1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/blkdev.h>
6#include <linux/sched/mm.h>
7#include <linux/atomic.h>
8#include <linux/vmalloc.h>
9#include "ctree.h"
10#include "volumes.h"
11#include "zoned.h"
12#include "rcu-string.h"
13#include "disk-io.h"
14#include "block-group.h"
15#include "dev-replace.h"
16#include "space-info.h"
17#include "fs.h"
18#include "accessors.h"
19#include "bio.h"
20
21/* Maximum number of zones to report per blkdev_report_zones() call */
22#define BTRFS_REPORT_NR_ZONES   4096
23/* Invalid allocation pointer value for missing devices */
24#define WP_MISSING_DEV ((u64)-1)
25/* Pseudo write pointer value for conventional zone */
26#define WP_CONVENTIONAL ((u64)-2)
27
28/*
29 * Location of the first zone of superblock logging zone pairs.
30 *
31 * - primary superblock:    0B (zone 0)
32 * - first copy:          512G (zone starting at that offset)
33 * - second copy:           4T (zone starting at that offset)
34 */
35#define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
36#define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
37#define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
38
39#define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
40#define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
41
42/* Number of superblock log zones */
43#define BTRFS_NR_SB_LOG_ZONES 2
44
45/*
46 * Minimum of active zones we need:
47 *
48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
50 * - 1 zone for tree-log dedicated block group
51 * - 1 zone for relocation
52 */
53#define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
54
55/*
56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
58 * We do not expect the zone size to become larger than 8GiB or smaller than
59 * 4MiB in the near future.
60 */
61#define BTRFS_MAX_ZONE_SIZE		SZ_8G
62#define BTRFS_MIN_ZONE_SIZE		SZ_4M
63
64#define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
65
66static void wait_eb_writebacks(struct btrfs_block_group *block_group);
67static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
68
69static inline bool sb_zone_is_full(const struct blk_zone *zone)
70{
71	return (zone->cond == BLK_ZONE_COND_FULL) ||
72		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
73}
74
75static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
76{
77	struct blk_zone *zones = data;
78
79	memcpy(&zones[idx], zone, sizeof(*zone));
80
81	return 0;
82}
83
84static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
85			    u64 *wp_ret)
86{
87	bool empty[BTRFS_NR_SB_LOG_ZONES];
88	bool full[BTRFS_NR_SB_LOG_ZONES];
89	sector_t sector;
90	int i;
91
92	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
93		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
94		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
95		full[i] = sb_zone_is_full(&zones[i]);
96	}
97
98	/*
99	 * Possible states of log buffer zones
100	 *
101	 *           Empty[0]  In use[0]  Full[0]
102	 * Empty[1]         *          0        1
103	 * In use[1]        x          x        1
104	 * Full[1]          0          0        C
105	 *
106	 * Log position:
107	 *   *: Special case, no superblock is written
108	 *   0: Use write pointer of zones[0]
109	 *   1: Use write pointer of zones[1]
110	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
111	 *      one determined by generation
112	 *   x: Invalid state
113	 */
114
115	if (empty[0] && empty[1]) {
116		/* Special case to distinguish no superblock to read */
117		*wp_ret = zones[0].start << SECTOR_SHIFT;
118		return -ENOENT;
119	} else if (full[0] && full[1]) {
120		/* Compare two super blocks */
121		struct address_space *mapping = bdev->bd_inode->i_mapping;
122		struct page *page[BTRFS_NR_SB_LOG_ZONES];
123		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
124		int i;
125
126		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
127			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
128			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
129						BTRFS_SUPER_INFO_SIZE;
130
131			page[i] = read_cache_page_gfp(mapping,
132					bytenr >> PAGE_SHIFT, GFP_NOFS);
133			if (IS_ERR(page[i])) {
134				if (i == 1)
135					btrfs_release_disk_super(super[0]);
136				return PTR_ERR(page[i]);
137			}
138			super[i] = page_address(page[i]);
139		}
140
141		if (btrfs_super_generation(super[0]) >
142		    btrfs_super_generation(super[1]))
143			sector = zones[1].start;
144		else
145			sector = zones[0].start;
146
147		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
148			btrfs_release_disk_super(super[i]);
149	} else if (!full[0] && (empty[1] || full[1])) {
150		sector = zones[0].wp;
151	} else if (full[0]) {
152		sector = zones[1].wp;
153	} else {
154		return -EUCLEAN;
155	}
156	*wp_ret = sector << SECTOR_SHIFT;
157	return 0;
158}
159
160/*
161 * Get the first zone number of the superblock mirror
162 */
163static inline u32 sb_zone_number(int shift, int mirror)
164{
165	u64 zone = U64_MAX;
166
167	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
168	switch (mirror) {
169	case 0: zone = 0; break;
170	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
171	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
172	}
173
174	ASSERT(zone <= U32_MAX);
175
176	return (u32)zone;
177}
178
179static inline sector_t zone_start_sector(u32 zone_number,
180					 struct block_device *bdev)
181{
182	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
183}
184
185static inline u64 zone_start_physical(u32 zone_number,
186				      struct btrfs_zoned_device_info *zone_info)
187{
188	return (u64)zone_number << zone_info->zone_size_shift;
189}
190
191/*
192 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
193 * device into static sized chunks and fake a conventional zone on each of
194 * them.
195 */
196static int emulate_report_zones(struct btrfs_device *device, u64 pos,
197				struct blk_zone *zones, unsigned int nr_zones)
198{
199	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
200	sector_t bdev_size = bdev_nr_sectors(device->bdev);
201	unsigned int i;
202
203	pos >>= SECTOR_SHIFT;
204	for (i = 0; i < nr_zones; i++) {
205		zones[i].start = i * zone_sectors + pos;
206		zones[i].len = zone_sectors;
207		zones[i].capacity = zone_sectors;
208		zones[i].wp = zones[i].start + zone_sectors;
209		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
210		zones[i].cond = BLK_ZONE_COND_NOT_WP;
211
212		if (zones[i].wp >= bdev_size) {
213			i++;
214			break;
215		}
216	}
217
218	return i;
219}
220
221static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
222			       struct blk_zone *zones, unsigned int *nr_zones)
223{
224	struct btrfs_zoned_device_info *zinfo = device->zone_info;
225	int ret;
226
227	if (!*nr_zones)
228		return 0;
229
230	if (!bdev_is_zoned(device->bdev)) {
231		ret = emulate_report_zones(device, pos, zones, *nr_zones);
232		*nr_zones = ret;
233		return 0;
234	}
235
236	/* Check cache */
237	if (zinfo->zone_cache) {
238		unsigned int i;
239		u32 zno;
240
241		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
242		zno = pos >> zinfo->zone_size_shift;
243		/*
244		 * We cannot report zones beyond the zone end. So, it is OK to
245		 * cap *nr_zones to at the end.
246		 */
247		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
248
249		for (i = 0; i < *nr_zones; i++) {
250			struct blk_zone *zone_info;
251
252			zone_info = &zinfo->zone_cache[zno + i];
253			if (!zone_info->len)
254				break;
255		}
256
257		if (i == *nr_zones) {
258			/* Cache hit on all the zones */
259			memcpy(zones, zinfo->zone_cache + zno,
260			       sizeof(*zinfo->zone_cache) * *nr_zones);
261			return 0;
262		}
263	}
264
265	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
266				  copy_zone_info_cb, zones);
267	if (ret < 0) {
268		btrfs_err_in_rcu(device->fs_info,
269				 "zoned: failed to read zone %llu on %s (devid %llu)",
270				 pos, rcu_str_deref(device->name),
271				 device->devid);
272		return ret;
273	}
274	*nr_zones = ret;
275	if (!ret)
276		return -EIO;
277
278	/* Populate cache */
279	if (zinfo->zone_cache) {
280		u32 zno = pos >> zinfo->zone_size_shift;
281
282		memcpy(zinfo->zone_cache + zno, zones,
283		       sizeof(*zinfo->zone_cache) * *nr_zones);
284	}
285
286	return 0;
287}
288
289/* The emulated zone size is determined from the size of device extent */
290static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
291{
292	struct btrfs_path *path;
293	struct btrfs_root *root = fs_info->dev_root;
294	struct btrfs_key key;
295	struct extent_buffer *leaf;
296	struct btrfs_dev_extent *dext;
297	int ret = 0;
298
299	key.objectid = 1;
300	key.type = BTRFS_DEV_EXTENT_KEY;
301	key.offset = 0;
302
303	path = btrfs_alloc_path();
304	if (!path)
305		return -ENOMEM;
306
307	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
308	if (ret < 0)
309		goto out;
310
311	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
312		ret = btrfs_next_leaf(root, path);
313		if (ret < 0)
314			goto out;
315		/* No dev extents at all? Not good */
316		if (ret > 0) {
317			ret = -EUCLEAN;
318			goto out;
319		}
320	}
321
322	leaf = path->nodes[0];
323	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
324	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
325	ret = 0;
326
327out:
328	btrfs_free_path(path);
329
330	return ret;
331}
332
333int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
334{
335	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
336	struct btrfs_device *device;
337	int ret = 0;
338
339	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
340	if (!btrfs_fs_incompat(fs_info, ZONED))
341		return 0;
342
343	mutex_lock(&fs_devices->device_list_mutex);
344	list_for_each_entry(device, &fs_devices->devices, dev_list) {
345		/* We can skip reading of zone info for missing devices */
346		if (!device->bdev)
347			continue;
348
349		ret = btrfs_get_dev_zone_info(device, true);
350		if (ret)
351			break;
352	}
353	mutex_unlock(&fs_devices->device_list_mutex);
354
355	return ret;
356}
357
358int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
359{
360	struct btrfs_fs_info *fs_info = device->fs_info;
361	struct btrfs_zoned_device_info *zone_info = NULL;
362	struct block_device *bdev = device->bdev;
363	unsigned int max_active_zones;
364	unsigned int nactive;
365	sector_t nr_sectors;
366	sector_t sector = 0;
367	struct blk_zone *zones = NULL;
368	unsigned int i, nreported = 0, nr_zones;
369	sector_t zone_sectors;
370	char *model, *emulated;
371	int ret;
372
373	/*
374	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
375	 * yet be set.
376	 */
377	if (!btrfs_fs_incompat(fs_info, ZONED))
378		return 0;
379
380	if (device->zone_info)
381		return 0;
382
383	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
384	if (!zone_info)
385		return -ENOMEM;
386
387	device->zone_info = zone_info;
388
389	if (!bdev_is_zoned(bdev)) {
390		if (!fs_info->zone_size) {
391			ret = calculate_emulated_zone_size(fs_info);
392			if (ret)
393				goto out;
394		}
395
396		ASSERT(fs_info->zone_size);
397		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
398	} else {
399		zone_sectors = bdev_zone_sectors(bdev);
400	}
401
402	ASSERT(is_power_of_two_u64(zone_sectors));
403	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
404
405	/* We reject devices with a zone size larger than 8GB */
406	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
407		btrfs_err_in_rcu(fs_info,
408		"zoned: %s: zone size %llu larger than supported maximum %llu",
409				 rcu_str_deref(device->name),
410				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
411		ret = -EINVAL;
412		goto out;
413	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
414		btrfs_err_in_rcu(fs_info,
415		"zoned: %s: zone size %llu smaller than supported minimum %u",
416				 rcu_str_deref(device->name),
417				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
418		ret = -EINVAL;
419		goto out;
420	}
421
422	nr_sectors = bdev_nr_sectors(bdev);
423	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
424	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
425	if (!IS_ALIGNED(nr_sectors, zone_sectors))
426		zone_info->nr_zones++;
427
428	max_active_zones = bdev_max_active_zones(bdev);
429	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
430		btrfs_err_in_rcu(fs_info,
431"zoned: %s: max active zones %u is too small, need at least %u active zones",
432				 rcu_str_deref(device->name), max_active_zones,
433				 BTRFS_MIN_ACTIVE_ZONES);
434		ret = -EINVAL;
435		goto out;
436	}
437	zone_info->max_active_zones = max_active_zones;
438
439	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
440	if (!zone_info->seq_zones) {
441		ret = -ENOMEM;
442		goto out;
443	}
444
445	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
446	if (!zone_info->empty_zones) {
447		ret = -ENOMEM;
448		goto out;
449	}
450
451	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
452	if (!zone_info->active_zones) {
453		ret = -ENOMEM;
454		goto out;
455	}
456
457	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
458	if (!zones) {
459		ret = -ENOMEM;
460		goto out;
461	}
462
463	/*
464	 * Enable zone cache only for a zoned device. On a non-zoned device, we
465	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
466	 * use the cache.
467	 */
468	if (populate_cache && bdev_is_zoned(device->bdev)) {
469		zone_info->zone_cache = vcalloc(zone_info->nr_zones,
470						sizeof(struct blk_zone));
471		if (!zone_info->zone_cache) {
472			btrfs_err_in_rcu(device->fs_info,
473				"zoned: failed to allocate zone cache for %s",
474				rcu_str_deref(device->name));
475			ret = -ENOMEM;
476			goto out;
477		}
478	}
479
480	/* Get zones type */
481	nactive = 0;
482	while (sector < nr_sectors) {
483		nr_zones = BTRFS_REPORT_NR_ZONES;
484		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
485					  &nr_zones);
486		if (ret)
487			goto out;
488
489		for (i = 0; i < nr_zones; i++) {
490			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
491				__set_bit(nreported, zone_info->seq_zones);
492			switch (zones[i].cond) {
493			case BLK_ZONE_COND_EMPTY:
494				__set_bit(nreported, zone_info->empty_zones);
495				break;
496			case BLK_ZONE_COND_IMP_OPEN:
497			case BLK_ZONE_COND_EXP_OPEN:
498			case BLK_ZONE_COND_CLOSED:
499				__set_bit(nreported, zone_info->active_zones);
500				nactive++;
501				break;
502			}
503			nreported++;
504		}
505		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
506	}
507
508	if (nreported != zone_info->nr_zones) {
509		btrfs_err_in_rcu(device->fs_info,
510				 "inconsistent number of zones on %s (%u/%u)",
511				 rcu_str_deref(device->name), nreported,
512				 zone_info->nr_zones);
513		ret = -EIO;
514		goto out;
515	}
516
517	if (max_active_zones) {
518		if (nactive > max_active_zones) {
519			btrfs_err_in_rcu(device->fs_info,
520			"zoned: %u active zones on %s exceeds max_active_zones %u",
521					 nactive, rcu_str_deref(device->name),
522					 max_active_zones);
523			ret = -EIO;
524			goto out;
525		}
526		atomic_set(&zone_info->active_zones_left,
527			   max_active_zones - nactive);
528		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
529	}
530
531	/* Validate superblock log */
532	nr_zones = BTRFS_NR_SB_LOG_ZONES;
533	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
534		u32 sb_zone;
535		u64 sb_wp;
536		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
537
538		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
539		if (sb_zone + 1 >= zone_info->nr_zones)
540			continue;
541
542		ret = btrfs_get_dev_zones(device,
543					  zone_start_physical(sb_zone, zone_info),
544					  &zone_info->sb_zones[sb_pos],
545					  &nr_zones);
546		if (ret)
547			goto out;
548
549		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
550			btrfs_err_in_rcu(device->fs_info,
551	"zoned: failed to read super block log zone info at devid %llu zone %u",
552					 device->devid, sb_zone);
553			ret = -EUCLEAN;
554			goto out;
555		}
556
557		/*
558		 * If zones[0] is conventional, always use the beginning of the
559		 * zone to record superblock. No need to validate in that case.
560		 */
561		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
562		    BLK_ZONE_TYPE_CONVENTIONAL)
563			continue;
564
565		ret = sb_write_pointer(device->bdev,
566				       &zone_info->sb_zones[sb_pos], &sb_wp);
567		if (ret != -ENOENT && ret) {
568			btrfs_err_in_rcu(device->fs_info,
569			"zoned: super block log zone corrupted devid %llu zone %u",
570					 device->devid, sb_zone);
571			ret = -EUCLEAN;
572			goto out;
573		}
574	}
575
576
577	kvfree(zones);
578
579	if (bdev_is_zoned(bdev)) {
580		model = "host-managed zoned";
581		emulated = "";
582	} else {
583		model = "regular";
584		emulated = "emulated ";
585	}
586
587	btrfs_info_in_rcu(fs_info,
588		"%s block device %s, %u %szones of %llu bytes",
589		model, rcu_str_deref(device->name), zone_info->nr_zones,
590		emulated, zone_info->zone_size);
591
592	return 0;
593
594out:
595	kvfree(zones);
596	btrfs_destroy_dev_zone_info(device);
597	return ret;
598}
599
600void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
601{
602	struct btrfs_zoned_device_info *zone_info = device->zone_info;
603
604	if (!zone_info)
605		return;
606
607	bitmap_free(zone_info->active_zones);
608	bitmap_free(zone_info->seq_zones);
609	bitmap_free(zone_info->empty_zones);
610	vfree(zone_info->zone_cache);
611	kfree(zone_info);
612	device->zone_info = NULL;
613}
614
615struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
616{
617	struct btrfs_zoned_device_info *zone_info;
618
619	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
620	if (!zone_info)
621		return NULL;
622
623	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
624	if (!zone_info->seq_zones)
625		goto out;
626
627	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
628		    zone_info->nr_zones);
629
630	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
631	if (!zone_info->empty_zones)
632		goto out;
633
634	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
635		    zone_info->nr_zones);
636
637	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
638	if (!zone_info->active_zones)
639		goto out;
640
641	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
642		    zone_info->nr_zones);
643	zone_info->zone_cache = NULL;
644
645	return zone_info;
646
647out:
648	bitmap_free(zone_info->seq_zones);
649	bitmap_free(zone_info->empty_zones);
650	bitmap_free(zone_info->active_zones);
651	kfree(zone_info);
652	return NULL;
653}
654
655int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
656		       struct blk_zone *zone)
657{
658	unsigned int nr_zones = 1;
659	int ret;
660
661	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
662	if (ret != 0 || !nr_zones)
663		return ret ? ret : -EIO;
664
665	return 0;
666}
667
668static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
669{
670	struct btrfs_device *device;
671
672	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
673		if (device->bdev && bdev_is_zoned(device->bdev)) {
674			btrfs_err(fs_info,
675				"zoned: mode not enabled but zoned device found: %pg",
676				device->bdev);
677			return -EINVAL;
678		}
679	}
680
681	return 0;
682}
683
684int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
685{
686	struct queue_limits *lim = &fs_info->limits;
687	struct btrfs_device *device;
688	u64 zone_size = 0;
689	int ret;
690
691	/*
692	 * Host-Managed devices can't be used without the ZONED flag.  With the
693	 * ZONED all devices can be used, using zone emulation if required.
694	 */
695	if (!btrfs_fs_incompat(fs_info, ZONED))
696		return btrfs_check_for_zoned_device(fs_info);
697
698	blk_set_stacking_limits(lim);
699
700	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
701		struct btrfs_zoned_device_info *zone_info = device->zone_info;
702
703		if (!device->bdev)
704			continue;
705
706		if (!zone_size) {
707			zone_size = zone_info->zone_size;
708		} else if (zone_info->zone_size != zone_size) {
709			btrfs_err(fs_info,
710		"zoned: unequal block device zone sizes: have %llu found %llu",
711				  zone_info->zone_size, zone_size);
712			return -EINVAL;
713		}
714
715		/*
716		 * With the zoned emulation, we can have non-zoned device on the
717		 * zoned mode. In this case, we don't have a valid max zone
718		 * append size.
719		 */
720		if (bdev_is_zoned(device->bdev)) {
721			blk_stack_limits(lim,
722					 &bdev_get_queue(device->bdev)->limits,
723					 0);
724		}
725	}
726
727	/*
728	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
729	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
730	 * check the alignment here.
731	 */
732	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
733		btrfs_err(fs_info,
734			  "zoned: zone size %llu not aligned to stripe %u",
735			  zone_size, BTRFS_STRIPE_LEN);
736		return -EINVAL;
737	}
738
739	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
740		btrfs_err(fs_info, "zoned: mixed block groups not supported");
741		return -EINVAL;
742	}
743
744	fs_info->zone_size = zone_size;
745	/*
746	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
747	 * Technically, we can have multiple pages per segment. But, since
748	 * we add the pages one by one to a bio, and cannot increase the
749	 * metadata reservation even if it increases the number of extents, it
750	 * is safe to stick with the limit.
751	 */
752	fs_info->max_zone_append_size = ALIGN_DOWN(
753		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
754		     (u64)lim->max_sectors << SECTOR_SHIFT,
755		     (u64)lim->max_segments << PAGE_SHIFT),
756		fs_info->sectorsize);
757	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
758	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
759		fs_info->max_extent_size = fs_info->max_zone_append_size;
760
761	/*
762	 * Check mount options here, because we might change fs_info->zoned
763	 * from fs_info->zone_size.
764	 */
765	ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
766	if (ret)
767		return ret;
768
769	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
770	return 0;
771}
772
773int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt)
774{
775	if (!btrfs_is_zoned(info))
776		return 0;
777
778	/*
779	 * Space cache writing is not COWed. Disable that to avoid write errors
780	 * in sequential zones.
781	 */
782	if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
783		btrfs_err(info, "zoned: space cache v1 is not supported");
784		return -EINVAL;
785	}
786
787	if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
788		btrfs_err(info, "zoned: NODATACOW not supported");
789		return -EINVAL;
790	}
791
792	if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
793		btrfs_info(info,
794			   "zoned: async discard ignored and disabled for zoned mode");
795		btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
796	}
797
798	return 0;
799}
800
801static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
802			   int rw, u64 *bytenr_ret)
803{
804	u64 wp;
805	int ret;
806
807	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
808		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
809		return 0;
810	}
811
812	ret = sb_write_pointer(bdev, zones, &wp);
813	if (ret != -ENOENT && ret < 0)
814		return ret;
815
816	if (rw == WRITE) {
817		struct blk_zone *reset = NULL;
818
819		if (wp == zones[0].start << SECTOR_SHIFT)
820			reset = &zones[0];
821		else if (wp == zones[1].start << SECTOR_SHIFT)
822			reset = &zones[1];
823
824		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
825			unsigned int nofs_flags;
826
827			ASSERT(sb_zone_is_full(reset));
828
829			nofs_flags = memalloc_nofs_save();
830			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
831					       reset->start, reset->len);
832			memalloc_nofs_restore(nofs_flags);
833			if (ret)
834				return ret;
835
836			reset->cond = BLK_ZONE_COND_EMPTY;
837			reset->wp = reset->start;
838		}
839	} else if (ret != -ENOENT) {
840		/*
841		 * For READ, we want the previous one. Move write pointer to
842		 * the end of a zone, if it is at the head of a zone.
843		 */
844		u64 zone_end = 0;
845
846		if (wp == zones[0].start << SECTOR_SHIFT)
847			zone_end = zones[1].start + zones[1].capacity;
848		else if (wp == zones[1].start << SECTOR_SHIFT)
849			zone_end = zones[0].start + zones[0].capacity;
850		if (zone_end)
851			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
852					BTRFS_SUPER_INFO_SIZE);
853
854		wp -= BTRFS_SUPER_INFO_SIZE;
855	}
856
857	*bytenr_ret = wp;
858	return 0;
859
860}
861
862int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
863			       u64 *bytenr_ret)
864{
865	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
866	sector_t zone_sectors;
867	u32 sb_zone;
868	int ret;
869	u8 zone_sectors_shift;
870	sector_t nr_sectors;
871	u32 nr_zones;
872
873	if (!bdev_is_zoned(bdev)) {
874		*bytenr_ret = btrfs_sb_offset(mirror);
875		return 0;
876	}
877
878	ASSERT(rw == READ || rw == WRITE);
879
880	zone_sectors = bdev_zone_sectors(bdev);
881	if (!is_power_of_2(zone_sectors))
882		return -EINVAL;
883	zone_sectors_shift = ilog2(zone_sectors);
884	nr_sectors = bdev_nr_sectors(bdev);
885	nr_zones = nr_sectors >> zone_sectors_shift;
886
887	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
888	if (sb_zone + 1 >= nr_zones)
889		return -ENOENT;
890
891	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
892				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
893				  zones);
894	if (ret < 0)
895		return ret;
896	if (ret != BTRFS_NR_SB_LOG_ZONES)
897		return -EIO;
898
899	return sb_log_location(bdev, zones, rw, bytenr_ret);
900}
901
902int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
903			  u64 *bytenr_ret)
904{
905	struct btrfs_zoned_device_info *zinfo = device->zone_info;
906	u32 zone_num;
907
908	/*
909	 * For a zoned filesystem on a non-zoned block device, use the same
910	 * super block locations as regular filesystem. Doing so, the super
911	 * block can always be retrieved and the zoned flag of the volume
912	 * detected from the super block information.
913	 */
914	if (!bdev_is_zoned(device->bdev)) {
915		*bytenr_ret = btrfs_sb_offset(mirror);
916		return 0;
917	}
918
919	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
920	if (zone_num + 1 >= zinfo->nr_zones)
921		return -ENOENT;
922
923	return sb_log_location(device->bdev,
924			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
925			       rw, bytenr_ret);
926}
927
928static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
929				  int mirror)
930{
931	u32 zone_num;
932
933	if (!zinfo)
934		return false;
935
936	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
937	if (zone_num + 1 >= zinfo->nr_zones)
938		return false;
939
940	if (!test_bit(zone_num, zinfo->seq_zones))
941		return false;
942
943	return true;
944}
945
946int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
947{
948	struct btrfs_zoned_device_info *zinfo = device->zone_info;
949	struct blk_zone *zone;
950	int i;
951
952	if (!is_sb_log_zone(zinfo, mirror))
953		return 0;
954
955	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
956	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
957		/* Advance the next zone */
958		if (zone->cond == BLK_ZONE_COND_FULL) {
959			zone++;
960			continue;
961		}
962
963		if (zone->cond == BLK_ZONE_COND_EMPTY)
964			zone->cond = BLK_ZONE_COND_IMP_OPEN;
965
966		zone->wp += SUPER_INFO_SECTORS;
967
968		if (sb_zone_is_full(zone)) {
969			/*
970			 * No room left to write new superblock. Since
971			 * superblock is written with REQ_SYNC, it is safe to
972			 * finish the zone now.
973			 *
974			 * If the write pointer is exactly at the capacity,
975			 * explicit ZONE_FINISH is not necessary.
976			 */
977			if (zone->wp != zone->start + zone->capacity) {
978				unsigned int nofs_flags;
979				int ret;
980
981				nofs_flags = memalloc_nofs_save();
982				ret = blkdev_zone_mgmt(device->bdev,
983						REQ_OP_ZONE_FINISH, zone->start,
984						zone->len);
985				memalloc_nofs_restore(nofs_flags);
986				if (ret)
987					return ret;
988			}
989
990			zone->wp = zone->start + zone->len;
991			zone->cond = BLK_ZONE_COND_FULL;
992		}
993		return 0;
994	}
995
996	/* All the zones are FULL. Should not reach here. */
997	ASSERT(0);
998	return -EIO;
999}
1000
1001int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1002{
1003	unsigned int nofs_flags;
1004	sector_t zone_sectors;
1005	sector_t nr_sectors;
1006	u8 zone_sectors_shift;
1007	u32 sb_zone;
1008	u32 nr_zones;
1009	int ret;
1010
1011	zone_sectors = bdev_zone_sectors(bdev);
1012	zone_sectors_shift = ilog2(zone_sectors);
1013	nr_sectors = bdev_nr_sectors(bdev);
1014	nr_zones = nr_sectors >> zone_sectors_shift;
1015
1016	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1017	if (sb_zone + 1 >= nr_zones)
1018		return -ENOENT;
1019
1020	nofs_flags = memalloc_nofs_save();
1021	ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1022			       zone_start_sector(sb_zone, bdev),
1023			       zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1024	memalloc_nofs_restore(nofs_flags);
1025	return ret;
1026}
1027
1028/*
1029 * Find allocatable zones within a given region.
1030 *
1031 * @device:	the device to allocate a region on
1032 * @hole_start: the position of the hole to allocate the region
1033 * @num_bytes:	size of wanted region
1034 * @hole_end:	the end of the hole
1035 * @return:	position of allocatable zones
1036 *
1037 * Allocatable region should not contain any superblock locations.
1038 */
1039u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1040				 u64 hole_end, u64 num_bytes)
1041{
1042	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1043	const u8 shift = zinfo->zone_size_shift;
1044	u64 nzones = num_bytes >> shift;
1045	u64 pos = hole_start;
1046	u64 begin, end;
1047	bool have_sb;
1048	int i;
1049
1050	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1051	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1052
1053	while (pos < hole_end) {
1054		begin = pos >> shift;
1055		end = begin + nzones;
1056
1057		if (end > zinfo->nr_zones)
1058			return hole_end;
1059
1060		/* Check if zones in the region are all empty */
1061		if (btrfs_dev_is_sequential(device, pos) &&
1062		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1063			pos += zinfo->zone_size;
1064			continue;
1065		}
1066
1067		have_sb = false;
1068		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1069			u32 sb_zone;
1070			u64 sb_pos;
1071
1072			sb_zone = sb_zone_number(shift, i);
1073			if (!(end <= sb_zone ||
1074			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1075				have_sb = true;
1076				pos = zone_start_physical(
1077					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1078				break;
1079			}
1080
1081			/* We also need to exclude regular superblock positions */
1082			sb_pos = btrfs_sb_offset(i);
1083			if (!(pos + num_bytes <= sb_pos ||
1084			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1085				have_sb = true;
1086				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1087					    zinfo->zone_size);
1088				break;
1089			}
1090		}
1091		if (!have_sb)
1092			break;
1093	}
1094
1095	return pos;
1096}
1097
1098static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1099{
1100	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1101	unsigned int zno = (pos >> zone_info->zone_size_shift);
1102
1103	/* We can use any number of zones */
1104	if (zone_info->max_active_zones == 0)
1105		return true;
1106
1107	if (!test_bit(zno, zone_info->active_zones)) {
1108		/* Active zone left? */
1109		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1110			return false;
1111		if (test_and_set_bit(zno, zone_info->active_zones)) {
1112			/* Someone already set the bit */
1113			atomic_inc(&zone_info->active_zones_left);
1114		}
1115	}
1116
1117	return true;
1118}
1119
1120static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1121{
1122	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1123	unsigned int zno = (pos >> zone_info->zone_size_shift);
1124
1125	/* We can use any number of zones */
1126	if (zone_info->max_active_zones == 0)
1127		return;
1128
1129	if (test_and_clear_bit(zno, zone_info->active_zones))
1130		atomic_inc(&zone_info->active_zones_left);
1131}
1132
1133int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1134			    u64 length, u64 *bytes)
1135{
1136	unsigned int nofs_flags;
1137	int ret;
1138
1139	*bytes = 0;
1140	nofs_flags = memalloc_nofs_save();
1141	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1142			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1143	memalloc_nofs_restore(nofs_flags);
1144	if (ret)
1145		return ret;
1146
1147	*bytes = length;
1148	while (length) {
1149		btrfs_dev_set_zone_empty(device, physical);
1150		btrfs_dev_clear_active_zone(device, physical);
1151		physical += device->zone_info->zone_size;
1152		length -= device->zone_info->zone_size;
1153	}
1154
1155	return 0;
1156}
1157
1158int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1159{
1160	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1161	const u8 shift = zinfo->zone_size_shift;
1162	unsigned long begin = start >> shift;
1163	unsigned long nbits = size >> shift;
1164	u64 pos;
1165	int ret;
1166
1167	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1168	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1169
1170	if (begin + nbits > zinfo->nr_zones)
1171		return -ERANGE;
1172
1173	/* All the zones are conventional */
1174	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1175		return 0;
1176
1177	/* All the zones are sequential and empty */
1178	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1179	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1180		return 0;
1181
1182	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1183		u64 reset_bytes;
1184
1185		if (!btrfs_dev_is_sequential(device, pos) ||
1186		    btrfs_dev_is_empty_zone(device, pos))
1187			continue;
1188
1189		/* Free regions should be empty */
1190		btrfs_warn_in_rcu(
1191			device->fs_info,
1192		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1193			rcu_str_deref(device->name), device->devid, pos >> shift);
1194		WARN_ON_ONCE(1);
1195
1196		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1197					      &reset_bytes);
1198		if (ret)
1199			return ret;
1200	}
1201
1202	return 0;
1203}
1204
1205/*
1206 * Calculate an allocation pointer from the extent allocation information
1207 * for a block group consist of conventional zones. It is pointed to the
1208 * end of the highest addressed extent in the block group as an allocation
1209 * offset.
1210 */
1211static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1212				   u64 *offset_ret, bool new)
1213{
1214	struct btrfs_fs_info *fs_info = cache->fs_info;
1215	struct btrfs_root *root;
1216	struct btrfs_path *path;
1217	struct btrfs_key key;
1218	struct btrfs_key found_key;
1219	int ret;
1220	u64 length;
1221
1222	/*
1223	 * Avoid  tree lookups for a new block group, there's no use for it.
1224	 * It must always be 0.
1225	 *
1226	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1227	 * For new a block group, this function is called from
1228	 * btrfs_make_block_group() which is already taking the chunk mutex.
1229	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1230	 * buffer locks to avoid deadlock.
1231	 */
1232	if (new) {
1233		*offset_ret = 0;
1234		return 0;
1235	}
1236
1237	path = btrfs_alloc_path();
1238	if (!path)
1239		return -ENOMEM;
1240
1241	key.objectid = cache->start + cache->length;
1242	key.type = 0;
1243	key.offset = 0;
1244
1245	root = btrfs_extent_root(fs_info, key.objectid);
1246	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1247	/* We should not find the exact match */
1248	if (!ret)
1249		ret = -EUCLEAN;
1250	if (ret < 0)
1251		goto out;
1252
1253	ret = btrfs_previous_extent_item(root, path, cache->start);
1254	if (ret) {
1255		if (ret == 1) {
1256			ret = 0;
1257			*offset_ret = 0;
1258		}
1259		goto out;
1260	}
1261
1262	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1263
1264	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1265		length = found_key.offset;
1266	else
1267		length = fs_info->nodesize;
1268
1269	if (!(found_key.objectid >= cache->start &&
1270	       found_key.objectid + length <= cache->start + cache->length)) {
1271		ret = -EUCLEAN;
1272		goto out;
1273	}
1274	*offset_ret = found_key.objectid + length - cache->start;
1275	ret = 0;
1276
1277out:
1278	btrfs_free_path(path);
1279	return ret;
1280}
1281
1282struct zone_info {
1283	u64 physical;
1284	u64 capacity;
1285	u64 alloc_offset;
1286};
1287
1288static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1289				struct zone_info *info, unsigned long *active,
1290				struct btrfs_chunk_map *map)
1291{
1292	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1293	struct btrfs_device *device = map->stripes[zone_idx].dev;
1294	int dev_replace_is_ongoing = 0;
1295	unsigned int nofs_flag;
1296	struct blk_zone zone;
1297	int ret;
1298
1299	info->physical = map->stripes[zone_idx].physical;
1300
1301	if (!device->bdev) {
1302		info->alloc_offset = WP_MISSING_DEV;
1303		return 0;
1304	}
1305
1306	/* Consider a zone as active if we can allow any number of active zones. */
1307	if (!device->zone_info->max_active_zones)
1308		__set_bit(zone_idx, active);
1309
1310	if (!btrfs_dev_is_sequential(device, info->physical)) {
1311		info->alloc_offset = WP_CONVENTIONAL;
1312		return 0;
1313	}
1314
1315	/* This zone will be used for allocation, so mark this zone non-empty. */
1316	btrfs_dev_clear_zone_empty(device, info->physical);
1317
1318	down_read(&dev_replace->rwsem);
1319	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1320	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1321		btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1322	up_read(&dev_replace->rwsem);
1323
1324	/*
1325	 * The group is mapped to a sequential zone. Get the zone write pointer
1326	 * to determine the allocation offset within the zone.
1327	 */
1328	WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1329	nofs_flag = memalloc_nofs_save();
1330	ret = btrfs_get_dev_zone(device, info->physical, &zone);
1331	memalloc_nofs_restore(nofs_flag);
1332	if (ret) {
1333		if (ret != -EIO && ret != -EOPNOTSUPP)
1334			return ret;
1335		info->alloc_offset = WP_MISSING_DEV;
1336		return 0;
1337	}
1338
1339	if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1340		btrfs_err_in_rcu(fs_info,
1341		"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1342			zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1343			device->devid);
1344		return -EIO;
1345	}
1346
1347	info->capacity = (zone.capacity << SECTOR_SHIFT);
1348
1349	switch (zone.cond) {
1350	case BLK_ZONE_COND_OFFLINE:
1351	case BLK_ZONE_COND_READONLY:
1352		btrfs_err(fs_info,
1353		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1354			  (info->physical >> device->zone_info->zone_size_shift),
1355			  rcu_str_deref(device->name), device->devid);
1356		info->alloc_offset = WP_MISSING_DEV;
1357		break;
1358	case BLK_ZONE_COND_EMPTY:
1359		info->alloc_offset = 0;
1360		break;
1361	case BLK_ZONE_COND_FULL:
1362		info->alloc_offset = info->capacity;
1363		break;
1364	default:
1365		/* Partially used zone. */
1366		info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1367		__set_bit(zone_idx, active);
1368		break;
1369	}
1370
1371	return 0;
1372}
1373
1374static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1375					 struct zone_info *info,
1376					 unsigned long *active)
1377{
1378	if (info->alloc_offset == WP_MISSING_DEV) {
1379		btrfs_err(bg->fs_info,
1380			"zoned: cannot recover write pointer for zone %llu",
1381			info->physical);
1382		return -EIO;
1383	}
1384
1385	bg->alloc_offset = info->alloc_offset;
1386	bg->zone_capacity = info->capacity;
1387	if (test_bit(0, active))
1388		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1389	return 0;
1390}
1391
1392static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1393				      struct btrfs_chunk_map *map,
1394				      struct zone_info *zone_info,
1395				      unsigned long *active)
1396{
1397	struct btrfs_fs_info *fs_info = bg->fs_info;
1398
1399	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1400		btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1401		return -EINVAL;
1402	}
1403
1404	if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1405		btrfs_err(bg->fs_info,
1406			  "zoned: cannot recover write pointer for zone %llu",
1407			  zone_info[0].physical);
1408		return -EIO;
1409	}
1410	if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1411		btrfs_err(bg->fs_info,
1412			  "zoned: cannot recover write pointer for zone %llu",
1413			  zone_info[1].physical);
1414		return -EIO;
1415	}
1416	if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1417		btrfs_err(bg->fs_info,
1418			  "zoned: write pointer offset mismatch of zones in DUP profile");
1419		return -EIO;
1420	}
1421
1422	if (test_bit(0, active) != test_bit(1, active)) {
1423		if (!btrfs_zone_activate(bg))
1424			return -EIO;
1425	} else if (test_bit(0, active)) {
1426		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1427	}
1428
1429	bg->alloc_offset = zone_info[0].alloc_offset;
1430	bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1431	return 0;
1432}
1433
1434static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1435					struct btrfs_chunk_map *map,
1436					struct zone_info *zone_info,
1437					unsigned long *active)
1438{
1439	struct btrfs_fs_info *fs_info = bg->fs_info;
1440	int i;
1441
1442	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1443		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1444			  btrfs_bg_type_to_raid_name(map->type));
1445		return -EINVAL;
1446	}
1447
1448	for (i = 0; i < map->num_stripes; i++) {
1449		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1450		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1451			continue;
1452
1453		if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1454		    !btrfs_test_opt(fs_info, DEGRADED)) {
1455			btrfs_err(fs_info,
1456			"zoned: write pointer offset mismatch of zones in %s profile",
1457				  btrfs_bg_type_to_raid_name(map->type));
1458			return -EIO;
1459		}
1460		if (test_bit(0, active) != test_bit(i, active)) {
1461			if (!btrfs_test_opt(fs_info, DEGRADED) &&
1462			    !btrfs_zone_activate(bg)) {
1463				return -EIO;
1464			}
1465		} else {
1466			if (test_bit(0, active))
1467				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1468		}
1469		/* In case a device is missing we have a cap of 0, so don't use it. */
1470		bg->zone_capacity = min_not_zero(zone_info[0].capacity,
1471						 zone_info[1].capacity);
1472	}
1473
1474	if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1475		bg->alloc_offset = zone_info[0].alloc_offset;
1476	else
1477		bg->alloc_offset = zone_info[i - 1].alloc_offset;
1478
1479	return 0;
1480}
1481
1482static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1483					struct btrfs_chunk_map *map,
1484					struct zone_info *zone_info,
1485					unsigned long *active)
1486{
1487	struct btrfs_fs_info *fs_info = bg->fs_info;
1488
1489	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1490		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1491			  btrfs_bg_type_to_raid_name(map->type));
1492		return -EINVAL;
1493	}
1494
1495	for (int i = 0; i < map->num_stripes; i++) {
1496		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1497		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1498			continue;
1499
1500		if (test_bit(0, active) != test_bit(i, active)) {
1501			if (!btrfs_zone_activate(bg))
1502				return -EIO;
1503		} else {
1504			if (test_bit(0, active))
1505				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1506		}
1507		bg->zone_capacity += zone_info[i].capacity;
1508		bg->alloc_offset += zone_info[i].alloc_offset;
1509	}
1510
1511	return 0;
1512}
1513
1514static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1515					 struct btrfs_chunk_map *map,
1516					 struct zone_info *zone_info,
1517					 unsigned long *active)
1518{
1519	struct btrfs_fs_info *fs_info = bg->fs_info;
1520
1521	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1522		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1523			  btrfs_bg_type_to_raid_name(map->type));
1524		return -EINVAL;
1525	}
1526
1527	for (int i = 0; i < map->num_stripes; i++) {
1528		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1529		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1530			continue;
1531
1532		if (test_bit(0, active) != test_bit(i, active)) {
1533			if (!btrfs_zone_activate(bg))
1534				return -EIO;
1535		} else {
1536			if (test_bit(0, active))
1537				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1538		}
1539
1540		if ((i % map->sub_stripes) == 0) {
1541			bg->zone_capacity += zone_info[i].capacity;
1542			bg->alloc_offset += zone_info[i].alloc_offset;
1543		}
1544	}
1545
1546	return 0;
1547}
1548
1549int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1550{
1551	struct btrfs_fs_info *fs_info = cache->fs_info;
1552	struct btrfs_chunk_map *map;
1553	u64 logical = cache->start;
1554	u64 length = cache->length;
1555	struct zone_info *zone_info = NULL;
1556	int ret;
1557	int i;
1558	unsigned long *active = NULL;
1559	u64 last_alloc = 0;
1560	u32 num_sequential = 0, num_conventional = 0;
1561
1562	if (!btrfs_is_zoned(fs_info))
1563		return 0;
1564
1565	/* Sanity check */
1566	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1567		btrfs_err(fs_info,
1568		"zoned: block group %llu len %llu unaligned to zone size %llu",
1569			  logical, length, fs_info->zone_size);
1570		return -EIO;
1571	}
1572
1573	map = btrfs_find_chunk_map(fs_info, logical, length);
1574	if (!map)
1575		return -EINVAL;
1576
1577	cache->physical_map = map;
1578
1579	zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1580	if (!zone_info) {
1581		ret = -ENOMEM;
1582		goto out;
1583	}
1584
1585	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1586	if (!active) {
1587		ret = -ENOMEM;
1588		goto out;
1589	}
1590
1591	for (i = 0; i < map->num_stripes; i++) {
1592		ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1593		if (ret)
1594			goto out;
1595
1596		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1597			num_conventional++;
1598		else
1599			num_sequential++;
1600	}
1601
1602	if (num_sequential > 0)
1603		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1604
1605	if (num_conventional > 0) {
1606		/* Zone capacity is always zone size in emulation */
1607		cache->zone_capacity = cache->length;
1608		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1609		if (ret) {
1610			btrfs_err(fs_info,
1611			"zoned: failed to determine allocation offset of bg %llu",
1612				  cache->start);
1613			goto out;
1614		} else if (map->num_stripes == num_conventional) {
1615			cache->alloc_offset = last_alloc;
1616			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1617			goto out;
1618		}
1619	}
1620
1621	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1622	case 0: /* single */
1623		ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1624		break;
1625	case BTRFS_BLOCK_GROUP_DUP:
1626		ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1627		break;
1628	case BTRFS_BLOCK_GROUP_RAID1:
1629	case BTRFS_BLOCK_GROUP_RAID1C3:
1630	case BTRFS_BLOCK_GROUP_RAID1C4:
1631		ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1632		break;
1633	case BTRFS_BLOCK_GROUP_RAID0:
1634		ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1635		break;
1636	case BTRFS_BLOCK_GROUP_RAID10:
1637		ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1638		break;
1639	case BTRFS_BLOCK_GROUP_RAID5:
1640	case BTRFS_BLOCK_GROUP_RAID6:
1641	default:
1642		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1643			  btrfs_bg_type_to_raid_name(map->type));
1644		ret = -EINVAL;
1645		goto out;
1646	}
1647
1648out:
1649	/* Reject non SINGLE data profiles without RST */
1650	if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1651	    (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1652	    !fs_info->stripe_root) {
1653		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1654			  btrfs_bg_type_to_raid_name(map->type));
1655		return -EINVAL;
1656	}
1657
1658	if (cache->alloc_offset > cache->zone_capacity) {
1659		btrfs_err(fs_info,
1660"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1661			  cache->alloc_offset, cache->zone_capacity,
1662			  cache->start);
1663		ret = -EIO;
1664	}
1665
1666	/* An extent is allocated after the write pointer */
1667	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1668		btrfs_err(fs_info,
1669			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1670			  logical, last_alloc, cache->alloc_offset);
1671		ret = -EIO;
1672	}
1673
1674	if (!ret) {
1675		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1676		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1677			btrfs_get_block_group(cache);
1678			spin_lock(&fs_info->zone_active_bgs_lock);
1679			list_add_tail(&cache->active_bg_list,
1680				      &fs_info->zone_active_bgs);
1681			spin_unlock(&fs_info->zone_active_bgs_lock);
1682		}
1683	} else {
1684		btrfs_free_chunk_map(cache->physical_map);
1685		cache->physical_map = NULL;
1686	}
1687	bitmap_free(active);
1688	kfree(zone_info);
1689
1690	return ret;
1691}
1692
1693void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1694{
1695	u64 unusable, free;
1696
1697	if (!btrfs_is_zoned(cache->fs_info))
1698		return;
1699
1700	WARN_ON(cache->bytes_super != 0);
1701	unusable = (cache->alloc_offset - cache->used) +
1702		   (cache->length - cache->zone_capacity);
1703	free = cache->zone_capacity - cache->alloc_offset;
1704
1705	/* We only need ->free_space in ALLOC_SEQ block groups */
1706	cache->cached = BTRFS_CACHE_FINISHED;
1707	cache->free_space_ctl->free_space = free;
1708	cache->zone_unusable = unusable;
1709}
1710
1711bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1712{
1713	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1714	struct btrfs_inode *inode = bbio->inode;
1715	struct btrfs_fs_info *fs_info = bbio->fs_info;
1716	struct btrfs_block_group *cache;
1717	bool ret = false;
1718
1719	if (!btrfs_is_zoned(fs_info))
1720		return false;
1721
1722	if (!inode || !is_data_inode(&inode->vfs_inode))
1723		return false;
1724
1725	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1726		return false;
1727
1728	/*
1729	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1730	 * extent layout the relocation code has.
1731	 * Furthermore we have set aside own block-group from which only the
1732	 * relocation "process" can allocate and make sure only one process at a
1733	 * time can add pages to an extent that gets relocated, so it's safe to
1734	 * use regular REQ_OP_WRITE for this special case.
1735	 */
1736	if (btrfs_is_data_reloc_root(inode->root))
1737		return false;
1738
1739	cache = btrfs_lookup_block_group(fs_info, start);
1740	ASSERT(cache);
1741	if (!cache)
1742		return false;
1743
1744	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1745	btrfs_put_block_group(cache);
1746
1747	return ret;
1748}
1749
1750void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1751{
1752	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1753	struct btrfs_ordered_sum *sum = bbio->sums;
1754
1755	if (physical < bbio->orig_physical)
1756		sum->logical -= bbio->orig_physical - physical;
1757	else
1758		sum->logical += physical - bbio->orig_physical;
1759}
1760
1761static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1762					u64 logical)
1763{
1764	struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1765	struct extent_map *em;
1766
1767	ordered->disk_bytenr = logical;
1768
1769	write_lock(&em_tree->lock);
1770	em = search_extent_mapping(em_tree, ordered->file_offset,
1771				   ordered->num_bytes);
1772	em->block_start = logical;
1773	free_extent_map(em);
1774	write_unlock(&em_tree->lock);
1775}
1776
1777static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1778				      u64 logical, u64 len)
1779{
1780	struct btrfs_ordered_extent *new;
1781
1782	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1783	    split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1784			     ordered->num_bytes, len, logical))
1785		return false;
1786
1787	new = btrfs_split_ordered_extent(ordered, len);
1788	if (IS_ERR(new))
1789		return false;
1790	new->disk_bytenr = logical;
1791	btrfs_finish_one_ordered(new);
1792	return true;
1793}
1794
1795void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1796{
1797	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1798	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1799	struct btrfs_ordered_sum *sum;
1800	u64 logical, len;
1801
1802	/*
1803	 * Write to pre-allocated region is for the data relocation, and so
1804	 * it should use WRITE operation. No split/rewrite are necessary.
1805	 */
1806	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1807		return;
1808
1809	ASSERT(!list_empty(&ordered->list));
1810	/* The ordered->list can be empty in the above pre-alloc case. */
1811	sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1812	logical = sum->logical;
1813	len = sum->len;
1814
1815	while (len < ordered->disk_num_bytes) {
1816		sum = list_next_entry(sum, list);
1817		if (sum->logical == logical + len) {
1818			len += sum->len;
1819			continue;
1820		}
1821		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1822			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1823			btrfs_err(fs_info, "failed to split ordered extent");
1824			goto out;
1825		}
1826		logical = sum->logical;
1827		len = sum->len;
1828	}
1829
1830	if (ordered->disk_bytenr != logical)
1831		btrfs_rewrite_logical_zoned(ordered, logical);
1832
1833out:
1834	/*
1835	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1836	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1837	 * addresses and don't contain actual checksums.  We thus must free them
1838	 * here so that we don't attempt to log the csums later.
1839	 */
1840	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1841	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1842		while ((sum = list_first_entry_or_null(&ordered->list,
1843						       typeof(*sum), list))) {
1844			list_del(&sum->list);
1845			kfree(sum);
1846		}
1847	}
1848}
1849
1850static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1851			       struct btrfs_block_group **active_bg)
1852{
1853	const struct writeback_control *wbc = ctx->wbc;
1854	struct btrfs_block_group *block_group = ctx->zoned_bg;
1855	struct btrfs_fs_info *fs_info = block_group->fs_info;
1856
1857	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1858		return true;
1859
1860	if (fs_info->treelog_bg == block_group->start) {
1861		if (!btrfs_zone_activate(block_group)) {
1862			int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1863
1864			if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1865				return false;
1866		}
1867	} else if (*active_bg != block_group) {
1868		struct btrfs_block_group *tgt = *active_bg;
1869
1870		/* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1871		lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1872
1873		if (tgt) {
1874			/*
1875			 * If there is an unsent IO left in the allocated area,
1876			 * we cannot wait for them as it may cause a deadlock.
1877			 */
1878			if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1879				if (wbc->sync_mode == WB_SYNC_NONE ||
1880				    (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1881					return false;
1882			}
1883
1884			/* Pivot active metadata/system block group. */
1885			btrfs_zoned_meta_io_unlock(fs_info);
1886			wait_eb_writebacks(tgt);
1887			do_zone_finish(tgt, true);
1888			btrfs_zoned_meta_io_lock(fs_info);
1889			if (*active_bg == tgt) {
1890				btrfs_put_block_group(tgt);
1891				*active_bg = NULL;
1892			}
1893		}
1894		if (!btrfs_zone_activate(block_group))
1895			return false;
1896		if (*active_bg != block_group) {
1897			ASSERT(*active_bg == NULL);
1898			*active_bg = block_group;
1899			btrfs_get_block_group(block_group);
1900		}
1901	}
1902
1903	return true;
1904}
1905
1906/*
1907 * Check if @ctx->eb is aligned to the write pointer.
1908 *
1909 * Return:
1910 *   0:        @ctx->eb is at the write pointer. You can write it.
1911 *   -EAGAIN:  There is a hole. The caller should handle the case.
1912 *   -EBUSY:   There is a hole, but the caller can just bail out.
1913 */
1914int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1915				   struct btrfs_eb_write_context *ctx)
1916{
1917	const struct writeback_control *wbc = ctx->wbc;
1918	const struct extent_buffer *eb = ctx->eb;
1919	struct btrfs_block_group *block_group = ctx->zoned_bg;
1920
1921	if (!btrfs_is_zoned(fs_info))
1922		return 0;
1923
1924	if (block_group) {
1925		if (block_group->start > eb->start ||
1926		    block_group->start + block_group->length <= eb->start) {
1927			btrfs_put_block_group(block_group);
1928			block_group = NULL;
1929			ctx->zoned_bg = NULL;
1930		}
1931	}
1932
1933	if (!block_group) {
1934		block_group = btrfs_lookup_block_group(fs_info, eb->start);
1935		if (!block_group)
1936			return 0;
1937		ctx->zoned_bg = block_group;
1938	}
1939
1940	if (block_group->meta_write_pointer == eb->start) {
1941		struct btrfs_block_group **tgt;
1942
1943		if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1944			return 0;
1945
1946		if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1947			tgt = &fs_info->active_system_bg;
1948		else
1949			tgt = &fs_info->active_meta_bg;
1950		if (check_bg_is_active(ctx, tgt))
1951			return 0;
1952	}
1953
1954	/*
1955	 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1956	 * start writing this eb. In that case, we can just bail out.
1957	 */
1958	if (block_group->meta_write_pointer > eb->start)
1959		return -EBUSY;
1960
1961	/* If for_sync, this hole will be filled with trasnsaction commit. */
1962	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1963		return -EAGAIN;
1964	return -EBUSY;
1965}
1966
1967int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1968{
1969	if (!btrfs_dev_is_sequential(device, physical))
1970		return -EOPNOTSUPP;
1971
1972	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1973				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1974}
1975
1976static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1977			  struct blk_zone *zone)
1978{
1979	struct btrfs_io_context *bioc = NULL;
1980	u64 mapped_length = PAGE_SIZE;
1981	unsigned int nofs_flag;
1982	int nmirrors;
1983	int i, ret;
1984
1985	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1986			      &mapped_length, &bioc, NULL, NULL);
1987	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1988		ret = -EIO;
1989		goto out_put_bioc;
1990	}
1991
1992	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1993		ret = -EINVAL;
1994		goto out_put_bioc;
1995	}
1996
1997	nofs_flag = memalloc_nofs_save();
1998	nmirrors = (int)bioc->num_stripes;
1999	for (i = 0; i < nmirrors; i++) {
2000		u64 physical = bioc->stripes[i].physical;
2001		struct btrfs_device *dev = bioc->stripes[i].dev;
2002
2003		/* Missing device */
2004		if (!dev->bdev)
2005			continue;
2006
2007		ret = btrfs_get_dev_zone(dev, physical, zone);
2008		/* Failing device */
2009		if (ret == -EIO || ret == -EOPNOTSUPP)
2010			continue;
2011		break;
2012	}
2013	memalloc_nofs_restore(nofs_flag);
2014out_put_bioc:
2015	btrfs_put_bioc(bioc);
2016	return ret;
2017}
2018
2019/*
2020 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2021 * filling zeros between @physical_pos to a write pointer of dev-replace
2022 * source device.
2023 */
2024int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2025				    u64 physical_start, u64 physical_pos)
2026{
2027	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2028	struct blk_zone zone;
2029	u64 length;
2030	u64 wp;
2031	int ret;
2032
2033	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2034		return 0;
2035
2036	ret = read_zone_info(fs_info, logical, &zone);
2037	if (ret)
2038		return ret;
2039
2040	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2041
2042	if (physical_pos == wp)
2043		return 0;
2044
2045	if (physical_pos > wp)
2046		return -EUCLEAN;
2047
2048	length = wp - physical_pos;
2049	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2050}
2051
2052/*
2053 * Activate block group and underlying device zones
2054 *
2055 * @block_group: the block group to activate
2056 *
2057 * Return: true on success, false otherwise
2058 */
2059bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2060{
2061	struct btrfs_fs_info *fs_info = block_group->fs_info;
2062	struct btrfs_chunk_map *map;
2063	struct btrfs_device *device;
2064	u64 physical;
2065	const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2066	bool ret;
2067	int i;
2068
2069	if (!btrfs_is_zoned(block_group->fs_info))
2070		return true;
2071
2072	map = block_group->physical_map;
2073
2074	spin_lock(&fs_info->zone_active_bgs_lock);
2075	spin_lock(&block_group->lock);
2076	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2077		ret = true;
2078		goto out_unlock;
2079	}
2080
2081	/* No space left */
2082	if (btrfs_zoned_bg_is_full(block_group)) {
2083		ret = false;
2084		goto out_unlock;
2085	}
2086
2087	for (i = 0; i < map->num_stripes; i++) {
2088		struct btrfs_zoned_device_info *zinfo;
2089		int reserved = 0;
2090
2091		device = map->stripes[i].dev;
2092		physical = map->stripes[i].physical;
2093		zinfo = device->zone_info;
2094
2095		if (zinfo->max_active_zones == 0)
2096			continue;
2097
2098		if (is_data)
2099			reserved = zinfo->reserved_active_zones;
2100		/*
2101		 * For the data block group, leave active zones for one
2102		 * metadata block group and one system block group.
2103		 */
2104		if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2105			ret = false;
2106			goto out_unlock;
2107		}
2108
2109		if (!btrfs_dev_set_active_zone(device, physical)) {
2110			/* Cannot activate the zone */
2111			ret = false;
2112			goto out_unlock;
2113		}
2114		if (!is_data)
2115			zinfo->reserved_active_zones--;
2116	}
2117
2118	/* Successfully activated all the zones */
2119	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2120	spin_unlock(&block_group->lock);
2121
2122	/* For the active block group list */
2123	btrfs_get_block_group(block_group);
2124	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2125	spin_unlock(&fs_info->zone_active_bgs_lock);
2126
2127	return true;
2128
2129out_unlock:
2130	spin_unlock(&block_group->lock);
2131	spin_unlock(&fs_info->zone_active_bgs_lock);
2132	return ret;
2133}
2134
2135static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2136{
2137	struct btrfs_fs_info *fs_info = block_group->fs_info;
2138	const u64 end = block_group->start + block_group->length;
2139	struct radix_tree_iter iter;
2140	struct extent_buffer *eb;
2141	void __rcu **slot;
2142
2143	rcu_read_lock();
2144	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2145				 block_group->start >> fs_info->sectorsize_bits) {
2146		eb = radix_tree_deref_slot(slot);
2147		if (!eb)
2148			continue;
2149		if (radix_tree_deref_retry(eb)) {
2150			slot = radix_tree_iter_retry(&iter);
2151			continue;
2152		}
2153
2154		if (eb->start < block_group->start)
2155			continue;
2156		if (eb->start >= end)
2157			break;
2158
2159		slot = radix_tree_iter_resume(slot, &iter);
2160		rcu_read_unlock();
2161		wait_on_extent_buffer_writeback(eb);
2162		rcu_read_lock();
2163	}
2164	rcu_read_unlock();
2165}
2166
2167static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2168{
2169	struct btrfs_fs_info *fs_info = block_group->fs_info;
2170	struct btrfs_chunk_map *map;
2171	const bool is_metadata = (block_group->flags &
2172			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2173	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2174	int ret = 0;
2175	int i;
2176
2177	spin_lock(&block_group->lock);
2178	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2179		spin_unlock(&block_group->lock);
2180		return 0;
2181	}
2182
2183	/* Check if we have unwritten allocated space */
2184	if (is_metadata &&
2185	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2186		spin_unlock(&block_group->lock);
2187		return -EAGAIN;
2188	}
2189
2190	/*
2191	 * If we are sure that the block group is full (= no more room left for
2192	 * new allocation) and the IO for the last usable block is completed, we
2193	 * don't need to wait for the other IOs. This holds because we ensure
2194	 * the sequential IO submissions using the ZONE_APPEND command for data
2195	 * and block_group->meta_write_pointer for metadata.
2196	 */
2197	if (!fully_written) {
2198		if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2199			spin_unlock(&block_group->lock);
2200			return -EAGAIN;
2201		}
2202		spin_unlock(&block_group->lock);
2203
2204		ret = btrfs_inc_block_group_ro(block_group, false);
2205		if (ret)
2206			return ret;
2207
2208		/* Ensure all writes in this block group finish */
2209		btrfs_wait_block_group_reservations(block_group);
2210		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2211		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2212					 block_group->length);
2213		/* Wait for extent buffers to be written. */
2214		if (is_metadata)
2215			wait_eb_writebacks(block_group);
2216
2217		spin_lock(&block_group->lock);
2218
2219		/*
2220		 * Bail out if someone already deactivated the block group, or
2221		 * allocated space is left in the block group.
2222		 */
2223		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2224			      &block_group->runtime_flags)) {
2225			spin_unlock(&block_group->lock);
2226			btrfs_dec_block_group_ro(block_group);
2227			return 0;
2228		}
2229
2230		if (block_group->reserved ||
2231		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2232			     &block_group->runtime_flags)) {
2233			spin_unlock(&block_group->lock);
2234			btrfs_dec_block_group_ro(block_group);
2235			return -EAGAIN;
2236		}
2237	}
2238
2239	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2240	block_group->alloc_offset = block_group->zone_capacity;
2241	if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2242		block_group->meta_write_pointer = block_group->start +
2243						  block_group->zone_capacity;
2244	block_group->free_space_ctl->free_space = 0;
2245	btrfs_clear_treelog_bg(block_group);
2246	btrfs_clear_data_reloc_bg(block_group);
2247	spin_unlock(&block_group->lock);
2248
2249	down_read(&dev_replace->rwsem);
2250	map = block_group->physical_map;
2251	for (i = 0; i < map->num_stripes; i++) {
2252		struct btrfs_device *device = map->stripes[i].dev;
2253		const u64 physical = map->stripes[i].physical;
2254		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2255		unsigned int nofs_flags;
2256
2257		if (zinfo->max_active_zones == 0)
2258			continue;
2259
2260		nofs_flags = memalloc_nofs_save();
2261		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2262				       physical >> SECTOR_SHIFT,
2263				       zinfo->zone_size >> SECTOR_SHIFT);
2264		memalloc_nofs_restore(nofs_flags);
2265
2266		if (ret) {
2267			up_read(&dev_replace->rwsem);
2268			return ret;
2269		}
2270
2271		if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2272			zinfo->reserved_active_zones++;
2273		btrfs_dev_clear_active_zone(device, physical);
2274	}
2275	up_read(&dev_replace->rwsem);
2276
2277	if (!fully_written)
2278		btrfs_dec_block_group_ro(block_group);
2279
2280	spin_lock(&fs_info->zone_active_bgs_lock);
2281	ASSERT(!list_empty(&block_group->active_bg_list));
2282	list_del_init(&block_group->active_bg_list);
2283	spin_unlock(&fs_info->zone_active_bgs_lock);
2284
2285	/* For active_bg_list */
2286	btrfs_put_block_group(block_group);
2287
2288	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2289
2290	return 0;
2291}
2292
2293int btrfs_zone_finish(struct btrfs_block_group *block_group)
2294{
2295	if (!btrfs_is_zoned(block_group->fs_info))
2296		return 0;
2297
2298	return do_zone_finish(block_group, false);
2299}
2300
2301bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2302{
2303	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2304	struct btrfs_device *device;
2305	bool ret = false;
2306
2307	if (!btrfs_is_zoned(fs_info))
2308		return true;
2309
2310	/* Check if there is a device with active zones left */
2311	mutex_lock(&fs_info->chunk_mutex);
2312	spin_lock(&fs_info->zone_active_bgs_lock);
2313	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2314		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2315		int reserved = 0;
2316
2317		if (!device->bdev)
2318			continue;
2319
2320		if (!zinfo->max_active_zones) {
2321			ret = true;
2322			break;
2323		}
2324
2325		if (flags & BTRFS_BLOCK_GROUP_DATA)
2326			reserved = zinfo->reserved_active_zones;
2327
2328		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2329		case 0: /* single */
2330			ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2331			break;
2332		case BTRFS_BLOCK_GROUP_DUP:
2333			ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2334			break;
2335		}
2336		if (ret)
2337			break;
2338	}
2339	spin_unlock(&fs_info->zone_active_bgs_lock);
2340	mutex_unlock(&fs_info->chunk_mutex);
2341
2342	if (!ret)
2343		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2344
2345	return ret;
2346}
2347
2348void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2349{
2350	struct btrfs_block_group *block_group;
2351	u64 min_alloc_bytes;
2352
2353	if (!btrfs_is_zoned(fs_info))
2354		return;
2355
2356	block_group = btrfs_lookup_block_group(fs_info, logical);
2357	ASSERT(block_group);
2358
2359	/* No MIXED_BG on zoned btrfs. */
2360	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2361		min_alloc_bytes = fs_info->sectorsize;
2362	else
2363		min_alloc_bytes = fs_info->nodesize;
2364
2365	/* Bail out if we can allocate more data from this block group. */
2366	if (logical + length + min_alloc_bytes <=
2367	    block_group->start + block_group->zone_capacity)
2368		goto out;
2369
2370	do_zone_finish(block_group, true);
2371
2372out:
2373	btrfs_put_block_group(block_group);
2374}
2375
2376static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2377{
2378	struct btrfs_block_group *bg =
2379		container_of(work, struct btrfs_block_group, zone_finish_work);
2380
2381	wait_on_extent_buffer_writeback(bg->last_eb);
2382	free_extent_buffer(bg->last_eb);
2383	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2384	btrfs_put_block_group(bg);
2385}
2386
2387void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2388				   struct extent_buffer *eb)
2389{
2390	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2391	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2392		return;
2393
2394	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2395		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2396			  bg->start);
2397		return;
2398	}
2399
2400	/* For the work */
2401	btrfs_get_block_group(bg);
2402	atomic_inc(&eb->refs);
2403	bg->last_eb = eb;
2404	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2405	queue_work(system_unbound_wq, &bg->zone_finish_work);
2406}
2407
2408void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2409{
2410	struct btrfs_fs_info *fs_info = bg->fs_info;
2411
2412	spin_lock(&fs_info->relocation_bg_lock);
2413	if (fs_info->data_reloc_bg == bg->start)
2414		fs_info->data_reloc_bg = 0;
2415	spin_unlock(&fs_info->relocation_bg_lock);
2416}
2417
2418void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2419{
2420	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2421	struct btrfs_device *device;
2422
2423	if (!btrfs_is_zoned(fs_info))
2424		return;
2425
2426	mutex_lock(&fs_devices->device_list_mutex);
2427	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2428		if (device->zone_info) {
2429			vfree(device->zone_info->zone_cache);
2430			device->zone_info->zone_cache = NULL;
2431		}
2432	}
2433	mutex_unlock(&fs_devices->device_list_mutex);
2434}
2435
2436bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2437{
2438	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2439	struct btrfs_device *device;
2440	u64 used = 0;
2441	u64 total = 0;
2442	u64 factor;
2443
2444	ASSERT(btrfs_is_zoned(fs_info));
2445
2446	if (fs_info->bg_reclaim_threshold == 0)
2447		return false;
2448
2449	mutex_lock(&fs_devices->device_list_mutex);
2450	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2451		if (!device->bdev)
2452			continue;
2453
2454		total += device->disk_total_bytes;
2455		used += device->bytes_used;
2456	}
2457	mutex_unlock(&fs_devices->device_list_mutex);
2458
2459	factor = div64_u64(used * 100, total);
2460	return factor >= fs_info->bg_reclaim_threshold;
2461}
2462
2463void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2464				       u64 length)
2465{
2466	struct btrfs_block_group *block_group;
2467
2468	if (!btrfs_is_zoned(fs_info))
2469		return;
2470
2471	block_group = btrfs_lookup_block_group(fs_info, logical);
2472	/* It should be called on a previous data relocation block group. */
2473	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2474
2475	spin_lock(&block_group->lock);
2476	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2477		goto out;
2478
2479	/* All relocation extents are written. */
2480	if (block_group->start + block_group->alloc_offset == logical + length) {
2481		/*
2482		 * Now, release this block group for further allocations and
2483		 * zone finish.
2484		 */
2485		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2486			  &block_group->runtime_flags);
2487	}
2488
2489out:
2490	spin_unlock(&block_group->lock);
2491	btrfs_put_block_group(block_group);
2492}
2493
2494int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2495{
2496	struct btrfs_block_group *block_group;
2497	struct btrfs_block_group *min_bg = NULL;
2498	u64 min_avail = U64_MAX;
2499	int ret;
2500
2501	spin_lock(&fs_info->zone_active_bgs_lock);
2502	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2503			    active_bg_list) {
2504		u64 avail;
2505
2506		spin_lock(&block_group->lock);
2507		if (block_group->reserved || block_group->alloc_offset == 0 ||
2508		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2509		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2510			spin_unlock(&block_group->lock);
2511			continue;
2512		}
2513
2514		avail = block_group->zone_capacity - block_group->alloc_offset;
2515		if (min_avail > avail) {
2516			if (min_bg)
2517				btrfs_put_block_group(min_bg);
2518			min_bg = block_group;
2519			min_avail = avail;
2520			btrfs_get_block_group(min_bg);
2521		}
2522		spin_unlock(&block_group->lock);
2523	}
2524	spin_unlock(&fs_info->zone_active_bgs_lock);
2525
2526	if (!min_bg)
2527		return 0;
2528
2529	ret = btrfs_zone_finish(min_bg);
2530	btrfs_put_block_group(min_bg);
2531
2532	return ret < 0 ? ret : 1;
2533}
2534
2535int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2536				struct btrfs_space_info *space_info,
2537				bool do_finish)
2538{
2539	struct btrfs_block_group *bg;
2540	int index;
2541
2542	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2543		return 0;
2544
2545	for (;;) {
2546		int ret;
2547		bool need_finish = false;
2548
2549		down_read(&space_info->groups_sem);
2550		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2551			list_for_each_entry(bg, &space_info->block_groups[index],
2552					    list) {
2553				if (!spin_trylock(&bg->lock))
2554					continue;
2555				if (btrfs_zoned_bg_is_full(bg) ||
2556				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2557					     &bg->runtime_flags)) {
2558					spin_unlock(&bg->lock);
2559					continue;
2560				}
2561				spin_unlock(&bg->lock);
2562
2563				if (btrfs_zone_activate(bg)) {
2564					up_read(&space_info->groups_sem);
2565					return 1;
2566				}
2567
2568				need_finish = true;
2569			}
2570		}
2571		up_read(&space_info->groups_sem);
2572
2573		if (!do_finish || !need_finish)
2574			break;
2575
2576		ret = btrfs_zone_finish_one_bg(fs_info);
2577		if (ret == 0)
2578			break;
2579		if (ret < 0)
2580			return ret;
2581	}
2582
2583	return 0;
2584}
2585
2586/*
2587 * Reserve zones for one metadata block group, one tree-log block group, and one
2588 * system block group.
2589 */
2590void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2591{
2592	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2593	struct btrfs_block_group *block_group;
2594	struct btrfs_device *device;
2595	/* Reserve zones for normal SINGLE metadata and tree-log block group. */
2596	unsigned int metadata_reserve = 2;
2597	/* Reserve a zone for SINGLE system block group. */
2598	unsigned int system_reserve = 1;
2599
2600	if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2601		return;
2602
2603	/*
2604	 * This function is called from the mount context. So, there is no
2605	 * parallel process touching the bits. No need for read_seqretry().
2606	 */
2607	if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2608		metadata_reserve = 4;
2609	if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2610		system_reserve = 2;
2611
2612	/* Apply the reservation on all the devices. */
2613	mutex_lock(&fs_devices->device_list_mutex);
2614	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2615		if (!device->bdev)
2616			continue;
2617
2618		device->zone_info->reserved_active_zones =
2619			metadata_reserve + system_reserve;
2620	}
2621	mutex_unlock(&fs_devices->device_list_mutex);
2622
2623	/* Release reservation for currently active block groups. */
2624	spin_lock(&fs_info->zone_active_bgs_lock);
2625	list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2626		struct btrfs_chunk_map *map = block_group->physical_map;
2627
2628		if (!(block_group->flags &
2629		      (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2630			continue;
2631
2632		for (int i = 0; i < map->num_stripes; i++)
2633			map->stripes[i].dev->zone_info->reserved_active_zones--;
2634	}
2635	spin_unlock(&fs_info->zone_active_bgs_lock);
2636}
2637