1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#ifndef BTRFS_VOLUMES_H
7#define BTRFS_VOLUMES_H
8
9#include <linux/blk_types.h>
10#include <linux/sizes.h>
11#include <linux/atomic.h>
12#include <linux/sort.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/log2.h>
16#include <linux/kobject.h>
17#include <linux/refcount.h>
18#include <linux/completion.h>
19#include <linux/rbtree.h>
20#include <uapi/linux/btrfs.h>
21#include "messages.h"
22#include "rcu-string.h"
23
24struct block_device;
25struct bdev_handle;
26struct btrfs_fs_info;
27struct btrfs_block_group;
28struct btrfs_trans_handle;
29struct btrfs_zoned_device_info;
30
31#define BTRFS_MAX_DATA_CHUNK_SIZE	(10ULL * SZ_1G)
32
33extern struct mutex uuid_mutex;
34
35#define BTRFS_STRIPE_LEN		SZ_64K
36#define BTRFS_STRIPE_LEN_SHIFT		(16)
37#define BTRFS_STRIPE_LEN_MASK		(BTRFS_STRIPE_LEN - 1)
38
39static_assert(const_ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT);
40
41/* Used by sanity check for btrfs_raid_types. */
42#define const_ffs(n) (__builtin_ctzll(n) + 1)
43
44/*
45 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires
46 * RAID0 always to be the lowest profile bit.
47 * Although it's part of on-disk format and should never change, do extra
48 * compile-time sanity checks.
49 */
50static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) <
51	      const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0));
52static_assert(const_ilog2(BTRFS_BLOCK_GROUP_RAID0) >
53	      ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK));
54
55/* ilog2() can handle both constants and variables */
56#define BTRFS_BG_FLAG_TO_INDEX(profile)					\
57	ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1))
58
59enum btrfs_raid_types {
60	/* SINGLE is the special one as it doesn't have on-disk bit. */
61	BTRFS_RAID_SINGLE  = 0,
62
63	BTRFS_RAID_RAID0   = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0),
64	BTRFS_RAID_RAID1   = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1),
65	BTRFS_RAID_DUP	   = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP),
66	BTRFS_RAID_RAID10  = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10),
67	BTRFS_RAID_RAID5   = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5),
68	BTRFS_RAID_RAID6   = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6),
69	BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3),
70	BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4),
71
72	BTRFS_NR_RAID_TYPES
73};
74
75/*
76 * Use sequence counter to get consistent device stat data on
77 * 32-bit processors.
78 */
79#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
80#include <linux/seqlock.h>
81#define __BTRFS_NEED_DEVICE_DATA_ORDERED
82#define btrfs_device_data_ordered_init(device)	\
83	seqcount_init(&device->data_seqcount)
84#else
85#define btrfs_device_data_ordered_init(device) do { } while (0)
86#endif
87
88#define BTRFS_DEV_STATE_WRITEABLE	(0)
89#define BTRFS_DEV_STATE_IN_FS_METADATA	(1)
90#define BTRFS_DEV_STATE_MISSING		(2)
91#define BTRFS_DEV_STATE_REPLACE_TGT	(3)
92#define BTRFS_DEV_STATE_FLUSH_SENT	(4)
93#define BTRFS_DEV_STATE_NO_READA	(5)
94
95struct btrfs_fs_devices;
96
97struct btrfs_device {
98	struct list_head dev_list; /* device_list_mutex */
99	struct list_head dev_alloc_list; /* chunk mutex */
100	struct list_head post_commit_list; /* chunk mutex */
101	struct btrfs_fs_devices *fs_devices;
102	struct btrfs_fs_info *fs_info;
103
104	struct rcu_string __rcu *name;
105
106	u64 generation;
107
108	struct file *bdev_file;
109	struct block_device *bdev;
110
111	struct btrfs_zoned_device_info *zone_info;
112
113	/*
114	 * Device's major-minor number. Must be set even if the device is not
115	 * opened (bdev == NULL), unless the device is missing.
116	 */
117	dev_t devt;
118	unsigned long dev_state;
119	blk_status_t last_flush_error;
120
121#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
122	seqcount_t data_seqcount;
123#endif
124
125	/* the internal btrfs device id */
126	u64 devid;
127
128	/* size of the device in memory */
129	u64 total_bytes;
130
131	/* size of the device on disk */
132	u64 disk_total_bytes;
133
134	/* bytes used */
135	u64 bytes_used;
136
137	/* optimal io alignment for this device */
138	u32 io_align;
139
140	/* optimal io width for this device */
141	u32 io_width;
142	/* type and info about this device */
143	u64 type;
144
145	/* minimal io size for this device */
146	u32 sector_size;
147
148	/* physical drive uuid (or lvm uuid) */
149	u8 uuid[BTRFS_UUID_SIZE];
150
151	/*
152	 * size of the device on the current transaction
153	 *
154	 * This variant is update when committing the transaction,
155	 * and protected by chunk mutex
156	 */
157	u64 commit_total_bytes;
158
159	/* bytes used on the current transaction */
160	u64 commit_bytes_used;
161
162	/* Bio used for flushing device barriers */
163	struct bio flush_bio;
164	struct completion flush_wait;
165
166	/* per-device scrub information */
167	struct scrub_ctx *scrub_ctx;
168
169	/* disk I/O failure stats. For detailed description refer to
170	 * enum btrfs_dev_stat_values in ioctl.h */
171	int dev_stats_valid;
172
173	/* Counter to record the change of device stats */
174	atomic_t dev_stats_ccnt;
175	atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
176
177	struct extent_io_tree alloc_state;
178
179	struct completion kobj_unregister;
180	/* For sysfs/FSID/devinfo/devid/ */
181	struct kobject devid_kobj;
182
183	/* Bandwidth limit for scrub, in bytes */
184	u64 scrub_speed_max;
185};
186
187/*
188 * Block group or device which contains an active swapfile. Used for preventing
189 * unsafe operations while a swapfile is active.
190 *
191 * These are sorted on (ptr, inode) (note that a block group or device can
192 * contain more than one swapfile). We compare the pointer values because we
193 * don't actually care what the object is, we just need a quick check whether
194 * the object exists in the rbtree.
195 */
196struct btrfs_swapfile_pin {
197	struct rb_node node;
198	void *ptr;
199	struct inode *inode;
200	/*
201	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
202	 * points to a struct btrfs_device.
203	 */
204	bool is_block_group;
205	/*
206	 * Only used when 'is_block_group' is true and it is the number of
207	 * extents used by a swapfile for this block group ('ptr' field).
208	 */
209	int bg_extent_count;
210};
211
212/*
213 * If we read those variants at the context of their own lock, we needn't
214 * use the following helpers, reading them directly is safe.
215 */
216#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
217#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
218static inline u64							\
219btrfs_device_get_##name(const struct btrfs_device *dev)			\
220{									\
221	u64 size;							\
222	unsigned int seq;						\
223									\
224	do {								\
225		seq = read_seqcount_begin(&dev->data_seqcount);		\
226		size = dev->name;					\
227	} while (read_seqcount_retry(&dev->data_seqcount, seq));	\
228	return size;							\
229}									\
230									\
231static inline void							\
232btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
233{									\
234	preempt_disable();						\
235	write_seqcount_begin(&dev->data_seqcount);			\
236	dev->name = size;						\
237	write_seqcount_end(&dev->data_seqcount);			\
238	preempt_enable();						\
239}
240#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
241#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
242static inline u64							\
243btrfs_device_get_##name(const struct btrfs_device *dev)			\
244{									\
245	u64 size;							\
246									\
247	preempt_disable();						\
248	size = dev->name;						\
249	preempt_enable();						\
250	return size;							\
251}									\
252									\
253static inline void							\
254btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
255{									\
256	preempt_disable();						\
257	dev->name = size;						\
258	preempt_enable();						\
259}
260#else
261#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
262static inline u64							\
263btrfs_device_get_##name(const struct btrfs_device *dev)			\
264{									\
265	return dev->name;						\
266}									\
267									\
268static inline void							\
269btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
270{									\
271	dev->name = size;						\
272}
273#endif
274
275BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
276BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
277BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
278
279enum btrfs_chunk_allocation_policy {
280	BTRFS_CHUNK_ALLOC_REGULAR,
281	BTRFS_CHUNK_ALLOC_ZONED,
282};
283
284/*
285 * Read policies for mirrored block group profiles, read picks the stripe based
286 * on these policies.
287 */
288enum btrfs_read_policy {
289	/* Use process PID to choose the stripe */
290	BTRFS_READ_POLICY_PID,
291	BTRFS_NR_READ_POLICY,
292};
293
294#ifdef CONFIG_BTRFS_DEBUG
295/*
296 * Checksum mode - offload it to workqueues or do it synchronously in
297 * btrfs_submit_chunk().
298 */
299enum btrfs_offload_csum_mode {
300	/*
301	 * Choose offloading checksum or do it synchronously automatically.
302	 * Do it synchronously if the checksum is fast, or offload to workqueues
303	 * otherwise.
304	 */
305	BTRFS_OFFLOAD_CSUM_AUTO,
306	/* Always offload checksum to workqueues. */
307	BTRFS_OFFLOAD_CSUM_FORCE_ON,
308	/* Never offload checksum to workqueues. */
309	BTRFS_OFFLOAD_CSUM_FORCE_OFF,
310};
311#endif
312
313struct btrfs_fs_devices {
314	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
315
316	/*
317	 * UUID written into the btree blocks:
318	 *
319	 * - If metadata_uuid != fsid then super block must have
320	 *   BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set.
321	 *
322	 * - Following shall be true at all times:
323	 *   - metadata_uuid == btrfs_header::fsid
324	 *   - metadata_uuid == btrfs_dev_item::fsid
325	 *
326	 * - Relations between fsid and metadata_uuid in sb and fs_devices:
327	 *   - Normal:
328	 *       fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid
329	 *       sb->metadata_uuid == 0
330	 *
331	 *   - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set:
332	 *       fs_devices->fsid == sb->fsid
333	 *       fs_devices->metadata_uuid == sb->metadata_uuid
334	 *
335	 *   - When in-memory fs_devices->temp_fsid is true
336	 *	 fs_devices->fsid = random
337	 *	 fs_devices->metadata_uuid == sb->fsid
338	 */
339	u8 metadata_uuid[BTRFS_FSID_SIZE];
340
341	struct list_head fs_list;
342
343	/*
344	 * Number of devices under this fsid including missing and
345	 * replace-target device and excludes seed devices.
346	 */
347	u64 num_devices;
348
349	/*
350	 * The number of devices that successfully opened, including
351	 * replace-target, excludes seed devices.
352	 */
353	u64 open_devices;
354
355	/* The number of devices that are under the chunk allocation list. */
356	u64 rw_devices;
357
358	/* Count of missing devices under this fsid excluding seed device. */
359	u64 missing_devices;
360	u64 total_rw_bytes;
361
362	/*
363	 * Count of devices from btrfs_super_block::num_devices for this fsid,
364	 * which includes the seed device, excludes the transient replace-target
365	 * device.
366	 */
367	u64 total_devices;
368
369	/* Highest generation number of seen devices */
370	u64 latest_generation;
371
372	/*
373	 * The mount device or a device with highest generation after removal
374	 * or replace.
375	 */
376	struct btrfs_device *latest_dev;
377
378	/*
379	 * All of the devices in the filesystem, protected by a mutex so we can
380	 * safely walk it to write out the super blocks without worrying about
381	 * adding/removing by the multi-device code. Scrubbing super block can
382	 * kick off supers writing by holding this mutex lock.
383	 */
384	struct mutex device_list_mutex;
385
386	/* List of all devices, protected by device_list_mutex */
387	struct list_head devices;
388
389	/* Devices which can satisfy space allocation. Protected by * chunk_mutex. */
390	struct list_head alloc_list;
391
392	struct list_head seed_list;
393
394	/* Count fs-devices opened. */
395	int opened;
396
397	/* Set when we find or add a device that doesn't have the nonrot flag set. */
398	bool rotating;
399	/* Devices support TRIM/discard commands. */
400	bool discardable;
401	/* The filesystem is a seed filesystem. */
402	bool seeding;
403	/* The mount needs to use a randomly generated fsid. */
404	bool temp_fsid;
405
406	struct btrfs_fs_info *fs_info;
407	/* sysfs kobjects */
408	struct kobject fsid_kobj;
409	struct kobject *devices_kobj;
410	struct kobject *devinfo_kobj;
411	struct completion kobj_unregister;
412
413	enum btrfs_chunk_allocation_policy chunk_alloc_policy;
414
415	/* Policy used to read the mirrored stripes. */
416	enum btrfs_read_policy read_policy;
417
418#ifdef CONFIG_BTRFS_DEBUG
419	/* Checksum mode - offload it or do it synchronously. */
420	enum btrfs_offload_csum_mode offload_csum_mode;
421#endif
422};
423
424#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
425			- sizeof(struct btrfs_chunk))		\
426			/ sizeof(struct btrfs_stripe) + 1)
427
428#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
429				- 2 * sizeof(struct btrfs_disk_key)	\
430				- 2 * sizeof(struct btrfs_chunk))	\
431				/ sizeof(struct btrfs_stripe) + 1)
432
433struct btrfs_io_stripe {
434	struct btrfs_device *dev;
435	/* Block mapping. */
436	u64 physical;
437	u64 length;
438	bool is_scrub;
439	/* For the endio handler. */
440	struct btrfs_io_context *bioc;
441};
442
443struct btrfs_discard_stripe {
444	struct btrfs_device *dev;
445	u64 physical;
446	u64 length;
447};
448
449/*
450 * Context for IO subsmission for device stripe.
451 *
452 * - Track the unfinished mirrors for mirror based profiles
453 *   Mirror based profiles are SINGLE/DUP/RAID1/RAID10.
454 *
455 * - Contain the logical -> physical mapping info
456 *   Used by submit_stripe_bio() for mapping logical bio
457 *   into physical device address.
458 *
459 * - Contain device replace info
460 *   Used by handle_ops_on_dev_replace() to copy logical bios
461 *   into the new device.
462 *
463 * - Contain RAID56 full stripe logical bytenrs
464 */
465struct btrfs_io_context {
466	refcount_t refs;
467	struct btrfs_fs_info *fs_info;
468	/* Taken from struct btrfs_chunk_map::type. */
469	u64 map_type;
470	struct bio *orig_bio;
471	atomic_t error;
472	u16 max_errors;
473
474	u64 logical;
475	u64 size;
476	/* Raid stripe tree ordered entry. */
477	struct list_head rst_ordered_entry;
478
479	/*
480	 * The total number of stripes, including the extra duplicated
481	 * stripe for replace.
482	 */
483	u16 num_stripes;
484
485	/*
486	 * The mirror_num of this bioc.
487	 *
488	 * This is for reads which use 0 as mirror_num, thus we should return a
489	 * valid mirror_num (>0) for the reader.
490	 */
491	u16 mirror_num;
492
493	/*
494	 * The following two members are for dev-replace case only.
495	 *
496	 * @replace_nr_stripes:	Number of duplicated stripes which need to be
497	 *			written to replace target.
498	 *			Should be <= 2 (2 for DUP, otherwise <= 1).
499	 * @replace_stripe_src:	The array indicates where the duplicated stripes
500	 *			are from.
501	 *
502	 * The @replace_stripe_src[] array is mostly for RAID56 cases.
503	 * As non-RAID56 stripes share the same contents of the mapped range,
504	 * thus no need to bother where the duplicated ones are from.
505	 *
506	 * But for RAID56 case, all stripes contain different contents, thus
507	 * we need a way to know the mapping.
508	 *
509	 * There is an example for the two members, using a RAID5 write:
510	 *
511	 *   num_stripes:	4 (3 + 1 duplicated write)
512	 *   stripes[0]:	dev = devid 1, physical = X
513	 *   stripes[1]:	dev = devid 2, physical = Y
514	 *   stripes[2]:	dev = devid 3, physical = Z
515	 *   stripes[3]:	dev = devid 0, physical = Y
516	 *
517	 * replace_nr_stripes = 1
518	 * replace_stripe_src = 1	<- Means stripes[1] is involved in replace.
519	 *				   The duplicated stripe index would be
520	 *				   (@num_stripes - 1).
521	 *
522	 * Note, that we can still have cases replace_nr_stripes = 2 for DUP.
523	 * In that case, all stripes share the same content, thus we don't
524	 * need to bother @replace_stripe_src value at all.
525	 */
526	u16 replace_nr_stripes;
527	s16 replace_stripe_src;
528	/*
529	 * Logical bytenr of the full stripe start, only for RAID56 cases.
530	 *
531	 * When this value is set to other than (u64)-1, the stripes[] should
532	 * follow this pattern:
533	 *
534	 * (real_stripes = num_stripes - replace_nr_stripes)
535	 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1))
536	 *
537	 * stripes[0]:			The first data stripe
538	 * stripes[1]:			The second data stripe
539	 * ...
540	 * stripes[data_stripes - 1]:	The last data stripe
541	 * stripes[data_stripes]:	The P stripe
542	 * stripes[data_stripes + 1]:	The Q stripe (only for RAID6).
543	 */
544	u64 full_stripe_logical;
545	struct btrfs_io_stripe stripes[];
546};
547
548struct btrfs_device_info {
549	struct btrfs_device *dev;
550	u64 dev_offset;
551	u64 max_avail;
552	u64 total_avail;
553};
554
555struct btrfs_raid_attr {
556	u8 sub_stripes;		/* sub_stripes info for map */
557	u8 dev_stripes;		/* stripes per dev */
558	u8 devs_max;		/* max devs to use */
559	u8 devs_min;		/* min devs needed */
560	u8 tolerated_failures;	/* max tolerated fail devs */
561	u8 devs_increment;	/* ndevs has to be a multiple of this */
562	u8 ncopies;		/* how many copies to data has */
563	u8 nparity;		/* number of stripes worth of bytes to store
564				 * parity information */
565	u8 mindev_error;	/* error code if min devs requisite is unmet */
566	const char raid_name[8]; /* name of the raid */
567	u64 bg_flag;		/* block group flag of the raid */
568};
569
570extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
571
572struct btrfs_chunk_map {
573	struct rb_node rb_node;
574	/* For mount time dev extent verification. */
575	int verified_stripes;
576	refcount_t refs;
577	u64 start;
578	u64 chunk_len;
579	u64 stripe_size;
580	u64 type;
581	int io_align;
582	int io_width;
583	int num_stripes;
584	int sub_stripes;
585	struct btrfs_io_stripe stripes[];
586};
587
588#define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \
589				 (sizeof(struct btrfs_io_stripe) * (n)))
590
591static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map)
592{
593	if (map && refcount_dec_and_test(&map->refs)) {
594		ASSERT(RB_EMPTY_NODE(&map->rb_node));
595		kfree(map);
596	}
597}
598
599struct btrfs_balance_control {
600	struct btrfs_balance_args data;
601	struct btrfs_balance_args meta;
602	struct btrfs_balance_args sys;
603
604	u64 flags;
605
606	struct btrfs_balance_progress stat;
607};
608
609/*
610 * Search for a given device by the set parameters
611 */
612struct btrfs_dev_lookup_args {
613	u64 devid;
614	u8 *uuid;
615	u8 *fsid;
616	bool missing;
617};
618
619/* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */
620#define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 }
621
622#define BTRFS_DEV_LOOKUP_ARGS(name) \
623	struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT
624
625enum btrfs_map_op {
626	BTRFS_MAP_READ,
627	BTRFS_MAP_WRITE,
628	BTRFS_MAP_GET_READ_MIRRORS,
629};
630
631static inline enum btrfs_map_op btrfs_op(struct bio *bio)
632{
633	switch (bio_op(bio)) {
634	case REQ_OP_WRITE:
635	case REQ_OP_ZONE_APPEND:
636		return BTRFS_MAP_WRITE;
637	default:
638		WARN_ON_ONCE(1);
639		fallthrough;
640	case REQ_OP_READ:
641		return BTRFS_MAP_READ;
642	}
643}
644
645static inline unsigned long btrfs_chunk_item_size(int num_stripes)
646{
647	ASSERT(num_stripes);
648	return sizeof(struct btrfs_chunk) +
649		sizeof(struct btrfs_stripe) * (num_stripes - 1);
650}
651
652/*
653 * Do the type safe conversion from stripe_nr to offset inside the chunk.
654 *
655 * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger
656 * than 4G.  This does the proper type cast to avoid overflow.
657 */
658static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr)
659{
660	return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT;
661}
662
663void btrfs_get_bioc(struct btrfs_io_context *bioc);
664void btrfs_put_bioc(struct btrfs_io_context *bioc);
665int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
666		    u64 logical, u64 *length,
667		    struct btrfs_io_context **bioc_ret,
668		    struct btrfs_io_stripe *smap, int *mirror_num_ret);
669int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
670			   struct btrfs_io_stripe *smap, u64 logical,
671			   u32 length, int mirror_num);
672struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
673					       u64 logical, u64 *length_ret,
674					       u32 *num_stripes);
675int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
676int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
677struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
678					    u64 type);
679void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info);
680int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
681		       blk_mode_t flags, void *holder);
682struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
683					   bool mount_arg_dev);
684int btrfs_forget_devices(dev_t devt);
685void btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
686void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices);
687void btrfs_assign_next_active_device(struct btrfs_device *device,
688				     struct btrfs_device *this_dev);
689struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
690						  u64 devid,
691						  const char *devpath);
692int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
693				 struct btrfs_dev_lookup_args *args,
694				 const char *path);
695struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
696					const u64 *devid, const u8 *uuid,
697					const char *path);
698void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args);
699int btrfs_rm_device(struct btrfs_fs_info *fs_info,
700		    struct btrfs_dev_lookup_args *args,
701		    struct file **bdev_file);
702void __exit btrfs_cleanup_fs_uuids(void);
703int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
704int btrfs_grow_device(struct btrfs_trans_handle *trans,
705		      struct btrfs_device *device, u64 new_size);
706struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
707				       const struct btrfs_dev_lookup_args *args);
708int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
709int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
710int btrfs_balance(struct btrfs_fs_info *fs_info,
711		  struct btrfs_balance_control *bctl,
712		  struct btrfs_ioctl_balance_args *bargs);
713void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
714int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
715int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
716int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
717int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset);
718int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
719int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
720int btrfs_uuid_scan_kthread(void *data);
721bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset);
722void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
723int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
724			struct btrfs_ioctl_get_dev_stats *stats);
725int btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
726int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
727int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
728void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
729void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
730void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
731int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
732			   u64 logical, u64 len);
733unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
734				    u64 logical);
735u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map);
736int btrfs_nr_parity_stripes(u64 type);
737int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
738				     struct btrfs_block_group *bg);
739int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
740
741#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
742struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp);
743int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map);
744#endif
745
746struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp);
747struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
748					     u64 logical, u64 length);
749struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
750						    u64 logical, u64 length);
751struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
752					    u64 logical, u64 length);
753void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map);
754void btrfs_release_disk_super(struct btrfs_super_block *super);
755
756static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
757				      int index)
758{
759	atomic_inc(dev->dev_stat_values + index);
760	/*
761	 * This memory barrier orders stores updating statistics before stores
762	 * updating dev_stats_ccnt.
763	 *
764	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
765	 */
766	smp_mb__before_atomic();
767	atomic_inc(&dev->dev_stats_ccnt);
768}
769
770static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
771				      int index)
772{
773	return atomic_read(dev->dev_stat_values + index);
774}
775
776static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
777						int index)
778{
779	int ret;
780
781	ret = atomic_xchg(dev->dev_stat_values + index, 0);
782	/*
783	 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
784	 * - RMW operations that have a return value are fully ordered;
785	 *
786	 * This implicit memory barriers is paired with the smp_rmb in
787	 * btrfs_run_dev_stats
788	 */
789	atomic_inc(&dev->dev_stats_ccnt);
790	return ret;
791}
792
793static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
794				      int index, unsigned long val)
795{
796	atomic_set(dev->dev_stat_values + index, val);
797	/*
798	 * This memory barrier orders stores updating statistics before stores
799	 * updating dev_stats_ccnt.
800	 *
801	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
802	 */
803	smp_mb__before_atomic();
804	atomic_inc(&dev->dev_stats_ccnt);
805}
806
807static inline const char *btrfs_dev_name(const struct btrfs_device *device)
808{
809	if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
810		return "<missing disk>";
811	else
812		return rcu_str_deref(device->name);
813}
814
815void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
816
817struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
818bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
819					struct btrfs_device *failing_dev);
820void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device);
821
822enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags);
823int btrfs_bg_type_to_factor(u64 flags);
824const char *btrfs_bg_type_to_raid_name(u64 flags);
825int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
826bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical);
827
828bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
829u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb);
830
831#endif
832