1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Implementation of HKDF ("HMAC-based Extract-and-Expand Key Derivation
4 * Function"), aka RFC 5869.  See also the original paper (Krawczyk 2010):
5 * "Cryptographic Extraction and Key Derivation: The HKDF Scheme".
6 *
7 * This is used to derive keys from the fscrypt master keys.
8 *
9 * Copyright 2019 Google LLC
10 */
11
12#include <crypto/hash.h>
13#include <crypto/sha2.h>
14
15#include "fscrypt_private.h"
16
17/*
18 * HKDF supports any unkeyed cryptographic hash algorithm, but fscrypt uses
19 * SHA-512 because it is well-established, secure, and reasonably efficient.
20 *
21 * HKDF-SHA256 was also considered, as its 256-bit security strength would be
22 * sufficient here.  A 512-bit security strength is "nice to have", though.
23 * Also, on 64-bit CPUs, SHA-512 is usually just as fast as SHA-256.  In the
24 * common case of deriving an AES-256-XTS key (512 bits), that can result in
25 * HKDF-SHA512 being much faster than HKDF-SHA256, as the longer digest size of
26 * SHA-512 causes HKDF-Expand to only need to do one iteration rather than two.
27 */
28#define HKDF_HMAC_ALG		"hmac(sha512)"
29#define HKDF_HASHLEN		SHA512_DIGEST_SIZE
30
31/*
32 * HKDF consists of two steps:
33 *
34 * 1. HKDF-Extract: extract a pseudorandom key of length HKDF_HASHLEN bytes from
35 *    the input keying material and optional salt.
36 * 2. HKDF-Expand: expand the pseudorandom key into output keying material of
37 *    any length, parameterized by an application-specific info string.
38 *
39 * HKDF-Extract can be skipped if the input is already a pseudorandom key of
40 * length HKDF_HASHLEN bytes.  However, cipher modes other than AES-256-XTS take
41 * shorter keys, and we don't want to force users of those modes to provide
42 * unnecessarily long master keys.  Thus fscrypt still does HKDF-Extract.  No
43 * salt is used, since fscrypt master keys should already be pseudorandom and
44 * there's no way to persist a random salt per master key from kernel mode.
45 */
46
47/* HKDF-Extract (RFC 5869 section 2.2), unsalted */
48static int hkdf_extract(struct crypto_shash *hmac_tfm, const u8 *ikm,
49			unsigned int ikmlen, u8 prk[HKDF_HASHLEN])
50{
51	static const u8 default_salt[HKDF_HASHLEN];
52	int err;
53
54	err = crypto_shash_setkey(hmac_tfm, default_salt, HKDF_HASHLEN);
55	if (err)
56		return err;
57
58	return crypto_shash_tfm_digest(hmac_tfm, ikm, ikmlen, prk);
59}
60
61/*
62 * Compute HKDF-Extract using the given master key as the input keying material,
63 * and prepare an HMAC transform object keyed by the resulting pseudorandom key.
64 *
65 * Afterwards, the keyed HMAC transform object can be used for HKDF-Expand many
66 * times without having to recompute HKDF-Extract each time.
67 */
68int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
69		      unsigned int master_key_size)
70{
71	struct crypto_shash *hmac_tfm;
72	u8 prk[HKDF_HASHLEN];
73	int err;
74
75	hmac_tfm = crypto_alloc_shash(HKDF_HMAC_ALG, 0, 0);
76	if (IS_ERR(hmac_tfm)) {
77		fscrypt_err(NULL, "Error allocating " HKDF_HMAC_ALG ": %ld",
78			    PTR_ERR(hmac_tfm));
79		return PTR_ERR(hmac_tfm);
80	}
81
82	if (WARN_ON_ONCE(crypto_shash_digestsize(hmac_tfm) != sizeof(prk))) {
83		err = -EINVAL;
84		goto err_free_tfm;
85	}
86
87	err = hkdf_extract(hmac_tfm, master_key, master_key_size, prk);
88	if (err)
89		goto err_free_tfm;
90
91	err = crypto_shash_setkey(hmac_tfm, prk, sizeof(prk));
92	if (err)
93		goto err_free_tfm;
94
95	hkdf->hmac_tfm = hmac_tfm;
96	goto out;
97
98err_free_tfm:
99	crypto_free_shash(hmac_tfm);
100out:
101	memzero_explicit(prk, sizeof(prk));
102	return err;
103}
104
105/*
106 * HKDF-Expand (RFC 5869 section 2.3).  This expands the pseudorandom key, which
107 * was already keyed into 'hkdf->hmac_tfm' by fscrypt_init_hkdf(), into 'okmlen'
108 * bytes of output keying material parameterized by the application-specific
109 * 'info' of length 'infolen' bytes, prefixed by "fscrypt\0" and the 'context'
110 * byte.  This is thread-safe and may be called by multiple threads in parallel.
111 *
112 * ('context' isn't part of the HKDF specification; it's just a prefix fscrypt
113 * adds to its application-specific info strings to guarantee that it doesn't
114 * accidentally repeat an info string when using HKDF for different purposes.)
115 */
116int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
117			const u8 *info, unsigned int infolen,
118			u8 *okm, unsigned int okmlen)
119{
120	SHASH_DESC_ON_STACK(desc, hkdf->hmac_tfm);
121	u8 prefix[9];
122	unsigned int i;
123	int err;
124	const u8 *prev = NULL;
125	u8 counter = 1;
126	u8 tmp[HKDF_HASHLEN];
127
128	if (WARN_ON_ONCE(okmlen > 255 * HKDF_HASHLEN))
129		return -EINVAL;
130
131	desc->tfm = hkdf->hmac_tfm;
132
133	memcpy(prefix, "fscrypt\0", 8);
134	prefix[8] = context;
135
136	for (i = 0; i < okmlen; i += HKDF_HASHLEN) {
137
138		err = crypto_shash_init(desc);
139		if (err)
140			goto out;
141
142		if (prev) {
143			err = crypto_shash_update(desc, prev, HKDF_HASHLEN);
144			if (err)
145				goto out;
146		}
147
148		err = crypto_shash_update(desc, prefix, sizeof(prefix));
149		if (err)
150			goto out;
151
152		err = crypto_shash_update(desc, info, infolen);
153		if (err)
154			goto out;
155
156		BUILD_BUG_ON(sizeof(counter) != 1);
157		if (okmlen - i < HKDF_HASHLEN) {
158			err = crypto_shash_finup(desc, &counter, 1, tmp);
159			if (err)
160				goto out;
161			memcpy(&okm[i], tmp, okmlen - i);
162			memzero_explicit(tmp, sizeof(tmp));
163		} else {
164			err = crypto_shash_finup(desc, &counter, 1, &okm[i]);
165			if (err)
166				goto out;
167		}
168		counter++;
169		prev = &okm[i];
170	}
171	err = 0;
172out:
173	if (unlikely(err))
174		memzero_explicit(okm, okmlen); /* so caller doesn't need to */
175	shash_desc_zero(desc);
176	return err;
177}
178
179void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf)
180{
181	crypto_free_shash(hkdf->hmac_tfm);
182}
183