1// SPDX-License-Identifier: GPL-2.0
2#include <linux/slab.h>
3#include <linux/file.h>
4#include <linux/fdtable.h>
5#include <linux/freezer.h>
6#include <linux/mm.h>
7#include <linux/stat.h>
8#include <linux/fcntl.h>
9#include <linux/swap.h>
10#include <linux/ctype.h>
11#include <linux/string.h>
12#include <linux/init.h>
13#include <linux/pagemap.h>
14#include <linux/perf_event.h>
15#include <linux/highmem.h>
16#include <linux/spinlock.h>
17#include <linux/key.h>
18#include <linux/personality.h>
19#include <linux/binfmts.h>
20#include <linux/coredump.h>
21#include <linux/sched/coredump.h>
22#include <linux/sched/signal.h>
23#include <linux/sched/task_stack.h>
24#include <linux/utsname.h>
25#include <linux/pid_namespace.h>
26#include <linux/module.h>
27#include <linux/namei.h>
28#include <linux/mount.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
31#include <linux/tsacct_kern.h>
32#include <linux/cn_proc.h>
33#include <linux/audit.h>
34#include <linux/kmod.h>
35#include <linux/fsnotify.h>
36#include <linux/fs_struct.h>
37#include <linux/pipe_fs_i.h>
38#include <linux/oom.h>
39#include <linux/compat.h>
40#include <linux/fs.h>
41#include <linux/path.h>
42#include <linux/timekeeping.h>
43#include <linux/sysctl.h>
44#include <linux/elf.h>
45
46#include <linux/uaccess.h>
47#include <asm/mmu_context.h>
48#include <asm/tlb.h>
49#include <asm/exec.h>
50
51#include <trace/events/task.h>
52#include "internal.h"
53
54#include <trace/events/sched.h>
55
56static bool dump_vma_snapshot(struct coredump_params *cprm);
57static void free_vma_snapshot(struct coredump_params *cprm);
58
59static int core_uses_pid;
60static unsigned int core_pipe_limit;
61static char core_pattern[CORENAME_MAX_SIZE] = "core";
62static int core_name_size = CORENAME_MAX_SIZE;
63
64struct core_name {
65	char *corename;
66	int used, size;
67};
68
69static int expand_corename(struct core_name *cn, int size)
70{
71	char *corename;
72
73	size = kmalloc_size_roundup(size);
74	corename = krealloc(cn->corename, size, GFP_KERNEL);
75
76	if (!corename)
77		return -ENOMEM;
78
79	if (size > core_name_size) /* racy but harmless */
80		core_name_size = size;
81
82	cn->size = size;
83	cn->corename = corename;
84	return 0;
85}
86
87static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
88				     va_list arg)
89{
90	int free, need;
91	va_list arg_copy;
92
93again:
94	free = cn->size - cn->used;
95
96	va_copy(arg_copy, arg);
97	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
98	va_end(arg_copy);
99
100	if (need < free) {
101		cn->used += need;
102		return 0;
103	}
104
105	if (!expand_corename(cn, cn->size + need - free + 1))
106		goto again;
107
108	return -ENOMEM;
109}
110
111static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
112{
113	va_list arg;
114	int ret;
115
116	va_start(arg, fmt);
117	ret = cn_vprintf(cn, fmt, arg);
118	va_end(arg);
119
120	return ret;
121}
122
123static __printf(2, 3)
124int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
125{
126	int cur = cn->used;
127	va_list arg;
128	int ret;
129
130	va_start(arg, fmt);
131	ret = cn_vprintf(cn, fmt, arg);
132	va_end(arg);
133
134	if (ret == 0) {
135		/*
136		 * Ensure that this coredump name component can't cause the
137		 * resulting corefile path to consist of a ".." or ".".
138		 */
139		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
140				(cn->used - cur == 2 && cn->corename[cur] == '.'
141				&& cn->corename[cur+1] == '.'))
142			cn->corename[cur] = '!';
143
144		/*
145		 * Empty names are fishy and could be used to create a "//" in a
146		 * corefile name, causing the coredump to happen one directory
147		 * level too high. Enforce that all components of the core
148		 * pattern are at least one character long.
149		 */
150		if (cn->used == cur)
151			ret = cn_printf(cn, "!");
152	}
153
154	for (; cur < cn->used; ++cur) {
155		if (cn->corename[cur] == '/')
156			cn->corename[cur] = '!';
157	}
158	return ret;
159}
160
161static int cn_print_exe_file(struct core_name *cn, bool name_only)
162{
163	struct file *exe_file;
164	char *pathbuf, *path, *ptr;
165	int ret;
166
167	exe_file = get_mm_exe_file(current->mm);
168	if (!exe_file)
169		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
170
171	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
172	if (!pathbuf) {
173		ret = -ENOMEM;
174		goto put_exe_file;
175	}
176
177	path = file_path(exe_file, pathbuf, PATH_MAX);
178	if (IS_ERR(path)) {
179		ret = PTR_ERR(path);
180		goto free_buf;
181	}
182
183	if (name_only) {
184		ptr = strrchr(path, '/');
185		if (ptr)
186			path = ptr + 1;
187	}
188	ret = cn_esc_printf(cn, "%s", path);
189
190free_buf:
191	kfree(pathbuf);
192put_exe_file:
193	fput(exe_file);
194	return ret;
195}
196
197/* format_corename will inspect the pattern parameter, and output a
198 * name into corename, which must have space for at least
199 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
200 */
201static int format_corename(struct core_name *cn, struct coredump_params *cprm,
202			   size_t **argv, int *argc)
203{
204	const struct cred *cred = current_cred();
205	const char *pat_ptr = core_pattern;
206	int ispipe = (*pat_ptr == '|');
207	bool was_space = false;
208	int pid_in_pattern = 0;
209	int err = 0;
210
211	cn->used = 0;
212	cn->corename = NULL;
213	if (expand_corename(cn, core_name_size))
214		return -ENOMEM;
215	cn->corename[0] = '\0';
216
217	if (ispipe) {
218		int argvs = sizeof(core_pattern) / 2;
219		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
220		if (!(*argv))
221			return -ENOMEM;
222		(*argv)[(*argc)++] = 0;
223		++pat_ptr;
224		if (!(*pat_ptr))
225			return -ENOMEM;
226	}
227
228	/* Repeat as long as we have more pattern to process and more output
229	   space */
230	while (*pat_ptr) {
231		/*
232		 * Split on spaces before doing template expansion so that
233		 * %e and %E don't get split if they have spaces in them
234		 */
235		if (ispipe) {
236			if (isspace(*pat_ptr)) {
237				if (cn->used != 0)
238					was_space = true;
239				pat_ptr++;
240				continue;
241			} else if (was_space) {
242				was_space = false;
243				err = cn_printf(cn, "%c", '\0');
244				if (err)
245					return err;
246				(*argv)[(*argc)++] = cn->used;
247			}
248		}
249		if (*pat_ptr != '%') {
250			err = cn_printf(cn, "%c", *pat_ptr++);
251		} else {
252			switch (*++pat_ptr) {
253			/* single % at the end, drop that */
254			case 0:
255				goto out;
256			/* Double percent, output one percent */
257			case '%':
258				err = cn_printf(cn, "%c", '%');
259				break;
260			/* pid */
261			case 'p':
262				pid_in_pattern = 1;
263				err = cn_printf(cn, "%d",
264					      task_tgid_vnr(current));
265				break;
266			/* global pid */
267			case 'P':
268				err = cn_printf(cn, "%d",
269					      task_tgid_nr(current));
270				break;
271			case 'i':
272				err = cn_printf(cn, "%d",
273					      task_pid_vnr(current));
274				break;
275			case 'I':
276				err = cn_printf(cn, "%d",
277					      task_pid_nr(current));
278				break;
279			/* uid */
280			case 'u':
281				err = cn_printf(cn, "%u",
282						from_kuid(&init_user_ns,
283							  cred->uid));
284				break;
285			/* gid */
286			case 'g':
287				err = cn_printf(cn, "%u",
288						from_kgid(&init_user_ns,
289							  cred->gid));
290				break;
291			case 'd':
292				err = cn_printf(cn, "%d",
293					__get_dumpable(cprm->mm_flags));
294				break;
295			/* signal that caused the coredump */
296			case 's':
297				err = cn_printf(cn, "%d",
298						cprm->siginfo->si_signo);
299				break;
300			/* UNIX time of coredump */
301			case 't': {
302				time64_t time;
303
304				time = ktime_get_real_seconds();
305				err = cn_printf(cn, "%lld", time);
306				break;
307			}
308			/* hostname */
309			case 'h':
310				down_read(&uts_sem);
311				err = cn_esc_printf(cn, "%s",
312					      utsname()->nodename);
313				up_read(&uts_sem);
314				break;
315			/* executable, could be changed by prctl PR_SET_NAME etc */
316			case 'e':
317				err = cn_esc_printf(cn, "%s", current->comm);
318				break;
319			/* file name of executable */
320			case 'f':
321				err = cn_print_exe_file(cn, true);
322				break;
323			case 'E':
324				err = cn_print_exe_file(cn, false);
325				break;
326			/* core limit size */
327			case 'c':
328				err = cn_printf(cn, "%lu",
329					      rlimit(RLIMIT_CORE));
330				break;
331			/* CPU the task ran on */
332			case 'C':
333				err = cn_printf(cn, "%d", cprm->cpu);
334				break;
335			default:
336				break;
337			}
338			++pat_ptr;
339		}
340
341		if (err)
342			return err;
343	}
344
345out:
346	/* Backward compatibility with core_uses_pid:
347	 *
348	 * If core_pattern does not include a %p (as is the default)
349	 * and core_uses_pid is set, then .%pid will be appended to
350	 * the filename. Do not do this for piped commands. */
351	if (!ispipe && !pid_in_pattern && core_uses_pid) {
352		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
353		if (err)
354			return err;
355	}
356	return ispipe;
357}
358
359static int zap_process(struct task_struct *start, int exit_code)
360{
361	struct task_struct *t;
362	int nr = 0;
363
364	/* Allow SIGKILL, see prepare_signal() */
365	start->signal->flags = SIGNAL_GROUP_EXIT;
366	start->signal->group_exit_code = exit_code;
367	start->signal->group_stop_count = 0;
368
369	for_each_thread(start, t) {
370		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
371		if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
372			sigaddset(&t->pending.signal, SIGKILL);
373			signal_wake_up(t, 1);
374			/* The vhost_worker does not particpate in coredumps */
375			if ((t->flags & (PF_USER_WORKER | PF_IO_WORKER)) != PF_USER_WORKER)
376				nr++;
377		}
378	}
379
380	return nr;
381}
382
383static int zap_threads(struct task_struct *tsk,
384			struct core_state *core_state, int exit_code)
385{
386	struct signal_struct *signal = tsk->signal;
387	int nr = -EAGAIN;
388
389	spin_lock_irq(&tsk->sighand->siglock);
390	if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
391		signal->core_state = core_state;
392		nr = zap_process(tsk, exit_code);
393		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
394		tsk->flags |= PF_DUMPCORE;
395		atomic_set(&core_state->nr_threads, nr);
396	}
397	spin_unlock_irq(&tsk->sighand->siglock);
398	return nr;
399}
400
401static int coredump_wait(int exit_code, struct core_state *core_state)
402{
403	struct task_struct *tsk = current;
404	int core_waiters = -EBUSY;
405
406	init_completion(&core_state->startup);
407	core_state->dumper.task = tsk;
408	core_state->dumper.next = NULL;
409
410	core_waiters = zap_threads(tsk, core_state, exit_code);
411	if (core_waiters > 0) {
412		struct core_thread *ptr;
413
414		wait_for_completion_state(&core_state->startup,
415					  TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
416		/*
417		 * Wait for all the threads to become inactive, so that
418		 * all the thread context (extended register state, like
419		 * fpu etc) gets copied to the memory.
420		 */
421		ptr = core_state->dumper.next;
422		while (ptr != NULL) {
423			wait_task_inactive(ptr->task, TASK_ANY);
424			ptr = ptr->next;
425		}
426	}
427
428	return core_waiters;
429}
430
431static void coredump_finish(bool core_dumped)
432{
433	struct core_thread *curr, *next;
434	struct task_struct *task;
435
436	spin_lock_irq(&current->sighand->siglock);
437	if (core_dumped && !__fatal_signal_pending(current))
438		current->signal->group_exit_code |= 0x80;
439	next = current->signal->core_state->dumper.next;
440	current->signal->core_state = NULL;
441	spin_unlock_irq(&current->sighand->siglock);
442
443	while ((curr = next) != NULL) {
444		next = curr->next;
445		task = curr->task;
446		/*
447		 * see coredump_task_exit(), curr->task must not see
448		 * ->task == NULL before we read ->next.
449		 */
450		smp_mb();
451		curr->task = NULL;
452		wake_up_process(task);
453	}
454}
455
456static bool dump_interrupted(void)
457{
458	/*
459	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
460	 * can do try_to_freeze() and check __fatal_signal_pending(),
461	 * but then we need to teach dump_write() to restart and clear
462	 * TIF_SIGPENDING.
463	 */
464	return fatal_signal_pending(current) || freezing(current);
465}
466
467static void wait_for_dump_helpers(struct file *file)
468{
469	struct pipe_inode_info *pipe = file->private_data;
470
471	pipe_lock(pipe);
472	pipe->readers++;
473	pipe->writers--;
474	wake_up_interruptible_sync(&pipe->rd_wait);
475	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
476	pipe_unlock(pipe);
477
478	/*
479	 * We actually want wait_event_freezable() but then we need
480	 * to clear TIF_SIGPENDING and improve dump_interrupted().
481	 */
482	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
483
484	pipe_lock(pipe);
485	pipe->readers--;
486	pipe->writers++;
487	pipe_unlock(pipe);
488}
489
490/*
491 * umh_pipe_setup
492 * helper function to customize the process used
493 * to collect the core in userspace.  Specifically
494 * it sets up a pipe and installs it as fd 0 (stdin)
495 * for the process.  Returns 0 on success, or
496 * PTR_ERR on failure.
497 * Note that it also sets the core limit to 1.  This
498 * is a special value that we use to trap recursive
499 * core dumps
500 */
501static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
502{
503	struct file *files[2];
504	struct coredump_params *cp = (struct coredump_params *)info->data;
505	int err = create_pipe_files(files, 0);
506	if (err)
507		return err;
508
509	cp->file = files[1];
510
511	err = replace_fd(0, files[0], 0);
512	fput(files[0]);
513	/* and disallow core files too */
514	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
515
516	return err;
517}
518
519void do_coredump(const kernel_siginfo_t *siginfo)
520{
521	struct core_state core_state;
522	struct core_name cn;
523	struct mm_struct *mm = current->mm;
524	struct linux_binfmt * binfmt;
525	const struct cred *old_cred;
526	struct cred *cred;
527	int retval = 0;
528	int ispipe;
529	size_t *argv = NULL;
530	int argc = 0;
531	/* require nonrelative corefile path and be extra careful */
532	bool need_suid_safe = false;
533	bool core_dumped = false;
534	static atomic_t core_dump_count = ATOMIC_INIT(0);
535	struct coredump_params cprm = {
536		.siginfo = siginfo,
537		.limit = rlimit(RLIMIT_CORE),
538		/*
539		 * We must use the same mm->flags while dumping core to avoid
540		 * inconsistency of bit flags, since this flag is not protected
541		 * by any locks.
542		 */
543		.mm_flags = mm->flags,
544		.vma_meta = NULL,
545		.cpu = raw_smp_processor_id(),
546	};
547
548	audit_core_dumps(siginfo->si_signo);
549
550	binfmt = mm->binfmt;
551	if (!binfmt || !binfmt->core_dump)
552		goto fail;
553	if (!__get_dumpable(cprm.mm_flags))
554		goto fail;
555
556	cred = prepare_creds();
557	if (!cred)
558		goto fail;
559	/*
560	 * We cannot trust fsuid as being the "true" uid of the process
561	 * nor do we know its entire history. We only know it was tainted
562	 * so we dump it as root in mode 2, and only into a controlled
563	 * environment (pipe handler or fully qualified path).
564	 */
565	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
566		/* Setuid core dump mode */
567		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
568		need_suid_safe = true;
569	}
570
571	retval = coredump_wait(siginfo->si_signo, &core_state);
572	if (retval < 0)
573		goto fail_creds;
574
575	old_cred = override_creds(cred);
576
577	ispipe = format_corename(&cn, &cprm, &argv, &argc);
578
579	if (ispipe) {
580		int argi;
581		int dump_count;
582		char **helper_argv;
583		struct subprocess_info *sub_info;
584
585		if (ispipe < 0) {
586			printk(KERN_WARNING "format_corename failed\n");
587			printk(KERN_WARNING "Aborting core\n");
588			goto fail_unlock;
589		}
590
591		if (cprm.limit == 1) {
592			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
593			 *
594			 * Normally core limits are irrelevant to pipes, since
595			 * we're not writing to the file system, but we use
596			 * cprm.limit of 1 here as a special value, this is a
597			 * consistent way to catch recursive crashes.
598			 * We can still crash if the core_pattern binary sets
599			 * RLIM_CORE = !1, but it runs as root, and can do
600			 * lots of stupid things.
601			 *
602			 * Note that we use task_tgid_vnr here to grab the pid
603			 * of the process group leader.  That way we get the
604			 * right pid if a thread in a multi-threaded
605			 * core_pattern process dies.
606			 */
607			printk(KERN_WARNING
608				"Process %d(%s) has RLIMIT_CORE set to 1\n",
609				task_tgid_vnr(current), current->comm);
610			printk(KERN_WARNING "Aborting core\n");
611			goto fail_unlock;
612		}
613		cprm.limit = RLIM_INFINITY;
614
615		dump_count = atomic_inc_return(&core_dump_count);
616		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
617			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
618			       task_tgid_vnr(current), current->comm);
619			printk(KERN_WARNING "Skipping core dump\n");
620			goto fail_dropcount;
621		}
622
623		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
624					    GFP_KERNEL);
625		if (!helper_argv) {
626			printk(KERN_WARNING "%s failed to allocate memory\n",
627			       __func__);
628			goto fail_dropcount;
629		}
630		for (argi = 0; argi < argc; argi++)
631			helper_argv[argi] = cn.corename + argv[argi];
632		helper_argv[argi] = NULL;
633
634		retval = -ENOMEM;
635		sub_info = call_usermodehelper_setup(helper_argv[0],
636						helper_argv, NULL, GFP_KERNEL,
637						umh_pipe_setup, NULL, &cprm);
638		if (sub_info)
639			retval = call_usermodehelper_exec(sub_info,
640							  UMH_WAIT_EXEC);
641
642		kfree(helper_argv);
643		if (retval) {
644			printk(KERN_INFO "Core dump to |%s pipe failed\n",
645			       cn.corename);
646			goto close_fail;
647		}
648	} else {
649		struct mnt_idmap *idmap;
650		struct inode *inode;
651		int open_flags = O_CREAT | O_WRONLY | O_NOFOLLOW |
652				 O_LARGEFILE | O_EXCL;
653
654		if (cprm.limit < binfmt->min_coredump)
655			goto fail_unlock;
656
657		if (need_suid_safe && cn.corename[0] != '/') {
658			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
659				"to fully qualified path!\n",
660				task_tgid_vnr(current), current->comm);
661			printk(KERN_WARNING "Skipping core dump\n");
662			goto fail_unlock;
663		}
664
665		/*
666		 * Unlink the file if it exists unless this is a SUID
667		 * binary - in that case, we're running around with root
668		 * privs and don't want to unlink another user's coredump.
669		 */
670		if (!need_suid_safe) {
671			/*
672			 * If it doesn't exist, that's fine. If there's some
673			 * other problem, we'll catch it at the filp_open().
674			 */
675			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
676		}
677
678		/*
679		 * There is a race between unlinking and creating the
680		 * file, but if that causes an EEXIST here, that's
681		 * fine - another process raced with us while creating
682		 * the corefile, and the other process won. To userspace,
683		 * what matters is that at least one of the two processes
684		 * writes its coredump successfully, not which one.
685		 */
686		if (need_suid_safe) {
687			/*
688			 * Using user namespaces, normal user tasks can change
689			 * their current->fs->root to point to arbitrary
690			 * directories. Since the intention of the "only dump
691			 * with a fully qualified path" rule is to control where
692			 * coredumps may be placed using root privileges,
693			 * current->fs->root must not be used. Instead, use the
694			 * root directory of init_task.
695			 */
696			struct path root;
697
698			task_lock(&init_task);
699			get_fs_root(init_task.fs, &root);
700			task_unlock(&init_task);
701			cprm.file = file_open_root(&root, cn.corename,
702						   open_flags, 0600);
703			path_put(&root);
704		} else {
705			cprm.file = filp_open(cn.corename, open_flags, 0600);
706		}
707		if (IS_ERR(cprm.file))
708			goto fail_unlock;
709
710		inode = file_inode(cprm.file);
711		if (inode->i_nlink > 1)
712			goto close_fail;
713		if (d_unhashed(cprm.file->f_path.dentry))
714			goto close_fail;
715		/*
716		 * AK: actually i see no reason to not allow this for named
717		 * pipes etc, but keep the previous behaviour for now.
718		 */
719		if (!S_ISREG(inode->i_mode))
720			goto close_fail;
721		/*
722		 * Don't dump core if the filesystem changed owner or mode
723		 * of the file during file creation. This is an issue when
724		 * a process dumps core while its cwd is e.g. on a vfat
725		 * filesystem.
726		 */
727		idmap = file_mnt_idmap(cprm.file);
728		if (!vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode),
729				    current_fsuid())) {
730			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
731					    cn.corename);
732			goto close_fail;
733		}
734		if ((inode->i_mode & 0677) != 0600) {
735			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
736					    cn.corename);
737			goto close_fail;
738		}
739		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
740			goto close_fail;
741		if (do_truncate(idmap, cprm.file->f_path.dentry,
742				0, 0, cprm.file))
743			goto close_fail;
744	}
745
746	/* get us an unshared descriptor table; almost always a no-op */
747	/* The cell spufs coredump code reads the file descriptor tables */
748	retval = unshare_files();
749	if (retval)
750		goto close_fail;
751	if (!dump_interrupted()) {
752		/*
753		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
754		 * have this set to NULL.
755		 */
756		if (!cprm.file) {
757			pr_info("Core dump to |%s disabled\n", cn.corename);
758			goto close_fail;
759		}
760		if (!dump_vma_snapshot(&cprm))
761			goto close_fail;
762
763		file_start_write(cprm.file);
764		core_dumped = binfmt->core_dump(&cprm);
765		/*
766		 * Ensures that file size is big enough to contain the current
767		 * file postion. This prevents gdb from complaining about
768		 * a truncated file if the last "write" to the file was
769		 * dump_skip.
770		 */
771		if (cprm.to_skip) {
772			cprm.to_skip--;
773			dump_emit(&cprm, "", 1);
774		}
775		file_end_write(cprm.file);
776		free_vma_snapshot(&cprm);
777	}
778	if (ispipe && core_pipe_limit)
779		wait_for_dump_helpers(cprm.file);
780close_fail:
781	if (cprm.file)
782		filp_close(cprm.file, NULL);
783fail_dropcount:
784	if (ispipe)
785		atomic_dec(&core_dump_count);
786fail_unlock:
787	kfree(argv);
788	kfree(cn.corename);
789	coredump_finish(core_dumped);
790	revert_creds(old_cred);
791fail_creds:
792	put_cred(cred);
793fail:
794	return;
795}
796
797/*
798 * Core dumping helper functions.  These are the only things you should
799 * do on a core-file: use only these functions to write out all the
800 * necessary info.
801 */
802static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
803{
804	struct file *file = cprm->file;
805	loff_t pos = file->f_pos;
806	ssize_t n;
807	if (cprm->written + nr > cprm->limit)
808		return 0;
809
810
811	if (dump_interrupted())
812		return 0;
813	n = __kernel_write(file, addr, nr, &pos);
814	if (n != nr)
815		return 0;
816	file->f_pos = pos;
817	cprm->written += n;
818	cprm->pos += n;
819
820	return 1;
821}
822
823static int __dump_skip(struct coredump_params *cprm, size_t nr)
824{
825	static char zeroes[PAGE_SIZE];
826	struct file *file = cprm->file;
827	if (file->f_mode & FMODE_LSEEK) {
828		if (dump_interrupted() ||
829		    vfs_llseek(file, nr, SEEK_CUR) < 0)
830			return 0;
831		cprm->pos += nr;
832		return 1;
833	} else {
834		while (nr > PAGE_SIZE) {
835			if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
836				return 0;
837			nr -= PAGE_SIZE;
838		}
839		return __dump_emit(cprm, zeroes, nr);
840	}
841}
842
843int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
844{
845	if (cprm->to_skip) {
846		if (!__dump_skip(cprm, cprm->to_skip))
847			return 0;
848		cprm->to_skip = 0;
849	}
850	return __dump_emit(cprm, addr, nr);
851}
852EXPORT_SYMBOL(dump_emit);
853
854void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
855{
856	cprm->to_skip = pos - cprm->pos;
857}
858EXPORT_SYMBOL(dump_skip_to);
859
860void dump_skip(struct coredump_params *cprm, size_t nr)
861{
862	cprm->to_skip += nr;
863}
864EXPORT_SYMBOL(dump_skip);
865
866#ifdef CONFIG_ELF_CORE
867static int dump_emit_page(struct coredump_params *cprm, struct page *page)
868{
869	struct bio_vec bvec;
870	struct iov_iter iter;
871	struct file *file = cprm->file;
872	loff_t pos;
873	ssize_t n;
874
875	if (!page)
876		return 0;
877
878	if (cprm->to_skip) {
879		if (!__dump_skip(cprm, cprm->to_skip))
880			return 0;
881		cprm->to_skip = 0;
882	}
883	if (cprm->written + PAGE_SIZE > cprm->limit)
884		return 0;
885	if (dump_interrupted())
886		return 0;
887	pos = file->f_pos;
888	bvec_set_page(&bvec, page, PAGE_SIZE, 0);
889	iov_iter_bvec(&iter, ITER_SOURCE, &bvec, 1, PAGE_SIZE);
890	n = __kernel_write_iter(cprm->file, &iter, &pos);
891	if (n != PAGE_SIZE)
892		return 0;
893	file->f_pos = pos;
894	cprm->written += PAGE_SIZE;
895	cprm->pos += PAGE_SIZE;
896
897	return 1;
898}
899
900/*
901 * If we might get machine checks from kernel accesses during the
902 * core dump, let's get those errors early rather than during the
903 * IO. This is not performance-critical enough to warrant having
904 * all the machine check logic in the iovec paths.
905 */
906#ifdef copy_mc_to_kernel
907
908#define dump_page_alloc() alloc_page(GFP_KERNEL)
909#define dump_page_free(x) __free_page(x)
910static struct page *dump_page_copy(struct page *src, struct page *dst)
911{
912	void *buf = kmap_local_page(src);
913	size_t left = copy_mc_to_kernel(page_address(dst), buf, PAGE_SIZE);
914	kunmap_local(buf);
915	return left ? NULL : dst;
916}
917
918#else
919
920/* We just want to return non-NULL; it's never used. */
921#define dump_page_alloc() ERR_PTR(-EINVAL)
922#define dump_page_free(x) ((void)(x))
923static inline struct page *dump_page_copy(struct page *src, struct page *dst)
924{
925	return src;
926}
927#endif
928
929int dump_user_range(struct coredump_params *cprm, unsigned long start,
930		    unsigned long len)
931{
932	unsigned long addr;
933	struct page *dump_page;
934
935	dump_page = dump_page_alloc();
936	if (!dump_page)
937		return 0;
938
939	for (addr = start; addr < start + len; addr += PAGE_SIZE) {
940		struct page *page;
941
942		/*
943		 * To avoid having to allocate page tables for virtual address
944		 * ranges that have never been used yet, and also to make it
945		 * easy to generate sparse core files, use a helper that returns
946		 * NULL when encountering an empty page table entry that would
947		 * otherwise have been filled with the zero page.
948		 */
949		page = get_dump_page(addr);
950		if (page) {
951			int stop = !dump_emit_page(cprm, dump_page_copy(page, dump_page));
952			put_page(page);
953			if (stop) {
954				dump_page_free(dump_page);
955				return 0;
956			}
957		} else {
958			dump_skip(cprm, PAGE_SIZE);
959		}
960	}
961	dump_page_free(dump_page);
962	return 1;
963}
964#endif
965
966int dump_align(struct coredump_params *cprm, int align)
967{
968	unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
969	if (align & (align - 1))
970		return 0;
971	if (mod)
972		cprm->to_skip += align - mod;
973	return 1;
974}
975EXPORT_SYMBOL(dump_align);
976
977#ifdef CONFIG_SYSCTL
978
979void validate_coredump_safety(void)
980{
981	if (suid_dumpable == SUID_DUMP_ROOT &&
982	    core_pattern[0] != '/' && core_pattern[0] != '|') {
983		pr_warn(
984"Unsafe core_pattern used with fs.suid_dumpable=2.\n"
985"Pipe handler or fully qualified core dump path required.\n"
986"Set kernel.core_pattern before fs.suid_dumpable.\n"
987		);
988	}
989}
990
991static int proc_dostring_coredump(struct ctl_table *table, int write,
992		  void *buffer, size_t *lenp, loff_t *ppos)
993{
994	int error = proc_dostring(table, write, buffer, lenp, ppos);
995
996	if (!error)
997		validate_coredump_safety();
998	return error;
999}
1000
1001static struct ctl_table coredump_sysctls[] = {
1002	{
1003		.procname	= "core_uses_pid",
1004		.data		= &core_uses_pid,
1005		.maxlen		= sizeof(int),
1006		.mode		= 0644,
1007		.proc_handler	= proc_dointvec,
1008	},
1009	{
1010		.procname	= "core_pattern",
1011		.data		= core_pattern,
1012		.maxlen		= CORENAME_MAX_SIZE,
1013		.mode		= 0644,
1014		.proc_handler	= proc_dostring_coredump,
1015	},
1016	{
1017		.procname	= "core_pipe_limit",
1018		.data		= &core_pipe_limit,
1019		.maxlen		= sizeof(unsigned int),
1020		.mode		= 0644,
1021		.proc_handler	= proc_dointvec,
1022	},
1023};
1024
1025static int __init init_fs_coredump_sysctls(void)
1026{
1027	register_sysctl_init("kernel", coredump_sysctls);
1028	return 0;
1029}
1030fs_initcall(init_fs_coredump_sysctls);
1031#endif /* CONFIG_SYSCTL */
1032
1033/*
1034 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1035 * that are useful for post-mortem analysis are included in every core dump.
1036 * In that way we ensure that the core dump is fully interpretable later
1037 * without matching up the same kernel and hardware config to see what PC values
1038 * meant. These special mappings include - vDSO, vsyscall, and other
1039 * architecture specific mappings
1040 */
1041static bool always_dump_vma(struct vm_area_struct *vma)
1042{
1043	/* Any vsyscall mappings? */
1044	if (vma == get_gate_vma(vma->vm_mm))
1045		return true;
1046
1047	/*
1048	 * Assume that all vmas with a .name op should always be dumped.
1049	 * If this changes, a new vm_ops field can easily be added.
1050	 */
1051	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1052		return true;
1053
1054	/*
1055	 * arch_vma_name() returns non-NULL for special architecture mappings,
1056	 * such as vDSO sections.
1057	 */
1058	if (arch_vma_name(vma))
1059		return true;
1060
1061	return false;
1062}
1063
1064#define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
1065
1066/*
1067 * Decide how much of @vma's contents should be included in a core dump.
1068 */
1069static unsigned long vma_dump_size(struct vm_area_struct *vma,
1070				   unsigned long mm_flags)
1071{
1072#define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1073
1074	/* always dump the vdso and vsyscall sections */
1075	if (always_dump_vma(vma))
1076		goto whole;
1077
1078	if (vma->vm_flags & VM_DONTDUMP)
1079		return 0;
1080
1081	/* support for DAX */
1082	if (vma_is_dax(vma)) {
1083		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1084			goto whole;
1085		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1086			goto whole;
1087		return 0;
1088	}
1089
1090	/* Hugetlb memory check */
1091	if (is_vm_hugetlb_page(vma)) {
1092		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1093			goto whole;
1094		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1095			goto whole;
1096		return 0;
1097	}
1098
1099	/* Do not dump I/O mapped devices or special mappings */
1100	if (vma->vm_flags & VM_IO)
1101		return 0;
1102
1103	/* By default, dump shared memory if mapped from an anonymous file. */
1104	if (vma->vm_flags & VM_SHARED) {
1105		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1106		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1107			goto whole;
1108		return 0;
1109	}
1110
1111	/* Dump segments that have been written to.  */
1112	if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1113		goto whole;
1114	if (vma->vm_file == NULL)
1115		return 0;
1116
1117	if (FILTER(MAPPED_PRIVATE))
1118		goto whole;
1119
1120	/*
1121	 * If this is the beginning of an executable file mapping,
1122	 * dump the first page to aid in determining what was mapped here.
1123	 */
1124	if (FILTER(ELF_HEADERS) &&
1125	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1126		if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1127			return PAGE_SIZE;
1128
1129		/*
1130		 * ELF libraries aren't always executable.
1131		 * We'll want to check whether the mapping starts with the ELF
1132		 * magic, but not now - we're holding the mmap lock,
1133		 * so copy_from_user() doesn't work here.
1134		 * Use a placeholder instead, and fix it up later in
1135		 * dump_vma_snapshot().
1136		 */
1137		return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
1138	}
1139
1140#undef	FILTER
1141
1142	return 0;
1143
1144whole:
1145	return vma->vm_end - vma->vm_start;
1146}
1147
1148/*
1149 * Helper function for iterating across a vma list.  It ensures that the caller
1150 * will visit `gate_vma' prior to terminating the search.
1151 */
1152static struct vm_area_struct *coredump_next_vma(struct vma_iterator *vmi,
1153				       struct vm_area_struct *vma,
1154				       struct vm_area_struct *gate_vma)
1155{
1156	if (gate_vma && (vma == gate_vma))
1157		return NULL;
1158
1159	vma = vma_next(vmi);
1160	if (vma)
1161		return vma;
1162	return gate_vma;
1163}
1164
1165static void free_vma_snapshot(struct coredump_params *cprm)
1166{
1167	if (cprm->vma_meta) {
1168		int i;
1169		for (i = 0; i < cprm->vma_count; i++) {
1170			struct file *file = cprm->vma_meta[i].file;
1171			if (file)
1172				fput(file);
1173		}
1174		kvfree(cprm->vma_meta);
1175		cprm->vma_meta = NULL;
1176	}
1177}
1178
1179/*
1180 * Under the mmap_lock, take a snapshot of relevant information about the task's
1181 * VMAs.
1182 */
1183static bool dump_vma_snapshot(struct coredump_params *cprm)
1184{
1185	struct vm_area_struct *gate_vma, *vma = NULL;
1186	struct mm_struct *mm = current->mm;
1187	VMA_ITERATOR(vmi, mm, 0);
1188	int i = 0;
1189
1190	/*
1191	 * Once the stack expansion code is fixed to not change VMA bounds
1192	 * under mmap_lock in read mode, this can be changed to take the
1193	 * mmap_lock in read mode.
1194	 */
1195	if (mmap_write_lock_killable(mm))
1196		return false;
1197
1198	cprm->vma_data_size = 0;
1199	gate_vma = get_gate_vma(mm);
1200	cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
1201
1202	cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
1203	if (!cprm->vma_meta) {
1204		mmap_write_unlock(mm);
1205		return false;
1206	}
1207
1208	while ((vma = coredump_next_vma(&vmi, vma, gate_vma)) != NULL) {
1209		struct core_vma_metadata *m = cprm->vma_meta + i;
1210
1211		m->start = vma->vm_start;
1212		m->end = vma->vm_end;
1213		m->flags = vma->vm_flags;
1214		m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1215		m->pgoff = vma->vm_pgoff;
1216		m->file = vma->vm_file;
1217		if (m->file)
1218			get_file(m->file);
1219		i++;
1220	}
1221
1222	mmap_write_unlock(mm);
1223
1224	for (i = 0; i < cprm->vma_count; i++) {
1225		struct core_vma_metadata *m = cprm->vma_meta + i;
1226
1227		if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
1228			char elfmag[SELFMAG];
1229
1230			if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
1231					memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
1232				m->dump_size = 0;
1233			} else {
1234				m->dump_size = PAGE_SIZE;
1235			}
1236		}
1237
1238		cprm->vma_data_size += m->dump_size;
1239	}
1240
1241	return true;
1242}
1243