is determined by the flags set in
227	 * the encryption policy which will be inherited from the directory.
228	 */
229	policy = fscrypt_policy_to_inherit(dir);
230	if (policy == NULL) {
231		/* Not encrypted */
232		disk_link->name = (unsigned char *)target;
233		disk_link->len = len + 1;
234		if (disk_link->len > max_len)
235			return -ENAMETOOLONG;
236		return 0;
237	}
238	if (IS_ERR(policy))
239		return PTR_ERR(policy);
240
241	/*
242	 * Calculate the size of the encrypted symlink and verify it won't
243	 * exceed max_len.  Note that for historical reasons, encrypted symlink
244	 * targets are prefixed with the ciphertext length, despite this
245	 * actually being redundant with i_size.  This decreases by 2 bytes the
246	 * longest symlink target we can accept.
247	 *
248	 * We could recover 1 byte by not counting a null terminator, but
249	 * counting it (even though it is meaningless for ciphertext) is simpler
250	 * for now since filesystems will assume it is there and subtract it.
251	 */
252	if (!__fscrypt_fname_encrypted_size(policy, len,
253					    max_len - sizeof(struct fscrypt_symlink_data) - 1,
254					    &disk_link->len))
255		return -ENAMETOOLONG;
256	disk_link->len += sizeof(struct fscrypt_symlink_data) + 1;
257
258	disk_link->name = NULL;
259	return 0;
260}
261EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
262
263int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
264			      unsigned int len, struct fscrypt_str *disk_link)
265{
266	int err;
267	struct qstr iname = QSTR_INIT(target, len);
268	struct fscrypt_symlink_data *sd;
269	unsigned int ciphertext_len;
270
271	/*
272	 * fscrypt_prepare_new_inode() should have already set up the new
273	 * symlink inode's encryption key.  We don't wait until now to do it,
274	 * since we may be in a filesystem transaction now.
275	 */
276	if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
277		return -ENOKEY;
278
279	if (disk_link->name) {
280		/* filesystem-provided buffer */
281		sd = (struct fscrypt_symlink_data *)disk_link->name;
282	} else {
283		sd = kmalloc(disk_link->len, GFP_NOFS);
284		if (!sd)
285			return -ENOMEM;
286	}
287	ciphertext_len = disk_link->len - sizeof(*sd) - 1;
288	sd->len = cpu_to_le16(ciphertext_len);
289
290	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
291				    ciphertext_len);
292	if (err)
293		goto err_free_sd;
294
295	/*
296	 * Null-terminating the ciphertext doesn't make sense, but we still
297	 * count the null terminator in the length, so we might as well
298	 * initialize it just in case the filesystem writes it out.
299	 */
300	sd->encrypted_path[ciphertext_len] = '\0';
301
302	/* Cache the plaintext symlink target for later use by get_link() */
303	err = -ENOMEM;
304	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
305	if (!inode->i_link)
306		goto err_free_sd;
307
308	if (!disk_link->name)
309		disk_link->name = (unsigned char *)sd;
310	return 0;
311
312err_free_sd:
313	if (!disk_link->name)
314		kfree(sd);
315	return err;
316}
317EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
318
319/**
320 * fscrypt_get_symlink() - get the target of an encrypted symlink
321 * @inode: the symlink inode
322 * @caddr: the on-disk contents of the symlink
323 * @max_size: size of @caddr buffer
324 * @done: if successful, will be set up to free the returned target if needed
325 *
326 * If the symlink's encryption key is available, we decrypt its target.
327 * Otherwise, we encode its target for presentation.
328 *
329 * This may sleep, so the filesystem must have dropped out of RCU mode already.
330 *
331 * Return: the presentable symlink target or an ERR_PTR()
332 */
333const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
334				unsigned int max_size,
335				struct delayed_call *done)
336{
337	const struct fscrypt_symlink_data *sd;
338	struct fscrypt_str cstr, pstr;
339	bool has_key;
340	int err;
341
342	/* This is for encrypted symlinks only */
343	if (WARN_ON_ONCE(!IS_ENCRYPTED(inode)))
344		return ERR_PTR(-EINVAL);
345
346	/* If the decrypted target is already cached, just return it. */
347	pstr.name = READ_ONCE(inode->i_link);
348	if (pstr.name)
349		return pstr.name;
350
351	/*
352	 * Try to set up the symlink's encryption key, but we can continue
353	 * regardless of whether the key is available or not.
354	 */
355	err = fscrypt_get_encryption_info(inode, false);
356	if (err)
357		return ERR_PTR(err);
358	has_key = fscrypt_has_encryption_key(inode);
359
360	/*
361	 * For historical reasons, encrypted symlink targets are prefixed with
362	 * the ciphertext length, even though this is redundant with i_size.
363	 */
364
365	if (max_size < sizeof(*sd) + 1)
366		return ERR_PTR(-EUCLEAN);
367	sd = caddr;
368	cstr.name = (unsigned char *)sd->encrypted_path;
369	cstr.len = le16_to_cpu(sd->len);
370
371	if (cstr.len == 0)
372		return ERR_PTR(-EUCLEAN);
373
374	if (cstr.len + sizeof(*sd) > max_size)
375		return ERR_PTR(-EUCLEAN);
376
377	err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
378	if (err)
379		return ERR_PTR(err);
380
381	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
382	if (err)
383		goto err_kfree;
384
385	err = -EUCLEAN;
386	if (pstr.name[0] == '\0')
387		goto err_kfree;
388
389	pstr.name[pstr.len] = '\0';
390
391	/*
392	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
393	 * symlink targets encoded without the key, since those become outdated
394	 * once the key is added.  This pairs with the READ_ONCE() above and in
395	 * the VFS path lookup code.
396	 */
397	if (!has_key ||
398	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
399		set_delayed_call(done, kfree_link, pstr.name);
400
401	return pstr.name;
402
403err_kfree:
404	kfree(pstr.name);
405	return ERR_PTR(err);
406}
407EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
408
409/**
410 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
411 * @path: the path for the encrypted symlink being queried
412 * @stat: the struct being filled with the symlink's attributes
413 *
414 * Override st_size of encrypted symlinks to be the length of the decrypted
415 * symlink target (or the no-key encoded symlink target, if the key is
416 * unavailable) rather than the length of the encrypted symlink target.  This is
417 * necessary for st_size to match the symlink target that userspace actually
418 * sees.  POSIX requires this, and some userspace programs depend on it.
419 *
420 * This requires reading the symlink target from disk if needed, setting up the
421 * inode's encryption key if possible, and then decrypting or encoding the
422 * symlink target.  This makes lstat() more heavyweight than is normally the
423 * case.  However, decrypted symlink targets will be cached in ->i_link, so
424 * usually the symlink won't have to be read and decrypted again later if/when
425 * it is actually followed, readlink() is called, or lstat() is called again.
426 *
427 * Return: 0 on success, -errno on failure
428 */
429int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
430{
431	struct dentry *dentry = path->dentry;
432	struct inode *inode = d_inode(dentry);
433	const char *link;
434	DEFINE_DELAYED_CALL(done);
435
436	/*
437	 * To get the symlink target that userspace will see (whether it's the
438	 * decrypted target or the no-key encoded target), we can just get it in
439	 * the same way the VFS does during path resolution and readlink().
440	 */
441	link = READ_ONCE(inode->i_link);
442	if (!link) {
443		link = inode->i_op->get_link(dentry, inode, &done);
444		if (IS_ERR(link))
445			return PTR_ERR(link);
446	}
447	stat->size = strlen(link);
448	do_delayed_call(&done);
449	return 0;
450}
451EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
452