1// SPDX-License-Identifier: GPL-2.0
2#include <linux/ceph/ceph_debug.h>
3
4#include <linux/fs.h>
5#include <linux/sort.h>
6#include <linux/slab.h>
7#include <linux/iversion.h>
8#include "super.h"
9#include "mds_client.h"
10#include <linux/ceph/decode.h>
11
12/* unused map expires after 5 minutes */
13#define CEPH_SNAPID_MAP_TIMEOUT	(5 * 60 * HZ)
14
15/*
16 * Snapshots in ceph are driven in large part by cooperation from the
17 * client.  In contrast to local file systems or file servers that
18 * implement snapshots at a single point in the system, ceph's
19 * distributed access to storage requires clients to help decide
20 * whether a write logically occurs before or after a recently created
21 * snapshot.
22 *
23 * This provides a perfect instantanous client-wide snapshot.  Between
24 * clients, however, snapshots may appear to be applied at slightly
25 * different points in time, depending on delays in delivering the
26 * snapshot notification.
27 *
28 * Snapshots are _not_ file system-wide.  Instead, each snapshot
29 * applies to the subdirectory nested beneath some directory.  This
30 * effectively divides the hierarchy into multiple "realms," where all
31 * of the files contained by each realm share the same set of
32 * snapshots.  An individual realm's snap set contains snapshots
33 * explicitly created on that realm, as well as any snaps in its
34 * parent's snap set _after_ the point at which the parent became it's
35 * parent (due to, say, a rename).  Similarly, snaps from prior parents
36 * during the time intervals during which they were the parent are included.
37 *
38 * The client is spared most of this detail, fortunately... it must only
39 * maintains a hierarchy of realms reflecting the current parent/child
40 * realm relationship, and for each realm has an explicit list of snaps
41 * inherited from prior parents.
42 *
43 * A snap_realm struct is maintained for realms containing every inode
44 * with an open cap in the system.  (The needed snap realm information is
45 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
46 * version number is used to ensure that as realm parameters change (new
47 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
48 *
49 * The realm hierarchy drives the generation of a 'snap context' for each
50 * realm, which simply lists the resulting set of snaps for the realm.  This
51 * is attached to any writes sent to OSDs.
52 */
53/*
54 * Unfortunately error handling is a bit mixed here.  If we get a snap
55 * update, but don't have enough memory to update our realm hierarchy,
56 * it's not clear what we can do about it (besides complaining to the
57 * console).
58 */
59
60
61/*
62 * increase ref count for the realm
63 *
64 * caller must hold snap_rwsem.
65 */
66void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
67			 struct ceph_snap_realm *realm)
68{
69	lockdep_assert_held(&mdsc->snap_rwsem);
70
71	/*
72	 * The 0->1 and 1->0 transitions must take the snap_empty_lock
73	 * atomically with the refcount change. Go ahead and bump the
74	 * nref here, unless it's 0, in which case we take the spinlock
75	 * and then do the increment and remove it from the list.
76	 */
77	if (atomic_inc_not_zero(&realm->nref))
78		return;
79
80	spin_lock(&mdsc->snap_empty_lock);
81	if (atomic_inc_return(&realm->nref) == 1)
82		list_del_init(&realm->empty_item);
83	spin_unlock(&mdsc->snap_empty_lock);
84}
85
86static void __insert_snap_realm(struct rb_root *root,
87				struct ceph_snap_realm *new)
88{
89	struct rb_node **p = &root->rb_node;
90	struct rb_node *parent = NULL;
91	struct ceph_snap_realm *r = NULL;
92
93	while (*p) {
94		parent = *p;
95		r = rb_entry(parent, struct ceph_snap_realm, node);
96		if (new->ino < r->ino)
97			p = &(*p)->rb_left;
98		else if (new->ino > r->ino)
99			p = &(*p)->rb_right;
100		else
101			BUG();
102	}
103
104	rb_link_node(&new->node, parent, p);
105	rb_insert_color(&new->node, root);
106}
107
108/*
109 * create and get the realm rooted at @ino and bump its ref count.
110 *
111 * caller must hold snap_rwsem for write.
112 */
113static struct ceph_snap_realm *ceph_create_snap_realm(
114	struct ceph_mds_client *mdsc,
115	u64 ino)
116{
117	struct ceph_snap_realm *realm;
118
119	lockdep_assert_held_write(&mdsc->snap_rwsem);
120
121	realm = kzalloc(sizeof(*realm), GFP_NOFS);
122	if (!realm)
123		return ERR_PTR(-ENOMEM);
124
125	/* Do not release the global dummy snaprealm until unmouting */
126	if (ino == CEPH_INO_GLOBAL_SNAPREALM)
127		atomic_set(&realm->nref, 2);
128	else
129		atomic_set(&realm->nref, 1);
130	realm->ino = ino;
131	INIT_LIST_HEAD(&realm->children);
132	INIT_LIST_HEAD(&realm->child_item);
133	INIT_LIST_HEAD(&realm->empty_item);
134	INIT_LIST_HEAD(&realm->dirty_item);
135	INIT_LIST_HEAD(&realm->rebuild_item);
136	INIT_LIST_HEAD(&realm->inodes_with_caps);
137	spin_lock_init(&realm->inodes_with_caps_lock);
138	__insert_snap_realm(&mdsc->snap_realms, realm);
139	mdsc->num_snap_realms++;
140
141	doutc(mdsc->fsc->client, "%llx %p\n", realm->ino, realm);
142	return realm;
143}
144
145/*
146 * lookup the realm rooted at @ino.
147 *
148 * caller must hold snap_rwsem.
149 */
150static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
151						   u64 ino)
152{
153	struct ceph_client *cl = mdsc->fsc->client;
154	struct rb_node *n = mdsc->snap_realms.rb_node;
155	struct ceph_snap_realm *r;
156
157	lockdep_assert_held(&mdsc->snap_rwsem);
158
159	while (n) {
160		r = rb_entry(n, struct ceph_snap_realm, node);
161		if (ino < r->ino)
162			n = n->rb_left;
163		else if (ino > r->ino)
164			n = n->rb_right;
165		else {
166			doutc(cl, "%llx %p\n", r->ino, r);
167			return r;
168		}
169	}
170	return NULL;
171}
172
173struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
174					       u64 ino)
175{
176	struct ceph_snap_realm *r;
177	r = __lookup_snap_realm(mdsc, ino);
178	if (r)
179		ceph_get_snap_realm(mdsc, r);
180	return r;
181}
182
183static void __put_snap_realm(struct ceph_mds_client *mdsc,
184			     struct ceph_snap_realm *realm);
185
186/*
187 * called with snap_rwsem (write)
188 */
189static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
190				 struct ceph_snap_realm *realm)
191{
192	struct ceph_client *cl = mdsc->fsc->client;
193	lockdep_assert_held_write(&mdsc->snap_rwsem);
194
195	doutc(cl, "%p %llx\n", realm, realm->ino);
196
197	rb_erase(&realm->node, &mdsc->snap_realms);
198	mdsc->num_snap_realms--;
199
200	if (realm->parent) {
201		list_del_init(&realm->child_item);
202		__put_snap_realm(mdsc, realm->parent);
203	}
204
205	kfree(realm->prior_parent_snaps);
206	kfree(realm->snaps);
207	ceph_put_snap_context(realm->cached_context);
208	kfree(realm);
209}
210
211/*
212 * caller holds snap_rwsem (write)
213 */
214static void __put_snap_realm(struct ceph_mds_client *mdsc,
215			     struct ceph_snap_realm *realm)
216{
217	lockdep_assert_held_write(&mdsc->snap_rwsem);
218
219	/*
220	 * We do not require the snap_empty_lock here, as any caller that
221	 * increments the value must hold the snap_rwsem.
222	 */
223	if (atomic_dec_and_test(&realm->nref))
224		__destroy_snap_realm(mdsc, realm);
225}
226
227/*
228 * See comments in ceph_get_snap_realm. Caller needn't hold any locks.
229 */
230void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
231			 struct ceph_snap_realm *realm)
232{
233	if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
234		return;
235
236	if (down_write_trylock(&mdsc->snap_rwsem)) {
237		spin_unlock(&mdsc->snap_empty_lock);
238		__destroy_snap_realm(mdsc, realm);
239		up_write(&mdsc->snap_rwsem);
240	} else {
241		list_add(&realm->empty_item, &mdsc->snap_empty);
242		spin_unlock(&mdsc->snap_empty_lock);
243	}
244}
245
246/*
247 * Clean up any realms whose ref counts have dropped to zero.  Note
248 * that this does not include realms who were created but not yet
249 * used.
250 *
251 * Called under snap_rwsem (write)
252 */
253static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
254{
255	struct ceph_snap_realm *realm;
256
257	lockdep_assert_held_write(&mdsc->snap_rwsem);
258
259	spin_lock(&mdsc->snap_empty_lock);
260	while (!list_empty(&mdsc->snap_empty)) {
261		realm = list_first_entry(&mdsc->snap_empty,
262				   struct ceph_snap_realm, empty_item);
263		list_del(&realm->empty_item);
264		spin_unlock(&mdsc->snap_empty_lock);
265		__destroy_snap_realm(mdsc, realm);
266		spin_lock(&mdsc->snap_empty_lock);
267	}
268	spin_unlock(&mdsc->snap_empty_lock);
269}
270
271void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc)
272{
273	struct ceph_snap_realm *global_realm;
274
275	down_write(&mdsc->snap_rwsem);
276	global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM);
277	if (global_realm)
278		ceph_put_snap_realm(mdsc, global_realm);
279	__cleanup_empty_realms(mdsc);
280	up_write(&mdsc->snap_rwsem);
281}
282
283/*
284 * adjust the parent realm of a given @realm.  adjust child list, and parent
285 * pointers, and ref counts appropriately.
286 *
287 * return true if parent was changed, 0 if unchanged, <0 on error.
288 *
289 * caller must hold snap_rwsem for write.
290 */
291static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
292				    struct ceph_snap_realm *realm,
293				    u64 parentino)
294{
295	struct ceph_client *cl = mdsc->fsc->client;
296	struct ceph_snap_realm *parent;
297
298	lockdep_assert_held_write(&mdsc->snap_rwsem);
299
300	if (realm->parent_ino == parentino)
301		return 0;
302
303	parent = ceph_lookup_snap_realm(mdsc, parentino);
304	if (!parent) {
305		parent = ceph_create_snap_realm(mdsc, parentino);
306		if (IS_ERR(parent))
307			return PTR_ERR(parent);
308	}
309	doutc(cl, "%llx %p: %llx %p -> %llx %p\n", realm->ino, realm,
310	      realm->parent_ino, realm->parent, parentino, parent);
311	if (realm->parent) {
312		list_del_init(&realm->child_item);
313		ceph_put_snap_realm(mdsc, realm->parent);
314	}
315	realm->parent_ino = parentino;
316	realm->parent = parent;
317	list_add(&realm->child_item, &parent->children);
318	return 1;
319}
320
321
322static int cmpu64_rev(const void *a, const void *b)
323{
324	if (*(u64 *)a < *(u64 *)b)
325		return 1;
326	if (*(u64 *)a > *(u64 *)b)
327		return -1;
328	return 0;
329}
330
331
332/*
333 * build the snap context for a given realm.
334 */
335static int build_snap_context(struct ceph_mds_client *mdsc,
336			      struct ceph_snap_realm *realm,
337			      struct list_head *realm_queue,
338			      struct list_head *dirty_realms)
339{
340	struct ceph_client *cl = mdsc->fsc->client;
341	struct ceph_snap_realm *parent = realm->parent;
342	struct ceph_snap_context *snapc;
343	int err = 0;
344	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
345
346	/*
347	 * build parent context, if it hasn't been built.
348	 * conservatively estimate that all parent snaps might be
349	 * included by us.
350	 */
351	if (parent) {
352		if (!parent->cached_context) {
353			/* add to the queue head */
354			list_add(&parent->rebuild_item, realm_queue);
355			return 1;
356		}
357		num += parent->cached_context->num_snaps;
358	}
359
360	/* do i actually need to update?  not if my context seq
361	   matches realm seq, and my parents' does to.  (this works
362	   because we rebuild_snap_realms() works _downward_ in
363	   hierarchy after each update.) */
364	if (realm->cached_context &&
365	    realm->cached_context->seq == realm->seq &&
366	    (!parent ||
367	     realm->cached_context->seq >= parent->cached_context->seq)) {
368		doutc(cl, "%llx %p: %p seq %lld (%u snaps) (unchanged)\n",
369		      realm->ino, realm, realm->cached_context,
370		      realm->cached_context->seq,
371		      (unsigned int)realm->cached_context->num_snaps);
372		return 0;
373	}
374
375	/* alloc new snap context */
376	err = -ENOMEM;
377	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
378		goto fail;
379	snapc = ceph_create_snap_context(num, GFP_NOFS);
380	if (!snapc)
381		goto fail;
382
383	/* build (reverse sorted) snap vector */
384	num = 0;
385	snapc->seq = realm->seq;
386	if (parent) {
387		u32 i;
388
389		/* include any of parent's snaps occurring _after_ my
390		   parent became my parent */
391		for (i = 0; i < parent->cached_context->num_snaps; i++)
392			if (parent->cached_context->snaps[i] >=
393			    realm->parent_since)
394				snapc->snaps[num++] =
395					parent->cached_context->snaps[i];
396		if (parent->cached_context->seq > snapc->seq)
397			snapc->seq = parent->cached_context->seq;
398	}
399	memcpy(snapc->snaps + num, realm->snaps,
400	       sizeof(u64)*realm->num_snaps);
401	num += realm->num_snaps;
402	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
403	       sizeof(u64)*realm->num_prior_parent_snaps);
404	num += realm->num_prior_parent_snaps;
405
406	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
407	snapc->num_snaps = num;
408	doutc(cl, "%llx %p: %p seq %lld (%u snaps)\n", realm->ino, realm,
409	      snapc, snapc->seq, (unsigned int) snapc->num_snaps);
410
411	ceph_put_snap_context(realm->cached_context);
412	realm->cached_context = snapc;
413	/* queue realm for cap_snap creation */
414	list_add_tail(&realm->dirty_item, dirty_realms);
415	return 0;
416
417fail:
418	/*
419	 * if we fail, clear old (incorrect) cached_context... hopefully
420	 * we'll have better luck building it later
421	 */
422	if (realm->cached_context) {
423		ceph_put_snap_context(realm->cached_context);
424		realm->cached_context = NULL;
425	}
426	pr_err_client(cl, "%llx %p fail %d\n", realm->ino, realm, err);
427	return err;
428}
429
430/*
431 * rebuild snap context for the given realm and all of its children.
432 */
433static void rebuild_snap_realms(struct ceph_mds_client *mdsc,
434				struct ceph_snap_realm *realm,
435				struct list_head *dirty_realms)
436{
437	struct ceph_client *cl = mdsc->fsc->client;
438	LIST_HEAD(realm_queue);
439	int last = 0;
440	bool skip = false;
441
442	list_add_tail(&realm->rebuild_item, &realm_queue);
443
444	while (!list_empty(&realm_queue)) {
445		struct ceph_snap_realm *_realm, *child;
446
447		_realm = list_first_entry(&realm_queue,
448					  struct ceph_snap_realm,
449					  rebuild_item);
450
451		/*
452		 * If the last building failed dues to memory
453		 * issue, just empty the realm_queue and return
454		 * to avoid infinite loop.
455		 */
456		if (last < 0) {
457			list_del_init(&_realm->rebuild_item);
458			continue;
459		}
460
461		last = build_snap_context(mdsc, _realm, &realm_queue,
462					  dirty_realms);
463		doutc(cl, "%llx %p, %s\n", realm->ino, realm,
464		      last > 0 ? "is deferred" : !last ? "succeeded" : "failed");
465
466		/* is any child in the list ? */
467		list_for_each_entry(child, &_realm->children, child_item) {
468			if (!list_empty(&child->rebuild_item)) {
469				skip = true;
470				break;
471			}
472		}
473
474		if (!skip) {
475			list_for_each_entry(child, &_realm->children, child_item)
476				list_add_tail(&child->rebuild_item, &realm_queue);
477		}
478
479		/* last == 1 means need to build parent first */
480		if (last <= 0)
481			list_del_init(&_realm->rebuild_item);
482	}
483}
484
485
486/*
487 * helper to allocate and decode an array of snapids.  free prior
488 * instance, if any.
489 */
490static int dup_array(u64 **dst, __le64 *src, u32 num)
491{
492	u32 i;
493
494	kfree(*dst);
495	if (num) {
496		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
497		if (!*dst)
498			return -ENOMEM;
499		for (i = 0; i < num; i++)
500			(*dst)[i] = get_unaligned_le64(src + i);
501	} else {
502		*dst = NULL;
503	}
504	return 0;
505}
506
507static bool has_new_snaps(struct ceph_snap_context *o,
508			  struct ceph_snap_context *n)
509{
510	if (n->num_snaps == 0)
511		return false;
512	/* snaps are in descending order */
513	return n->snaps[0] > o->seq;
514}
515
516/*
517 * When a snapshot is applied, the size/mtime inode metadata is queued
518 * in a ceph_cap_snap (one for each snapshot) until writeback
519 * completes and the metadata can be flushed back to the MDS.
520 *
521 * However, if a (sync) write is currently in-progress when we apply
522 * the snapshot, we have to wait until the write succeeds or fails
523 * (and a final size/mtime is known).  In this case the
524 * cap_snap->writing = 1, and is said to be "pending."  When the write
525 * finishes, we __ceph_finish_cap_snap().
526 *
527 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
528 * change).
529 */
530static void ceph_queue_cap_snap(struct ceph_inode_info *ci,
531				struct ceph_cap_snap **pcapsnap)
532{
533	struct inode *inode = &ci->netfs.inode;
534	struct ceph_client *cl = ceph_inode_to_client(inode);
535	struct ceph_snap_context *old_snapc, *new_snapc;
536	struct ceph_cap_snap *capsnap = *pcapsnap;
537	struct ceph_buffer *old_blob = NULL;
538	int used, dirty;
539
540	spin_lock(&ci->i_ceph_lock);
541	used = __ceph_caps_used(ci);
542	dirty = __ceph_caps_dirty(ci);
543
544	old_snapc = ci->i_head_snapc;
545	new_snapc = ci->i_snap_realm->cached_context;
546
547	/*
548	 * If there is a write in progress, treat that as a dirty Fw,
549	 * even though it hasn't completed yet; by the time we finish
550	 * up this capsnap it will be.
551	 */
552	if (used & CEPH_CAP_FILE_WR)
553		dirty |= CEPH_CAP_FILE_WR;
554
555	if (__ceph_have_pending_cap_snap(ci)) {
556		/* there is no point in queuing multiple "pending" cap_snaps,
557		   as no new writes are allowed to start when pending, so any
558		   writes in progress now were started before the previous
559		   cap_snap.  lucky us. */
560		doutc(cl, "%p %llx.%llx already pending\n", inode,
561		      ceph_vinop(inode));
562		goto update_snapc;
563	}
564	if (ci->i_wrbuffer_ref_head == 0 &&
565	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
566		doutc(cl, "%p %llx.%llx nothing dirty|writing\n", inode,
567		      ceph_vinop(inode));
568		goto update_snapc;
569	}
570
571	BUG_ON(!old_snapc);
572
573	/*
574	 * There is no need to send FLUSHSNAP message to MDS if there is
575	 * no new snapshot. But when there is dirty pages or on-going
576	 * writes, we still need to create cap_snap. cap_snap is needed
577	 * by the write path and page writeback path.
578	 *
579	 * also see ceph_try_drop_cap_snap()
580	 */
581	if (has_new_snaps(old_snapc, new_snapc)) {
582		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
583			capsnap->need_flush = true;
584	} else {
585		if (!(used & CEPH_CAP_FILE_WR) &&
586		    ci->i_wrbuffer_ref_head == 0) {
587			doutc(cl, "%p %llx.%llx no new_snap|dirty_page|writing\n",
588			      inode, ceph_vinop(inode));
589			goto update_snapc;
590		}
591	}
592
593	doutc(cl, "%p %llx.%llx cap_snap %p queuing under %p %s %s\n",
594	      inode, ceph_vinop(inode), capsnap, old_snapc,
595	      ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush");
596	ihold(inode);
597
598	capsnap->follows = old_snapc->seq;
599	capsnap->issued = __ceph_caps_issued(ci, NULL);
600	capsnap->dirty = dirty;
601
602	capsnap->mode = inode->i_mode;
603	capsnap->uid = inode->i_uid;
604	capsnap->gid = inode->i_gid;
605
606	if (dirty & CEPH_CAP_XATTR_EXCL) {
607		old_blob = __ceph_build_xattrs_blob(ci);
608		capsnap->xattr_blob =
609			ceph_buffer_get(ci->i_xattrs.blob);
610		capsnap->xattr_version = ci->i_xattrs.version;
611	} else {
612		capsnap->xattr_blob = NULL;
613		capsnap->xattr_version = 0;
614	}
615
616	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
617
618	/* dirty page count moved from _head to this cap_snap;
619	   all subsequent writes page dirties occur _after_ this
620	   snapshot. */
621	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
622	ci->i_wrbuffer_ref_head = 0;
623	capsnap->context = old_snapc;
624	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
625
626	if (used & CEPH_CAP_FILE_WR) {
627		doutc(cl, "%p %llx.%llx cap_snap %p snapc %p seq %llu used WR,"
628		      " now pending\n", inode, ceph_vinop(inode), capsnap,
629		      old_snapc, old_snapc->seq);
630		capsnap->writing = 1;
631	} else {
632		/* note mtime, size NOW. */
633		__ceph_finish_cap_snap(ci, capsnap);
634	}
635	*pcapsnap = NULL;
636	old_snapc = NULL;
637
638update_snapc:
639	if (ci->i_wrbuffer_ref_head == 0 &&
640	    ci->i_wr_ref == 0 &&
641	    ci->i_dirty_caps == 0 &&
642	    ci->i_flushing_caps == 0) {
643		ci->i_head_snapc = NULL;
644	} else {
645		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
646		doutc(cl, " new snapc is %p\n", new_snapc);
647	}
648	spin_unlock(&ci->i_ceph_lock);
649
650	ceph_buffer_put(old_blob);
651	ceph_put_snap_context(old_snapc);
652}
653
654/*
655 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
656 * to be used for the snapshot, to be flushed back to the mds.
657 *
658 * If capsnap can now be flushed, add to snap_flush list, and return 1.
659 *
660 * Caller must hold i_ceph_lock.
661 */
662int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
663			    struct ceph_cap_snap *capsnap)
664{
665	struct inode *inode = &ci->netfs.inode;
666	struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
667	struct ceph_client *cl = mdsc->fsc->client;
668
669	BUG_ON(capsnap->writing);
670	capsnap->size = i_size_read(inode);
671	capsnap->mtime = inode_get_mtime(inode);
672	capsnap->atime = inode_get_atime(inode);
673	capsnap->ctime = inode_get_ctime(inode);
674	capsnap->btime = ci->i_btime;
675	capsnap->change_attr = inode_peek_iversion_raw(inode);
676	capsnap->time_warp_seq = ci->i_time_warp_seq;
677	capsnap->truncate_size = ci->i_truncate_size;
678	capsnap->truncate_seq = ci->i_truncate_seq;
679	if (capsnap->dirty_pages) {
680		doutc(cl, "%p %llx.%llx cap_snap %p snapc %p %llu %s "
681		      "s=%llu still has %d dirty pages\n", inode,
682		      ceph_vinop(inode), capsnap, capsnap->context,
683		      capsnap->context->seq,
684		      ceph_cap_string(capsnap->dirty),
685		      capsnap->size, capsnap->dirty_pages);
686		return 0;
687	}
688
689	/*
690	 * Defer flushing the capsnap if the dirty buffer not flushed yet.
691	 * And trigger to flush the buffer immediately.
692	 */
693	if (ci->i_wrbuffer_ref) {
694		doutc(cl, "%p %llx.%llx cap_snap %p snapc %p %llu %s "
695		      "s=%llu used WRBUFFER, delaying\n", inode,
696		      ceph_vinop(inode), capsnap, capsnap->context,
697		      capsnap->context->seq, ceph_cap_string(capsnap->dirty),
698		      capsnap->size);
699		ceph_queue_writeback(inode);
700		return 0;
701	}
702
703	ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
704	doutc(cl, "%p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n",
705	      inode, ceph_vinop(inode), capsnap, capsnap->context,
706	      capsnap->context->seq, ceph_cap_string(capsnap->dirty),
707	      capsnap->size);
708
709	spin_lock(&mdsc->snap_flush_lock);
710	if (list_empty(&ci->i_snap_flush_item)) {
711		ihold(inode);
712		list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
713	}
714	spin_unlock(&mdsc->snap_flush_lock);
715	return 1;  /* caller may want to ceph_flush_snaps */
716}
717
718/*
719 * Queue cap_snaps for snap writeback for this realm and its children.
720 * Called under snap_rwsem, so realm topology won't change.
721 */
722static void queue_realm_cap_snaps(struct ceph_mds_client *mdsc,
723				  struct ceph_snap_realm *realm)
724{
725	struct ceph_client *cl = mdsc->fsc->client;
726	struct ceph_inode_info *ci;
727	struct inode *lastinode = NULL;
728	struct ceph_cap_snap *capsnap = NULL;
729
730	doutc(cl, "%p %llx inode\n", realm, realm->ino);
731
732	spin_lock(&realm->inodes_with_caps_lock);
733	list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
734		struct inode *inode = igrab(&ci->netfs.inode);
735		if (!inode)
736			continue;
737		spin_unlock(&realm->inodes_with_caps_lock);
738		iput(lastinode);
739		lastinode = inode;
740
741		/*
742		 * Allocate the capsnap memory outside of ceph_queue_cap_snap()
743		 * to reduce very possible but unnecessary frequently memory
744		 * allocate/free in this loop.
745		 */
746		if (!capsnap) {
747			capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS);
748			if (!capsnap) {
749				pr_err_client(cl,
750					"ENOMEM allocating ceph_cap_snap on %p\n",
751					inode);
752				return;
753			}
754		}
755		capsnap->cap_flush.is_capsnap = true;
756		refcount_set(&capsnap->nref, 1);
757		INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
758		INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
759		INIT_LIST_HEAD(&capsnap->ci_item);
760
761		ceph_queue_cap_snap(ci, &capsnap);
762		spin_lock(&realm->inodes_with_caps_lock);
763	}
764	spin_unlock(&realm->inodes_with_caps_lock);
765	iput(lastinode);
766
767	if (capsnap)
768		kmem_cache_free(ceph_cap_snap_cachep, capsnap);
769	doutc(cl, "%p %llx done\n", realm, realm->ino);
770}
771
772/*
773 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
774 * the snap realm parameters from a given realm and all of its ancestors,
775 * up to the root.
776 *
777 * Caller must hold snap_rwsem for write.
778 */
779int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
780			   void *p, void *e, bool deletion,
781			   struct ceph_snap_realm **realm_ret)
782{
783	struct ceph_client *cl = mdsc->fsc->client;
784	struct ceph_mds_snap_realm *ri;    /* encoded */
785	__le64 *snaps;                     /* encoded */
786	__le64 *prior_parent_snaps;        /* encoded */
787	struct ceph_snap_realm *realm;
788	struct ceph_snap_realm *first_realm = NULL;
789	struct ceph_snap_realm *realm_to_rebuild = NULL;
790	struct ceph_client *client = mdsc->fsc->client;
791	int rebuild_snapcs;
792	int err = -ENOMEM;
793	int ret;
794	LIST_HEAD(dirty_realms);
795
796	lockdep_assert_held_write(&mdsc->snap_rwsem);
797
798	doutc(cl, "deletion=%d\n", deletion);
799more:
800	realm = NULL;
801	rebuild_snapcs = 0;
802	ceph_decode_need(&p, e, sizeof(*ri), bad);
803	ri = p;
804	p += sizeof(*ri);
805	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
806			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
807	snaps = p;
808	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
809	prior_parent_snaps = p;
810	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
811
812	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
813	if (!realm) {
814		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
815		if (IS_ERR(realm)) {
816			err = PTR_ERR(realm);
817			goto fail;
818		}
819	}
820
821	/* ensure the parent is correct */
822	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
823	if (err < 0)
824		goto fail;
825	rebuild_snapcs += err;
826
827	if (le64_to_cpu(ri->seq) > realm->seq) {
828		doutc(cl, "updating %llx %p %lld -> %lld\n", realm->ino,
829		      realm, realm->seq, le64_to_cpu(ri->seq));
830		/* update realm parameters, snap lists */
831		realm->seq = le64_to_cpu(ri->seq);
832		realm->created = le64_to_cpu(ri->created);
833		realm->parent_since = le64_to_cpu(ri->parent_since);
834
835		realm->num_snaps = le32_to_cpu(ri->num_snaps);
836		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
837		if (err < 0)
838			goto fail;
839
840		realm->num_prior_parent_snaps =
841			le32_to_cpu(ri->num_prior_parent_snaps);
842		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
843				realm->num_prior_parent_snaps);
844		if (err < 0)
845			goto fail;
846
847		if (realm->seq > mdsc->last_snap_seq)
848			mdsc->last_snap_seq = realm->seq;
849
850		rebuild_snapcs = 1;
851	} else if (!realm->cached_context) {
852		doutc(cl, "%llx %p seq %lld new\n", realm->ino, realm,
853		      realm->seq);
854		rebuild_snapcs = 1;
855	} else {
856		doutc(cl, "%llx %p seq %lld unchanged\n", realm->ino, realm,
857		      realm->seq);
858	}
859
860	doutc(cl, "done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino,
861	      realm, rebuild_snapcs, p, e);
862
863	/*
864	 * this will always track the uppest parent realm from which
865	 * we need to rebuild the snapshot contexts _downward_ in
866	 * hierarchy.
867	 */
868	if (rebuild_snapcs)
869		realm_to_rebuild = realm;
870
871	/* rebuild_snapcs when we reach the _end_ (root) of the trace */
872	if (realm_to_rebuild && p >= e)
873		rebuild_snap_realms(mdsc, realm_to_rebuild, &dirty_realms);
874
875	if (!first_realm)
876		first_realm = realm;
877	else
878		ceph_put_snap_realm(mdsc, realm);
879
880	if (p < e)
881		goto more;
882
883	/*
884	 * queue cap snaps _after_ we've built the new snap contexts,
885	 * so that i_head_snapc can be set appropriately.
886	 */
887	while (!list_empty(&dirty_realms)) {
888		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
889					 dirty_item);
890		list_del_init(&realm->dirty_item);
891		queue_realm_cap_snaps(mdsc, realm);
892	}
893
894	if (realm_ret)
895		*realm_ret = first_realm;
896	else
897		ceph_put_snap_realm(mdsc, first_realm);
898
899	__cleanup_empty_realms(mdsc);
900	return 0;
901
902bad:
903	err = -EIO;
904fail:
905	if (realm && !IS_ERR(realm))
906		ceph_put_snap_realm(mdsc, realm);
907	if (first_realm)
908		ceph_put_snap_realm(mdsc, first_realm);
909	pr_err_client(cl, "error %d\n", err);
910
911	/*
912	 * When receiving a corrupted snap trace we don't know what
913	 * exactly has happened in MDS side. And we shouldn't continue
914	 * writing to OSD, which may corrupt the snapshot contents.
915	 *
916	 * Just try to blocklist this kclient and then this kclient
917	 * must be remounted to continue after the corrupted metadata
918	 * fixed in the MDS side.
919	 */
920	WRITE_ONCE(mdsc->fsc->mount_state, CEPH_MOUNT_FENCE_IO);
921	ret = ceph_monc_blocklist_add(&client->monc, &client->msgr.inst.addr);
922	if (ret)
923		pr_err_client(cl, "failed to blocklist %s: %d\n",
924			      ceph_pr_addr(&client->msgr.inst.addr), ret);
925
926	WARN(1, "[client.%lld] %s %s%sdo remount to continue%s",
927	     client->monc.auth->global_id, __func__,
928	     ret ? "" : ceph_pr_addr(&client->msgr.inst.addr),
929	     ret ? "" : " was blocklisted, ",
930	     err == -EIO ? " after corrupted snaptrace is fixed" : "");
931
932	return err;
933}
934
935
936/*
937 * Send any cap_snaps that are queued for flush.  Try to carry
938 * s_mutex across multiple snap flushes to avoid locking overhead.
939 *
940 * Caller holds no locks.
941 */
942static void flush_snaps(struct ceph_mds_client *mdsc)
943{
944	struct ceph_client *cl = mdsc->fsc->client;
945	struct ceph_inode_info *ci;
946	struct inode *inode;
947	struct ceph_mds_session *session = NULL;
948
949	doutc(cl, "begin\n");
950	spin_lock(&mdsc->snap_flush_lock);
951	while (!list_empty(&mdsc->snap_flush_list)) {
952		ci = list_first_entry(&mdsc->snap_flush_list,
953				struct ceph_inode_info, i_snap_flush_item);
954		inode = &ci->netfs.inode;
955		ihold(inode);
956		spin_unlock(&mdsc->snap_flush_lock);
957		ceph_flush_snaps(ci, &session);
958		iput(inode);
959		spin_lock(&mdsc->snap_flush_lock);
960	}
961	spin_unlock(&mdsc->snap_flush_lock);
962
963	ceph_put_mds_session(session);
964	doutc(cl, "done\n");
965}
966
967/**
968 * ceph_change_snap_realm - change the snap_realm for an inode
969 * @inode: inode to move to new snap realm
970 * @realm: new realm to move inode into (may be NULL)
971 *
972 * Detach an inode from its old snaprealm (if any) and attach it to
973 * the new snaprealm (if any). The old snap realm reference held by
974 * the inode is put. If realm is non-NULL, then the caller's reference
975 * to it is taken over by the inode.
976 */
977void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm)
978{
979	struct ceph_inode_info *ci = ceph_inode(inode);
980	struct ceph_mds_client *mdsc = ceph_inode_to_fs_client(inode)->mdsc;
981	struct ceph_snap_realm *oldrealm = ci->i_snap_realm;
982
983	lockdep_assert_held(&ci->i_ceph_lock);
984
985	if (oldrealm) {
986		spin_lock(&oldrealm->inodes_with_caps_lock);
987		list_del_init(&ci->i_snap_realm_item);
988		if (oldrealm->ino == ci->i_vino.ino)
989			oldrealm->inode = NULL;
990		spin_unlock(&oldrealm->inodes_with_caps_lock);
991		ceph_put_snap_realm(mdsc, oldrealm);
992	}
993
994	ci->i_snap_realm = realm;
995
996	if (realm) {
997		spin_lock(&realm->inodes_with_caps_lock);
998		list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps);
999		if (realm->ino == ci->i_vino.ino)
1000			realm->inode = inode;
1001		spin_unlock(&realm->inodes_with_caps_lock);
1002	}
1003}
1004
1005/*
1006 * Handle a snap notification from the MDS.
1007 *
1008 * This can take two basic forms: the simplest is just a snap creation
1009 * or deletion notification on an existing realm.  This should update the
1010 * realm and its children.
1011 *
1012 * The more difficult case is realm creation, due to snap creation at a
1013 * new point in the file hierarchy, or due to a rename that moves a file or
1014 * directory into another realm.
1015 */
1016void ceph_handle_snap(struct ceph_mds_client *mdsc,
1017		      struct ceph_mds_session *session,
1018		      struct ceph_msg *msg)
1019{
1020	struct ceph_client *cl = mdsc->fsc->client;
1021	struct super_block *sb = mdsc->fsc->sb;
1022	int mds = session->s_mds;
1023	u64 split;
1024	int op;
1025	int trace_len;
1026	struct ceph_snap_realm *realm = NULL;
1027	void *p = msg->front.iov_base;
1028	void *e = p + msg->front.iov_len;
1029	struct ceph_mds_snap_head *h;
1030	int num_split_inos, num_split_realms;
1031	__le64 *split_inos = NULL, *split_realms = NULL;
1032	int i;
1033	int locked_rwsem = 0;
1034	bool close_sessions = false;
1035
1036	if (!ceph_inc_mds_stopping_blocker(mdsc, session))
1037		return;
1038
1039	/* decode */
1040	if (msg->front.iov_len < sizeof(*h))
1041		goto bad;
1042	h = p;
1043	op = le32_to_cpu(h->op);
1044	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
1045					  * existing realm */
1046	num_split_inos = le32_to_cpu(h->num_split_inos);
1047	num_split_realms = le32_to_cpu(h->num_split_realms);
1048	trace_len = le32_to_cpu(h->trace_len);
1049	p += sizeof(*h);
1050
1051	doutc(cl, "from mds%d op %s split %llx tracelen %d\n", mds,
1052	      ceph_snap_op_name(op), split, trace_len);
1053
1054	down_write(&mdsc->snap_rwsem);
1055	locked_rwsem = 1;
1056
1057	if (op == CEPH_SNAP_OP_SPLIT) {
1058		struct ceph_mds_snap_realm *ri;
1059
1060		/*
1061		 * A "split" breaks part of an existing realm off into
1062		 * a new realm.  The MDS provides a list of inodes
1063		 * (with caps) and child realms that belong to the new
1064		 * child.
1065		 */
1066		split_inos = p;
1067		p += sizeof(u64) * num_split_inos;
1068		split_realms = p;
1069		p += sizeof(u64) * num_split_realms;
1070		ceph_decode_need(&p, e, sizeof(*ri), bad);
1071		/* we will peek at realm info here, but will _not_
1072		 * advance p, as the realm update will occur below in
1073		 * ceph_update_snap_trace. */
1074		ri = p;
1075
1076		realm = ceph_lookup_snap_realm(mdsc, split);
1077		if (!realm) {
1078			realm = ceph_create_snap_realm(mdsc, split);
1079			if (IS_ERR(realm))
1080				goto out;
1081		}
1082
1083		doutc(cl, "splitting snap_realm %llx %p\n", realm->ino, realm);
1084		for (i = 0; i < num_split_inos; i++) {
1085			struct ceph_vino vino = {
1086				.ino = le64_to_cpu(split_inos[i]),
1087				.snap = CEPH_NOSNAP,
1088			};
1089			struct inode *inode = ceph_find_inode(sb, vino);
1090			struct ceph_inode_info *ci;
1091
1092			if (!inode)
1093				continue;
1094			ci = ceph_inode(inode);
1095
1096			spin_lock(&ci->i_ceph_lock);
1097			if (!ci->i_snap_realm)
1098				goto skip_inode;
1099			/*
1100			 * If this inode belongs to a realm that was
1101			 * created after our new realm, we experienced
1102			 * a race (due to another split notifications
1103			 * arriving from a different MDS).  So skip
1104			 * this inode.
1105			 */
1106			if (ci->i_snap_realm->created >
1107			    le64_to_cpu(ri->created)) {
1108				doutc(cl, " leaving %p %llx.%llx in newer realm %llx %p\n",
1109				      inode, ceph_vinop(inode), ci->i_snap_realm->ino,
1110				      ci->i_snap_realm);
1111				goto skip_inode;
1112			}
1113			doutc(cl, " will move %p %llx.%llx to split realm %llx %p\n",
1114			      inode, ceph_vinop(inode), realm->ino, realm);
1115
1116			ceph_get_snap_realm(mdsc, realm);
1117			ceph_change_snap_realm(inode, realm);
1118			spin_unlock(&ci->i_ceph_lock);
1119			iput(inode);
1120			continue;
1121
1122skip_inode:
1123			spin_unlock(&ci->i_ceph_lock);
1124			iput(inode);
1125		}
1126
1127		/* we may have taken some of the old realm's children. */
1128		for (i = 0; i < num_split_realms; i++) {
1129			struct ceph_snap_realm *child =
1130				__lookup_snap_realm(mdsc,
1131					   le64_to_cpu(split_realms[i]));
1132			if (!child)
1133				continue;
1134			adjust_snap_realm_parent(mdsc, child, realm->ino);
1135		}
1136	} else {
1137		/*
1138		 * In the non-split case both 'num_split_inos' and
1139		 * 'num_split_realms' should be 0, making this a no-op.
1140		 * However the MDS happens to populate 'split_realms' list
1141		 * in one of the UPDATE op cases by mistake.
1142		 *
1143		 * Skip both lists just in case to ensure that 'p' is
1144		 * positioned at the start of realm info, as expected by
1145		 * ceph_update_snap_trace().
1146		 */
1147		p += sizeof(u64) * num_split_inos;
1148		p += sizeof(u64) * num_split_realms;
1149	}
1150
1151	/*
1152	 * update using the provided snap trace. if we are deleting a
1153	 * snap, we can avoid queueing cap_snaps.
1154	 */
1155	if (ceph_update_snap_trace(mdsc, p, e,
1156				   op == CEPH_SNAP_OP_DESTROY,
1157				   NULL)) {
1158		close_sessions = true;
1159		goto bad;
1160	}
1161
1162	if (op == CEPH_SNAP_OP_SPLIT)
1163		/* we took a reference when we created the realm, above */
1164		ceph_put_snap_realm(mdsc, realm);
1165
1166	__cleanup_empty_realms(mdsc);
1167
1168	up_write(&mdsc->snap_rwsem);
1169
1170	flush_snaps(mdsc);
1171	ceph_dec_mds_stopping_blocker(mdsc);
1172	return;
1173
1174bad:
1175	pr_err_client(cl, "corrupt snap message from mds%d\n", mds);
1176	ceph_msg_dump(msg);
1177out:
1178	if (locked_rwsem)
1179		up_write(&mdsc->snap_rwsem);
1180
1181	ceph_dec_mds_stopping_blocker(mdsc);
1182
1183	if (close_sessions)
1184		ceph_mdsc_close_sessions(mdsc);
1185	return;
1186}
1187
1188struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1189					    u64 snap)
1190{
1191	struct ceph_client *cl = mdsc->fsc->client;
1192	struct ceph_snapid_map *sm, *exist;
1193	struct rb_node **p, *parent;
1194	int ret;
1195
1196	exist = NULL;
1197	spin_lock(&mdsc->snapid_map_lock);
1198	p = &mdsc->snapid_map_tree.rb_node;
1199	while (*p) {
1200		exist = rb_entry(*p, struct ceph_snapid_map, node);
1201		if (snap > exist->snap) {
1202			p = &(*p)->rb_left;
1203		} else if (snap < exist->snap) {
1204			p = &(*p)->rb_right;
1205		} else {
1206			if (atomic_inc_return(&exist->ref) == 1)
1207				list_del_init(&exist->lru);
1208			break;
1209		}
1210		exist = NULL;
1211	}
1212	spin_unlock(&mdsc->snapid_map_lock);
1213	if (exist) {
1214		doutc(cl, "found snapid map %llx -> %x\n", exist->snap,
1215		      exist->dev);
1216		return exist;
1217	}
1218
1219	sm = kmalloc(sizeof(*sm), GFP_NOFS);
1220	if (!sm)
1221		return NULL;
1222
1223	ret = get_anon_bdev(&sm->dev);
1224	if (ret < 0) {
1225		kfree(sm);
1226		return NULL;
1227	}
1228
1229	INIT_LIST_HEAD(&sm->lru);
1230	atomic_set(&sm->ref, 1);
1231	sm->snap = snap;
1232
1233	exist = NULL;
1234	parent = NULL;
1235	p = &mdsc->snapid_map_tree.rb_node;
1236	spin_lock(&mdsc->snapid_map_lock);
1237	while (*p) {
1238		parent = *p;
1239		exist = rb_entry(*p, struct ceph_snapid_map, node);
1240		if (snap > exist->snap)
1241			p = &(*p)->rb_left;
1242		else if (snap < exist->snap)
1243			p = &(*p)->rb_right;
1244		else
1245			break;
1246		exist = NULL;
1247	}
1248	if (exist) {
1249		if (atomic_inc_return(&exist->ref) == 1)
1250			list_del_init(&exist->lru);
1251	} else {
1252		rb_link_node(&sm->node, parent, p);
1253		rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1254	}
1255	spin_unlock(&mdsc->snapid_map_lock);
1256	if (exist) {
1257		free_anon_bdev(sm->dev);
1258		kfree(sm);
1259		doutc(cl, "found snapid map %llx -> %x\n", exist->snap,
1260		      exist->dev);
1261		return exist;
1262	}
1263
1264	doutc(cl, "create snapid map %llx -> %x\n", sm->snap, sm->dev);
1265	return sm;
1266}
1267
1268void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1269			 struct ceph_snapid_map *sm)
1270{
1271	if (!sm)
1272		return;
1273	if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1274		if (!RB_EMPTY_NODE(&sm->node)) {
1275			sm->last_used = jiffies;
1276			list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1277			spin_unlock(&mdsc->snapid_map_lock);
1278		} else {
1279			/* already cleaned up by
1280			 * ceph_cleanup_snapid_map() */
1281			spin_unlock(&mdsc->snapid_map_lock);
1282			kfree(sm);
1283		}
1284	}
1285}
1286
1287void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1288{
1289	struct ceph_client *cl = mdsc->fsc->client;
1290	struct ceph_snapid_map *sm;
1291	unsigned long now;
1292	LIST_HEAD(to_free);
1293
1294	spin_lock(&mdsc->snapid_map_lock);
1295	now = jiffies;
1296
1297	while (!list_empty(&mdsc->snapid_map_lru)) {
1298		sm = list_first_entry(&mdsc->snapid_map_lru,
1299				      struct ceph_snapid_map, lru);
1300		if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1301			break;
1302
1303		rb_erase(&sm->node, &mdsc->snapid_map_tree);
1304		list_move(&sm->lru, &to_free);
1305	}
1306	spin_unlock(&mdsc->snapid_map_lock);
1307
1308	while (!list_empty(&to_free)) {
1309		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1310		list_del(&sm->lru);
1311		doutc(cl, "trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1312		free_anon_bdev(sm->dev);
1313		kfree(sm);
1314	}
1315}
1316
1317void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1318{
1319	struct ceph_client *cl = mdsc->fsc->client;
1320	struct ceph_snapid_map *sm;
1321	struct rb_node *p;
1322	LIST_HEAD(to_free);
1323
1324	spin_lock(&mdsc->snapid_map_lock);
1325	while ((p = rb_first(&mdsc->snapid_map_tree))) {
1326		sm = rb_entry(p, struct ceph_snapid_map, node);
1327		rb_erase(p, &mdsc->snapid_map_tree);
1328		RB_CLEAR_NODE(p);
1329		list_move(&sm->lru, &to_free);
1330	}
1331	spin_unlock(&mdsc->snapid_map_lock);
1332
1333	while (!list_empty(&to_free)) {
1334		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1335		list_del(&sm->lru);
1336		free_anon_bdev(sm->dev);
1337		if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1338			pr_err_client(cl, "snapid map %llx -> %x still in use\n",
1339				      sm->snap, sm->dev);
1340		}
1341		kfree(sm);
1342	}
1343}
1344