1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "volumes.h"
20#include "raid56.h"
21#include "rcu-string.h"
22#include "dev-replace.h"
23#include "sysfs.h"
24#include "tree-checker.h"
25#include "space-info.h"
26#include "block-group.h"
27#include "discard.h"
28#include "zoned.h"
29#include "fs.h"
30#include "accessors.h"
31#include "uuid-tree.h"
32#include "ioctl.h"
33#include "relocation.h"
34#include "scrub.h"
35#include "super.h"
36#include "raid-stripe-tree.h"
37
38#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
39					 BTRFS_BLOCK_GROUP_RAID10 | \
40					 BTRFS_BLOCK_GROUP_RAID56_MASK)
41
42struct btrfs_io_geometry {
43	u32 stripe_index;
44	u32 stripe_nr;
45	int mirror_num;
46	int num_stripes;
47	u64 stripe_offset;
48	u64 raid56_full_stripe_start;
49	int max_errors;
50	enum btrfs_map_op op;
51};
52
53const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54	[BTRFS_RAID_RAID10] = {
55		.sub_stripes	= 2,
56		.dev_stripes	= 1,
57		.devs_max	= 0,	/* 0 == as many as possible */
58		.devs_min	= 2,
59		.tolerated_failures = 1,
60		.devs_increment	= 2,
61		.ncopies	= 2,
62		.nparity        = 0,
63		.raid_name	= "raid10",
64		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
65		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66	},
67	[BTRFS_RAID_RAID1] = {
68		.sub_stripes	= 1,
69		.dev_stripes	= 1,
70		.devs_max	= 2,
71		.devs_min	= 2,
72		.tolerated_failures = 1,
73		.devs_increment	= 2,
74		.ncopies	= 2,
75		.nparity        = 0,
76		.raid_name	= "raid1",
77		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
78		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79	},
80	[BTRFS_RAID_RAID1C3] = {
81		.sub_stripes	= 1,
82		.dev_stripes	= 1,
83		.devs_max	= 3,
84		.devs_min	= 3,
85		.tolerated_failures = 2,
86		.devs_increment	= 3,
87		.ncopies	= 3,
88		.nparity        = 0,
89		.raid_name	= "raid1c3",
90		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
91		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92	},
93	[BTRFS_RAID_RAID1C4] = {
94		.sub_stripes	= 1,
95		.dev_stripes	= 1,
96		.devs_max	= 4,
97		.devs_min	= 4,
98		.tolerated_failures = 3,
99		.devs_increment	= 4,
100		.ncopies	= 4,
101		.nparity        = 0,
102		.raid_name	= "raid1c4",
103		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
104		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105	},
106	[BTRFS_RAID_DUP] = {
107		.sub_stripes	= 1,
108		.dev_stripes	= 2,
109		.devs_max	= 1,
110		.devs_min	= 1,
111		.tolerated_failures = 0,
112		.devs_increment	= 1,
113		.ncopies	= 2,
114		.nparity        = 0,
115		.raid_name	= "dup",
116		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
117		.mindev_error	= 0,
118	},
119	[BTRFS_RAID_RAID0] = {
120		.sub_stripes	= 1,
121		.dev_stripes	= 1,
122		.devs_max	= 0,
123		.devs_min	= 1,
124		.tolerated_failures = 0,
125		.devs_increment	= 1,
126		.ncopies	= 1,
127		.nparity        = 0,
128		.raid_name	= "raid0",
129		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
130		.mindev_error	= 0,
131	},
132	[BTRFS_RAID_SINGLE] = {
133		.sub_stripes	= 1,
134		.dev_stripes	= 1,
135		.devs_max	= 1,
136		.devs_min	= 1,
137		.tolerated_failures = 0,
138		.devs_increment	= 1,
139		.ncopies	= 1,
140		.nparity        = 0,
141		.raid_name	= "single",
142		.bg_flag	= 0,
143		.mindev_error	= 0,
144	},
145	[BTRFS_RAID_RAID5] = {
146		.sub_stripes	= 1,
147		.dev_stripes	= 1,
148		.devs_max	= 0,
149		.devs_min	= 2,
150		.tolerated_failures = 1,
151		.devs_increment	= 1,
152		.ncopies	= 1,
153		.nparity        = 1,
154		.raid_name	= "raid5",
155		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
156		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157	},
158	[BTRFS_RAID_RAID6] = {
159		.sub_stripes	= 1,
160		.dev_stripes	= 1,
161		.devs_max	= 0,
162		.devs_min	= 3,
163		.tolerated_failures = 2,
164		.devs_increment	= 1,
165		.ncopies	= 1,
166		.nparity        = 2,
167		.raid_name	= "raid6",
168		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
169		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170	},
171};
172
173/*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
177enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178{
179	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181	if (!profile)
182		return BTRFS_RAID_SINGLE;
183
184	return BTRFS_BG_FLAG_TO_INDEX(profile);
185}
186
187const char *btrfs_bg_type_to_raid_name(u64 flags)
188{
189	const int index = btrfs_bg_flags_to_raid_index(flags);
190
191	if (index >= BTRFS_NR_RAID_TYPES)
192		return NULL;
193
194	return btrfs_raid_array[index].raid_name;
195}
196
197int btrfs_nr_parity_stripes(u64 type)
198{
199	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201	return btrfs_raid_array[index].nparity;
202}
203
204/*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
208void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209{
210	int i;
211	int ret;
212	char *bp = buf;
213	u64 flags = bg_flags;
214	u32 size_bp = size_buf;
215
216	if (!flags) {
217		strcpy(bp, "NONE");
218		return;
219	}
220
221#define DESCRIBE_FLAG(flag, desc)						\
222	do {								\
223		if (flags & (flag)) {					\
224			ret = snprintf(bp, size_bp, "%s|", (desc));	\
225			if (ret < 0 || ret >= size_bp)			\
226				goto out_overflow;			\
227			size_bp -= ret;					\
228			bp += ret;					\
229			flags &= ~(flag);				\
230		}							\
231	} while (0)
232
233	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236
237	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240			      btrfs_raid_array[i].raid_name);
241#undef DESCRIBE_FLAG
242
243	if (flags) {
244		ret = snprintf(bp, size_bp, "0x%llx|", flags);
245		size_bp -= ret;
246	}
247
248	if (size_bp < size_buf)
249		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250
251	/*
252	 * The text is trimmed, it's up to the caller to provide sufficiently
253	 * large buffer
254	 */
255out_overflow:;
256}
257
258static int init_first_rw_device(struct btrfs_trans_handle *trans);
259static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261
262/*
263 * Device locking
264 * ==============
265 *
266 * There are several mutexes that protect manipulation of devices and low-level
267 * structures like chunks but not block groups, extents or files
268 *
269 * uuid_mutex (global lock)
270 * ------------------------
271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273 * device) or requested by the device= mount option
274 *
275 * the mutex can be very coarse and can cover long-running operations
276 *
277 * protects: updates to fs_devices counters like missing devices, rw devices,
278 * seeding, structure cloning, opening/closing devices at mount/umount time
279 *
280 * global::fs_devs - add, remove, updates to the global list
281 *
282 * does not protect: manipulation of the fs_devices::devices list in general
283 * but in mount context it could be used to exclude list modifications by eg.
284 * scan ioctl
285 *
286 * btrfs_device::name - renames (write side), read is RCU
287 *
288 * fs_devices::device_list_mutex (per-fs, with RCU)
289 * ------------------------------------------------
290 * protects updates to fs_devices::devices, ie. adding and deleting
291 *
292 * simple list traversal with read-only actions can be done with RCU protection
293 *
294 * may be used to exclude some operations from running concurrently without any
295 * modifications to the list (see write_all_supers)
296 *
297 * Is not required at mount and close times, because our device list is
298 * protected by the uuid_mutex at that point.
299 *
300 * balance_mutex
301 * -------------
302 * protects balance structures (status, state) and context accessed from
303 * several places (internally, ioctl)
304 *
305 * chunk_mutex
306 * -----------
307 * protects chunks, adding or removing during allocation, trim or when a new
308 * device is added/removed. Additionally it also protects post_commit_list of
309 * individual devices, since they can be added to the transaction's
310 * post_commit_list only with chunk_mutex held.
311 *
312 * cleaner_mutex
313 * -------------
314 * a big lock that is held by the cleaner thread and prevents running subvolume
315 * cleaning together with relocation or delayed iputs
316 *
317 *
318 * Lock nesting
319 * ============
320 *
321 * uuid_mutex
322 *   device_list_mutex
323 *     chunk_mutex
324 *   balance_mutex
325 *
326 *
327 * Exclusive operations
328 * ====================
329 *
330 * Maintains the exclusivity of the following operations that apply to the
331 * whole filesystem and cannot run in parallel.
332 *
333 * - Balance (*)
334 * - Device add
335 * - Device remove
336 * - Device replace (*)
337 * - Resize
338 *
339 * The device operations (as above) can be in one of the following states:
340 *
341 * - Running state
342 * - Paused state
343 * - Completed state
344 *
345 * Only device operations marked with (*) can go into the Paused state for the
346 * following reasons:
347 *
348 * - ioctl (only Balance can be Paused through ioctl)
349 * - filesystem remounted as read-only
350 * - filesystem unmounted and mounted as read-only
351 * - system power-cycle and filesystem mounted as read-only
352 * - filesystem or device errors leading to forced read-only
353 *
354 * The status of exclusive operation is set and cleared atomically.
355 * During the course of Paused state, fs_info::exclusive_operation remains set.
356 * A device operation in Paused or Running state can be canceled or resumed
357 * either by ioctl (Balance only) or when remounted as read-write.
358 * The exclusive status is cleared when the device operation is canceled or
359 * completed.
360 */
361
362DEFINE_MUTEX(uuid_mutex);
363static LIST_HEAD(fs_uuids);
364struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365{
366	return &fs_uuids;
367}
368
369/*
370 * Allocate new btrfs_fs_devices structure identified by a fsid.
371 *
372 * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
373 *           fs_devices::metadata_fsid
374 *
375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376 * The returned struct is not linked onto any lists and can be destroyed with
377 * kfree() right away.
378 */
379static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380{
381	struct btrfs_fs_devices *fs_devs;
382
383	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384	if (!fs_devs)
385		return ERR_PTR(-ENOMEM);
386
387	mutex_init(&fs_devs->device_list_mutex);
388
389	INIT_LIST_HEAD(&fs_devs->devices);
390	INIT_LIST_HEAD(&fs_devs->alloc_list);
391	INIT_LIST_HEAD(&fs_devs->fs_list);
392	INIT_LIST_HEAD(&fs_devs->seed_list);
393
394	if (fsid) {
395		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397	}
398
399	return fs_devs;
400}
401
402static void btrfs_free_device(struct btrfs_device *device)
403{
404	WARN_ON(!list_empty(&device->post_commit_list));
405	rcu_string_free(device->name);
406	extent_io_tree_release(&device->alloc_state);
407	btrfs_destroy_dev_zone_info(device);
408	kfree(device);
409}
410
411static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412{
413	struct btrfs_device *device;
414
415	WARN_ON(fs_devices->opened);
416	while (!list_empty(&fs_devices->devices)) {
417		device = list_entry(fs_devices->devices.next,
418				    struct btrfs_device, dev_list);
419		list_del(&device->dev_list);
420		btrfs_free_device(device);
421	}
422	kfree(fs_devices);
423}
424
425void __exit btrfs_cleanup_fs_uuids(void)
426{
427	struct btrfs_fs_devices *fs_devices;
428
429	while (!list_empty(&fs_uuids)) {
430		fs_devices = list_entry(fs_uuids.next,
431					struct btrfs_fs_devices, fs_list);
432		list_del(&fs_devices->fs_list);
433		free_fs_devices(fs_devices);
434	}
435}
436
437static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438				  const u8 *fsid, const u8 *metadata_fsid)
439{
440	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441		return false;
442
443	if (!metadata_fsid)
444		return true;
445
446	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447		return false;
448
449	return true;
450}
451
452static noinline struct btrfs_fs_devices *find_fsid(
453		const u8 *fsid, const u8 *metadata_fsid)
454{
455	struct btrfs_fs_devices *fs_devices;
456
457	ASSERT(fsid);
458
459	/* Handle non-split brain cases */
460	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462			return fs_devices;
463	}
464	return NULL;
465}
466
467static int
468btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469		      int flush, struct file **bdev_file,
470		      struct btrfs_super_block **disk_super)
471{
472	struct block_device *bdev;
473	int ret;
474
475	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476
477	if (IS_ERR(*bdev_file)) {
478		ret = PTR_ERR(*bdev_file);
479		goto error;
480	}
481	bdev = file_bdev(*bdev_file);
482
483	if (flush)
484		sync_blockdev(bdev);
485	ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
486	if (ret) {
487		fput(*bdev_file);
488		goto error;
489	}
490	invalidate_bdev(bdev);
491	*disk_super = btrfs_read_dev_super(bdev);
492	if (IS_ERR(*disk_super)) {
493		ret = PTR_ERR(*disk_super);
494		fput(*bdev_file);
495		goto error;
496	}
497
498	return 0;
499
500error:
501	*bdev_file = NULL;
502	return ret;
503}
504
505/*
506 *  Search and remove all stale devices (which are not mounted).  When both
507 *  inputs are NULL, it will search and release all stale devices.
508 *
509 *  @devt:         Optional. When provided will it release all unmounted devices
510 *                 matching this devt only.
511 *  @skip_device:  Optional. Will skip this device when searching for the stale
512 *                 devices.
513 *
514 *  Return:	0 for success or if @devt is 0.
515 *		-EBUSY if @devt is a mounted device.
516 *		-ENOENT if @devt does not match any device in the list.
517 */
518static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
519{
520	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
521	struct btrfs_device *device, *tmp_device;
522	int ret;
523	bool freed = false;
524
525	lockdep_assert_held(&uuid_mutex);
526
527	/* Return good status if there is no instance of devt. */
528	ret = 0;
529	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
530
531		mutex_lock(&fs_devices->device_list_mutex);
532		list_for_each_entry_safe(device, tmp_device,
533					 &fs_devices->devices, dev_list) {
534			if (skip_device && skip_device == device)
535				continue;
536			if (devt && devt != device->devt)
537				continue;
538			if (fs_devices->opened) {
539				if (devt)
540					ret = -EBUSY;
541				break;
542			}
543
544			/* delete the stale device */
545			fs_devices->num_devices--;
546			list_del(&device->dev_list);
547			btrfs_free_device(device);
548
549			freed = true;
550		}
551		mutex_unlock(&fs_devices->device_list_mutex);
552
553		if (fs_devices->num_devices == 0) {
554			btrfs_sysfs_remove_fsid(fs_devices);
555			list_del(&fs_devices->fs_list);
556			free_fs_devices(fs_devices);
557		}
558	}
559
560	/* If there is at least one freed device return 0. */
561	if (freed)
562		return 0;
563
564	return ret;
565}
566
567static struct btrfs_fs_devices *find_fsid_by_device(
568					struct btrfs_super_block *disk_super,
569					dev_t devt, bool *same_fsid_diff_dev)
570{
571	struct btrfs_fs_devices *fsid_fs_devices;
572	struct btrfs_fs_devices *devt_fs_devices;
573	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
574					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
575	bool found_by_devt = false;
576
577	/* Find the fs_device by the usual method, if found use it. */
578	fsid_fs_devices = find_fsid(disk_super->fsid,
579		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
580
581	/* The temp_fsid feature is supported only with single device filesystem. */
582	if (btrfs_super_num_devices(disk_super) != 1)
583		return fsid_fs_devices;
584
585	/*
586	 * A seed device is an integral component of the sprout device, which
587	 * functions as a multi-device filesystem. So, temp-fsid feature is
588	 * not supported.
589	 */
590	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
591		return fsid_fs_devices;
592
593	/* Try to find a fs_devices by matching devt. */
594	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
595		struct btrfs_device *device;
596
597		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
598			if (device->devt == devt) {
599				found_by_devt = true;
600				break;
601			}
602		}
603		if (found_by_devt)
604			break;
605	}
606
607	if (found_by_devt) {
608		/* Existing device. */
609		if (fsid_fs_devices == NULL) {
610			if (devt_fs_devices->opened == 0) {
611				/* Stale device. */
612				return NULL;
613			} else {
614				/* temp_fsid is mounting a subvol. */
615				return devt_fs_devices;
616			}
617		} else {
618			/* Regular or temp_fsid device mounting a subvol. */
619			return devt_fs_devices;
620		}
621	} else {
622		/* New device. */
623		if (fsid_fs_devices == NULL) {
624			return NULL;
625		} else {
626			/* sb::fsid is already used create a new temp_fsid. */
627			*same_fsid_diff_dev = true;
628			return NULL;
629		}
630	}
631
632	/* Not reached. */
633}
634
635/*
636 * This is only used on mount, and we are protected from competing things
637 * messing with our fs_devices by the uuid_mutex, thus we do not need the
638 * fs_devices->device_list_mutex here.
639 */
640static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
641			struct btrfs_device *device, blk_mode_t flags,
642			void *holder)
643{
644	struct file *bdev_file;
645	struct btrfs_super_block *disk_super;
646	u64 devid;
647	int ret;
648
649	if (device->bdev)
650		return -EINVAL;
651	if (!device->name)
652		return -EINVAL;
653
654	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
655				    &bdev_file, &disk_super);
656	if (ret)
657		return ret;
658
659	devid = btrfs_stack_device_id(&disk_super->dev_item);
660	if (devid != device->devid)
661		goto error_free_page;
662
663	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
664		goto error_free_page;
665
666	device->generation = btrfs_super_generation(disk_super);
667
668	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
669		if (btrfs_super_incompat_flags(disk_super) &
670		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
671			pr_err(
672		"BTRFS: Invalid seeding and uuid-changed device detected\n");
673			goto error_free_page;
674		}
675
676		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
677		fs_devices->seeding = true;
678	} else {
679		if (bdev_read_only(file_bdev(bdev_file)))
680			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
681		else
682			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683	}
684
685	if (!bdev_nonrot(file_bdev(bdev_file)))
686		fs_devices->rotating = true;
687
688	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
689		fs_devices->discardable = true;
690
691	device->bdev_file = bdev_file;
692	device->bdev = file_bdev(bdev_file);
693	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
694
695	if (device->devt != device->bdev->bd_dev) {
696		btrfs_warn(NULL,
697			   "device %s maj:min changed from %d:%d to %d:%d",
698			   device->name->str, MAJOR(device->devt),
699			   MINOR(device->devt), MAJOR(device->bdev->bd_dev),
700			   MINOR(device->bdev->bd_dev));
701
702		device->devt = device->bdev->bd_dev;
703	}
704
705	fs_devices->open_devices++;
706	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
707	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
708		fs_devices->rw_devices++;
709		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
710	}
711	btrfs_release_disk_super(disk_super);
712
713	return 0;
714
715error_free_page:
716	btrfs_release_disk_super(disk_super);
717	fput(bdev_file);
718
719	return -EINVAL;
720}
721
722u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
723{
724	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
725				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
726
727	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
728}
729
730/*
731 * Add new device to list of registered devices
732 *
733 * Returns:
734 * device pointer which was just added or updated when successful
735 * error pointer when failed
736 */
737static noinline struct btrfs_device *device_list_add(const char *path,
738			   struct btrfs_super_block *disk_super,
739			   bool *new_device_added)
740{
741	struct btrfs_device *device;
742	struct btrfs_fs_devices *fs_devices = NULL;
743	struct rcu_string *name;
744	u64 found_transid = btrfs_super_generation(disk_super);
745	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
746	dev_t path_devt;
747	int error;
748	bool same_fsid_diff_dev = false;
749	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
750		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
751
752	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
753		btrfs_err(NULL,
754"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
755			  path);
756		return ERR_PTR(-EAGAIN);
757	}
758
759	error = lookup_bdev(path, &path_devt);
760	if (error) {
761		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
762			  path, error);
763		return ERR_PTR(error);
764	}
765
766	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
767
768	if (!fs_devices) {
769		fs_devices = alloc_fs_devices(disk_super->fsid);
770		if (IS_ERR(fs_devices))
771			return ERR_CAST(fs_devices);
772
773		if (has_metadata_uuid)
774			memcpy(fs_devices->metadata_uuid,
775			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
776
777		if (same_fsid_diff_dev) {
778			generate_random_uuid(fs_devices->fsid);
779			fs_devices->temp_fsid = true;
780		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
781				path, MAJOR(path_devt), MINOR(path_devt),
782				fs_devices->fsid);
783		}
784
785		mutex_lock(&fs_devices->device_list_mutex);
786		list_add(&fs_devices->fs_list, &fs_uuids);
787
788		device = NULL;
789	} else {
790		struct btrfs_dev_lookup_args args = {
791			.devid = devid,
792			.uuid = disk_super->dev_item.uuid,
793		};
794
795		mutex_lock(&fs_devices->device_list_mutex);
796		device = btrfs_find_device(fs_devices, &args);
797
798		if (found_transid > fs_devices->latest_generation) {
799			memcpy(fs_devices->fsid, disk_super->fsid,
800					BTRFS_FSID_SIZE);
801			memcpy(fs_devices->metadata_uuid,
802			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
803		}
804	}
805
806	if (!device) {
807		unsigned int nofs_flag;
808
809		if (fs_devices->opened) {
810			btrfs_err(NULL,
811"device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
812				  path, MAJOR(path_devt), MINOR(path_devt),
813				  fs_devices->fsid, current->comm,
814				  task_pid_nr(current));
815			mutex_unlock(&fs_devices->device_list_mutex);
816			return ERR_PTR(-EBUSY);
817		}
818
819		nofs_flag = memalloc_nofs_save();
820		device = btrfs_alloc_device(NULL, &devid,
821					    disk_super->dev_item.uuid, path);
822		memalloc_nofs_restore(nofs_flag);
823		if (IS_ERR(device)) {
824			mutex_unlock(&fs_devices->device_list_mutex);
825			/* we can safely leave the fs_devices entry around */
826			return device;
827		}
828
829		device->devt = path_devt;
830
831		list_add_rcu(&device->dev_list, &fs_devices->devices);
832		fs_devices->num_devices++;
833
834		device->fs_devices = fs_devices;
835		*new_device_added = true;
836
837		if (disk_super->label[0])
838			pr_info(
839"BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
840				disk_super->label, devid, found_transid, path,
841				MAJOR(path_devt), MINOR(path_devt),
842				current->comm, task_pid_nr(current));
843		else
844			pr_info(
845"BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
846				disk_super->fsid, devid, found_transid, path,
847				MAJOR(path_devt), MINOR(path_devt),
848				current->comm, task_pid_nr(current));
849
850	} else if (!device->name || strcmp(device->name->str, path)) {
851		/*
852		 * When FS is already mounted.
853		 * 1. If you are here and if the device->name is NULL that
854		 *    means this device was missing at time of FS mount.
855		 * 2. If you are here and if the device->name is different
856		 *    from 'path' that means either
857		 *      a. The same device disappeared and reappeared with
858		 *         different name. or
859		 *      b. The missing-disk-which-was-replaced, has
860		 *         reappeared now.
861		 *
862		 * We must allow 1 and 2a above. But 2b would be a spurious
863		 * and unintentional.
864		 *
865		 * Further in case of 1 and 2a above, the disk at 'path'
866		 * would have missed some transaction when it was away and
867		 * in case of 2a the stale bdev has to be updated as well.
868		 * 2b must not be allowed at all time.
869		 */
870
871		/*
872		 * For now, we do allow update to btrfs_fs_device through the
873		 * btrfs dev scan cli after FS has been mounted.  We're still
874		 * tracking a problem where systems fail mount by subvolume id
875		 * when we reject replacement on a mounted FS.
876		 */
877		if (!fs_devices->opened && found_transid < device->generation) {
878			/*
879			 * That is if the FS is _not_ mounted and if you
880			 * are here, that means there is more than one
881			 * disk with same uuid and devid.We keep the one
882			 * with larger generation number or the last-in if
883			 * generation are equal.
884			 */
885			mutex_unlock(&fs_devices->device_list_mutex);
886			btrfs_err(NULL,
887"device %s already registered with a higher generation, found %llu expect %llu",
888				  path, found_transid, device->generation);
889			return ERR_PTR(-EEXIST);
890		}
891
892		/*
893		 * We are going to replace the device path for a given devid,
894		 * make sure it's the same device if the device is mounted
895		 *
896		 * NOTE: the device->fs_info may not be reliable here so pass
897		 * in a NULL to message helpers instead. This avoids a possible
898		 * use-after-free when the fs_info and fs_info->sb are already
899		 * torn down.
900		 */
901		if (device->bdev) {
902			if (device->devt != path_devt) {
903				mutex_unlock(&fs_devices->device_list_mutex);
904				btrfs_warn_in_rcu(NULL,
905	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
906						  path, devid, found_transid,
907						  current->comm,
908						  task_pid_nr(current));
909				return ERR_PTR(-EEXIST);
910			}
911			btrfs_info_in_rcu(NULL,
912	"devid %llu device path %s changed to %s scanned by %s (%d)",
913					  devid, btrfs_dev_name(device),
914					  path, current->comm,
915					  task_pid_nr(current));
916		}
917
918		name = rcu_string_strdup(path, GFP_NOFS);
919		if (!name) {
920			mutex_unlock(&fs_devices->device_list_mutex);
921			return ERR_PTR(-ENOMEM);
922		}
923		rcu_string_free(device->name);
924		rcu_assign_pointer(device->name, name);
925		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
926			fs_devices->missing_devices--;
927			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
928		}
929		device->devt = path_devt;
930	}
931
932	/*
933	 * Unmount does not free the btrfs_device struct but would zero
934	 * generation along with most of the other members. So just update
935	 * it back. We need it to pick the disk with largest generation
936	 * (as above).
937	 */
938	if (!fs_devices->opened) {
939		device->generation = found_transid;
940		fs_devices->latest_generation = max_t(u64, found_transid,
941						fs_devices->latest_generation);
942	}
943
944	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
945
946	mutex_unlock(&fs_devices->device_list_mutex);
947	return device;
948}
949
950static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
951{
952	struct btrfs_fs_devices *fs_devices;
953	struct btrfs_device *device;
954	struct btrfs_device *orig_dev;
955	int ret = 0;
956
957	lockdep_assert_held(&uuid_mutex);
958
959	fs_devices = alloc_fs_devices(orig->fsid);
960	if (IS_ERR(fs_devices))
961		return fs_devices;
962
963	fs_devices->total_devices = orig->total_devices;
964
965	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
966		const char *dev_path = NULL;
967
968		/*
969		 * This is ok to do without RCU read locked because we hold the
970		 * uuid mutex so nothing we touch in here is going to disappear.
971		 */
972		if (orig_dev->name)
973			dev_path = orig_dev->name->str;
974
975		device = btrfs_alloc_device(NULL, &orig_dev->devid,
976					    orig_dev->uuid, dev_path);
977		if (IS_ERR(device)) {
978			ret = PTR_ERR(device);
979			goto error;
980		}
981
982		if (orig_dev->zone_info) {
983			struct btrfs_zoned_device_info *zone_info;
984
985			zone_info = btrfs_clone_dev_zone_info(orig_dev);
986			if (!zone_info) {
987				btrfs_free_device(device);
988				ret = -ENOMEM;
989				goto error;
990			}
991			device->zone_info = zone_info;
992		}
993
994		list_add(&device->dev_list, &fs_devices->devices);
995		device->fs_devices = fs_devices;
996		fs_devices->num_devices++;
997	}
998	return fs_devices;
999error:
1000	free_fs_devices(fs_devices);
1001	return ERR_PTR(ret);
1002}
1003
1004static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1005				      struct btrfs_device **latest_dev)
1006{
1007	struct btrfs_device *device, *next;
1008
1009	/* This is the initialized path, it is safe to release the devices. */
1010	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1011		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1012			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1013				      &device->dev_state) &&
1014			    !test_bit(BTRFS_DEV_STATE_MISSING,
1015				      &device->dev_state) &&
1016			    (!*latest_dev ||
1017			     device->generation > (*latest_dev)->generation)) {
1018				*latest_dev = device;
1019			}
1020			continue;
1021		}
1022
1023		/*
1024		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1025		 * in btrfs_init_dev_replace() so just continue.
1026		 */
1027		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1028			continue;
1029
1030		if (device->bdev_file) {
1031			fput(device->bdev_file);
1032			device->bdev = NULL;
1033			device->bdev_file = NULL;
1034			fs_devices->open_devices--;
1035		}
1036		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1037			list_del_init(&device->dev_alloc_list);
1038			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1039			fs_devices->rw_devices--;
1040		}
1041		list_del_init(&device->dev_list);
1042		fs_devices->num_devices--;
1043		btrfs_free_device(device);
1044	}
1045
1046}
1047
1048/*
1049 * After we have read the system tree and know devids belonging to this
1050 * filesystem, remove the device which does not belong there.
1051 */
1052void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1053{
1054	struct btrfs_device *latest_dev = NULL;
1055	struct btrfs_fs_devices *seed_dev;
1056
1057	mutex_lock(&uuid_mutex);
1058	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1059
1060	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1061		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1062
1063	fs_devices->latest_dev = latest_dev;
1064
1065	mutex_unlock(&uuid_mutex);
1066}
1067
1068static void btrfs_close_bdev(struct btrfs_device *device)
1069{
1070	if (!device->bdev)
1071		return;
1072
1073	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1074		sync_blockdev(device->bdev);
1075		invalidate_bdev(device->bdev);
1076	}
1077
1078	fput(device->bdev_file);
1079}
1080
1081static void btrfs_close_one_device(struct btrfs_device *device)
1082{
1083	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1084
1085	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1086	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1087		list_del_init(&device->dev_alloc_list);
1088		fs_devices->rw_devices--;
1089	}
1090
1091	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1092		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1093
1094	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1095		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1096		fs_devices->missing_devices--;
1097	}
1098
1099	btrfs_close_bdev(device);
1100	if (device->bdev) {
1101		fs_devices->open_devices--;
1102		device->bdev = NULL;
1103	}
1104	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1105	btrfs_destroy_dev_zone_info(device);
1106
1107	device->fs_info = NULL;
1108	atomic_set(&device->dev_stats_ccnt, 0);
1109	extent_io_tree_release(&device->alloc_state);
1110
1111	/*
1112	 * Reset the flush error record. We might have a transient flush error
1113	 * in this mount, and if so we aborted the current transaction and set
1114	 * the fs to an error state, guaranteeing no super blocks can be further
1115	 * committed. However that error might be transient and if we unmount the
1116	 * filesystem and mount it again, we should allow the mount to succeed
1117	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1118	 * filesystem again we still get flush errors, then we will again abort
1119	 * any transaction and set the error state, guaranteeing no commits of
1120	 * unsafe super blocks.
1121	 */
1122	device->last_flush_error = 0;
1123
1124	/* Verify the device is back in a pristine state  */
1125	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1126	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1127	WARN_ON(!list_empty(&device->dev_alloc_list));
1128	WARN_ON(!list_empty(&device->post_commit_list));
1129}
1130
1131static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1132{
1133	struct btrfs_device *device, *tmp;
1134
1135	lockdep_assert_held(&uuid_mutex);
1136
1137	if (--fs_devices->opened > 0)
1138		return;
1139
1140	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1141		btrfs_close_one_device(device);
1142
1143	WARN_ON(fs_devices->open_devices);
1144	WARN_ON(fs_devices->rw_devices);
1145	fs_devices->opened = 0;
1146	fs_devices->seeding = false;
1147	fs_devices->fs_info = NULL;
1148}
1149
1150void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1151{
1152	LIST_HEAD(list);
1153	struct btrfs_fs_devices *tmp;
1154
1155	mutex_lock(&uuid_mutex);
1156	close_fs_devices(fs_devices);
1157	if (!fs_devices->opened) {
1158		list_splice_init(&fs_devices->seed_list, &list);
1159
1160		/*
1161		 * If the struct btrfs_fs_devices is not assembled with any
1162		 * other device, it can be re-initialized during the next mount
1163		 * without the needing device-scan step. Therefore, it can be
1164		 * fully freed.
1165		 */
1166		if (fs_devices->num_devices == 1) {
1167			list_del(&fs_devices->fs_list);
1168			free_fs_devices(fs_devices);
1169		}
1170	}
1171
1172
1173	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1174		close_fs_devices(fs_devices);
1175		list_del(&fs_devices->seed_list);
1176		free_fs_devices(fs_devices);
1177	}
1178	mutex_unlock(&uuid_mutex);
1179}
1180
1181static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1182				blk_mode_t flags, void *holder)
1183{
1184	struct btrfs_device *device;
1185	struct btrfs_device *latest_dev = NULL;
1186	struct btrfs_device *tmp_device;
1187	int ret = 0;
1188
1189	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1190				 dev_list) {
1191		int ret2;
1192
1193		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1194		if (ret2 == 0 &&
1195		    (!latest_dev || device->generation > latest_dev->generation)) {
1196			latest_dev = device;
1197		} else if (ret2 == -ENODATA) {
1198			fs_devices->num_devices--;
1199			list_del(&device->dev_list);
1200			btrfs_free_device(device);
1201		}
1202		if (ret == 0 && ret2 != 0)
1203			ret = ret2;
1204	}
1205
1206	if (fs_devices->open_devices == 0) {
1207		if (ret)
1208			return ret;
1209		return -EINVAL;
1210	}
1211
1212	fs_devices->opened = 1;
1213	fs_devices->latest_dev = latest_dev;
1214	fs_devices->total_rw_bytes = 0;
1215	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1216	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1217
1218	return 0;
1219}
1220
1221static int devid_cmp(void *priv, const struct list_head *a,
1222		     const struct list_head *b)
1223{
1224	const struct btrfs_device *dev1, *dev2;
1225
1226	dev1 = list_entry(a, struct btrfs_device, dev_list);
1227	dev2 = list_entry(b, struct btrfs_device, dev_list);
1228
1229	if (dev1->devid < dev2->devid)
1230		return -1;
1231	else if (dev1->devid > dev2->devid)
1232		return 1;
1233	return 0;
1234}
1235
1236int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1237		       blk_mode_t flags, void *holder)
1238{
1239	int ret;
1240
1241	lockdep_assert_held(&uuid_mutex);
1242	/*
1243	 * The device_list_mutex cannot be taken here in case opening the
1244	 * underlying device takes further locks like open_mutex.
1245	 *
1246	 * We also don't need the lock here as this is called during mount and
1247	 * exclusion is provided by uuid_mutex
1248	 */
1249
1250	if (fs_devices->opened) {
1251		fs_devices->opened++;
1252		ret = 0;
1253	} else {
1254		list_sort(NULL, &fs_devices->devices, devid_cmp);
1255		ret = open_fs_devices(fs_devices, flags, holder);
1256	}
1257
1258	return ret;
1259}
1260
1261void btrfs_release_disk_super(struct btrfs_super_block *super)
1262{
1263	struct page *page = virt_to_page(super);
1264
1265	put_page(page);
1266}
1267
1268static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1269						       u64 bytenr, u64 bytenr_orig)
1270{
1271	struct btrfs_super_block *disk_super;
1272	struct page *page;
1273	void *p;
1274	pgoff_t index;
1275
1276	/* make sure our super fits in the device */
1277	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1278		return ERR_PTR(-EINVAL);
1279
1280	/* make sure our super fits in the page */
1281	if (sizeof(*disk_super) > PAGE_SIZE)
1282		return ERR_PTR(-EINVAL);
1283
1284	/* make sure our super doesn't straddle pages on disk */
1285	index = bytenr >> PAGE_SHIFT;
1286	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1287		return ERR_PTR(-EINVAL);
1288
1289	/* pull in the page with our super */
1290	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1291
1292	if (IS_ERR(page))
1293		return ERR_CAST(page);
1294
1295	p = page_address(page);
1296
1297	/* align our pointer to the offset of the super block */
1298	disk_super = p + offset_in_page(bytenr);
1299
1300	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1301	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1302		btrfs_release_disk_super(p);
1303		return ERR_PTR(-EINVAL);
1304	}
1305
1306	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1307		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1308
1309	return disk_super;
1310}
1311
1312int btrfs_forget_devices(dev_t devt)
1313{
1314	int ret;
1315
1316	mutex_lock(&uuid_mutex);
1317	ret = btrfs_free_stale_devices(devt, NULL);
1318	mutex_unlock(&uuid_mutex);
1319
1320	return ret;
1321}
1322
1323static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1324				    const char *path, dev_t devt,
1325				    bool mount_arg_dev)
1326{
1327	struct btrfs_fs_devices *fs_devices;
1328
1329	/*
1330	 * Do not skip device registration for mounted devices with matching
1331	 * maj:min but different paths. Booting without initrd relies on
1332	 * /dev/root initially, later replaced with the actual root device.
1333	 * A successful scan ensures grub2-probe selects the correct device.
1334	 */
1335	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1336		struct btrfs_device *device;
1337
1338		mutex_lock(&fs_devices->device_list_mutex);
1339
1340		if (!fs_devices->opened) {
1341			mutex_unlock(&fs_devices->device_list_mutex);
1342			continue;
1343		}
1344
1345		list_for_each_entry(device, &fs_devices->devices, dev_list) {
1346			if (device->bdev && (device->bdev->bd_dev == devt) &&
1347			    strcmp(device->name->str, path) != 0) {
1348				mutex_unlock(&fs_devices->device_list_mutex);
1349
1350				/* Do not skip registration. */
1351				return false;
1352			}
1353		}
1354		mutex_unlock(&fs_devices->device_list_mutex);
1355	}
1356
1357	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1358	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1359		return true;
1360
1361	return false;
1362}
1363
1364/*
1365 * Look for a btrfs signature on a device. This may be called out of the mount path
1366 * and we are not allowed to call set_blocksize during the scan. The superblock
1367 * is read via pagecache.
1368 *
1369 * With @mount_arg_dev it's a scan during mount time that will always register
1370 * the device or return an error. Multi-device and seeding devices are registered
1371 * in both cases.
1372 */
1373struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1374					   bool mount_arg_dev)
1375{
1376	struct btrfs_super_block *disk_super;
1377	bool new_device_added = false;
1378	struct btrfs_device *device = NULL;
1379	struct file *bdev_file;
1380	u64 bytenr, bytenr_orig;
1381	dev_t devt;
1382	int ret;
1383
1384	lockdep_assert_held(&uuid_mutex);
1385
1386	/*
1387	 * we would like to check all the supers, but that would make
1388	 * a btrfs mount succeed after a mkfs from a different FS.
1389	 * So, we need to add a special mount option to scan for
1390	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1391	 */
1392
1393	/*
1394	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1395	 * device scan which may race with the user's mount or mkfs command,
1396	 * resulting in failure.
1397	 * Since the device scan is solely for reading purposes, there is no
1398	 * need for an exclusive open. Additionally, the devices are read again
1399	 * during the mount process. It is ok to get some inconsistent
1400	 * values temporarily, as the device paths of the fsid are the only
1401	 * required information for assembling the volume.
1402	 */
1403	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1404	if (IS_ERR(bdev_file))
1405		return ERR_CAST(bdev_file);
1406
1407	bytenr_orig = btrfs_sb_offset(0);
1408	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1409	if (ret) {
1410		device = ERR_PTR(ret);
1411		goto error_bdev_put;
1412	}
1413
1414	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1415					   bytenr_orig);
1416	if (IS_ERR(disk_super)) {
1417		device = ERR_CAST(disk_super);
1418		goto error_bdev_put;
1419	}
1420
1421	devt = file_bdev(bdev_file)->bd_dev;
1422	if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1423		pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1424			  path, MAJOR(devt), MINOR(devt));
1425
1426		btrfs_free_stale_devices(devt, NULL);
1427
1428		device = NULL;
1429		goto free_disk_super;
1430	}
1431
1432	device = device_list_add(path, disk_super, &new_device_added);
1433	if (!IS_ERR(device) && new_device_added)
1434		btrfs_free_stale_devices(device->devt, device);
1435
1436free_disk_super:
1437	btrfs_release_disk_super(disk_super);
1438
1439error_bdev_put:
1440	fput(bdev_file);
1441
1442	return device;
1443}
1444
1445/*
1446 * Try to find a chunk that intersects [start, start + len] range and when one
1447 * such is found, record the end of it in *start
1448 */
1449static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1450				    u64 len)
1451{
1452	u64 physical_start, physical_end;
1453
1454	lockdep_assert_held(&device->fs_info->chunk_mutex);
1455
1456	if (find_first_extent_bit(&device->alloc_state, *start,
1457				  &physical_start, &physical_end,
1458				  CHUNK_ALLOCATED, NULL)) {
1459
1460		if (in_range(physical_start, *start, len) ||
1461		    in_range(*start, physical_start,
1462			     physical_end + 1 - physical_start)) {
1463			*start = physical_end + 1;
1464			return true;
1465		}
1466	}
1467	return false;
1468}
1469
1470static u64 dev_extent_search_start(struct btrfs_device *device)
1471{
1472	switch (device->fs_devices->chunk_alloc_policy) {
1473	case BTRFS_CHUNK_ALLOC_REGULAR:
1474		return BTRFS_DEVICE_RANGE_RESERVED;
1475	case BTRFS_CHUNK_ALLOC_ZONED:
1476		/*
1477		 * We don't care about the starting region like regular
1478		 * allocator, because we anyway use/reserve the first two zones
1479		 * for superblock logging.
1480		 */
1481		return 0;
1482	default:
1483		BUG();
1484	}
1485}
1486
1487static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1488					u64 *hole_start, u64 *hole_size,
1489					u64 num_bytes)
1490{
1491	u64 zone_size = device->zone_info->zone_size;
1492	u64 pos;
1493	int ret;
1494	bool changed = false;
1495
1496	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1497
1498	while (*hole_size > 0) {
1499		pos = btrfs_find_allocatable_zones(device, *hole_start,
1500						   *hole_start + *hole_size,
1501						   num_bytes);
1502		if (pos != *hole_start) {
1503			*hole_size = *hole_start + *hole_size - pos;
1504			*hole_start = pos;
1505			changed = true;
1506			if (*hole_size < num_bytes)
1507				break;
1508		}
1509
1510		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1511
1512		/* Range is ensured to be empty */
1513		if (!ret)
1514			return changed;
1515
1516		/* Given hole range was invalid (outside of device) */
1517		if (ret == -ERANGE) {
1518			*hole_start += *hole_size;
1519			*hole_size = 0;
1520			return true;
1521		}
1522
1523		*hole_start += zone_size;
1524		*hole_size -= zone_size;
1525		changed = true;
1526	}
1527
1528	return changed;
1529}
1530
1531/*
1532 * Check if specified hole is suitable for allocation.
1533 *
1534 * @device:	the device which we have the hole
1535 * @hole_start: starting position of the hole
1536 * @hole_size:	the size of the hole
1537 * @num_bytes:	the size of the free space that we need
1538 *
1539 * This function may modify @hole_start and @hole_size to reflect the suitable
1540 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1541 */
1542static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1543				  u64 *hole_size, u64 num_bytes)
1544{
1545	bool changed = false;
1546	u64 hole_end = *hole_start + *hole_size;
1547
1548	for (;;) {
1549		/*
1550		 * Check before we set max_hole_start, otherwise we could end up
1551		 * sending back this offset anyway.
1552		 */
1553		if (contains_pending_extent(device, hole_start, *hole_size)) {
1554			if (hole_end >= *hole_start)
1555				*hole_size = hole_end - *hole_start;
1556			else
1557				*hole_size = 0;
1558			changed = true;
1559		}
1560
1561		switch (device->fs_devices->chunk_alloc_policy) {
1562		case BTRFS_CHUNK_ALLOC_REGULAR:
1563			/* No extra check */
1564			break;
1565		case BTRFS_CHUNK_ALLOC_ZONED:
1566			if (dev_extent_hole_check_zoned(device, hole_start,
1567							hole_size, num_bytes)) {
1568				changed = true;
1569				/*
1570				 * The changed hole can contain pending extent.
1571				 * Loop again to check that.
1572				 */
1573				continue;
1574			}
1575			break;
1576		default:
1577			BUG();
1578		}
1579
1580		break;
1581	}
1582
1583	return changed;
1584}
1585
1586/*
1587 * Find free space in the specified device.
1588 *
1589 * @device:	  the device which we search the free space in
1590 * @num_bytes:	  the size of the free space that we need
1591 * @search_start: the position from which to begin the search
1592 * @start:	  store the start of the free space.
1593 * @len:	  the size of the free space. that we find, or the size
1594 *		  of the max free space if we don't find suitable free space
1595 *
1596 * This does a pretty simple search, the expectation is that it is called very
1597 * infrequently and that a given device has a small number of extents.
1598 *
1599 * @start is used to store the start of the free space if we find. But if we
1600 * don't find suitable free space, it will be used to store the start position
1601 * of the max free space.
1602 *
1603 * @len is used to store the size of the free space that we find.
1604 * But if we don't find suitable free space, it is used to store the size of
1605 * the max free space.
1606 *
1607 * NOTE: This function will search *commit* root of device tree, and does extra
1608 * check to ensure dev extents are not double allocated.
1609 * This makes the function safe to allocate dev extents but may not report
1610 * correct usable device space, as device extent freed in current transaction
1611 * is not reported as available.
1612 */
1613static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1614				u64 *start, u64 *len)
1615{
1616	struct btrfs_fs_info *fs_info = device->fs_info;
1617	struct btrfs_root *root = fs_info->dev_root;
1618	struct btrfs_key key;
1619	struct btrfs_dev_extent *dev_extent;
1620	struct btrfs_path *path;
1621	u64 search_start;
1622	u64 hole_size;
1623	u64 max_hole_start;
1624	u64 max_hole_size = 0;
1625	u64 extent_end;
1626	u64 search_end = device->total_bytes;
1627	int ret;
1628	int slot;
1629	struct extent_buffer *l;
1630
1631	search_start = dev_extent_search_start(device);
1632	max_hole_start = search_start;
1633
1634	WARN_ON(device->zone_info &&
1635		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1636
1637	path = btrfs_alloc_path();
1638	if (!path) {
1639		ret = -ENOMEM;
1640		goto out;
1641	}
1642again:
1643	if (search_start >= search_end ||
1644		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1645		ret = -ENOSPC;
1646		goto out;
1647	}
1648
1649	path->reada = READA_FORWARD;
1650	path->search_commit_root = 1;
1651	path->skip_locking = 1;
1652
1653	key.objectid = device->devid;
1654	key.offset = search_start;
1655	key.type = BTRFS_DEV_EXTENT_KEY;
1656
1657	ret = btrfs_search_backwards(root, &key, path);
1658	if (ret < 0)
1659		goto out;
1660
1661	while (search_start < search_end) {
1662		l = path->nodes[0];
1663		slot = path->slots[0];
1664		if (slot >= btrfs_header_nritems(l)) {
1665			ret = btrfs_next_leaf(root, path);
1666			if (ret == 0)
1667				continue;
1668			if (ret < 0)
1669				goto out;
1670
1671			break;
1672		}
1673		btrfs_item_key_to_cpu(l, &key, slot);
1674
1675		if (key.objectid < device->devid)
1676			goto next;
1677
1678		if (key.objectid > device->devid)
1679			break;
1680
1681		if (key.type != BTRFS_DEV_EXTENT_KEY)
1682			goto next;
1683
1684		if (key.offset > search_end)
1685			break;
1686
1687		if (key.offset > search_start) {
1688			hole_size = key.offset - search_start;
1689			dev_extent_hole_check(device, &search_start, &hole_size,
1690					      num_bytes);
1691
1692			if (hole_size > max_hole_size) {
1693				max_hole_start = search_start;
1694				max_hole_size = hole_size;
1695			}
1696
1697			/*
1698			 * If this free space is greater than which we need,
1699			 * it must be the max free space that we have found
1700			 * until now, so max_hole_start must point to the start
1701			 * of this free space and the length of this free space
1702			 * is stored in max_hole_size. Thus, we return
1703			 * max_hole_start and max_hole_size and go back to the
1704			 * caller.
1705			 */
1706			if (hole_size >= num_bytes) {
1707				ret = 0;
1708				goto out;
1709			}
1710		}
1711
1712		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1713		extent_end = key.offset + btrfs_dev_extent_length(l,
1714								  dev_extent);
1715		if (extent_end > search_start)
1716			search_start = extent_end;
1717next:
1718		path->slots[0]++;
1719		cond_resched();
1720	}
1721
1722	/*
1723	 * At this point, search_start should be the end of
1724	 * allocated dev extents, and when shrinking the device,
1725	 * search_end may be smaller than search_start.
1726	 */
1727	if (search_end > search_start) {
1728		hole_size = search_end - search_start;
1729		if (dev_extent_hole_check(device, &search_start, &hole_size,
1730					  num_bytes)) {
1731			btrfs_release_path(path);
1732			goto again;
1733		}
1734
1735		if (hole_size > max_hole_size) {
1736			max_hole_start = search_start;
1737			max_hole_size = hole_size;
1738		}
1739	}
1740
1741	/* See above. */
1742	if (max_hole_size < num_bytes)
1743		ret = -ENOSPC;
1744	else
1745		ret = 0;
1746
1747	ASSERT(max_hole_start + max_hole_size <= search_end);
1748out:
1749	btrfs_free_path(path);
1750	*start = max_hole_start;
1751	if (len)
1752		*len = max_hole_size;
1753	return ret;
1754}
1755
1756static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1757			  struct btrfs_device *device,
1758			  u64 start, u64 *dev_extent_len)
1759{
1760	struct btrfs_fs_info *fs_info = device->fs_info;
1761	struct btrfs_root *root = fs_info->dev_root;
1762	int ret;
1763	struct btrfs_path *path;
1764	struct btrfs_key key;
1765	struct btrfs_key found_key;
1766	struct extent_buffer *leaf = NULL;
1767	struct btrfs_dev_extent *extent = NULL;
1768
1769	path = btrfs_alloc_path();
1770	if (!path)
1771		return -ENOMEM;
1772
1773	key.objectid = device->devid;
1774	key.offset = start;
1775	key.type = BTRFS_DEV_EXTENT_KEY;
1776again:
1777	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1778	if (ret > 0) {
1779		ret = btrfs_previous_item(root, path, key.objectid,
1780					  BTRFS_DEV_EXTENT_KEY);
1781		if (ret)
1782			goto out;
1783		leaf = path->nodes[0];
1784		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1785		extent = btrfs_item_ptr(leaf, path->slots[0],
1786					struct btrfs_dev_extent);
1787		BUG_ON(found_key.offset > start || found_key.offset +
1788		       btrfs_dev_extent_length(leaf, extent) < start);
1789		key = found_key;
1790		btrfs_release_path(path);
1791		goto again;
1792	} else if (ret == 0) {
1793		leaf = path->nodes[0];
1794		extent = btrfs_item_ptr(leaf, path->slots[0],
1795					struct btrfs_dev_extent);
1796	} else {
1797		goto out;
1798	}
1799
1800	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1801
1802	ret = btrfs_del_item(trans, root, path);
1803	if (ret == 0)
1804		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1805out:
1806	btrfs_free_path(path);
1807	return ret;
1808}
1809
1810static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1811{
1812	struct rb_node *n;
1813	u64 ret = 0;
1814
1815	read_lock(&fs_info->mapping_tree_lock);
1816	n = rb_last(&fs_info->mapping_tree.rb_root);
1817	if (n) {
1818		struct btrfs_chunk_map *map;
1819
1820		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1821		ret = map->start + map->chunk_len;
1822	}
1823	read_unlock(&fs_info->mapping_tree_lock);
1824
1825	return ret;
1826}
1827
1828static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1829				    u64 *devid_ret)
1830{
1831	int ret;
1832	struct btrfs_key key;
1833	struct btrfs_key found_key;
1834	struct btrfs_path *path;
1835
1836	path = btrfs_alloc_path();
1837	if (!path)
1838		return -ENOMEM;
1839
1840	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1841	key.type = BTRFS_DEV_ITEM_KEY;
1842	key.offset = (u64)-1;
1843
1844	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1845	if (ret < 0)
1846		goto error;
1847
1848	if (ret == 0) {
1849		/* Corruption */
1850		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1851		ret = -EUCLEAN;
1852		goto error;
1853	}
1854
1855	ret = btrfs_previous_item(fs_info->chunk_root, path,
1856				  BTRFS_DEV_ITEMS_OBJECTID,
1857				  BTRFS_DEV_ITEM_KEY);
1858	if (ret) {
1859		*devid_ret = 1;
1860	} else {
1861		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1862				      path->slots[0]);
1863		*devid_ret = found_key.offset + 1;
1864	}
1865	ret = 0;
1866error:
1867	btrfs_free_path(path);
1868	return ret;
1869}
1870
1871/*
1872 * the device information is stored in the chunk root
1873 * the btrfs_device struct should be fully filled in
1874 */
1875static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1876			    struct btrfs_device *device)
1877{
1878	int ret;
1879	struct btrfs_path *path;
1880	struct btrfs_dev_item *dev_item;
1881	struct extent_buffer *leaf;
1882	struct btrfs_key key;
1883	unsigned long ptr;
1884
1885	path = btrfs_alloc_path();
1886	if (!path)
1887		return -ENOMEM;
1888
1889	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1890	key.type = BTRFS_DEV_ITEM_KEY;
1891	key.offset = device->devid;
1892
1893	btrfs_reserve_chunk_metadata(trans, true);
1894	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1895				      &key, sizeof(*dev_item));
1896	btrfs_trans_release_chunk_metadata(trans);
1897	if (ret)
1898		goto out;
1899
1900	leaf = path->nodes[0];
1901	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1902
1903	btrfs_set_device_id(leaf, dev_item, device->devid);
1904	btrfs_set_device_generation(leaf, dev_item, 0);
1905	btrfs_set_device_type(leaf, dev_item, device->type);
1906	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1907	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1908	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1909	btrfs_set_device_total_bytes(leaf, dev_item,
1910				     btrfs_device_get_disk_total_bytes(device));
1911	btrfs_set_device_bytes_used(leaf, dev_item,
1912				    btrfs_device_get_bytes_used(device));
1913	btrfs_set_device_group(leaf, dev_item, 0);
1914	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1915	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1916	btrfs_set_device_start_offset(leaf, dev_item, 0);
1917
1918	ptr = btrfs_device_uuid(dev_item);
1919	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1920	ptr = btrfs_device_fsid(dev_item);
1921	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1922			    ptr, BTRFS_FSID_SIZE);
1923	btrfs_mark_buffer_dirty(trans, leaf);
1924
1925	ret = 0;
1926out:
1927	btrfs_free_path(path);
1928	return ret;
1929}
1930
1931/*
1932 * Function to update ctime/mtime for a given device path.
1933 * Mainly used for ctime/mtime based probe like libblkid.
1934 *
1935 * We don't care about errors here, this is just to be kind to userspace.
1936 */
1937static void update_dev_time(const char *device_path)
1938{
1939	struct path path;
1940	int ret;
1941
1942	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1943	if (ret)
1944		return;
1945
1946	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1947	path_put(&path);
1948}
1949
1950static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1951			     struct btrfs_device *device)
1952{
1953	struct btrfs_root *root = device->fs_info->chunk_root;
1954	int ret;
1955	struct btrfs_path *path;
1956	struct btrfs_key key;
1957
1958	path = btrfs_alloc_path();
1959	if (!path)
1960		return -ENOMEM;
1961
1962	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1963	key.type = BTRFS_DEV_ITEM_KEY;
1964	key.offset = device->devid;
1965
1966	btrfs_reserve_chunk_metadata(trans, false);
1967	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1968	btrfs_trans_release_chunk_metadata(trans);
1969	if (ret) {
1970		if (ret > 0)
1971			ret = -ENOENT;
1972		goto out;
1973	}
1974
1975	ret = btrfs_del_item(trans, root, path);
1976out:
1977	btrfs_free_path(path);
1978	return ret;
1979}
1980
1981/*
1982 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1983 * filesystem. It's up to the caller to adjust that number regarding eg. device
1984 * replace.
1985 */
1986static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1987		u64 num_devices)
1988{
1989	u64 all_avail;
1990	unsigned seq;
1991	int i;
1992
1993	do {
1994		seq = read_seqbegin(&fs_info->profiles_lock);
1995
1996		all_avail = fs_info->avail_data_alloc_bits |
1997			    fs_info->avail_system_alloc_bits |
1998			    fs_info->avail_metadata_alloc_bits;
1999	} while (read_seqretry(&fs_info->profiles_lock, seq));
2000
2001	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2002		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2003			continue;
2004
2005		if (num_devices < btrfs_raid_array[i].devs_min)
2006			return btrfs_raid_array[i].mindev_error;
2007	}
2008
2009	return 0;
2010}
2011
2012static struct btrfs_device * btrfs_find_next_active_device(
2013		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2014{
2015	struct btrfs_device *next_device;
2016
2017	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2018		if (next_device != device &&
2019		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2020		    && next_device->bdev)
2021			return next_device;
2022	}
2023
2024	return NULL;
2025}
2026
2027/*
2028 * Helper function to check if the given device is part of s_bdev / latest_dev
2029 * and replace it with the provided or the next active device, in the context
2030 * where this function called, there should be always be another device (or
2031 * this_dev) which is active.
2032 */
2033void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2034					    struct btrfs_device *next_device)
2035{
2036	struct btrfs_fs_info *fs_info = device->fs_info;
2037
2038	if (!next_device)
2039		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2040							    device);
2041	ASSERT(next_device);
2042
2043	if (fs_info->sb->s_bdev &&
2044			(fs_info->sb->s_bdev == device->bdev))
2045		fs_info->sb->s_bdev = next_device->bdev;
2046
2047	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2048		fs_info->fs_devices->latest_dev = next_device;
2049}
2050
2051/*
2052 * Return btrfs_fs_devices::num_devices excluding the device that's being
2053 * currently replaced.
2054 */
2055static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2056{
2057	u64 num_devices = fs_info->fs_devices->num_devices;
2058
2059	down_read(&fs_info->dev_replace.rwsem);
2060	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2061		ASSERT(num_devices > 1);
2062		num_devices--;
2063	}
2064	up_read(&fs_info->dev_replace.rwsem);
2065
2066	return num_devices;
2067}
2068
2069static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2070				     struct block_device *bdev, int copy_num)
2071{
2072	struct btrfs_super_block *disk_super;
2073	const size_t len = sizeof(disk_super->magic);
2074	const u64 bytenr = btrfs_sb_offset(copy_num);
2075	int ret;
2076
2077	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2078	if (IS_ERR(disk_super))
2079		return;
2080
2081	memset(&disk_super->magic, 0, len);
2082	folio_mark_dirty(virt_to_folio(disk_super));
2083	btrfs_release_disk_super(disk_super);
2084
2085	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2086	if (ret)
2087		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2088			copy_num, ret);
2089}
2090
2091void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2092{
2093	int copy_num;
2094	struct block_device *bdev = device->bdev;
2095
2096	if (!bdev)
2097		return;
2098
2099	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2100		if (bdev_is_zoned(bdev))
2101			btrfs_reset_sb_log_zones(bdev, copy_num);
2102		else
2103			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2104	}
2105
2106	/* Notify udev that device has changed */
2107	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2108
2109	/* Update ctime/mtime for device path for libblkid */
2110	update_dev_time(device->name->str);
2111}
2112
2113int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2114		    struct btrfs_dev_lookup_args *args,
2115		    struct file **bdev_file)
2116{
2117	struct btrfs_trans_handle *trans;
2118	struct btrfs_device *device;
2119	struct btrfs_fs_devices *cur_devices;
2120	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2121	u64 num_devices;
2122	int ret = 0;
2123
2124	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2125		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2126		return -EINVAL;
2127	}
2128
2129	/*
2130	 * The device list in fs_devices is accessed without locks (neither
2131	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2132	 * filesystem and another device rm cannot run.
2133	 */
2134	num_devices = btrfs_num_devices(fs_info);
2135
2136	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2137	if (ret)
2138		return ret;
2139
2140	device = btrfs_find_device(fs_info->fs_devices, args);
2141	if (!device) {
2142		if (args->missing)
2143			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144		else
2145			ret = -ENOENT;
2146		return ret;
2147	}
2148
2149	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2150		btrfs_warn_in_rcu(fs_info,
2151		  "cannot remove device %s (devid %llu) due to active swapfile",
2152				  btrfs_dev_name(device), device->devid);
2153		return -ETXTBSY;
2154	}
2155
2156	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2157		return BTRFS_ERROR_DEV_TGT_REPLACE;
2158
2159	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2160	    fs_info->fs_devices->rw_devices == 1)
2161		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2162
2163	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2164		mutex_lock(&fs_info->chunk_mutex);
2165		list_del_init(&device->dev_alloc_list);
2166		device->fs_devices->rw_devices--;
2167		mutex_unlock(&fs_info->chunk_mutex);
2168	}
2169
2170	ret = btrfs_shrink_device(device, 0);
2171	if (ret)
2172		goto error_undo;
2173
2174	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2175	if (IS_ERR(trans)) {
2176		ret = PTR_ERR(trans);
2177		goto error_undo;
2178	}
2179
2180	ret = btrfs_rm_dev_item(trans, device);
2181	if (ret) {
2182		/* Any error in dev item removal is critical */
2183		btrfs_crit(fs_info,
2184			   "failed to remove device item for devid %llu: %d",
2185			   device->devid, ret);
2186		btrfs_abort_transaction(trans, ret);
2187		btrfs_end_transaction(trans);
2188		return ret;
2189	}
2190
2191	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2192	btrfs_scrub_cancel_dev(device);
2193
2194	/*
2195	 * the device list mutex makes sure that we don't change
2196	 * the device list while someone else is writing out all
2197	 * the device supers. Whoever is writing all supers, should
2198	 * lock the device list mutex before getting the number of
2199	 * devices in the super block (super_copy). Conversely,
2200	 * whoever updates the number of devices in the super block
2201	 * (super_copy) should hold the device list mutex.
2202	 */
2203
2204	/*
2205	 * In normal cases the cur_devices == fs_devices. But in case
2206	 * of deleting a seed device, the cur_devices should point to
2207	 * its own fs_devices listed under the fs_devices->seed_list.
2208	 */
2209	cur_devices = device->fs_devices;
2210	mutex_lock(&fs_devices->device_list_mutex);
2211	list_del_rcu(&device->dev_list);
2212
2213	cur_devices->num_devices--;
2214	cur_devices->total_devices--;
2215	/* Update total_devices of the parent fs_devices if it's seed */
2216	if (cur_devices != fs_devices)
2217		fs_devices->total_devices--;
2218
2219	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2220		cur_devices->missing_devices--;
2221
2222	btrfs_assign_next_active_device(device, NULL);
2223
2224	if (device->bdev_file) {
2225		cur_devices->open_devices--;
2226		/* remove sysfs entry */
2227		btrfs_sysfs_remove_device(device);
2228	}
2229
2230	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2231	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2232	mutex_unlock(&fs_devices->device_list_mutex);
2233
2234	/*
2235	 * At this point, the device is zero sized and detached from the
2236	 * devices list.  All that's left is to zero out the old supers and
2237	 * free the device.
2238	 *
2239	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2240	 * write lock, and fput() on the block device will pull in the
2241	 * ->open_mutex on the block device and it's dependencies.  Instead
2242	 *  just flush the device and let the caller do the final bdev_release.
2243	 */
2244	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245		btrfs_scratch_superblocks(fs_info, device);
2246		if (device->bdev) {
2247			sync_blockdev(device->bdev);
2248			invalidate_bdev(device->bdev);
2249		}
2250	}
2251
2252	*bdev_file = device->bdev_file;
2253	synchronize_rcu();
2254	btrfs_free_device(device);
2255
2256	/*
2257	 * This can happen if cur_devices is the private seed devices list.  We
2258	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2259	 * to be held, but in fact we don't need that for the private
2260	 * seed_devices, we can simply decrement cur_devices->opened and then
2261	 * remove it from our list and free the fs_devices.
2262	 */
2263	if (cur_devices->num_devices == 0) {
2264		list_del_init(&cur_devices->seed_list);
2265		ASSERT(cur_devices->opened == 1);
2266		cur_devices->opened--;
2267		free_fs_devices(cur_devices);
2268	}
2269
2270	ret = btrfs_commit_transaction(trans);
2271
2272	return ret;
2273
2274error_undo:
2275	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2276		mutex_lock(&fs_info->chunk_mutex);
2277		list_add(&device->dev_alloc_list,
2278			 &fs_devices->alloc_list);
2279		device->fs_devices->rw_devices++;
2280		mutex_unlock(&fs_info->chunk_mutex);
2281	}
2282	return ret;
2283}
2284
2285void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2286{
2287	struct btrfs_fs_devices *fs_devices;
2288
2289	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2290
2291	/*
2292	 * in case of fs with no seed, srcdev->fs_devices will point
2293	 * to fs_devices of fs_info. However when the dev being replaced is
2294	 * a seed dev it will point to the seed's local fs_devices. In short
2295	 * srcdev will have its correct fs_devices in both the cases.
2296	 */
2297	fs_devices = srcdev->fs_devices;
2298
2299	list_del_rcu(&srcdev->dev_list);
2300	list_del(&srcdev->dev_alloc_list);
2301	fs_devices->num_devices--;
2302	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2303		fs_devices->missing_devices--;
2304
2305	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2306		fs_devices->rw_devices--;
2307
2308	if (srcdev->bdev)
2309		fs_devices->open_devices--;
2310}
2311
2312void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2313{
2314	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2315
2316	mutex_lock(&uuid_mutex);
2317
2318	btrfs_close_bdev(srcdev);
2319	synchronize_rcu();
2320	btrfs_free_device(srcdev);
2321
2322	/* if this is no devs we rather delete the fs_devices */
2323	if (!fs_devices->num_devices) {
2324		/*
2325		 * On a mounted FS, num_devices can't be zero unless it's a
2326		 * seed. In case of a seed device being replaced, the replace
2327		 * target added to the sprout FS, so there will be no more
2328		 * device left under the seed FS.
2329		 */
2330		ASSERT(fs_devices->seeding);
2331
2332		list_del_init(&fs_devices->seed_list);
2333		close_fs_devices(fs_devices);
2334		free_fs_devices(fs_devices);
2335	}
2336	mutex_unlock(&uuid_mutex);
2337}
2338
2339void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2340{
2341	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2342
2343	mutex_lock(&fs_devices->device_list_mutex);
2344
2345	btrfs_sysfs_remove_device(tgtdev);
2346
2347	if (tgtdev->bdev)
2348		fs_devices->open_devices--;
2349
2350	fs_devices->num_devices--;
2351
2352	btrfs_assign_next_active_device(tgtdev, NULL);
2353
2354	list_del_rcu(&tgtdev->dev_list);
2355
2356	mutex_unlock(&fs_devices->device_list_mutex);
2357
2358	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2359
2360	btrfs_close_bdev(tgtdev);
2361	synchronize_rcu();
2362	btrfs_free_device(tgtdev);
2363}
2364
2365/*
2366 * Populate args from device at path.
2367 *
2368 * @fs_info:	the filesystem
2369 * @args:	the args to populate
2370 * @path:	the path to the device
2371 *
2372 * This will read the super block of the device at @path and populate @args with
2373 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2374 * lookup a device to operate on, but need to do it before we take any locks.
2375 * This properly handles the special case of "missing" that a user may pass in,
2376 * and does some basic sanity checks.  The caller must make sure that @path is
2377 * properly NUL terminated before calling in, and must call
2378 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2379 * uuid buffers.
2380 *
2381 * Return: 0 for success, -errno for failure
2382 */
2383int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2384				 struct btrfs_dev_lookup_args *args,
2385				 const char *path)
2386{
2387	struct btrfs_super_block *disk_super;
2388	struct file *bdev_file;
2389	int ret;
2390
2391	if (!path || !path[0])
2392		return -EINVAL;
2393	if (!strcmp(path, "missing")) {
2394		args->missing = true;
2395		return 0;
2396	}
2397
2398	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2399	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2400	if (!args->uuid || !args->fsid) {
2401		btrfs_put_dev_args_from_path(args);
2402		return -ENOMEM;
2403	}
2404
2405	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2406				    &bdev_file, &disk_super);
2407	if (ret) {
2408		btrfs_put_dev_args_from_path(args);
2409		return ret;
2410	}
2411
2412	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2413	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2414	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2415		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2416	else
2417		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2418	btrfs_release_disk_super(disk_super);
2419	fput(bdev_file);
2420	return 0;
2421}
2422
2423/*
2424 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2425 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2426 * that don't need to be freed.
2427 */
2428void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2429{
2430	kfree(args->uuid);
2431	kfree(args->fsid);
2432	args->uuid = NULL;
2433	args->fsid = NULL;
2434}
2435
2436struct btrfs_device *btrfs_find_device_by_devspec(
2437		struct btrfs_fs_info *fs_info, u64 devid,
2438		const char *device_path)
2439{
2440	BTRFS_DEV_LOOKUP_ARGS(args);
2441	struct btrfs_device *device;
2442	int ret;
2443
2444	if (devid) {
2445		args.devid = devid;
2446		device = btrfs_find_device(fs_info->fs_devices, &args);
2447		if (!device)
2448			return ERR_PTR(-ENOENT);
2449		return device;
2450	}
2451
2452	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2453	if (ret)
2454		return ERR_PTR(ret);
2455	device = btrfs_find_device(fs_info->fs_devices, &args);
2456	btrfs_put_dev_args_from_path(&args);
2457	if (!device)
2458		return ERR_PTR(-ENOENT);
2459	return device;
2460}
2461
2462static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2463{
2464	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2465	struct btrfs_fs_devices *old_devices;
2466	struct btrfs_fs_devices *seed_devices;
2467
2468	lockdep_assert_held(&uuid_mutex);
2469	if (!fs_devices->seeding)
2470		return ERR_PTR(-EINVAL);
2471
2472	/*
2473	 * Private copy of the seed devices, anchored at
2474	 * fs_info->fs_devices->seed_list
2475	 */
2476	seed_devices = alloc_fs_devices(NULL);
2477	if (IS_ERR(seed_devices))
2478		return seed_devices;
2479
2480	/*
2481	 * It's necessary to retain a copy of the original seed fs_devices in
2482	 * fs_uuids so that filesystems which have been seeded can successfully
2483	 * reference the seed device from open_seed_devices. This also supports
2484	 * multiple fs seed.
2485	 */
2486	old_devices = clone_fs_devices(fs_devices);
2487	if (IS_ERR(old_devices)) {
2488		kfree(seed_devices);
2489		return old_devices;
2490	}
2491
2492	list_add(&old_devices->fs_list, &fs_uuids);
2493
2494	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2495	seed_devices->opened = 1;
2496	INIT_LIST_HEAD(&seed_devices->devices);
2497	INIT_LIST_HEAD(&seed_devices->alloc_list);
2498	mutex_init(&seed_devices->device_list_mutex);
2499
2500	return seed_devices;
2501}
2502
2503/*
2504 * Splice seed devices into the sprout fs_devices.
2505 * Generate a new fsid for the sprouted read-write filesystem.
2506 */
2507static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2508			       struct btrfs_fs_devices *seed_devices)
2509{
2510	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2511	struct btrfs_super_block *disk_super = fs_info->super_copy;
2512	struct btrfs_device *device;
2513	u64 super_flags;
2514
2515	/*
2516	 * We are updating the fsid, the thread leading to device_list_add()
2517	 * could race, so uuid_mutex is needed.
2518	 */
2519	lockdep_assert_held(&uuid_mutex);
2520
2521	/*
2522	 * The threads listed below may traverse dev_list but can do that without
2523	 * device_list_mutex:
2524	 * - All device ops and balance - as we are in btrfs_exclop_start.
2525	 * - Various dev_list readers - are using RCU.
2526	 * - btrfs_ioctl_fitrim() - is using RCU.
2527	 *
2528	 * For-read threads as below are using device_list_mutex:
2529	 * - Readonly scrub btrfs_scrub_dev()
2530	 * - Readonly scrub btrfs_scrub_progress()
2531	 * - btrfs_get_dev_stats()
2532	 */
2533	lockdep_assert_held(&fs_devices->device_list_mutex);
2534
2535	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2536			      synchronize_rcu);
2537	list_for_each_entry(device, &seed_devices->devices, dev_list)
2538		device->fs_devices = seed_devices;
2539
2540	fs_devices->seeding = false;
2541	fs_devices->num_devices = 0;
2542	fs_devices->open_devices = 0;
2543	fs_devices->missing_devices = 0;
2544	fs_devices->rotating = false;
2545	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2546
2547	generate_random_uuid(fs_devices->fsid);
2548	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2549	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2550
2551	super_flags = btrfs_super_flags(disk_super) &
2552		      ~BTRFS_SUPER_FLAG_SEEDING;
2553	btrfs_set_super_flags(disk_super, super_flags);
2554}
2555
2556/*
2557 * Store the expected generation for seed devices in device items.
2558 */
2559static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2560{
2561	BTRFS_DEV_LOOKUP_ARGS(args);
2562	struct btrfs_fs_info *fs_info = trans->fs_info;
2563	struct btrfs_root *root = fs_info->chunk_root;
2564	struct btrfs_path *path;
2565	struct extent_buffer *leaf;
2566	struct btrfs_dev_item *dev_item;
2567	struct btrfs_device *device;
2568	struct btrfs_key key;
2569	u8 fs_uuid[BTRFS_FSID_SIZE];
2570	u8 dev_uuid[BTRFS_UUID_SIZE];
2571	int ret;
2572
2573	path = btrfs_alloc_path();
2574	if (!path)
2575		return -ENOMEM;
2576
2577	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2578	key.offset = 0;
2579	key.type = BTRFS_DEV_ITEM_KEY;
2580
2581	while (1) {
2582		btrfs_reserve_chunk_metadata(trans, false);
2583		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2584		btrfs_trans_release_chunk_metadata(trans);
2585		if (ret < 0)
2586			goto error;
2587
2588		leaf = path->nodes[0];
2589next_slot:
2590		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2591			ret = btrfs_next_leaf(root, path);
2592			if (ret > 0)
2593				break;
2594			if (ret < 0)
2595				goto error;
2596			leaf = path->nodes[0];
2597			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2598			btrfs_release_path(path);
2599			continue;
2600		}
2601
2602		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2603		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2604		    key.type != BTRFS_DEV_ITEM_KEY)
2605			break;
2606
2607		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2608					  struct btrfs_dev_item);
2609		args.devid = btrfs_device_id(leaf, dev_item);
2610		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2611				   BTRFS_UUID_SIZE);
2612		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2613				   BTRFS_FSID_SIZE);
2614		args.uuid = dev_uuid;
2615		args.fsid = fs_uuid;
2616		device = btrfs_find_device(fs_info->fs_devices, &args);
2617		BUG_ON(!device); /* Logic error */
2618
2619		if (device->fs_devices->seeding) {
2620			btrfs_set_device_generation(leaf, dev_item,
2621						    device->generation);
2622			btrfs_mark_buffer_dirty(trans, leaf);
2623		}
2624
2625		path->slots[0]++;
2626		goto next_slot;
2627	}
2628	ret = 0;
2629error:
2630	btrfs_free_path(path);
2631	return ret;
2632}
2633
2634int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2635{
2636	struct btrfs_root *root = fs_info->dev_root;
2637	struct btrfs_trans_handle *trans;
2638	struct btrfs_device *device;
2639	struct file *bdev_file;
2640	struct super_block *sb = fs_info->sb;
2641	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2642	struct btrfs_fs_devices *seed_devices = NULL;
2643	u64 orig_super_total_bytes;
2644	u64 orig_super_num_devices;
2645	int ret = 0;
2646	bool seeding_dev = false;
2647	bool locked = false;
2648
2649	if (sb_rdonly(sb) && !fs_devices->seeding)
2650		return -EROFS;
2651
2652	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2653					fs_info->bdev_holder, NULL);
2654	if (IS_ERR(bdev_file))
2655		return PTR_ERR(bdev_file);
2656
2657	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2658		ret = -EINVAL;
2659		goto error;
2660	}
2661
2662	if (fs_devices->seeding) {
2663		seeding_dev = true;
2664		down_write(&sb->s_umount);
2665		mutex_lock(&uuid_mutex);
2666		locked = true;
2667	}
2668
2669	sync_blockdev(file_bdev(bdev_file));
2670
2671	rcu_read_lock();
2672	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2673		if (device->bdev == file_bdev(bdev_file)) {
2674			ret = -EEXIST;
2675			rcu_read_unlock();
2676			goto error;
2677		}
2678	}
2679	rcu_read_unlock();
2680
2681	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2682	if (IS_ERR(device)) {
2683		/* we can safely leave the fs_devices entry around */
2684		ret = PTR_ERR(device);
2685		goto error;
2686	}
2687
2688	device->fs_info = fs_info;
2689	device->bdev_file = bdev_file;
2690	device->bdev = file_bdev(bdev_file);
2691	ret = lookup_bdev(device_path, &device->devt);
2692	if (ret)
2693		goto error_free_device;
2694
2695	ret = btrfs_get_dev_zone_info(device, false);
2696	if (ret)
2697		goto error_free_device;
2698
2699	trans = btrfs_start_transaction(root, 0);
2700	if (IS_ERR(trans)) {
2701		ret = PTR_ERR(trans);
2702		goto error_free_zone;
2703	}
2704
2705	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2706	device->generation = trans->transid;
2707	device->io_width = fs_info->sectorsize;
2708	device->io_align = fs_info->sectorsize;
2709	device->sector_size = fs_info->sectorsize;
2710	device->total_bytes =
2711		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2712	device->disk_total_bytes = device->total_bytes;
2713	device->commit_total_bytes = device->total_bytes;
2714	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2715	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2716	device->dev_stats_valid = 1;
2717	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2718
2719	if (seeding_dev) {
2720		btrfs_clear_sb_rdonly(sb);
2721
2722		/* GFP_KERNEL allocation must not be under device_list_mutex */
2723		seed_devices = btrfs_init_sprout(fs_info);
2724		if (IS_ERR(seed_devices)) {
2725			ret = PTR_ERR(seed_devices);
2726			btrfs_abort_transaction(trans, ret);
2727			goto error_trans;
2728		}
2729	}
2730
2731	mutex_lock(&fs_devices->device_list_mutex);
2732	if (seeding_dev) {
2733		btrfs_setup_sprout(fs_info, seed_devices);
2734		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2735						device);
2736	}
2737
2738	device->fs_devices = fs_devices;
2739
2740	mutex_lock(&fs_info->chunk_mutex);
2741	list_add_rcu(&device->dev_list, &fs_devices->devices);
2742	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2743	fs_devices->num_devices++;
2744	fs_devices->open_devices++;
2745	fs_devices->rw_devices++;
2746	fs_devices->total_devices++;
2747	fs_devices->total_rw_bytes += device->total_bytes;
2748
2749	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2750
2751	if (!bdev_nonrot(device->bdev))
2752		fs_devices->rotating = true;
2753
2754	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2755	btrfs_set_super_total_bytes(fs_info->super_copy,
2756		round_down(orig_super_total_bytes + device->total_bytes,
2757			   fs_info->sectorsize));
2758
2759	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2760	btrfs_set_super_num_devices(fs_info->super_copy,
2761				    orig_super_num_devices + 1);
2762
2763	/*
2764	 * we've got more storage, clear any full flags on the space
2765	 * infos
2766	 */
2767	btrfs_clear_space_info_full(fs_info);
2768
2769	mutex_unlock(&fs_info->chunk_mutex);
2770
2771	/* Add sysfs device entry */
2772	btrfs_sysfs_add_device(device);
2773
2774	mutex_unlock(&fs_devices->device_list_mutex);
2775
2776	if (seeding_dev) {
2777		mutex_lock(&fs_info->chunk_mutex);
2778		ret = init_first_rw_device(trans);
2779		mutex_unlock(&fs_info->chunk_mutex);
2780		if (ret) {
2781			btrfs_abort_transaction(trans, ret);
2782			goto error_sysfs;
2783		}
2784	}
2785
2786	ret = btrfs_add_dev_item(trans, device);
2787	if (ret) {
2788		btrfs_abort_transaction(trans, ret);
2789		goto error_sysfs;
2790	}
2791
2792	if (seeding_dev) {
2793		ret = btrfs_finish_sprout(trans);
2794		if (ret) {
2795			btrfs_abort_transaction(trans, ret);
2796			goto error_sysfs;
2797		}
2798
2799		/*
2800		 * fs_devices now represents the newly sprouted filesystem and
2801		 * its fsid has been changed by btrfs_sprout_splice().
2802		 */
2803		btrfs_sysfs_update_sprout_fsid(fs_devices);
2804	}
2805
2806	ret = btrfs_commit_transaction(trans);
2807
2808	if (seeding_dev) {
2809		mutex_unlock(&uuid_mutex);
2810		up_write(&sb->s_umount);
2811		locked = false;
2812
2813		if (ret) /* transaction commit */
2814			return ret;
2815
2816		ret = btrfs_relocate_sys_chunks(fs_info);
2817		if (ret < 0)
2818			btrfs_handle_fs_error(fs_info, ret,
2819				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2820		trans = btrfs_attach_transaction(root);
2821		if (IS_ERR(trans)) {
2822			if (PTR_ERR(trans) == -ENOENT)
2823				return 0;
2824			ret = PTR_ERR(trans);
2825			trans = NULL;
2826			goto error_sysfs;
2827		}
2828		ret = btrfs_commit_transaction(trans);
2829	}
2830
2831	/*
2832	 * Now that we have written a new super block to this device, check all
2833	 * other fs_devices list if device_path alienates any other scanned
2834	 * device.
2835	 * We can ignore the return value as it typically returns -EINVAL and
2836	 * only succeeds if the device was an alien.
2837	 */
2838	btrfs_forget_devices(device->devt);
2839
2840	/* Update ctime/mtime for blkid or udev */
2841	update_dev_time(device_path);
2842
2843	return ret;
2844
2845error_sysfs:
2846	btrfs_sysfs_remove_device(device);
2847	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2848	mutex_lock(&fs_info->chunk_mutex);
2849	list_del_rcu(&device->dev_list);
2850	list_del(&device->dev_alloc_list);
2851	fs_info->fs_devices->num_devices--;
2852	fs_info->fs_devices->open_devices--;
2853	fs_info->fs_devices->rw_devices--;
2854	fs_info->fs_devices->total_devices--;
2855	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2856	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2857	btrfs_set_super_total_bytes(fs_info->super_copy,
2858				    orig_super_total_bytes);
2859	btrfs_set_super_num_devices(fs_info->super_copy,
2860				    orig_super_num_devices);
2861	mutex_unlock(&fs_info->chunk_mutex);
2862	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2863error_trans:
2864	if (seeding_dev)
2865		btrfs_set_sb_rdonly(sb);
2866	if (trans)
2867		btrfs_end_transaction(trans);
2868error_free_zone:
2869	btrfs_destroy_dev_zone_info(device);
2870error_free_device:
2871	btrfs_free_device(device);
2872error:
2873	fput(bdev_file);
2874	if (locked) {
2875		mutex_unlock(&uuid_mutex);
2876		up_write(&sb->s_umount);
2877	}
2878	return ret;
2879}
2880
2881static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2882					struct btrfs_device *device)
2883{
2884	int ret;
2885	struct btrfs_path *path;
2886	struct btrfs_root *root = device->fs_info->chunk_root;
2887	struct btrfs_dev_item *dev_item;
2888	struct extent_buffer *leaf;
2889	struct btrfs_key key;
2890
2891	path = btrfs_alloc_path();
2892	if (!path)
2893		return -ENOMEM;
2894
2895	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2896	key.type = BTRFS_DEV_ITEM_KEY;
2897	key.offset = device->devid;
2898
2899	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2900	if (ret < 0)
2901		goto out;
2902
2903	if (ret > 0) {
2904		ret = -ENOENT;
2905		goto out;
2906	}
2907
2908	leaf = path->nodes[0];
2909	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2910
2911	btrfs_set_device_id(leaf, dev_item, device->devid);
2912	btrfs_set_device_type(leaf, dev_item, device->type);
2913	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2914	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2915	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2916	btrfs_set_device_total_bytes(leaf, dev_item,
2917				     btrfs_device_get_disk_total_bytes(device));
2918	btrfs_set_device_bytes_used(leaf, dev_item,
2919				    btrfs_device_get_bytes_used(device));
2920	btrfs_mark_buffer_dirty(trans, leaf);
2921
2922out:
2923	btrfs_free_path(path);
2924	return ret;
2925}
2926
2927int btrfs_grow_device(struct btrfs_trans_handle *trans,
2928		      struct btrfs_device *device, u64 new_size)
2929{
2930	struct btrfs_fs_info *fs_info = device->fs_info;
2931	struct btrfs_super_block *super_copy = fs_info->super_copy;
2932	u64 old_total;
2933	u64 diff;
2934	int ret;
2935
2936	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2937		return -EACCES;
2938
2939	new_size = round_down(new_size, fs_info->sectorsize);
2940
2941	mutex_lock(&fs_info->chunk_mutex);
2942	old_total = btrfs_super_total_bytes(super_copy);
2943	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2944
2945	if (new_size <= device->total_bytes ||
2946	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2947		mutex_unlock(&fs_info->chunk_mutex);
2948		return -EINVAL;
2949	}
2950
2951	btrfs_set_super_total_bytes(super_copy,
2952			round_down(old_total + diff, fs_info->sectorsize));
2953	device->fs_devices->total_rw_bytes += diff;
2954	atomic64_add(diff, &fs_info->free_chunk_space);
2955
2956	btrfs_device_set_total_bytes(device, new_size);
2957	btrfs_device_set_disk_total_bytes(device, new_size);
2958	btrfs_clear_space_info_full(device->fs_info);
2959	if (list_empty(&device->post_commit_list))
2960		list_add_tail(&device->post_commit_list,
2961			      &trans->transaction->dev_update_list);
2962	mutex_unlock(&fs_info->chunk_mutex);
2963
2964	btrfs_reserve_chunk_metadata(trans, false);
2965	ret = btrfs_update_device(trans, device);
2966	btrfs_trans_release_chunk_metadata(trans);
2967
2968	return ret;
2969}
2970
2971static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2972{
2973	struct btrfs_fs_info *fs_info = trans->fs_info;
2974	struct btrfs_root *root = fs_info->chunk_root;
2975	int ret;
2976	struct btrfs_path *path;
2977	struct btrfs_key key;
2978
2979	path = btrfs_alloc_path();
2980	if (!path)
2981		return -ENOMEM;
2982
2983	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2984	key.offset = chunk_offset;
2985	key.type = BTRFS_CHUNK_ITEM_KEY;
2986
2987	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2988	if (ret < 0)
2989		goto out;
2990	else if (ret > 0) { /* Logic error or corruption */
2991		btrfs_handle_fs_error(fs_info, -ENOENT,
2992				      "Failed lookup while freeing chunk.");
2993		ret = -ENOENT;
2994		goto out;
2995	}
2996
2997	ret = btrfs_del_item(trans, root, path);
2998	if (ret < 0)
2999		btrfs_handle_fs_error(fs_info, ret,
3000				      "Failed to delete chunk item.");
3001out:
3002	btrfs_free_path(path);
3003	return ret;
3004}
3005
3006static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3007{
3008	struct btrfs_super_block *super_copy = fs_info->super_copy;
3009	struct btrfs_disk_key *disk_key;
3010	struct btrfs_chunk *chunk;
3011	u8 *ptr;
3012	int ret = 0;
3013	u32 num_stripes;
3014	u32 array_size;
3015	u32 len = 0;
3016	u32 cur;
3017	struct btrfs_key key;
3018
3019	lockdep_assert_held(&fs_info->chunk_mutex);
3020	array_size = btrfs_super_sys_array_size(super_copy);
3021
3022	ptr = super_copy->sys_chunk_array;
3023	cur = 0;
3024
3025	while (cur < array_size) {
3026		disk_key = (struct btrfs_disk_key *)ptr;
3027		btrfs_disk_key_to_cpu(&key, disk_key);
3028
3029		len = sizeof(*disk_key);
3030
3031		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3032			chunk = (struct btrfs_chunk *)(ptr + len);
3033			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3034			len += btrfs_chunk_item_size(num_stripes);
3035		} else {
3036			ret = -EIO;
3037			break;
3038		}
3039		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3040		    key.offset == chunk_offset) {
3041			memmove(ptr, ptr + len, array_size - (cur + len));
3042			array_size -= len;
3043			btrfs_set_super_sys_array_size(super_copy, array_size);
3044		} else {
3045			ptr += len;
3046			cur += len;
3047		}
3048	}
3049	return ret;
3050}
3051
3052struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3053						    u64 logical, u64 length)
3054{
3055	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3056	struct rb_node *prev = NULL;
3057	struct rb_node *orig_prev;
3058	struct btrfs_chunk_map *map;
3059	struct btrfs_chunk_map *prev_map = NULL;
3060
3061	while (node) {
3062		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3063		prev = node;
3064		prev_map = map;
3065
3066		if (logical < map->start) {
3067			node = node->rb_left;
3068		} else if (logical >= map->start + map->chunk_len) {
3069			node = node->rb_right;
3070		} else {
3071			refcount_inc(&map->refs);
3072			return map;
3073		}
3074	}
3075
3076	if (!prev)
3077		return NULL;
3078
3079	orig_prev = prev;
3080	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3081		prev = rb_next(prev);
3082		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3083	}
3084
3085	if (!prev) {
3086		prev = orig_prev;
3087		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3088		while (prev && logical < prev_map->start) {
3089			prev = rb_prev(prev);
3090			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3091		}
3092	}
3093
3094	if (prev) {
3095		u64 end = logical + length;
3096
3097		/*
3098		 * Caller can pass a U64_MAX length when it wants to get any
3099		 * chunk starting at an offset of 'logical' or higher, so deal
3100		 * with underflow by resetting the end offset to U64_MAX.
3101		 */
3102		if (end < logical)
3103			end = U64_MAX;
3104
3105		if (end > prev_map->start &&
3106		    logical < prev_map->start + prev_map->chunk_len) {
3107			refcount_inc(&prev_map->refs);
3108			return prev_map;
3109		}
3110	}
3111
3112	return NULL;
3113}
3114
3115struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3116					     u64 logical, u64 length)
3117{
3118	struct btrfs_chunk_map *map;
3119
3120	read_lock(&fs_info->mapping_tree_lock);
3121	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3122	read_unlock(&fs_info->mapping_tree_lock);
3123
3124	return map;
3125}
3126
3127/*
3128 * Find the mapping containing the given logical extent.
3129 *
3130 * @logical: Logical block offset in bytes.
3131 * @length: Length of extent in bytes.
3132 *
3133 * Return: Chunk mapping or ERR_PTR.
3134 */
3135struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3136					    u64 logical, u64 length)
3137{
3138	struct btrfs_chunk_map *map;
3139
3140	map = btrfs_find_chunk_map(fs_info, logical, length);
3141
3142	if (unlikely(!map)) {
3143		btrfs_crit(fs_info,
3144			   "unable to find chunk map for logical %llu length %llu",
3145			   logical, length);
3146		return ERR_PTR(-EINVAL);
3147	}
3148
3149	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3150		btrfs_crit(fs_info,
3151			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3152			   logical, logical + length, map->start,
3153			   map->start + map->chunk_len);
3154		btrfs_free_chunk_map(map);
3155		return ERR_PTR(-EINVAL);
3156	}
3157
3158	/* Callers are responsible for dropping the reference. */
3159	return map;
3160}
3161
3162static int remove_chunk_item(struct btrfs_trans_handle *trans,
3163			     struct btrfs_chunk_map *map, u64 chunk_offset)
3164{
3165	int i;
3166
3167	/*
3168	 * Removing chunk items and updating the device items in the chunks btree
3169	 * requires holding the chunk_mutex.
3170	 * See the comment at btrfs_chunk_alloc() for the details.
3171	 */
3172	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3173
3174	for (i = 0; i < map->num_stripes; i++) {
3175		int ret;
3176
3177		ret = btrfs_update_device(trans, map->stripes[i].dev);
3178		if (ret)
3179			return ret;
3180	}
3181
3182	return btrfs_free_chunk(trans, chunk_offset);
3183}
3184
3185int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3186{
3187	struct btrfs_fs_info *fs_info = trans->fs_info;
3188	struct btrfs_chunk_map *map;
3189	u64 dev_extent_len = 0;
3190	int i, ret = 0;
3191	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3192
3193	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3194	if (IS_ERR(map)) {
3195		/*
3196		 * This is a logic error, but we don't want to just rely on the
3197		 * user having built with ASSERT enabled, so if ASSERT doesn't
3198		 * do anything we still error out.
3199		 */
3200		ASSERT(0);
3201		return PTR_ERR(map);
3202	}
3203
3204	/*
3205	 * First delete the device extent items from the devices btree.
3206	 * We take the device_list_mutex to avoid racing with the finishing phase
3207	 * of a device replace operation. See the comment below before acquiring
3208	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3209	 * because that can result in a deadlock when deleting the device extent
3210	 * items from the devices btree - COWing an extent buffer from the btree
3211	 * may result in allocating a new metadata chunk, which would attempt to
3212	 * lock again fs_info->chunk_mutex.
3213	 */
3214	mutex_lock(&fs_devices->device_list_mutex);
3215	for (i = 0; i < map->num_stripes; i++) {
3216		struct btrfs_device *device = map->stripes[i].dev;
3217		ret = btrfs_free_dev_extent(trans, device,
3218					    map->stripes[i].physical,
3219					    &dev_extent_len);
3220		if (ret) {
3221			mutex_unlock(&fs_devices->device_list_mutex);
3222			btrfs_abort_transaction(trans, ret);
3223			goto out;
3224		}
3225
3226		if (device->bytes_used > 0) {
3227			mutex_lock(&fs_info->chunk_mutex);
3228			btrfs_device_set_bytes_used(device,
3229					device->bytes_used - dev_extent_len);
3230			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3231			btrfs_clear_space_info_full(fs_info);
3232			mutex_unlock(&fs_info->chunk_mutex);
3233		}
3234	}
3235	mutex_unlock(&fs_devices->device_list_mutex);
3236
3237	/*
3238	 * We acquire fs_info->chunk_mutex for 2 reasons:
3239	 *
3240	 * 1) Just like with the first phase of the chunk allocation, we must
3241	 *    reserve system space, do all chunk btree updates and deletions, and
3242	 *    update the system chunk array in the superblock while holding this
3243	 *    mutex. This is for similar reasons as explained on the comment at
3244	 *    the top of btrfs_chunk_alloc();
3245	 *
3246	 * 2) Prevent races with the final phase of a device replace operation
3247	 *    that replaces the device object associated with the map's stripes,
3248	 *    because the device object's id can change at any time during that
3249	 *    final phase of the device replace operation
3250	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3251	 *    replaced device and then see it with an ID of
3252	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3253	 *    the device item, which does not exists on the chunk btree.
3254	 *    The finishing phase of device replace acquires both the
3255	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3256	 *    safe by just acquiring the chunk_mutex.
3257	 */
3258	trans->removing_chunk = true;
3259	mutex_lock(&fs_info->chunk_mutex);
3260
3261	check_system_chunk(trans, map->type);
3262
3263	ret = remove_chunk_item(trans, map, chunk_offset);
3264	/*
3265	 * Normally we should not get -ENOSPC since we reserved space before
3266	 * through the call to check_system_chunk().
3267	 *
3268	 * Despite our system space_info having enough free space, we may not
3269	 * be able to allocate extents from its block groups, because all have
3270	 * an incompatible profile, which will force us to allocate a new system
3271	 * block group with the right profile, or right after we called
3272	 * check_system_space() above, a scrub turned the only system block group
3273	 * with enough free space into RO mode.
3274	 * This is explained with more detail at do_chunk_alloc().
3275	 *
3276	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3277	 */
3278	if (ret == -ENOSPC) {
3279		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3280		struct btrfs_block_group *sys_bg;
3281
3282		sys_bg = btrfs_create_chunk(trans, sys_flags);
3283		if (IS_ERR(sys_bg)) {
3284			ret = PTR_ERR(sys_bg);
3285			btrfs_abort_transaction(trans, ret);
3286			goto out;
3287		}
3288
3289		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3290		if (ret) {
3291			btrfs_abort_transaction(trans, ret);
3292			goto out;
3293		}
3294
3295		ret = remove_chunk_item(trans, map, chunk_offset);
3296		if (ret) {
3297			btrfs_abort_transaction(trans, ret);
3298			goto out;
3299		}
3300	} else if (ret) {
3301		btrfs_abort_transaction(trans, ret);
3302		goto out;
3303	}
3304
3305	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3306
3307	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3308		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3309		if (ret) {
3310			btrfs_abort_transaction(trans, ret);
3311			goto out;
3312		}
3313	}
3314
3315	mutex_unlock(&fs_info->chunk_mutex);
3316	trans->removing_chunk = false;
3317
3318	/*
3319	 * We are done with chunk btree updates and deletions, so release the
3320	 * system space we previously reserved (with check_system_chunk()).
3321	 */
3322	btrfs_trans_release_chunk_metadata(trans);
3323
3324	ret = btrfs_remove_block_group(trans, map);
3325	if (ret) {
3326		btrfs_abort_transaction(trans, ret);
3327		goto out;
3328	}
3329
3330out:
3331	if (trans->removing_chunk) {
3332		mutex_unlock(&fs_info->chunk_mutex);
3333		trans->removing_chunk = false;
3334	}
3335	/* once for us */
3336	btrfs_free_chunk_map(map);
3337	return ret;
3338}
3339
3340int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3341{
3342	struct btrfs_root *root = fs_info->chunk_root;
3343	struct btrfs_trans_handle *trans;
3344	struct btrfs_block_group *block_group;
3345	u64 length;
3346	int ret;
3347
3348	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3349		btrfs_err(fs_info,
3350			  "relocate: not supported on extent tree v2 yet");
3351		return -EINVAL;
3352	}
3353
3354	/*
3355	 * Prevent races with automatic removal of unused block groups.
3356	 * After we relocate and before we remove the chunk with offset
3357	 * chunk_offset, automatic removal of the block group can kick in,
3358	 * resulting in a failure when calling btrfs_remove_chunk() below.
3359	 *
3360	 * Make sure to acquire this mutex before doing a tree search (dev
3361	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3362	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3363	 * we release the path used to search the chunk/dev tree and before
3364	 * the current task acquires this mutex and calls us.
3365	 */
3366	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3367
3368	/* step one, relocate all the extents inside this chunk */
3369	btrfs_scrub_pause(fs_info);
3370	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3371	btrfs_scrub_continue(fs_info);
3372	if (ret) {
3373		/*
3374		 * If we had a transaction abort, stop all running scrubs.
3375		 * See transaction.c:cleanup_transaction() why we do it here.
3376		 */
3377		if (BTRFS_FS_ERROR(fs_info))
3378			btrfs_scrub_cancel(fs_info);
3379		return ret;
3380	}
3381
3382	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3383	if (!block_group)
3384		return -ENOENT;
3385	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3386	length = block_group->length;
3387	btrfs_put_block_group(block_group);
3388
3389	/*
3390	 * On a zoned file system, discard the whole block group, this will
3391	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3392	 * resetting the zone fails, don't treat it as a fatal problem from the
3393	 * filesystem's point of view.
3394	 */
3395	if (btrfs_is_zoned(fs_info)) {
3396		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3397		if (ret)
3398			btrfs_info(fs_info,
3399				"failed to reset zone %llu after relocation",
3400				chunk_offset);
3401	}
3402
3403	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3404						     chunk_offset);
3405	if (IS_ERR(trans)) {
3406		ret = PTR_ERR(trans);
3407		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3408		return ret;
3409	}
3410
3411	/*
3412	 * step two, delete the device extents and the
3413	 * chunk tree entries
3414	 */
3415	ret = btrfs_remove_chunk(trans, chunk_offset);
3416	btrfs_end_transaction(trans);
3417	return ret;
3418}
3419
3420static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3421{
3422	struct btrfs_root *chunk_root = fs_info->chunk_root;
3423	struct btrfs_path *path;
3424	struct extent_buffer *leaf;
3425	struct btrfs_chunk *chunk;
3426	struct btrfs_key key;
3427	struct btrfs_key found_key;
3428	u64 chunk_type;
3429	bool retried = false;
3430	int failed = 0;
3431	int ret;
3432
3433	path = btrfs_alloc_path();
3434	if (!path)
3435		return -ENOMEM;
3436
3437again:
3438	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3439	key.offset = (u64)-1;
3440	key.type = BTRFS_CHUNK_ITEM_KEY;
3441
3442	while (1) {
3443		mutex_lock(&fs_info->reclaim_bgs_lock);
3444		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3445		if (ret < 0) {
3446			mutex_unlock(&fs_info->reclaim_bgs_lock);
3447			goto error;
3448		}
3449		if (ret == 0) {
3450			/*
3451			 * On the first search we would find chunk tree with
3452			 * offset -1, which is not possible. On subsequent
3453			 * loops this would find an existing item on an invalid
3454			 * offset (one less than the previous one, wrong
3455			 * alignment and size).
3456			 */
3457			ret = -EUCLEAN;
3458			goto error;
3459		}
3460
3461		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3462					  key.type);
3463		if (ret)
3464			mutex_unlock(&fs_info->reclaim_bgs_lock);
3465		if (ret < 0)
3466			goto error;
3467		if (ret > 0)
3468			break;
3469
3470		leaf = path->nodes[0];
3471		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3472
3473		chunk = btrfs_item_ptr(leaf, path->slots[0],
3474				       struct btrfs_chunk);
3475		chunk_type = btrfs_chunk_type(leaf, chunk);
3476		btrfs_release_path(path);
3477
3478		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3479			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3480			if (ret == -ENOSPC)
3481				failed++;
3482			else
3483				BUG_ON(ret);
3484		}
3485		mutex_unlock(&fs_info->reclaim_bgs_lock);
3486
3487		if (found_key.offset == 0)
3488			break;
3489		key.offset = found_key.offset - 1;
3490	}
3491	ret = 0;
3492	if (failed && !retried) {
3493		failed = 0;
3494		retried = true;
3495		goto again;
3496	} else if (WARN_ON(failed && retried)) {
3497		ret = -ENOSPC;
3498	}
3499error:
3500	btrfs_free_path(path);
3501	return ret;
3502}
3503
3504/*
3505 * return 1 : allocate a data chunk successfully,
3506 * return <0: errors during allocating a data chunk,
3507 * return 0 : no need to allocate a data chunk.
3508 */
3509static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3510				      u64 chunk_offset)
3511{
3512	struct btrfs_block_group *cache;
3513	u64 bytes_used;
3514	u64 chunk_type;
3515
3516	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3517	ASSERT(cache);
3518	chunk_type = cache->flags;
3519	btrfs_put_block_group(cache);
3520
3521	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3522		return 0;
3523
3524	spin_lock(&fs_info->data_sinfo->lock);
3525	bytes_used = fs_info->data_sinfo->bytes_used;
3526	spin_unlock(&fs_info->data_sinfo->lock);
3527
3528	if (!bytes_used) {
3529		struct btrfs_trans_handle *trans;
3530		int ret;
3531
3532		trans =	btrfs_join_transaction(fs_info->tree_root);
3533		if (IS_ERR(trans))
3534			return PTR_ERR(trans);
3535
3536		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3537		btrfs_end_transaction(trans);
3538		if (ret < 0)
3539			return ret;
3540		return 1;
3541	}
3542
3543	return 0;
3544}
3545
3546static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3547					   const struct btrfs_disk_balance_args *disk)
3548{
3549	memset(cpu, 0, sizeof(*cpu));
3550
3551	cpu->profiles = le64_to_cpu(disk->profiles);
3552	cpu->usage = le64_to_cpu(disk->usage);
3553	cpu->devid = le64_to_cpu(disk->devid);
3554	cpu->pstart = le64_to_cpu(disk->pstart);
3555	cpu->pend = le64_to_cpu(disk->pend);
3556	cpu->vstart = le64_to_cpu(disk->vstart);
3557	cpu->vend = le64_to_cpu(disk->vend);
3558	cpu->target = le64_to_cpu(disk->target);
3559	cpu->flags = le64_to_cpu(disk->flags);
3560	cpu->limit = le64_to_cpu(disk->limit);
3561	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3562	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3563}
3564
3565static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3566					   const struct btrfs_balance_args *cpu)
3567{
3568	memset(disk, 0, sizeof(*disk));
3569
3570	disk->profiles = cpu_to_le64(cpu->profiles);
3571	disk->usage = cpu_to_le64(cpu->usage);
3572	disk->devid = cpu_to_le64(cpu->devid);
3573	disk->pstart = cpu_to_le64(cpu->pstart);
3574	disk->pend = cpu_to_le64(cpu->pend);
3575	disk->vstart = cpu_to_le64(cpu->vstart);
3576	disk->vend = cpu_to_le64(cpu->vend);
3577	disk->target = cpu_to_le64(cpu->target);
3578	disk->flags = cpu_to_le64(cpu->flags);
3579	disk->limit = cpu_to_le64(cpu->limit);
3580	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3581	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3582}
3583
3584static int insert_balance_item(struct btrfs_fs_info *fs_info,
3585			       struct btrfs_balance_control *bctl)
3586{
3587	struct btrfs_root *root = fs_info->tree_root;
3588	struct btrfs_trans_handle *trans;
3589	struct btrfs_balance_item *item;
3590	struct btrfs_disk_balance_args disk_bargs;
3591	struct btrfs_path *path;
3592	struct extent_buffer *leaf;
3593	struct btrfs_key key;
3594	int ret, err;
3595
3596	path = btrfs_alloc_path();
3597	if (!path)
3598		return -ENOMEM;
3599
3600	trans = btrfs_start_transaction(root, 0);
3601	if (IS_ERR(trans)) {
3602		btrfs_free_path(path);
3603		return PTR_ERR(trans);
3604	}
3605
3606	key.objectid = BTRFS_BALANCE_OBJECTID;
3607	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3608	key.offset = 0;
3609
3610	ret = btrfs_insert_empty_item(trans, root, path, &key,
3611				      sizeof(*item));
3612	if (ret)
3613		goto out;
3614
3615	leaf = path->nodes[0];
3616	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3617
3618	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3619
3620	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3621	btrfs_set_balance_data(leaf, item, &disk_bargs);
3622	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3623	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3624	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3625	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3626
3627	btrfs_set_balance_flags(leaf, item, bctl->flags);
3628
3629	btrfs_mark_buffer_dirty(trans, leaf);
3630out:
3631	btrfs_free_path(path);
3632	err = btrfs_commit_transaction(trans);
3633	if (err && !ret)
3634		ret = err;
3635	return ret;
3636}
3637
3638static int del_balance_item(struct btrfs_fs_info *fs_info)
3639{
3640	struct btrfs_root *root = fs_info->tree_root;
3641	struct btrfs_trans_handle *trans;
3642	struct btrfs_path *path;
3643	struct btrfs_key key;
3644	int ret, err;
3645
3646	path = btrfs_alloc_path();
3647	if (!path)
3648		return -ENOMEM;
3649
3650	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3651	if (IS_ERR(trans)) {
3652		btrfs_free_path(path);
3653		return PTR_ERR(trans);
3654	}
3655
3656	key.objectid = BTRFS_BALANCE_OBJECTID;
3657	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3658	key.offset = 0;
3659
3660	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3661	if (ret < 0)
3662		goto out;
3663	if (ret > 0) {
3664		ret = -ENOENT;
3665		goto out;
3666	}
3667
3668	ret = btrfs_del_item(trans, root, path);
3669out:
3670	btrfs_free_path(path);
3671	err = btrfs_commit_transaction(trans);
3672	if (err && !ret)
3673		ret = err;
3674	return ret;
3675}
3676
3677/*
3678 * This is a heuristic used to reduce the number of chunks balanced on
3679 * resume after balance was interrupted.
3680 */
3681static void update_balance_args(struct btrfs_balance_control *bctl)
3682{
3683	/*
3684	 * Turn on soft mode for chunk types that were being converted.
3685	 */
3686	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3687		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3688	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3689		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3690	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3691		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3692
3693	/*
3694	 * Turn on usage filter if is not already used.  The idea is
3695	 * that chunks that we have already balanced should be
3696	 * reasonably full.  Don't do it for chunks that are being
3697	 * converted - that will keep us from relocating unconverted
3698	 * (albeit full) chunks.
3699	 */
3700	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3701	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3702	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3703		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3704		bctl->data.usage = 90;
3705	}
3706	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3707	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3708	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3709		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3710		bctl->sys.usage = 90;
3711	}
3712	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3713	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3714	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3715		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3716		bctl->meta.usage = 90;
3717	}
3718}
3719
3720/*
3721 * Clear the balance status in fs_info and delete the balance item from disk.
3722 */
3723static void reset_balance_state(struct btrfs_fs_info *fs_info)
3724{
3725	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3726	int ret;
3727
3728	ASSERT(fs_info->balance_ctl);
3729
3730	spin_lock(&fs_info->balance_lock);
3731	fs_info->balance_ctl = NULL;
3732	spin_unlock(&fs_info->balance_lock);
3733
3734	kfree(bctl);
3735	ret = del_balance_item(fs_info);
3736	if (ret)
3737		btrfs_handle_fs_error(fs_info, ret, NULL);
3738}
3739
3740/*
3741 * Balance filters.  Return 1 if chunk should be filtered out
3742 * (should not be balanced).
3743 */
3744static int chunk_profiles_filter(u64 chunk_type,
3745				 struct btrfs_balance_args *bargs)
3746{
3747	chunk_type = chunk_to_extended(chunk_type) &
3748				BTRFS_EXTENDED_PROFILE_MASK;
3749
3750	if (bargs->profiles & chunk_type)
3751		return 0;
3752
3753	return 1;
3754}
3755
3756static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3757			      struct btrfs_balance_args *bargs)
3758{
3759	struct btrfs_block_group *cache;
3760	u64 chunk_used;
3761	u64 user_thresh_min;
3762	u64 user_thresh_max;
3763	int ret = 1;
3764
3765	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3766	chunk_used = cache->used;
3767
3768	if (bargs->usage_min == 0)
3769		user_thresh_min = 0;
3770	else
3771		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3772
3773	if (bargs->usage_max == 0)
3774		user_thresh_max = 1;
3775	else if (bargs->usage_max > 100)
3776		user_thresh_max = cache->length;
3777	else
3778		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3779
3780	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3781		ret = 0;
3782
3783	btrfs_put_block_group(cache);
3784	return ret;
3785}
3786
3787static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3788		u64 chunk_offset, struct btrfs_balance_args *bargs)
3789{
3790	struct btrfs_block_group *cache;
3791	u64 chunk_used, user_thresh;
3792	int ret = 1;
3793
3794	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3795	chunk_used = cache->used;
3796
3797	if (bargs->usage_min == 0)
3798		user_thresh = 1;
3799	else if (bargs->usage > 100)
3800		user_thresh = cache->length;
3801	else
3802		user_thresh = mult_perc(cache->length, bargs->usage);
3803
3804	if (chunk_used < user_thresh)
3805		ret = 0;
3806
3807	btrfs_put_block_group(cache);
3808	return ret;
3809}
3810
3811static int chunk_devid_filter(struct extent_buffer *leaf,
3812			      struct btrfs_chunk *chunk,
3813			      struct btrfs_balance_args *bargs)
3814{
3815	struct btrfs_stripe *stripe;
3816	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3817	int i;
3818
3819	for (i = 0; i < num_stripes; i++) {
3820		stripe = btrfs_stripe_nr(chunk, i);
3821		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3822			return 0;
3823	}
3824
3825	return 1;
3826}
3827
3828static u64 calc_data_stripes(u64 type, int num_stripes)
3829{
3830	const int index = btrfs_bg_flags_to_raid_index(type);
3831	const int ncopies = btrfs_raid_array[index].ncopies;
3832	const int nparity = btrfs_raid_array[index].nparity;
3833
3834	return (num_stripes - nparity) / ncopies;
3835}
3836
3837/* [pstart, pend) */
3838static int chunk_drange_filter(struct extent_buffer *leaf,
3839			       struct btrfs_chunk *chunk,
3840			       struct btrfs_balance_args *bargs)
3841{
3842	struct btrfs_stripe *stripe;
3843	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3844	u64 stripe_offset;
3845	u64 stripe_length;
3846	u64 type;
3847	int factor;
3848	int i;
3849
3850	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3851		return 0;
3852
3853	type = btrfs_chunk_type(leaf, chunk);
3854	factor = calc_data_stripes(type, num_stripes);
3855
3856	for (i = 0; i < num_stripes; i++) {
3857		stripe = btrfs_stripe_nr(chunk, i);
3858		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3859			continue;
3860
3861		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3862		stripe_length = btrfs_chunk_length(leaf, chunk);
3863		stripe_length = div_u64(stripe_length, factor);
3864
3865		if (stripe_offset < bargs->pend &&
3866		    stripe_offset + stripe_length > bargs->pstart)
3867			return 0;
3868	}
3869
3870	return 1;
3871}
3872
3873/* [vstart, vend) */
3874static int chunk_vrange_filter(struct extent_buffer *leaf,
3875			       struct btrfs_chunk *chunk,
3876			       u64 chunk_offset,
3877			       struct btrfs_balance_args *bargs)
3878{
3879	if (chunk_offset < bargs->vend &&
3880	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3881		/* at least part of the chunk is inside this vrange */
3882		return 0;
3883
3884	return 1;
3885}
3886
3887static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3888			       struct btrfs_chunk *chunk,
3889			       struct btrfs_balance_args *bargs)
3890{
3891	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3892
3893	if (bargs->stripes_min <= num_stripes
3894			&& num_stripes <= bargs->stripes_max)
3895		return 0;
3896
3897	return 1;
3898}
3899
3900static int chunk_soft_convert_filter(u64 chunk_type,
3901				     struct btrfs_balance_args *bargs)
3902{
3903	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3904		return 0;
3905
3906	chunk_type = chunk_to_extended(chunk_type) &
3907				BTRFS_EXTENDED_PROFILE_MASK;
3908
3909	if (bargs->target == chunk_type)
3910		return 1;
3911
3912	return 0;
3913}
3914
3915static int should_balance_chunk(struct extent_buffer *leaf,
3916				struct btrfs_chunk *chunk, u64 chunk_offset)
3917{
3918	struct btrfs_fs_info *fs_info = leaf->fs_info;
3919	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3920	struct btrfs_balance_args *bargs = NULL;
3921	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3922
3923	/* type filter */
3924	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3925	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3926		return 0;
3927	}
3928
3929	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3930		bargs = &bctl->data;
3931	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3932		bargs = &bctl->sys;
3933	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3934		bargs = &bctl->meta;
3935
3936	/* profiles filter */
3937	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3938	    chunk_profiles_filter(chunk_type, bargs)) {
3939		return 0;
3940	}
3941
3942	/* usage filter */
3943	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3944	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3945		return 0;
3946	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3947	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3948		return 0;
3949	}
3950
3951	/* devid filter */
3952	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3953	    chunk_devid_filter(leaf, chunk, bargs)) {
3954		return 0;
3955	}
3956
3957	/* drange filter, makes sense only with devid filter */
3958	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3959	    chunk_drange_filter(leaf, chunk, bargs)) {
3960		return 0;
3961	}
3962
3963	/* vrange filter */
3964	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3965	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3966		return 0;
3967	}
3968
3969	/* stripes filter */
3970	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3971	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3972		return 0;
3973	}
3974
3975	/* soft profile changing mode */
3976	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3977	    chunk_soft_convert_filter(chunk_type, bargs)) {
3978		return 0;
3979	}
3980
3981	/*
3982	 * limited by count, must be the last filter
3983	 */
3984	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3985		if (bargs->limit == 0)
3986			return 0;
3987		else
3988			bargs->limit--;
3989	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3990		/*
3991		 * Same logic as the 'limit' filter; the minimum cannot be
3992		 * determined here because we do not have the global information
3993		 * about the count of all chunks that satisfy the filters.
3994		 */
3995		if (bargs->limit_max == 0)
3996			return 0;
3997		else
3998			bargs->limit_max--;
3999	}
4000
4001	return 1;
4002}
4003
4004static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4005{
4006	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4007	struct btrfs_root *chunk_root = fs_info->chunk_root;
4008	u64 chunk_type;
4009	struct btrfs_chunk *chunk;
4010	struct btrfs_path *path = NULL;
4011	struct btrfs_key key;
4012	struct btrfs_key found_key;
4013	struct extent_buffer *leaf;
4014	int slot;
4015	int ret;
4016	int enospc_errors = 0;
4017	bool counting = true;
4018	/* The single value limit and min/max limits use the same bytes in the */
4019	u64 limit_data = bctl->data.limit;
4020	u64 limit_meta = bctl->meta.limit;
4021	u64 limit_sys = bctl->sys.limit;
4022	u32 count_data = 0;
4023	u32 count_meta = 0;
4024	u32 count_sys = 0;
4025	int chunk_reserved = 0;
4026
4027	path = btrfs_alloc_path();
4028	if (!path) {
4029		ret = -ENOMEM;
4030		goto error;
4031	}
4032
4033	/* zero out stat counters */
4034	spin_lock(&fs_info->balance_lock);
4035	memset(&bctl->stat, 0, sizeof(bctl->stat));
4036	spin_unlock(&fs_info->balance_lock);
4037again:
4038	if (!counting) {
4039		/*
4040		 * The single value limit and min/max limits use the same bytes
4041		 * in the
4042		 */
4043		bctl->data.limit = limit_data;
4044		bctl->meta.limit = limit_meta;
4045		bctl->sys.limit = limit_sys;
4046	}
4047	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4048	key.offset = (u64)-1;
4049	key.type = BTRFS_CHUNK_ITEM_KEY;
4050
4051	while (1) {
4052		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4053		    atomic_read(&fs_info->balance_cancel_req)) {
4054			ret = -ECANCELED;
4055			goto error;
4056		}
4057
4058		mutex_lock(&fs_info->reclaim_bgs_lock);
4059		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4060		if (ret < 0) {
4061			mutex_unlock(&fs_info->reclaim_bgs_lock);
4062			goto error;
4063		}
4064
4065		/*
4066		 * this shouldn't happen, it means the last relocate
4067		 * failed
4068		 */
4069		if (ret == 0)
4070			BUG(); /* FIXME break ? */
4071
4072		ret = btrfs_previous_item(chunk_root, path, 0,
4073					  BTRFS_CHUNK_ITEM_KEY);
4074		if (ret) {
4075			mutex_unlock(&fs_info->reclaim_bgs_lock);
4076			ret = 0;
4077			break;
4078		}
4079
4080		leaf = path->nodes[0];
4081		slot = path->slots[0];
4082		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4083
4084		if (found_key.objectid != key.objectid) {
4085			mutex_unlock(&fs_info->reclaim_bgs_lock);
4086			break;
4087		}
4088
4089		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4090		chunk_type = btrfs_chunk_type(leaf, chunk);
4091
4092		if (!counting) {
4093			spin_lock(&fs_info->balance_lock);
4094			bctl->stat.considered++;
4095			spin_unlock(&fs_info->balance_lock);
4096		}
4097
4098		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4099
4100		btrfs_release_path(path);
4101		if (!ret) {
4102			mutex_unlock(&fs_info->reclaim_bgs_lock);
4103			goto loop;
4104		}
4105
4106		if (counting) {
4107			mutex_unlock(&fs_info->reclaim_bgs_lock);
4108			spin_lock(&fs_info->balance_lock);
4109			bctl->stat.expected++;
4110			spin_unlock(&fs_info->balance_lock);
4111
4112			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4113				count_data++;
4114			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4115				count_sys++;
4116			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4117				count_meta++;
4118
4119			goto loop;
4120		}
4121
4122		/*
4123		 * Apply limit_min filter, no need to check if the LIMITS
4124		 * filter is used, limit_min is 0 by default
4125		 */
4126		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4127					count_data < bctl->data.limit_min)
4128				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4129					count_meta < bctl->meta.limit_min)
4130				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4131					count_sys < bctl->sys.limit_min)) {
4132			mutex_unlock(&fs_info->reclaim_bgs_lock);
4133			goto loop;
4134		}
4135
4136		if (!chunk_reserved) {
4137			/*
4138			 * We may be relocating the only data chunk we have,
4139			 * which could potentially end up with losing data's
4140			 * raid profile, so lets allocate an empty one in
4141			 * advance.
4142			 */
4143			ret = btrfs_may_alloc_data_chunk(fs_info,
4144							 found_key.offset);
4145			if (ret < 0) {
4146				mutex_unlock(&fs_info->reclaim_bgs_lock);
4147				goto error;
4148			} else if (ret == 1) {
4149				chunk_reserved = 1;
4150			}
4151		}
4152
4153		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4154		mutex_unlock(&fs_info->reclaim_bgs_lock);
4155		if (ret == -ENOSPC) {
4156			enospc_errors++;
4157		} else if (ret == -ETXTBSY) {
4158			btrfs_info(fs_info,
4159	   "skipping relocation of block group %llu due to active swapfile",
4160				   found_key.offset);
4161			ret = 0;
4162		} else if (ret) {
4163			goto error;
4164		} else {
4165			spin_lock(&fs_info->balance_lock);
4166			bctl->stat.completed++;
4167			spin_unlock(&fs_info->balance_lock);
4168		}
4169loop:
4170		if (found_key.offset == 0)
4171			break;
4172		key.offset = found_key.offset - 1;
4173	}
4174
4175	if (counting) {
4176		btrfs_release_path(path);
4177		counting = false;
4178		goto again;
4179	}
4180error:
4181	btrfs_free_path(path);
4182	if (enospc_errors) {
4183		btrfs_info(fs_info, "%d enospc errors during balance",
4184			   enospc_errors);
4185		if (!ret)
4186			ret = -ENOSPC;
4187	}
4188
4189	return ret;
4190}
4191
4192/*
4193 * See if a given profile is valid and reduced.
4194 *
4195 * @flags:     profile to validate
4196 * @extended:  if true @flags is treated as an extended profile
4197 */
4198static int alloc_profile_is_valid(u64 flags, int extended)
4199{
4200	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4201			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4202
4203	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4204
4205	/* 1) check that all other bits are zeroed */
4206	if (flags & ~mask)
4207		return 0;
4208
4209	/* 2) see if profile is reduced */
4210	if (flags == 0)
4211		return !extended; /* "0" is valid for usual profiles */
4212
4213	return has_single_bit_set(flags);
4214}
4215
4216/*
4217 * Validate target profile against allowed profiles and return true if it's OK.
4218 * Otherwise print the error message and return false.
4219 */
4220static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4221		const struct btrfs_balance_args *bargs,
4222		u64 allowed, const char *type)
4223{
4224	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4225		return true;
4226
4227	/* Profile is valid and does not have bits outside of the allowed set */
4228	if (alloc_profile_is_valid(bargs->target, 1) &&
4229	    (bargs->target & ~allowed) == 0)
4230		return true;
4231
4232	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4233			type, btrfs_bg_type_to_raid_name(bargs->target));
4234	return false;
4235}
4236
4237/*
4238 * Fill @buf with textual description of balance filter flags @bargs, up to
4239 * @size_buf including the terminating null. The output may be trimmed if it
4240 * does not fit into the provided buffer.
4241 */
4242static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4243				 u32 size_buf)
4244{
4245	int ret;
4246	u32 size_bp = size_buf;
4247	char *bp = buf;
4248	u64 flags = bargs->flags;
4249	char tmp_buf[128] = {'\0'};
4250
4251	if (!flags)
4252		return;
4253
4254#define CHECK_APPEND_NOARG(a)						\
4255	do {								\
4256		ret = snprintf(bp, size_bp, (a));			\
4257		if (ret < 0 || ret >= size_bp)				\
4258			goto out_overflow;				\
4259		size_bp -= ret;						\
4260		bp += ret;						\
4261	} while (0)
4262
4263#define CHECK_APPEND_1ARG(a, v1)					\
4264	do {								\
4265		ret = snprintf(bp, size_bp, (a), (v1));			\
4266		if (ret < 0 || ret >= size_bp)				\
4267			goto out_overflow;				\
4268		size_bp -= ret;						\
4269		bp += ret;						\
4270	} while (0)
4271
4272#define CHECK_APPEND_2ARG(a, v1, v2)					\
4273	do {								\
4274		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4275		if (ret < 0 || ret >= size_bp)				\
4276			goto out_overflow;				\
4277		size_bp -= ret;						\
4278		bp += ret;						\
4279	} while (0)
4280
4281	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4282		CHECK_APPEND_1ARG("convert=%s,",
4283				  btrfs_bg_type_to_raid_name(bargs->target));
4284
4285	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4286		CHECK_APPEND_NOARG("soft,");
4287
4288	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4289		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4290					    sizeof(tmp_buf));
4291		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4292	}
4293
4294	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4295		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4296
4297	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4298		CHECK_APPEND_2ARG("usage=%u..%u,",
4299				  bargs->usage_min, bargs->usage_max);
4300
4301	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4302		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4303
4304	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4305		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4306				  bargs->pstart, bargs->pend);
4307
4308	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4309		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4310				  bargs->vstart, bargs->vend);
4311
4312	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4313		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4314
4315	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4316		CHECK_APPEND_2ARG("limit=%u..%u,",
4317				bargs->limit_min, bargs->limit_max);
4318
4319	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4320		CHECK_APPEND_2ARG("stripes=%u..%u,",
4321				  bargs->stripes_min, bargs->stripes_max);
4322
4323#undef CHECK_APPEND_2ARG
4324#undef CHECK_APPEND_1ARG
4325#undef CHECK_APPEND_NOARG
4326
4327out_overflow:
4328
4329	if (size_bp < size_buf)
4330		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4331	else
4332		buf[0] = '\0';
4333}
4334
4335static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4336{
4337	u32 size_buf = 1024;
4338	char tmp_buf[192] = {'\0'};
4339	char *buf;
4340	char *bp;
4341	u32 size_bp = size_buf;
4342	int ret;
4343	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4344
4345	buf = kzalloc(size_buf, GFP_KERNEL);
4346	if (!buf)
4347		return;
4348
4349	bp = buf;
4350
4351#define CHECK_APPEND_1ARG(a, v1)					\
4352	do {								\
4353		ret = snprintf(bp, size_bp, (a), (v1));			\
4354		if (ret < 0 || ret >= size_bp)				\
4355			goto out_overflow;				\
4356		size_bp -= ret;						\
4357		bp += ret;						\
4358	} while (0)
4359
4360	if (bctl->flags & BTRFS_BALANCE_FORCE)
4361		CHECK_APPEND_1ARG("%s", "-f ");
4362
4363	if (bctl->flags & BTRFS_BALANCE_DATA) {
4364		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4365		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4366	}
4367
4368	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4369		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4370		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4371	}
4372
4373	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4374		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4375		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4376	}
4377
4378#undef CHECK_APPEND_1ARG
4379
4380out_overflow:
4381
4382	if (size_bp < size_buf)
4383		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4384	btrfs_info(fs_info, "balance: %s %s",
4385		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4386		   "resume" : "start", buf);
4387
4388	kfree(buf);
4389}
4390
4391/*
4392 * Should be called with balance mutexe held
4393 */
4394int btrfs_balance(struct btrfs_fs_info *fs_info,
4395		  struct btrfs_balance_control *bctl,
4396		  struct btrfs_ioctl_balance_args *bargs)
4397{
4398	u64 meta_target, data_target;
4399	u64 allowed;
4400	int mixed = 0;
4401	int ret;
4402	u64 num_devices;
4403	unsigned seq;
4404	bool reducing_redundancy;
4405	bool paused = false;
4406	int i;
4407
4408	if (btrfs_fs_closing(fs_info) ||
4409	    atomic_read(&fs_info->balance_pause_req) ||
4410	    btrfs_should_cancel_balance(fs_info)) {
4411		ret = -EINVAL;
4412		goto out;
4413	}
4414
4415	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4416	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4417		mixed = 1;
4418
4419	/*
4420	 * In case of mixed groups both data and meta should be picked,
4421	 * and identical options should be given for both of them.
4422	 */
4423	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4424	if (mixed && (bctl->flags & allowed)) {
4425		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4426		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4427		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4428			btrfs_err(fs_info,
4429	  "balance: mixed groups data and metadata options must be the same");
4430			ret = -EINVAL;
4431			goto out;
4432		}
4433	}
4434
4435	/*
4436	 * rw_devices will not change at the moment, device add/delete/replace
4437	 * are exclusive
4438	 */
4439	num_devices = fs_info->fs_devices->rw_devices;
4440
4441	/*
4442	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4443	 * special bit for it, to make it easier to distinguish.  Thus we need
4444	 * to set it manually, or balance would refuse the profile.
4445	 */
4446	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4447	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4448		if (num_devices >= btrfs_raid_array[i].devs_min)
4449			allowed |= btrfs_raid_array[i].bg_flag;
4450
4451	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4452	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4453	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4454		ret = -EINVAL;
4455		goto out;
4456	}
4457
4458	/*
4459	 * Allow to reduce metadata or system integrity only if force set for
4460	 * profiles with redundancy (copies, parity)
4461	 */
4462	allowed = 0;
4463	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4464		if (btrfs_raid_array[i].ncopies >= 2 ||
4465		    btrfs_raid_array[i].tolerated_failures >= 1)
4466			allowed |= btrfs_raid_array[i].bg_flag;
4467	}
4468	do {
4469		seq = read_seqbegin(&fs_info->profiles_lock);
4470
4471		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4472		     (fs_info->avail_system_alloc_bits & allowed) &&
4473		     !(bctl->sys.target & allowed)) ||
4474		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4475		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4476		     !(bctl->meta.target & allowed)))
4477			reducing_redundancy = true;
4478		else
4479			reducing_redundancy = false;
4480
4481		/* if we're not converting, the target field is uninitialized */
4482		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4483			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4484		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4485			bctl->data.target : fs_info->avail_data_alloc_bits;
4486	} while (read_seqretry(&fs_info->profiles_lock, seq));
4487
4488	if (reducing_redundancy) {
4489		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4490			btrfs_info(fs_info,
4491			   "balance: force reducing metadata redundancy");
4492		} else {
4493			btrfs_err(fs_info,
4494	"balance: reduces metadata redundancy, use --force if you want this");
4495			ret = -EINVAL;
4496			goto out;
4497		}
4498	}
4499
4500	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4501		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4502		btrfs_warn(fs_info,
4503	"balance: metadata profile %s has lower redundancy than data profile %s",
4504				btrfs_bg_type_to_raid_name(meta_target),
4505				btrfs_bg_type_to_raid_name(data_target));
4506	}
4507
4508	ret = insert_balance_item(fs_info, bctl);
4509	if (ret && ret != -EEXIST)
4510		goto out;
4511
4512	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4513		BUG_ON(ret == -EEXIST);
4514		BUG_ON(fs_info->balance_ctl);
4515		spin_lock(&fs_info->balance_lock);
4516		fs_info->balance_ctl = bctl;
4517		spin_unlock(&fs_info->balance_lock);
4518	} else {
4519		BUG_ON(ret != -EEXIST);
4520		spin_lock(&fs_info->balance_lock);
4521		update_balance_args(bctl);
4522		spin_unlock(&fs_info->balance_lock);
4523	}
4524
4525	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4526	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4527	describe_balance_start_or_resume(fs_info);
4528	mutex_unlock(&fs_info->balance_mutex);
4529
4530	ret = __btrfs_balance(fs_info);
4531
4532	mutex_lock(&fs_info->balance_mutex);
4533	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4534		btrfs_info(fs_info, "balance: paused");
4535		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4536		paused = true;
4537	}
4538	/*
4539	 * Balance can be canceled by:
4540	 *
4541	 * - Regular cancel request
4542	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4543	 *
4544	 * - Fatal signal to "btrfs" process
4545	 *   Either the signal caught by wait_reserve_ticket() and callers
4546	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4547	 *   got -ECANCELED.
4548	 *   Either way, in this case balance_cancel_req = 0, and
4549	 *   ret == -EINTR or ret == -ECANCELED.
4550	 *
4551	 * So here we only check the return value to catch canceled balance.
4552	 */
4553	else if (ret == -ECANCELED || ret == -EINTR)
4554		btrfs_info(fs_info, "balance: canceled");
4555	else
4556		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4557
4558	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4559
4560	if (bargs) {
4561		memset(bargs, 0, sizeof(*bargs));
4562		btrfs_update_ioctl_balance_args(fs_info, bargs);
4563	}
4564
4565	/* We didn't pause, we can clean everything up. */
4566	if (!paused) {
4567		reset_balance_state(fs_info);
4568		btrfs_exclop_finish(fs_info);
4569	}
4570
4571	wake_up(&fs_info->balance_wait_q);
4572
4573	return ret;
4574out:
4575	if (bctl->flags & BTRFS_BALANCE_RESUME)
4576		reset_balance_state(fs_info);
4577	else
4578		kfree(bctl);
4579	btrfs_exclop_finish(fs_info);
4580
4581	return ret;
4582}
4583
4584static int balance_kthread(void *data)
4585{
4586	struct btrfs_fs_info *fs_info = data;
4587	int ret = 0;
4588
4589	sb_start_write(fs_info->sb);
4590	mutex_lock(&fs_info->balance_mutex);
4591	if (fs_info->balance_ctl)
4592		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4593	mutex_unlock(&fs_info->balance_mutex);
4594	sb_end_write(fs_info->sb);
4595
4596	return ret;
4597}
4598
4599int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4600{
4601	struct task_struct *tsk;
4602
4603	mutex_lock(&fs_info->balance_mutex);
4604	if (!fs_info->balance_ctl) {
4605		mutex_unlock(&fs_info->balance_mutex);
4606		return 0;
4607	}
4608	mutex_unlock(&fs_info->balance_mutex);
4609
4610	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4611		btrfs_info(fs_info, "balance: resume skipped");
4612		return 0;
4613	}
4614
4615	spin_lock(&fs_info->super_lock);
4616	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4617	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4618	spin_unlock(&fs_info->super_lock);
4619	/*
4620	 * A ro->rw remount sequence should continue with the paused balance
4621	 * regardless of who pauses it, system or the user as of now, so set
4622	 * the resume flag.
4623	 */
4624	spin_lock(&fs_info->balance_lock);
4625	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4626	spin_unlock(&fs_info->balance_lock);
4627
4628	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4629	return PTR_ERR_OR_ZERO(tsk);
4630}
4631
4632int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4633{
4634	struct btrfs_balance_control *bctl;
4635	struct btrfs_balance_item *item;
4636	struct btrfs_disk_balance_args disk_bargs;
4637	struct btrfs_path *path;
4638	struct extent_buffer *leaf;
4639	struct btrfs_key key;
4640	int ret;
4641
4642	path = btrfs_alloc_path();
4643	if (!path)
4644		return -ENOMEM;
4645
4646	key.objectid = BTRFS_BALANCE_OBJECTID;
4647	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4648	key.offset = 0;
4649
4650	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4651	if (ret < 0)
4652		goto out;
4653	if (ret > 0) { /* ret = -ENOENT; */
4654		ret = 0;
4655		goto out;
4656	}
4657
4658	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4659	if (!bctl) {
4660		ret = -ENOMEM;
4661		goto out;
4662	}
4663
4664	leaf = path->nodes[0];
4665	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4666
4667	bctl->flags = btrfs_balance_flags(leaf, item);
4668	bctl->flags |= BTRFS_BALANCE_RESUME;
4669
4670	btrfs_balance_data(leaf, item, &disk_bargs);
4671	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4672	btrfs_balance_meta(leaf, item, &disk_bargs);
4673	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4674	btrfs_balance_sys(leaf, item, &disk_bargs);
4675	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4676
4677	/*
4678	 * This should never happen, as the paused balance state is recovered
4679	 * during mount without any chance of other exclusive ops to collide.
4680	 *
4681	 * This gives the exclusive op status to balance and keeps in paused
4682	 * state until user intervention (cancel or umount). If the ownership
4683	 * cannot be assigned, show a message but do not fail. The balance
4684	 * is in a paused state and must have fs_info::balance_ctl properly
4685	 * set up.
4686	 */
4687	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4688		btrfs_warn(fs_info,
4689	"balance: cannot set exclusive op status, resume manually");
4690
4691	btrfs_release_path(path);
4692
4693	mutex_lock(&fs_info->balance_mutex);
4694	BUG_ON(fs_info->balance_ctl);
4695	spin_lock(&fs_info->balance_lock);
4696	fs_info->balance_ctl = bctl;
4697	spin_unlock(&fs_info->balance_lock);
4698	mutex_unlock(&fs_info->balance_mutex);
4699out:
4700	btrfs_free_path(path);
4701	return ret;
4702}
4703
4704int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4705{
4706	int ret = 0;
4707
4708	mutex_lock(&fs_info->balance_mutex);
4709	if (!fs_info->balance_ctl) {
4710		mutex_unlock(&fs_info->balance_mutex);
4711		return -ENOTCONN;
4712	}
4713
4714	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4715		atomic_inc(&fs_info->balance_pause_req);
4716		mutex_unlock(&fs_info->balance_mutex);
4717
4718		wait_event(fs_info->balance_wait_q,
4719			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4720
4721		mutex_lock(&fs_info->balance_mutex);
4722		/* we are good with balance_ctl ripped off from under us */
4723		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4724		atomic_dec(&fs_info->balance_pause_req);
4725	} else {
4726		ret = -ENOTCONN;
4727	}
4728
4729	mutex_unlock(&fs_info->balance_mutex);
4730	return ret;
4731}
4732
4733int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4734{
4735	mutex_lock(&fs_info->balance_mutex);
4736	if (!fs_info->balance_ctl) {
4737		mutex_unlock(&fs_info->balance_mutex);
4738		return -ENOTCONN;
4739	}
4740
4741	/*
4742	 * A paused balance with the item stored on disk can be resumed at
4743	 * mount time if the mount is read-write. Otherwise it's still paused
4744	 * and we must not allow cancelling as it deletes the item.
4745	 */
4746	if (sb_rdonly(fs_info->sb)) {
4747		mutex_unlock(&fs_info->balance_mutex);
4748		return -EROFS;
4749	}
4750
4751	atomic_inc(&fs_info->balance_cancel_req);
4752	/*
4753	 * if we are running just wait and return, balance item is
4754	 * deleted in btrfs_balance in this case
4755	 */
4756	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4757		mutex_unlock(&fs_info->balance_mutex);
4758		wait_event(fs_info->balance_wait_q,
4759			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4760		mutex_lock(&fs_info->balance_mutex);
4761	} else {
4762		mutex_unlock(&fs_info->balance_mutex);
4763		/*
4764		 * Lock released to allow other waiters to continue, we'll
4765		 * reexamine the status again.
4766		 */
4767		mutex_lock(&fs_info->balance_mutex);
4768
4769		if (fs_info->balance_ctl) {
4770			reset_balance_state(fs_info);
4771			btrfs_exclop_finish(fs_info);
4772			btrfs_info(fs_info, "balance: canceled");
4773		}
4774	}
4775
4776	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4777	atomic_dec(&fs_info->balance_cancel_req);
4778	mutex_unlock(&fs_info->balance_mutex);
4779	return 0;
4780}
4781
4782int btrfs_uuid_scan_kthread(void *data)
4783{
4784	struct btrfs_fs_info *fs_info = data;
4785	struct btrfs_root *root = fs_info->tree_root;
4786	struct btrfs_key key;
4787	struct btrfs_path *path = NULL;
4788	int ret = 0;
4789	struct extent_buffer *eb;
4790	int slot;
4791	struct btrfs_root_item root_item;
4792	u32 item_size;
4793	struct btrfs_trans_handle *trans = NULL;
4794	bool closing = false;
4795
4796	path = btrfs_alloc_path();
4797	if (!path) {
4798		ret = -ENOMEM;
4799		goto out;
4800	}
4801
4802	key.objectid = 0;
4803	key.type = BTRFS_ROOT_ITEM_KEY;
4804	key.offset = 0;
4805
4806	while (1) {
4807		if (btrfs_fs_closing(fs_info)) {
4808			closing = true;
4809			break;
4810		}
4811		ret = btrfs_search_forward(root, &key, path,
4812				BTRFS_OLDEST_GENERATION);
4813		if (ret) {
4814			if (ret > 0)
4815				ret = 0;
4816			break;
4817		}
4818
4819		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4820		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4821		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4822		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4823			goto skip;
4824
4825		eb = path->nodes[0];
4826		slot = path->slots[0];
4827		item_size = btrfs_item_size(eb, slot);
4828		if (item_size < sizeof(root_item))
4829			goto skip;
4830
4831		read_extent_buffer(eb, &root_item,
4832				   btrfs_item_ptr_offset(eb, slot),
4833				   (int)sizeof(root_item));
4834		if (btrfs_root_refs(&root_item) == 0)
4835			goto skip;
4836
4837		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4838		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4839			if (trans)
4840				goto update_tree;
4841
4842			btrfs_release_path(path);
4843			/*
4844			 * 1 - subvol uuid item
4845			 * 1 - received_subvol uuid item
4846			 */
4847			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4848			if (IS_ERR(trans)) {
4849				ret = PTR_ERR(trans);
4850				break;
4851			}
4852			continue;
4853		} else {
4854			goto skip;
4855		}
4856update_tree:
4857		btrfs_release_path(path);
4858		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4859			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4860						  BTRFS_UUID_KEY_SUBVOL,
4861						  key.objectid);
4862			if (ret < 0) {
4863				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4864					ret);
4865				break;
4866			}
4867		}
4868
4869		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4870			ret = btrfs_uuid_tree_add(trans,
4871						  root_item.received_uuid,
4872						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4873						  key.objectid);
4874			if (ret < 0) {
4875				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4876					ret);
4877				break;
4878			}
4879		}
4880
4881skip:
4882		btrfs_release_path(path);
4883		if (trans) {
4884			ret = btrfs_end_transaction(trans);
4885			trans = NULL;
4886			if (ret)
4887				break;
4888		}
4889
4890		if (key.offset < (u64)-1) {
4891			key.offset++;
4892		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4893			key.offset = 0;
4894			key.type = BTRFS_ROOT_ITEM_KEY;
4895		} else if (key.objectid < (u64)-1) {
4896			key.offset = 0;
4897			key.type = BTRFS_ROOT_ITEM_KEY;
4898			key.objectid++;
4899		} else {
4900			break;
4901		}
4902		cond_resched();
4903	}
4904
4905out:
4906	btrfs_free_path(path);
4907	if (trans && !IS_ERR(trans))
4908		btrfs_end_transaction(trans);
4909	if (ret)
4910		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4911	else if (!closing)
4912		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4913	up(&fs_info->uuid_tree_rescan_sem);
4914	return 0;
4915}
4916
4917int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4918{
4919	struct btrfs_trans_handle *trans;
4920	struct btrfs_root *tree_root = fs_info->tree_root;
4921	struct btrfs_root *uuid_root;
4922	struct task_struct *task;
4923	int ret;
4924
4925	/*
4926	 * 1 - root node
4927	 * 1 - root item
4928	 */
4929	trans = btrfs_start_transaction(tree_root, 2);
4930	if (IS_ERR(trans))
4931		return PTR_ERR(trans);
4932
4933	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4934	if (IS_ERR(uuid_root)) {
4935		ret = PTR_ERR(uuid_root);
4936		btrfs_abort_transaction(trans, ret);
4937		btrfs_end_transaction(trans);
4938		return ret;
4939	}
4940
4941	fs_info->uuid_root = uuid_root;
4942
4943	ret = btrfs_commit_transaction(trans);
4944	if (ret)
4945		return ret;
4946
4947	down(&fs_info->uuid_tree_rescan_sem);
4948	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4949	if (IS_ERR(task)) {
4950		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4951		btrfs_warn(fs_info, "failed to start uuid_scan task");
4952		up(&fs_info->uuid_tree_rescan_sem);
4953		return PTR_ERR(task);
4954	}
4955
4956	return 0;
4957}
4958
4959/*
4960 * shrinking a device means finding all of the device extents past
4961 * the new size, and then following the back refs to the chunks.
4962 * The chunk relocation code actually frees the device extent
4963 */
4964int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4965{
4966	struct btrfs_fs_info *fs_info = device->fs_info;
4967	struct btrfs_root *root = fs_info->dev_root;
4968	struct btrfs_trans_handle *trans;
4969	struct btrfs_dev_extent *dev_extent = NULL;
4970	struct btrfs_path *path;
4971	u64 length;
4972	u64 chunk_offset;
4973	int ret;
4974	int slot;
4975	int failed = 0;
4976	bool retried = false;
4977	struct extent_buffer *l;
4978	struct btrfs_key key;
4979	struct btrfs_super_block *super_copy = fs_info->super_copy;
4980	u64 old_total = btrfs_super_total_bytes(super_copy);
4981	u64 old_size = btrfs_device_get_total_bytes(device);
4982	u64 diff;
4983	u64 start;
4984	u64 free_diff = 0;
4985
4986	new_size = round_down(new_size, fs_info->sectorsize);
4987	start = new_size;
4988	diff = round_down(old_size - new_size, fs_info->sectorsize);
4989
4990	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4991		return -EINVAL;
4992
4993	path = btrfs_alloc_path();
4994	if (!path)
4995		return -ENOMEM;
4996
4997	path->reada = READA_BACK;
4998
4999	trans = btrfs_start_transaction(root, 0);
5000	if (IS_ERR(trans)) {
5001		btrfs_free_path(path);
5002		return PTR_ERR(trans);
5003	}
5004
5005	mutex_lock(&fs_info->chunk_mutex);
5006
5007	btrfs_device_set_total_bytes(device, new_size);
5008	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5009		device->fs_devices->total_rw_bytes -= diff;
5010
5011		/*
5012		 * The new free_chunk_space is new_size - used, so we have to
5013		 * subtract the delta of the old free_chunk_space which included
5014		 * old_size - used.  If used > new_size then just subtract this
5015		 * entire device's free space.
5016		 */
5017		if (device->bytes_used < new_size)
5018			free_diff = (old_size - device->bytes_used) -
5019				    (new_size - device->bytes_used);
5020		else
5021			free_diff = old_size - device->bytes_used;
5022		atomic64_sub(free_diff, &fs_info->free_chunk_space);
5023	}
5024
5025	/*
5026	 * Once the device's size has been set to the new size, ensure all
5027	 * in-memory chunks are synced to disk so that the loop below sees them
5028	 * and relocates them accordingly.
5029	 */
5030	if (contains_pending_extent(device, &start, diff)) {
5031		mutex_unlock(&fs_info->chunk_mutex);
5032		ret = btrfs_commit_transaction(trans);
5033		if (ret)
5034			goto done;
5035	} else {
5036		mutex_unlock(&fs_info->chunk_mutex);
5037		btrfs_end_transaction(trans);
5038	}
5039
5040again:
5041	key.objectid = device->devid;
5042	key.offset = (u64)-1;
5043	key.type = BTRFS_DEV_EXTENT_KEY;
5044
5045	do {
5046		mutex_lock(&fs_info->reclaim_bgs_lock);
5047		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5048		if (ret < 0) {
5049			mutex_unlock(&fs_info->reclaim_bgs_lock);
5050			goto done;
5051		}
5052
5053		ret = btrfs_previous_item(root, path, 0, key.type);
5054		if (ret) {
5055			mutex_unlock(&fs_info->reclaim_bgs_lock);
5056			if (ret < 0)
5057				goto done;
5058			ret = 0;
5059			btrfs_release_path(path);
5060			break;
5061		}
5062
5063		l = path->nodes[0];
5064		slot = path->slots[0];
5065		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5066
5067		if (key.objectid != device->devid) {
5068			mutex_unlock(&fs_info->reclaim_bgs_lock);
5069			btrfs_release_path(path);
5070			break;
5071		}
5072
5073		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5074		length = btrfs_dev_extent_length(l, dev_extent);
5075
5076		if (key.offset + length <= new_size) {
5077			mutex_unlock(&fs_info->reclaim_bgs_lock);
5078			btrfs_release_path(path);
5079			break;
5080		}
5081
5082		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5083		btrfs_release_path(path);
5084
5085		/*
5086		 * We may be relocating the only data chunk we have,
5087		 * which could potentially end up with losing data's
5088		 * raid profile, so lets allocate an empty one in
5089		 * advance.
5090		 */
5091		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5092		if (ret < 0) {
5093			mutex_unlock(&fs_info->reclaim_bgs_lock);
5094			goto done;
5095		}
5096
5097		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5098		mutex_unlock(&fs_info->reclaim_bgs_lock);
5099		if (ret == -ENOSPC) {
5100			failed++;
5101		} else if (ret) {
5102			if (ret == -ETXTBSY) {
5103				btrfs_warn(fs_info,
5104		   "could not shrink block group %llu due to active swapfile",
5105					   chunk_offset);
5106			}
5107			goto done;
5108		}
5109	} while (key.offset-- > 0);
5110
5111	if (failed && !retried) {
5112		failed = 0;
5113		retried = true;
5114		goto again;
5115	} else if (failed && retried) {
5116		ret = -ENOSPC;
5117		goto done;
5118	}
5119
5120	/* Shrinking succeeded, else we would be at "done". */
5121	trans = btrfs_start_transaction(root, 0);
5122	if (IS_ERR(trans)) {
5123		ret = PTR_ERR(trans);
5124		goto done;
5125	}
5126
5127	mutex_lock(&fs_info->chunk_mutex);
5128	/* Clear all state bits beyond the shrunk device size */
5129	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5130			  CHUNK_STATE_MASK);
5131
5132	btrfs_device_set_disk_total_bytes(device, new_size);
5133	if (list_empty(&device->post_commit_list))
5134		list_add_tail(&device->post_commit_list,
5135			      &trans->transaction->dev_update_list);
5136
5137	WARN_ON(diff > old_total);
5138	btrfs_set_super_total_bytes(super_copy,
5139			round_down(old_total - diff, fs_info->sectorsize));
5140	mutex_unlock(&fs_info->chunk_mutex);
5141
5142	btrfs_reserve_chunk_metadata(trans, false);
5143	/* Now btrfs_update_device() will change the on-disk size. */
5144	ret = btrfs_update_device(trans, device);
5145	btrfs_trans_release_chunk_metadata(trans);
5146	if (ret < 0) {
5147		btrfs_abort_transaction(trans, ret);
5148		btrfs_end_transaction(trans);
5149	} else {
5150		ret = btrfs_commit_transaction(trans);
5151	}
5152done:
5153	btrfs_free_path(path);
5154	if (ret) {
5155		mutex_lock(&fs_info->chunk_mutex);
5156		btrfs_device_set_total_bytes(device, old_size);
5157		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5158			device->fs_devices->total_rw_bytes += diff;
5159			atomic64_add(free_diff, &fs_info->free_chunk_space);
5160		}
5161		mutex_unlock(&fs_info->chunk_mutex);
5162	}
5163	return ret;
5164}
5165
5166static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5167			   struct btrfs_key *key,
5168			   struct btrfs_chunk *chunk, int item_size)
5169{
5170	struct btrfs_super_block *super_copy = fs_info->super_copy;
5171	struct btrfs_disk_key disk_key;
5172	u32 array_size;
5173	u8 *ptr;
5174
5175	lockdep_assert_held(&fs_info->chunk_mutex);
5176
5177	array_size = btrfs_super_sys_array_size(super_copy);
5178	if (array_size + item_size + sizeof(disk_key)
5179			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5180		return -EFBIG;
5181
5182	ptr = super_copy->sys_chunk_array + array_size;
5183	btrfs_cpu_key_to_disk(&disk_key, key);
5184	memcpy(ptr, &disk_key, sizeof(disk_key));
5185	ptr += sizeof(disk_key);
5186	memcpy(ptr, chunk, item_size);
5187	item_size += sizeof(disk_key);
5188	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5189
5190	return 0;
5191}
5192
5193/*
5194 * sort the devices in descending order by max_avail, total_avail
5195 */
5196static int btrfs_cmp_device_info(const void *a, const void *b)
5197{
5198	const struct btrfs_device_info *di_a = a;
5199	const struct btrfs_device_info *di_b = b;
5200
5201	if (di_a->max_avail > di_b->max_avail)
5202		return -1;
5203	if (di_a->max_avail < di_b->max_avail)
5204		return 1;
5205	if (di_a->total_avail > di_b->total_avail)
5206		return -1;
5207	if (di_a->total_avail < di_b->total_avail)
5208		return 1;
5209	return 0;
5210}
5211
5212static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5213{
5214	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5215		return;
5216
5217	btrfs_set_fs_incompat(info, RAID56);
5218}
5219
5220static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5221{
5222	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5223		return;
5224
5225	btrfs_set_fs_incompat(info, RAID1C34);
5226}
5227
5228/*
5229 * Structure used internally for btrfs_create_chunk() function.
5230 * Wraps needed parameters.
5231 */
5232struct alloc_chunk_ctl {
5233	u64 start;
5234	u64 type;
5235	/* Total number of stripes to allocate */
5236	int num_stripes;
5237	/* sub_stripes info for map */
5238	int sub_stripes;
5239	/* Stripes per device */
5240	int dev_stripes;
5241	/* Maximum number of devices to use */
5242	int devs_max;
5243	/* Minimum number of devices to use */
5244	int devs_min;
5245	/* ndevs has to be a multiple of this */
5246	int devs_increment;
5247	/* Number of copies */
5248	int ncopies;
5249	/* Number of stripes worth of bytes to store parity information */
5250	int nparity;
5251	u64 max_stripe_size;
5252	u64 max_chunk_size;
5253	u64 dev_extent_min;
5254	u64 stripe_size;
5255	u64 chunk_size;
5256	int ndevs;
5257};
5258
5259static void init_alloc_chunk_ctl_policy_regular(
5260				struct btrfs_fs_devices *fs_devices,
5261				struct alloc_chunk_ctl *ctl)
5262{
5263	struct btrfs_space_info *space_info;
5264
5265	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5266	ASSERT(space_info);
5267
5268	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5269	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5270
5271	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5272		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5273
5274	/* We don't want a chunk larger than 10% of writable space */
5275	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5276				  ctl->max_chunk_size);
5277	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5278}
5279
5280static void init_alloc_chunk_ctl_policy_zoned(
5281				      struct btrfs_fs_devices *fs_devices,
5282				      struct alloc_chunk_ctl *ctl)
5283{
5284	u64 zone_size = fs_devices->fs_info->zone_size;
5285	u64 limit;
5286	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5287	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5288	u64 min_chunk_size = min_data_stripes * zone_size;
5289	u64 type = ctl->type;
5290
5291	ctl->max_stripe_size = zone_size;
5292	if (type & BTRFS_BLOCK_GROUP_DATA) {
5293		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5294						 zone_size);
5295	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5296		ctl->max_chunk_size = ctl->max_stripe_size;
5297	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5298		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5299		ctl->devs_max = min_t(int, ctl->devs_max,
5300				      BTRFS_MAX_DEVS_SYS_CHUNK);
5301	} else {
5302		BUG();
5303	}
5304
5305	/* We don't want a chunk larger than 10% of writable space */
5306	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5307			       zone_size),
5308		    min_chunk_size);
5309	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5310	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5311}
5312
5313static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5314				 struct alloc_chunk_ctl *ctl)
5315{
5316	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5317
5318	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5319	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5320	ctl->devs_max = btrfs_raid_array[index].devs_max;
5321	if (!ctl->devs_max)
5322		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5323	ctl->devs_min = btrfs_raid_array[index].devs_min;
5324	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5325	ctl->ncopies = btrfs_raid_array[index].ncopies;
5326	ctl->nparity = btrfs_raid_array[index].nparity;
5327	ctl->ndevs = 0;
5328
5329	switch (fs_devices->chunk_alloc_policy) {
5330	case BTRFS_CHUNK_ALLOC_REGULAR:
5331		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5332		break;
5333	case BTRFS_CHUNK_ALLOC_ZONED:
5334		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5335		break;
5336	default:
5337		BUG();
5338	}
5339}
5340
5341static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5342			      struct alloc_chunk_ctl *ctl,
5343			      struct btrfs_device_info *devices_info)
5344{
5345	struct btrfs_fs_info *info = fs_devices->fs_info;
5346	struct btrfs_device *device;
5347	u64 total_avail;
5348	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5349	int ret;
5350	int ndevs = 0;
5351	u64 max_avail;
5352	u64 dev_offset;
5353
5354	/*
5355	 * in the first pass through the devices list, we gather information
5356	 * about the available holes on each device.
5357	 */
5358	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5359		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5360			WARN(1, KERN_ERR
5361			       "BTRFS: read-only device in alloc_list\n");
5362			continue;
5363		}
5364
5365		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5366					&device->dev_state) ||
5367		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5368			continue;
5369
5370		if (device->total_bytes > device->bytes_used)
5371			total_avail = device->total_bytes - device->bytes_used;
5372		else
5373			total_avail = 0;
5374
5375		/* If there is no space on this device, skip it. */
5376		if (total_avail < ctl->dev_extent_min)
5377			continue;
5378
5379		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5380					   &max_avail);
5381		if (ret && ret != -ENOSPC)
5382			return ret;
5383
5384		if (ret == 0)
5385			max_avail = dev_extent_want;
5386
5387		if (max_avail < ctl->dev_extent_min) {
5388			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5389				btrfs_debug(info,
5390			"%s: devid %llu has no free space, have=%llu want=%llu",
5391					    __func__, device->devid, max_avail,
5392					    ctl->dev_extent_min);
5393			continue;
5394		}
5395
5396		if (ndevs == fs_devices->rw_devices) {
5397			WARN(1, "%s: found more than %llu devices\n",
5398			     __func__, fs_devices->rw_devices);
5399			break;
5400		}
5401		devices_info[ndevs].dev_offset = dev_offset;
5402		devices_info[ndevs].max_avail = max_avail;
5403		devices_info[ndevs].total_avail = total_avail;
5404		devices_info[ndevs].dev = device;
5405		++ndevs;
5406	}
5407	ctl->ndevs = ndevs;
5408
5409	/*
5410	 * now sort the devices by hole size / available space
5411	 */
5412	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5413	     btrfs_cmp_device_info, NULL);
5414
5415	return 0;
5416}
5417
5418static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5419				      struct btrfs_device_info *devices_info)
5420{
5421	/* Number of stripes that count for block group size */
5422	int data_stripes;
5423
5424	/*
5425	 * The primary goal is to maximize the number of stripes, so use as
5426	 * many devices as possible, even if the stripes are not maximum sized.
5427	 *
5428	 * The DUP profile stores more than one stripe per device, the
5429	 * max_avail is the total size so we have to adjust.
5430	 */
5431	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5432				   ctl->dev_stripes);
5433	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5434
5435	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5436	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5437
5438	/*
5439	 * Use the number of data stripes to figure out how big this chunk is
5440	 * really going to be in terms of logical address space, and compare
5441	 * that answer with the max chunk size. If it's higher, we try to
5442	 * reduce stripe_size.
5443	 */
5444	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5445		/*
5446		 * Reduce stripe_size, round it up to a 16MB boundary again and
5447		 * then use it, unless it ends up being even bigger than the
5448		 * previous value we had already.
5449		 */
5450		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5451							data_stripes), SZ_16M),
5452				       ctl->stripe_size);
5453	}
5454
5455	/* Stripe size should not go beyond 1G. */
5456	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5457
5458	/* Align to BTRFS_STRIPE_LEN */
5459	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5460	ctl->chunk_size = ctl->stripe_size * data_stripes;
5461
5462	return 0;
5463}
5464
5465static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5466				    struct btrfs_device_info *devices_info)
5467{
5468	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5469	/* Number of stripes that count for block group size */
5470	int data_stripes;
5471
5472	/*
5473	 * It should hold because:
5474	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5475	 */
5476	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5477
5478	ctl->stripe_size = zone_size;
5479	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5480	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5481
5482	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5483	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5484		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5485					     ctl->stripe_size) + ctl->nparity,
5486				     ctl->dev_stripes);
5487		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5488		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5489		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5490	}
5491
5492	ctl->chunk_size = ctl->stripe_size * data_stripes;
5493
5494	return 0;
5495}
5496
5497static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5498			      struct alloc_chunk_ctl *ctl,
5499			      struct btrfs_device_info *devices_info)
5500{
5501	struct btrfs_fs_info *info = fs_devices->fs_info;
5502
5503	/*
5504	 * Round down to number of usable stripes, devs_increment can be any
5505	 * number so we can't use round_down() that requires power of 2, while
5506	 * rounddown is safe.
5507	 */
5508	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5509
5510	if (ctl->ndevs < ctl->devs_min) {
5511		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5512			btrfs_debug(info,
5513	"%s: not enough devices with free space: have=%d minimum required=%d",
5514				    __func__, ctl->ndevs, ctl->devs_min);
5515		}
5516		return -ENOSPC;
5517	}
5518
5519	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5520
5521	switch (fs_devices->chunk_alloc_policy) {
5522	case BTRFS_CHUNK_ALLOC_REGULAR:
5523		return decide_stripe_size_regular(ctl, devices_info);
5524	case BTRFS_CHUNK_ALLOC_ZONED:
5525		return decide_stripe_size_zoned(ctl, devices_info);
5526	default:
5527		BUG();
5528	}
5529}
5530
5531static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5532{
5533	for (int i = 0; i < map->num_stripes; i++) {
5534		struct btrfs_io_stripe *stripe = &map->stripes[i];
5535		struct btrfs_device *device = stripe->dev;
5536
5537		set_extent_bit(&device->alloc_state, stripe->physical,
5538			       stripe->physical + map->stripe_size - 1,
5539			       bits | EXTENT_NOWAIT, NULL);
5540	}
5541}
5542
5543static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5544{
5545	for (int i = 0; i < map->num_stripes; i++) {
5546		struct btrfs_io_stripe *stripe = &map->stripes[i];
5547		struct btrfs_device *device = stripe->dev;
5548
5549		__clear_extent_bit(&device->alloc_state, stripe->physical,
5550				   stripe->physical + map->stripe_size - 1,
5551				   bits | EXTENT_NOWAIT,
5552				   NULL, NULL);
5553	}
5554}
5555
5556void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5557{
5558	write_lock(&fs_info->mapping_tree_lock);
5559	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5560	RB_CLEAR_NODE(&map->rb_node);
5561	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5562	write_unlock(&fs_info->mapping_tree_lock);
5563
5564	/* Once for the tree reference. */
5565	btrfs_free_chunk_map(map);
5566}
5567
5568EXPORT_FOR_TESTS
5569int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5570{
5571	struct rb_node **p;
5572	struct rb_node *parent = NULL;
5573	bool leftmost = true;
5574
5575	write_lock(&fs_info->mapping_tree_lock);
5576	p = &fs_info->mapping_tree.rb_root.rb_node;
5577	while (*p) {
5578		struct btrfs_chunk_map *entry;
5579
5580		parent = *p;
5581		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5582
5583		if (map->start < entry->start) {
5584			p = &(*p)->rb_left;
5585		} else if (map->start > entry->start) {
5586			p = &(*p)->rb_right;
5587			leftmost = false;
5588		} else {
5589			write_unlock(&fs_info->mapping_tree_lock);
5590			return -EEXIST;
5591		}
5592	}
5593	rb_link_node(&map->rb_node, parent, p);
5594	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5595	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5596	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5597	write_unlock(&fs_info->mapping_tree_lock);
5598
5599	return 0;
5600}
5601
5602EXPORT_FOR_TESTS
5603struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5604{
5605	struct btrfs_chunk_map *map;
5606
5607	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5608	if (!map)
5609		return NULL;
5610
5611	refcount_set(&map->refs, 1);
5612	RB_CLEAR_NODE(&map->rb_node);
5613
5614	return map;
5615}
5616
5617struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5618{
5619	const int size = btrfs_chunk_map_size(map->num_stripes);
5620	struct btrfs_chunk_map *clone;
5621
5622	clone = kmemdup(map, size, gfp);
5623	if (!clone)
5624		return NULL;
5625
5626	refcount_set(&clone->refs, 1);
5627	RB_CLEAR_NODE(&clone->rb_node);
5628
5629	return clone;
5630}
5631
5632static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5633			struct alloc_chunk_ctl *ctl,
5634			struct btrfs_device_info *devices_info)
5635{
5636	struct btrfs_fs_info *info = trans->fs_info;
5637	struct btrfs_chunk_map *map;
5638	struct btrfs_block_group *block_group;
5639	u64 start = ctl->start;
5640	u64 type = ctl->type;
5641	int ret;
5642	int i;
5643	int j;
5644
5645	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5646	if (!map)
5647		return ERR_PTR(-ENOMEM);
5648
5649	map->start = start;
5650	map->chunk_len = ctl->chunk_size;
5651	map->stripe_size = ctl->stripe_size;
5652	map->type = type;
5653	map->io_align = BTRFS_STRIPE_LEN;
5654	map->io_width = BTRFS_STRIPE_LEN;
5655	map->sub_stripes = ctl->sub_stripes;
5656	map->num_stripes = ctl->num_stripes;
5657
5658	for (i = 0; i < ctl->ndevs; ++i) {
5659		for (j = 0; j < ctl->dev_stripes; ++j) {
5660			int s = i * ctl->dev_stripes + j;
5661			map->stripes[s].dev = devices_info[i].dev;
5662			map->stripes[s].physical = devices_info[i].dev_offset +
5663						   j * ctl->stripe_size;
5664		}
5665	}
5666
5667	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5668
5669	ret = btrfs_add_chunk_map(info, map);
5670	if (ret) {
5671		btrfs_free_chunk_map(map);
5672		return ERR_PTR(ret);
5673	}
5674
5675	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5676	if (IS_ERR(block_group)) {
5677		btrfs_remove_chunk_map(info, map);
5678		return block_group;
5679	}
5680
5681	for (int i = 0; i < map->num_stripes; i++) {
5682		struct btrfs_device *dev = map->stripes[i].dev;
5683
5684		btrfs_device_set_bytes_used(dev,
5685					    dev->bytes_used + ctl->stripe_size);
5686		if (list_empty(&dev->post_commit_list))
5687			list_add_tail(&dev->post_commit_list,
5688				      &trans->transaction->dev_update_list);
5689	}
5690
5691	atomic64_sub(ctl->stripe_size * map->num_stripes,
5692		     &info->free_chunk_space);
5693
5694	check_raid56_incompat_flag(info, type);
5695	check_raid1c34_incompat_flag(info, type);
5696
5697	return block_group;
5698}
5699
5700struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5701					    u64 type)
5702{
5703	struct btrfs_fs_info *info = trans->fs_info;
5704	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5705	struct btrfs_device_info *devices_info = NULL;
5706	struct alloc_chunk_ctl ctl;
5707	struct btrfs_block_group *block_group;
5708	int ret;
5709
5710	lockdep_assert_held(&info->chunk_mutex);
5711
5712	if (!alloc_profile_is_valid(type, 0)) {
5713		ASSERT(0);
5714		return ERR_PTR(-EINVAL);
5715	}
5716
5717	if (list_empty(&fs_devices->alloc_list)) {
5718		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5719			btrfs_debug(info, "%s: no writable device", __func__);
5720		return ERR_PTR(-ENOSPC);
5721	}
5722
5723	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5724		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5725		ASSERT(0);
5726		return ERR_PTR(-EINVAL);
5727	}
5728
5729	ctl.start = find_next_chunk(info);
5730	ctl.type = type;
5731	init_alloc_chunk_ctl(fs_devices, &ctl);
5732
5733	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5734			       GFP_NOFS);
5735	if (!devices_info)
5736		return ERR_PTR(-ENOMEM);
5737
5738	ret = gather_device_info(fs_devices, &ctl, devices_info);
5739	if (ret < 0) {
5740		block_group = ERR_PTR(ret);
5741		goto out;
5742	}
5743
5744	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5745	if (ret < 0) {
5746		block_group = ERR_PTR(ret);
5747		goto out;
5748	}
5749
5750	block_group = create_chunk(trans, &ctl, devices_info);
5751
5752out:
5753	kfree(devices_info);
5754	return block_group;
5755}
5756
5757/*
5758 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5759 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5760 * chunks.
5761 *
5762 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5763 * phases.
5764 */
5765int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5766				     struct btrfs_block_group *bg)
5767{
5768	struct btrfs_fs_info *fs_info = trans->fs_info;
5769	struct btrfs_root *chunk_root = fs_info->chunk_root;
5770	struct btrfs_key key;
5771	struct btrfs_chunk *chunk;
5772	struct btrfs_stripe *stripe;
5773	struct btrfs_chunk_map *map;
5774	size_t item_size;
5775	int i;
5776	int ret;
5777
5778	/*
5779	 * We take the chunk_mutex for 2 reasons:
5780	 *
5781	 * 1) Updates and insertions in the chunk btree must be done while holding
5782	 *    the chunk_mutex, as well as updating the system chunk array in the
5783	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5784	 *    details;
5785	 *
5786	 * 2) To prevent races with the final phase of a device replace operation
5787	 *    that replaces the device object associated with the map's stripes,
5788	 *    because the device object's id can change at any time during that
5789	 *    final phase of the device replace operation
5790	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5791	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5792	 *    which would cause a failure when updating the device item, which does
5793	 *    not exists, or persisting a stripe of the chunk item with such ID.
5794	 *    Here we can't use the device_list_mutex because our caller already
5795	 *    has locked the chunk_mutex, and the final phase of device replace
5796	 *    acquires both mutexes - first the device_list_mutex and then the
5797	 *    chunk_mutex. Using any of those two mutexes protects us from a
5798	 *    concurrent device replace.
5799	 */
5800	lockdep_assert_held(&fs_info->chunk_mutex);
5801
5802	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5803	if (IS_ERR(map)) {
5804		ret = PTR_ERR(map);
5805		btrfs_abort_transaction(trans, ret);
5806		return ret;
5807	}
5808
5809	item_size = btrfs_chunk_item_size(map->num_stripes);
5810
5811	chunk = kzalloc(item_size, GFP_NOFS);
5812	if (!chunk) {
5813		ret = -ENOMEM;
5814		btrfs_abort_transaction(trans, ret);
5815		goto out;
5816	}
5817
5818	for (i = 0; i < map->num_stripes; i++) {
5819		struct btrfs_device *device = map->stripes[i].dev;
5820
5821		ret = btrfs_update_device(trans, device);
5822		if (ret)
5823			goto out;
5824	}
5825
5826	stripe = &chunk->stripe;
5827	for (i = 0; i < map->num_stripes; i++) {
5828		struct btrfs_device *device = map->stripes[i].dev;
5829		const u64 dev_offset = map->stripes[i].physical;
5830
5831		btrfs_set_stack_stripe_devid(stripe, device->devid);
5832		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5833		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5834		stripe++;
5835	}
5836
5837	btrfs_set_stack_chunk_length(chunk, bg->length);
5838	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5839	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5840	btrfs_set_stack_chunk_type(chunk, map->type);
5841	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5842	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5843	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5844	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5845	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5846
5847	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5848	key.type = BTRFS_CHUNK_ITEM_KEY;
5849	key.offset = bg->start;
5850
5851	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5852	if (ret)
5853		goto out;
5854
5855	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5856
5857	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5858		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5859		if (ret)
5860			goto out;
5861	}
5862
5863out:
5864	kfree(chunk);
5865	btrfs_free_chunk_map(map);
5866	return ret;
5867}
5868
5869static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5870{
5871	struct btrfs_fs_info *fs_info = trans->fs_info;
5872	u64 alloc_profile;
5873	struct btrfs_block_group *meta_bg;
5874	struct btrfs_block_group *sys_bg;
5875
5876	/*
5877	 * When adding a new device for sprouting, the seed device is read-only
5878	 * so we must first allocate a metadata and a system chunk. But before
5879	 * adding the block group items to the extent, device and chunk btrees,
5880	 * we must first:
5881	 *
5882	 * 1) Create both chunks without doing any changes to the btrees, as
5883	 *    otherwise we would get -ENOSPC since the block groups from the
5884	 *    seed device are read-only;
5885	 *
5886	 * 2) Add the device item for the new sprout device - finishing the setup
5887	 *    of a new block group requires updating the device item in the chunk
5888	 *    btree, so it must exist when we attempt to do it. The previous step
5889	 *    ensures this does not fail with -ENOSPC.
5890	 *
5891	 * After that we can add the block group items to their btrees:
5892	 * update existing device item in the chunk btree, add a new block group
5893	 * item to the extent btree, add a new chunk item to the chunk btree and
5894	 * finally add the new device extent items to the devices btree.
5895	 */
5896
5897	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5898	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5899	if (IS_ERR(meta_bg))
5900		return PTR_ERR(meta_bg);
5901
5902	alloc_profile = btrfs_system_alloc_profile(fs_info);
5903	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5904	if (IS_ERR(sys_bg))
5905		return PTR_ERR(sys_bg);
5906
5907	return 0;
5908}
5909
5910static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5911{
5912	const int index = btrfs_bg_flags_to_raid_index(map->type);
5913
5914	return btrfs_raid_array[index].tolerated_failures;
5915}
5916
5917bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5918{
5919	struct btrfs_chunk_map *map;
5920	int miss_ndevs = 0;
5921	int i;
5922	bool ret = true;
5923
5924	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5925	if (IS_ERR(map))
5926		return false;
5927
5928	for (i = 0; i < map->num_stripes; i++) {
5929		if (test_bit(BTRFS_DEV_STATE_MISSING,
5930					&map->stripes[i].dev->dev_state)) {
5931			miss_ndevs++;
5932			continue;
5933		}
5934		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5935					&map->stripes[i].dev->dev_state)) {
5936			ret = false;
5937			goto end;
5938		}
5939	}
5940
5941	/*
5942	 * If the number of missing devices is larger than max errors, we can
5943	 * not write the data into that chunk successfully.
5944	 */
5945	if (miss_ndevs > btrfs_chunk_max_errors(map))
5946		ret = false;
5947end:
5948	btrfs_free_chunk_map(map);
5949	return ret;
5950}
5951
5952void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5953{
5954	write_lock(&fs_info->mapping_tree_lock);
5955	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5956		struct btrfs_chunk_map *map;
5957		struct rb_node *node;
5958
5959		node = rb_first_cached(&fs_info->mapping_tree);
5960		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5961		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5962		RB_CLEAR_NODE(&map->rb_node);
5963		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5964		/* Once for the tree ref. */
5965		btrfs_free_chunk_map(map);
5966		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5967	}
5968	write_unlock(&fs_info->mapping_tree_lock);
5969}
5970
5971int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5972{
5973	struct btrfs_chunk_map *map;
5974	enum btrfs_raid_types index;
5975	int ret = 1;
5976
5977	map = btrfs_get_chunk_map(fs_info, logical, len);
5978	if (IS_ERR(map))
5979		/*
5980		 * We could return errors for these cases, but that could get
5981		 * ugly and we'd probably do the same thing which is just not do
5982		 * anything else and exit, so return 1 so the callers don't try
5983		 * to use other copies.
5984		 */
5985		return 1;
5986
5987	index = btrfs_bg_flags_to_raid_index(map->type);
5988
5989	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5990	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5991		ret = btrfs_raid_array[index].ncopies;
5992	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5993		ret = 2;
5994	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5995		/*
5996		 * There could be two corrupted data stripes, we need
5997		 * to loop retry in order to rebuild the correct data.
5998		 *
5999		 * Fail a stripe at a time on every retry except the
6000		 * stripe under reconstruction.
6001		 */
6002		ret = map->num_stripes;
6003	btrfs_free_chunk_map(map);
6004	return ret;
6005}
6006
6007unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
6008				    u64 logical)
6009{
6010	struct btrfs_chunk_map *map;
6011	unsigned long len = fs_info->sectorsize;
6012
6013	if (!btrfs_fs_incompat(fs_info, RAID56))
6014		return len;
6015
6016	map = btrfs_get_chunk_map(fs_info, logical, len);
6017
6018	if (!WARN_ON(IS_ERR(map))) {
6019		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6020			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6021		btrfs_free_chunk_map(map);
6022	}
6023	return len;
6024}
6025
6026int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
6027{
6028	struct btrfs_chunk_map *map;
6029	int ret = 0;
6030
6031	if (!btrfs_fs_incompat(fs_info, RAID56))
6032		return 0;
6033
6034	map = btrfs_get_chunk_map(fs_info, logical, len);
6035
6036	if (!WARN_ON(IS_ERR(map))) {
6037		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6038			ret = 1;
6039		btrfs_free_chunk_map(map);
6040	}
6041	return ret;
6042}
6043
6044static int find_live_mirror(struct btrfs_fs_info *fs_info,
6045			    struct btrfs_chunk_map *map, int first,
6046			    int dev_replace_is_ongoing)
6047{
6048	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6049	int i;
6050	int num_stripes;
6051	int preferred_mirror;
6052	int tolerance;
6053	struct btrfs_device *srcdev;
6054
6055	ASSERT((map->type &
6056		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6057
6058	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6059		num_stripes = map->sub_stripes;
6060	else
6061		num_stripes = map->num_stripes;
6062
6063	switch (policy) {
6064	default:
6065		/* Shouldn't happen, just warn and use pid instead of failing */
6066		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6067			      policy);
6068		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6069		fallthrough;
6070	case BTRFS_READ_POLICY_PID:
6071		preferred_mirror = first + (current->pid % num_stripes);
6072		break;
6073	}
6074
6075	if (dev_replace_is_ongoing &&
6076	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6077	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6078		srcdev = fs_info->dev_replace.srcdev;
6079	else
6080		srcdev = NULL;
6081
6082	/*
6083	 * try to avoid the drive that is the source drive for a
6084	 * dev-replace procedure, only choose it if no other non-missing
6085	 * mirror is available
6086	 */
6087	for (tolerance = 0; tolerance < 2; tolerance++) {
6088		if (map->stripes[preferred_mirror].dev->bdev &&
6089		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6090			return preferred_mirror;
6091		for (i = first; i < first + num_stripes; i++) {
6092			if (map->stripes[i].dev->bdev &&
6093			    (tolerance || map->stripes[i].dev != srcdev))
6094				return i;
6095		}
6096	}
6097
6098	/* we couldn't find one that doesn't fail.  Just return something
6099	 * and the io error handling code will clean up eventually
6100	 */
6101	return preferred_mirror;
6102}
6103
6104static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6105						       u64 logical,
6106						       u16 total_stripes)
6107{
6108	struct btrfs_io_context *bioc;
6109
6110	bioc = kzalloc(
6111		 /* The size of btrfs_io_context */
6112		sizeof(struct btrfs_io_context) +
6113		/* Plus the variable array for the stripes */
6114		sizeof(struct btrfs_io_stripe) * (total_stripes),
6115		GFP_NOFS);
6116
6117	if (!bioc)
6118		return NULL;
6119
6120	refcount_set(&bioc->refs, 1);
6121
6122	bioc->fs_info = fs_info;
6123	bioc->replace_stripe_src = -1;
6124	bioc->full_stripe_logical = (u64)-1;
6125	bioc->logical = logical;
6126
6127	return bioc;
6128}
6129
6130void btrfs_get_bioc(struct btrfs_io_context *bioc)
6131{
6132	WARN_ON(!refcount_read(&bioc->refs));
6133	refcount_inc(&bioc->refs);
6134}
6135
6136void btrfs_put_bioc(struct btrfs_io_context *bioc)
6137{
6138	if (!bioc)
6139		return;
6140	if (refcount_dec_and_test(&bioc->refs))
6141		kfree(bioc);
6142}
6143
6144/*
6145 * Please note that, discard won't be sent to target device of device
6146 * replace.
6147 */
6148struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6149					       u64 logical, u64 *length_ret,
6150					       u32 *num_stripes)
6151{
6152	struct btrfs_chunk_map *map;
6153	struct btrfs_discard_stripe *stripes;
6154	u64 length = *length_ret;
6155	u64 offset;
6156	u32 stripe_nr;
6157	u32 stripe_nr_end;
6158	u32 stripe_cnt;
6159	u64 stripe_end_offset;
6160	u64 stripe_offset;
6161	u32 stripe_index;
6162	u32 factor = 0;
6163	u32 sub_stripes = 0;
6164	u32 stripes_per_dev = 0;
6165	u32 remaining_stripes = 0;
6166	u32 last_stripe = 0;
6167	int ret;
6168	int i;
6169
6170	map = btrfs_get_chunk_map(fs_info, logical, length);
6171	if (IS_ERR(map))
6172		return ERR_CAST(map);
6173
6174	/* we don't discard raid56 yet */
6175	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6176		ret = -EOPNOTSUPP;
6177		goto out_free_map;
6178	}
6179
6180	offset = logical - map->start;
6181	length = min_t(u64, map->start + map->chunk_len - logical, length);
6182	*length_ret = length;
6183
6184	/*
6185	 * stripe_nr counts the total number of stripes we have to stride
6186	 * to get to this block
6187	 */
6188	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6189
6190	/* stripe_offset is the offset of this block in its stripe */
6191	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6192
6193	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6194			BTRFS_STRIPE_LEN_SHIFT;
6195	stripe_cnt = stripe_nr_end - stripe_nr;
6196	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6197			    (offset + length);
6198	/*
6199	 * after this, stripe_nr is the number of stripes on this
6200	 * device we have to walk to find the data, and stripe_index is
6201	 * the number of our device in the stripe array
6202	 */
6203	*num_stripes = 1;
6204	stripe_index = 0;
6205	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6206			 BTRFS_BLOCK_GROUP_RAID10)) {
6207		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6208			sub_stripes = 1;
6209		else
6210			sub_stripes = map->sub_stripes;
6211
6212		factor = map->num_stripes / sub_stripes;
6213		*num_stripes = min_t(u64, map->num_stripes,
6214				    sub_stripes * stripe_cnt);
6215		stripe_index = stripe_nr % factor;
6216		stripe_nr /= factor;
6217		stripe_index *= sub_stripes;
6218
6219		remaining_stripes = stripe_cnt % factor;
6220		stripes_per_dev = stripe_cnt / factor;
6221		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6222	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6223				BTRFS_BLOCK_GROUP_DUP)) {
6224		*num_stripes = map->num_stripes;
6225	} else {
6226		stripe_index = stripe_nr % map->num_stripes;
6227		stripe_nr /= map->num_stripes;
6228	}
6229
6230	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6231	if (!stripes) {
6232		ret = -ENOMEM;
6233		goto out_free_map;
6234	}
6235
6236	for (i = 0; i < *num_stripes; i++) {
6237		stripes[i].physical =
6238			map->stripes[stripe_index].physical +
6239			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6240		stripes[i].dev = map->stripes[stripe_index].dev;
6241
6242		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6243				 BTRFS_BLOCK_GROUP_RAID10)) {
6244			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6245
6246			if (i / sub_stripes < remaining_stripes)
6247				stripes[i].length += BTRFS_STRIPE_LEN;
6248
6249			/*
6250			 * Special for the first stripe and
6251			 * the last stripe:
6252			 *
6253			 * |-------|...|-------|
6254			 *     |----------|
6255			 *    off     end_off
6256			 */
6257			if (i < sub_stripes)
6258				stripes[i].length -= stripe_offset;
6259
6260			if (stripe_index >= last_stripe &&
6261			    stripe_index <= (last_stripe +
6262					     sub_stripes - 1))
6263				stripes[i].length -= stripe_end_offset;
6264
6265			if (i == sub_stripes - 1)
6266				stripe_offset = 0;
6267		} else {
6268			stripes[i].length = length;
6269		}
6270
6271		stripe_index++;
6272		if (stripe_index == map->num_stripes) {
6273			stripe_index = 0;
6274			stripe_nr++;
6275		}
6276	}
6277
6278	btrfs_free_chunk_map(map);
6279	return stripes;
6280out_free_map:
6281	btrfs_free_chunk_map(map);
6282	return ERR_PTR(ret);
6283}
6284
6285static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6286{
6287	struct btrfs_block_group *cache;
6288	bool ret;
6289
6290	/* Non zoned filesystem does not use "to_copy" flag */
6291	if (!btrfs_is_zoned(fs_info))
6292		return false;
6293
6294	cache = btrfs_lookup_block_group(fs_info, logical);
6295
6296	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6297
6298	btrfs_put_block_group(cache);
6299	return ret;
6300}
6301
6302static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6303				      struct btrfs_io_context *bioc,
6304				      struct btrfs_dev_replace *dev_replace,
6305				      u64 logical,
6306				      int *num_stripes_ret, int *max_errors_ret)
6307{
6308	u64 srcdev_devid = dev_replace->srcdev->devid;
6309	/*
6310	 * At this stage, num_stripes is still the real number of stripes,
6311	 * excluding the duplicated stripes.
6312	 */
6313	int num_stripes = *num_stripes_ret;
6314	int nr_extra_stripes = 0;
6315	int max_errors = *max_errors_ret;
6316	int i;
6317
6318	/*
6319	 * A block group which has "to_copy" set will eventually be copied by
6320	 * the dev-replace process. We can avoid cloning IO here.
6321	 */
6322	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6323		return;
6324
6325	/*
6326	 * Duplicate the write operations while the dev-replace procedure is
6327	 * running. Since the copying of the old disk to the new disk takes
6328	 * place at run time while the filesystem is mounted writable, the
6329	 * regular write operations to the old disk have to be duplicated to go
6330	 * to the new disk as well.
6331	 *
6332	 * Note that device->missing is handled by the caller, and that the
6333	 * write to the old disk is already set up in the stripes array.
6334	 */
6335	for (i = 0; i < num_stripes; i++) {
6336		struct btrfs_io_stripe *old = &bioc->stripes[i];
6337		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6338
6339		if (old->dev->devid != srcdev_devid)
6340			continue;
6341
6342		new->physical = old->physical;
6343		new->dev = dev_replace->tgtdev;
6344		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6345			bioc->replace_stripe_src = i;
6346		nr_extra_stripes++;
6347	}
6348
6349	/* We can only have at most 2 extra nr_stripes (for DUP). */
6350	ASSERT(nr_extra_stripes <= 2);
6351	/*
6352	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6353	 * replace.
6354	 * If we have 2 extra stripes, only choose the one with smaller physical.
6355	 */
6356	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6357		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6358		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6359
6360		/* Only DUP can have two extra stripes. */
6361		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6362
6363		/*
6364		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6365		 * The extra stripe would still be there, but won't be accessed.
6366		 */
6367		if (first->physical > second->physical) {
6368			swap(second->physical, first->physical);
6369			swap(second->dev, first->dev);
6370			nr_extra_stripes--;
6371		}
6372	}
6373
6374	*num_stripes_ret = num_stripes + nr_extra_stripes;
6375	*max_errors_ret = max_errors + nr_extra_stripes;
6376	bioc->replace_nr_stripes = nr_extra_stripes;
6377}
6378
6379static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6380			    struct btrfs_io_geometry *io_geom)
6381{
6382	/*
6383	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6384	 * the offset of this block in its stripe.
6385	 */
6386	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6387	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6388	ASSERT(io_geom->stripe_offset < U32_MAX);
6389
6390	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6391		unsigned long full_stripe_len =
6392			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6393
6394		/*
6395		 * For full stripe start, we use previously calculated
6396		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6397		 * STRIPE_LEN.
6398		 *
6399		 * By this we can avoid u64 division completely.  And we have
6400		 * to go rounddown(), not round_down(), as nr_data_stripes is
6401		 * not ensured to be power of 2.
6402		 */
6403		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6404			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6405
6406		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6407		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6408		/*
6409		 * For writes to RAID56, allow to write a full stripe set, but
6410		 * no straddling of stripe sets.
6411		 */
6412		if (io_geom->op == BTRFS_MAP_WRITE)
6413			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6414	}
6415
6416	/*
6417	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6418	 * a single disk).
6419	 */
6420	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6421		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6422	return U64_MAX;
6423}
6424
6425static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6426			 u64 *length, struct btrfs_io_stripe *dst,
6427			 struct btrfs_chunk_map *map,
6428			 struct btrfs_io_geometry *io_geom)
6429{
6430	dst->dev = map->stripes[io_geom->stripe_index].dev;
6431
6432	if (io_geom->op == BTRFS_MAP_READ &&
6433	    btrfs_need_stripe_tree_update(fs_info, map->type))
6434		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6435						    map->type,
6436						    io_geom->stripe_index, dst);
6437
6438	dst->physical = map->stripes[io_geom->stripe_index].physical +
6439			io_geom->stripe_offset +
6440			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6441	return 0;
6442}
6443
6444static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6445				const struct btrfs_io_stripe *smap,
6446				const struct btrfs_chunk_map *map,
6447				int num_alloc_stripes,
6448				enum btrfs_map_op op, int mirror_num)
6449{
6450	if (!smap)
6451		return false;
6452
6453	if (num_alloc_stripes != 1)
6454		return false;
6455
6456	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6457		return false;
6458
6459	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6460		return false;
6461
6462	return true;
6463}
6464
6465static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6466			     struct btrfs_io_geometry *io_geom)
6467{
6468	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6469	io_geom->stripe_nr /= map->num_stripes;
6470	if (io_geom->op == BTRFS_MAP_READ)
6471		io_geom->mirror_num = 1;
6472}
6473
6474static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6475			     struct btrfs_chunk_map *map,
6476			     struct btrfs_io_geometry *io_geom,
6477			     bool dev_replace_is_ongoing)
6478{
6479	if (io_geom->op != BTRFS_MAP_READ) {
6480		io_geom->num_stripes = map->num_stripes;
6481		return;
6482	}
6483
6484	if (io_geom->mirror_num) {
6485		io_geom->stripe_index = io_geom->mirror_num - 1;
6486		return;
6487	}
6488
6489	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6490						 dev_replace_is_ongoing);
6491	io_geom->mirror_num = io_geom->stripe_index + 1;
6492}
6493
6494static void map_blocks_dup(const struct btrfs_chunk_map *map,
6495			   struct btrfs_io_geometry *io_geom)
6496{
6497	if (io_geom->op != BTRFS_MAP_READ) {
6498		io_geom->num_stripes = map->num_stripes;
6499		return;
6500	}
6501
6502	if (io_geom->mirror_num) {
6503		io_geom->stripe_index = io_geom->mirror_num - 1;
6504		return;
6505	}
6506
6507	io_geom->mirror_num = 1;
6508}
6509
6510static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6511			      struct btrfs_chunk_map *map,
6512			      struct btrfs_io_geometry *io_geom,
6513			      bool dev_replace_is_ongoing)
6514{
6515	u32 factor = map->num_stripes / map->sub_stripes;
6516	int old_stripe_index;
6517
6518	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6519	io_geom->stripe_nr /= factor;
6520
6521	if (io_geom->op != BTRFS_MAP_READ) {
6522		io_geom->num_stripes = map->sub_stripes;
6523		return;
6524	}
6525
6526	if (io_geom->mirror_num) {
6527		io_geom->stripe_index += io_geom->mirror_num - 1;
6528		return;
6529	}
6530
6531	old_stripe_index = io_geom->stripe_index;
6532	io_geom->stripe_index = find_live_mirror(fs_info, map,
6533						 io_geom->stripe_index,
6534						 dev_replace_is_ongoing);
6535	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6536}
6537
6538static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6539				    struct btrfs_io_geometry *io_geom,
6540				    u64 logical, u64 *length)
6541{
6542	int data_stripes = nr_data_stripes(map);
6543
6544	/*
6545	 * Needs full stripe mapping.
6546	 *
6547	 * Push stripe_nr back to the start of the full stripe For those cases
6548	 * needing a full stripe, @stripe_nr is the full stripe number.
6549	 *
6550	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6551	 * that can be expensive.  Here we just divide @stripe_nr with
6552	 * @data_stripes.
6553	 */
6554	io_geom->stripe_nr /= data_stripes;
6555
6556	/* RAID[56] write or recovery. Return all stripes */
6557	io_geom->num_stripes = map->num_stripes;
6558	io_geom->max_errors = btrfs_chunk_max_errors(map);
6559
6560	/* Return the length to the full stripe end. */
6561	*length = min(logical + *length,
6562		      io_geom->raid56_full_stripe_start + map->start +
6563		      btrfs_stripe_nr_to_offset(data_stripes)) -
6564		logical;
6565	io_geom->stripe_index = 0;
6566	io_geom->stripe_offset = 0;
6567}
6568
6569static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6570				   struct btrfs_io_geometry *io_geom)
6571{
6572	int data_stripes = nr_data_stripes(map);
6573
6574	ASSERT(io_geom->mirror_num <= 1);
6575	/* Just grab the data stripe directly. */
6576	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6577	io_geom->stripe_nr /= data_stripes;
6578
6579	/* We distribute the parity blocks across stripes. */
6580	io_geom->stripe_index =
6581		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6582
6583	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6584		io_geom->mirror_num = 1;
6585}
6586
6587static void map_blocks_single(const struct btrfs_chunk_map *map,
6588			      struct btrfs_io_geometry *io_geom)
6589{
6590	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6591	io_geom->stripe_nr /= map->num_stripes;
6592	io_geom->mirror_num = io_geom->stripe_index + 1;
6593}
6594
6595/*
6596 * Map one logical range to one or more physical ranges.
6597 *
6598 * @length:		(Mandatory) mapped length of this run.
6599 *			One logical range can be split into different segments
6600 *			due to factors like zones and RAID0/5/6/10 stripe
6601 *			boundaries.
6602 *
6603 * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6604 *			which has one or more physical ranges (btrfs_io_stripe)
6605 *			recorded inside.
6606 *			Caller should call btrfs_put_bioc() to free it after use.
6607 *
6608 * @smap:		(Optional) single physical range optimization.
6609 *			If the map request can be fulfilled by one single
6610 *			physical range, and this is parameter is not NULL,
6611 *			then @bioc_ret would be NULL, and @smap would be
6612 *			updated.
6613 *
6614 * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6615 *			value is 0.
6616 *
6617 *			Mirror number 0 means to choose any live mirrors.
6618 *
6619 *			For non-RAID56 profiles, non-zero mirror_num means
6620 *			the Nth mirror. (e.g. mirror_num 1 means the first
6621 *			copy).
6622 *
6623 *			For RAID56 profile, mirror 1 means rebuild from P and
6624 *			the remaining data stripes.
6625 *
6626 *			For RAID6 profile, mirror > 2 means mark another
6627 *			data/P stripe error and rebuild from the remaining
6628 *			stripes..
6629 */
6630int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6631		    u64 logical, u64 *length,
6632		    struct btrfs_io_context **bioc_ret,
6633		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6634{
6635	struct btrfs_chunk_map *map;
6636	struct btrfs_io_geometry io_geom = { 0 };
6637	u64 map_offset;
6638	int i;
6639	int ret = 0;
6640	int num_copies;
6641	struct btrfs_io_context *bioc = NULL;
6642	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6643	int dev_replace_is_ongoing = 0;
6644	u16 num_alloc_stripes;
6645	u64 max_len;
6646
6647	ASSERT(bioc_ret);
6648
6649	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6650	io_geom.num_stripes = 1;
6651	io_geom.stripe_index = 0;
6652	io_geom.op = op;
6653
6654	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6655	if (io_geom.mirror_num > num_copies)
6656		return -EINVAL;
6657
6658	map = btrfs_get_chunk_map(fs_info, logical, *length);
6659	if (IS_ERR(map))
6660		return PTR_ERR(map);
6661
6662	map_offset = logical - map->start;
6663	io_geom.raid56_full_stripe_start = (u64)-1;
6664	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6665	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6666
6667	down_read(&dev_replace->rwsem);
6668	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6669	/*
6670	 * Hold the semaphore for read during the whole operation, write is
6671	 * requested at commit time but must wait.
6672	 */
6673	if (!dev_replace_is_ongoing)
6674		up_read(&dev_replace->rwsem);
6675
6676	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6677	case BTRFS_BLOCK_GROUP_RAID0:
6678		map_blocks_raid0(map, &io_geom);
6679		break;
6680	case BTRFS_BLOCK_GROUP_RAID1:
6681	case BTRFS_BLOCK_GROUP_RAID1C3:
6682	case BTRFS_BLOCK_GROUP_RAID1C4:
6683		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6684		break;
6685	case BTRFS_BLOCK_GROUP_DUP:
6686		map_blocks_dup(map, &io_geom);
6687		break;
6688	case BTRFS_BLOCK_GROUP_RAID10:
6689		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6690		break;
6691	case BTRFS_BLOCK_GROUP_RAID5:
6692	case BTRFS_BLOCK_GROUP_RAID6:
6693		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6694			map_blocks_raid56_write(map, &io_geom, logical, length);
6695		else
6696			map_blocks_raid56_read(map, &io_geom);
6697		break;
6698	default:
6699		/*
6700		 * After this, stripe_nr is the number of stripes on this
6701		 * device we have to walk to find the data, and stripe_index is
6702		 * the number of our device in the stripe array
6703		 */
6704		map_blocks_single(map, &io_geom);
6705		break;
6706	}
6707	if (io_geom.stripe_index >= map->num_stripes) {
6708		btrfs_crit(fs_info,
6709			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6710			   io_geom.stripe_index, map->num_stripes);
6711		ret = -EINVAL;
6712		goto out;
6713	}
6714
6715	num_alloc_stripes = io_geom.num_stripes;
6716	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6717	    op != BTRFS_MAP_READ)
6718		/*
6719		 * For replace case, we need to add extra stripes for extra
6720		 * duplicated stripes.
6721		 *
6722		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6723		 * 2 more stripes (DUP types, otherwise 1).
6724		 */
6725		num_alloc_stripes += 2;
6726
6727	/*
6728	 * If this I/O maps to a single device, try to return the device and
6729	 * physical block information on the stack instead of allocating an
6730	 * I/O context structure.
6731	 */
6732	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6733				io_geom.mirror_num)) {
6734		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6735		if (mirror_num_ret)
6736			*mirror_num_ret = io_geom.mirror_num;
6737		*bioc_ret = NULL;
6738		goto out;
6739	}
6740
6741	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6742	if (!bioc) {
6743		ret = -ENOMEM;
6744		goto out;
6745	}
6746	bioc->map_type = map->type;
6747
6748	/*
6749	 * For RAID56 full map, we need to make sure the stripes[] follows the
6750	 * rule that data stripes are all ordered, then followed with P and Q
6751	 * (if we have).
6752	 *
6753	 * It's still mostly the same as other profiles, just with extra rotation.
6754	 */
6755	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6756	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6757		/*
6758		 * For RAID56 @stripe_nr is already the number of full stripes
6759		 * before us, which is also the rotation value (needs to modulo
6760		 * with num_stripes).
6761		 *
6762		 * In this case, we just add @stripe_nr with @i, then do the
6763		 * modulo, to reduce one modulo call.
6764		 */
6765		bioc->full_stripe_logical = map->start +
6766			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6767						  nr_data_stripes(map));
6768		for (int i = 0; i < io_geom.num_stripes; i++) {
6769			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6770			u32 stripe_index;
6771
6772			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6773			dst->dev = map->stripes[stripe_index].dev;
6774			dst->physical =
6775				map->stripes[stripe_index].physical +
6776				io_geom.stripe_offset +
6777				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6778		}
6779	} else {
6780		/*
6781		 * For all other non-RAID56 profiles, just copy the target
6782		 * stripe into the bioc.
6783		 */
6784		for (i = 0; i < io_geom.num_stripes; i++) {
6785			ret = set_io_stripe(fs_info, logical, length,
6786					    &bioc->stripes[i], map, &io_geom);
6787			if (ret < 0)
6788				break;
6789			io_geom.stripe_index++;
6790		}
6791	}
6792
6793	if (ret) {
6794		*bioc_ret = NULL;
6795		btrfs_put_bioc(bioc);
6796		goto out;
6797	}
6798
6799	if (op != BTRFS_MAP_READ)
6800		io_geom.max_errors = btrfs_chunk_max_errors(map);
6801
6802	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6803	    op != BTRFS_MAP_READ) {
6804		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6805					  &io_geom.num_stripes, &io_geom.max_errors);
6806	}
6807
6808	*bioc_ret = bioc;
6809	bioc->num_stripes = io_geom.num_stripes;
6810	bioc->max_errors = io_geom.max_errors;
6811	bioc->mirror_num = io_geom.mirror_num;
6812
6813out:
6814	if (dev_replace_is_ongoing) {
6815		lockdep_assert_held(&dev_replace->rwsem);
6816		/* Unlock and let waiting writers proceed */
6817		up_read(&dev_replace->rwsem);
6818	}
6819	btrfs_free_chunk_map(map);
6820	return ret;
6821}
6822
6823static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6824				      const struct btrfs_fs_devices *fs_devices)
6825{
6826	if (args->fsid == NULL)
6827		return true;
6828	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6829		return true;
6830	return false;
6831}
6832
6833static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6834				  const struct btrfs_device *device)
6835{
6836	if (args->missing) {
6837		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6838		    !device->bdev)
6839			return true;
6840		return false;
6841	}
6842
6843	if (device->devid != args->devid)
6844		return false;
6845	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6846		return false;
6847	return true;
6848}
6849
6850/*
6851 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6852 * return NULL.
6853 *
6854 * If devid and uuid are both specified, the match must be exact, otherwise
6855 * only devid is used.
6856 */
6857struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6858				       const struct btrfs_dev_lookup_args *args)
6859{
6860	struct btrfs_device *device;
6861	struct btrfs_fs_devices *seed_devs;
6862
6863	if (dev_args_match_fs_devices(args, fs_devices)) {
6864		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6865			if (dev_args_match_device(args, device))
6866				return device;
6867		}
6868	}
6869
6870	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6871		if (!dev_args_match_fs_devices(args, seed_devs))
6872			continue;
6873		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6874			if (dev_args_match_device(args, device))
6875				return device;
6876		}
6877	}
6878
6879	return NULL;
6880}
6881
6882static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6883					    u64 devid, u8 *dev_uuid)
6884{
6885	struct btrfs_device *device;
6886	unsigned int nofs_flag;
6887
6888	/*
6889	 * We call this under the chunk_mutex, so we want to use NOFS for this
6890	 * allocation, however we don't want to change btrfs_alloc_device() to
6891	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6892	 * places.
6893	 */
6894
6895	nofs_flag = memalloc_nofs_save();
6896	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6897	memalloc_nofs_restore(nofs_flag);
6898	if (IS_ERR(device))
6899		return device;
6900
6901	list_add(&device->dev_list, &fs_devices->devices);
6902	device->fs_devices = fs_devices;
6903	fs_devices->num_devices++;
6904
6905	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6906	fs_devices->missing_devices++;
6907
6908	return device;
6909}
6910
6911/*
6912 * Allocate new device struct, set up devid and UUID.
6913 *
6914 * @fs_info:	used only for generating a new devid, can be NULL if
6915 *		devid is provided (i.e. @devid != NULL).
6916 * @devid:	a pointer to devid for this device.  If NULL a new devid
6917 *		is generated.
6918 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6919 *		is generated.
6920 * @path:	a pointer to device path if available, NULL otherwise.
6921 *
6922 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6923 * on error.  Returned struct is not linked onto any lists and must be
6924 * destroyed with btrfs_free_device.
6925 */
6926struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6927					const u64 *devid, const u8 *uuid,
6928					const char *path)
6929{
6930	struct btrfs_device *dev;
6931	u64 tmp;
6932
6933	if (WARN_ON(!devid && !fs_info))
6934		return ERR_PTR(-EINVAL);
6935
6936	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6937	if (!dev)
6938		return ERR_PTR(-ENOMEM);
6939
6940	INIT_LIST_HEAD(&dev->dev_list);
6941	INIT_LIST_HEAD(&dev->dev_alloc_list);
6942	INIT_LIST_HEAD(&dev->post_commit_list);
6943
6944	atomic_set(&dev->dev_stats_ccnt, 0);
6945	btrfs_device_data_ordered_init(dev);
6946	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6947
6948	if (devid)
6949		tmp = *devid;
6950	else {
6951		int ret;
6952
6953		ret = find_next_devid(fs_info, &tmp);
6954		if (ret) {
6955			btrfs_free_device(dev);
6956			return ERR_PTR(ret);
6957		}
6958	}
6959	dev->devid = tmp;
6960
6961	if (uuid)
6962		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6963	else
6964		generate_random_uuid(dev->uuid);
6965
6966	if (path) {
6967		struct rcu_string *name;
6968
6969		name = rcu_string_strdup(path, GFP_KERNEL);
6970		if (!name) {
6971			btrfs_free_device(dev);
6972			return ERR_PTR(-ENOMEM);
6973		}
6974		rcu_assign_pointer(dev->name, name);
6975	}
6976
6977	return dev;
6978}
6979
6980static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6981					u64 devid, u8 *uuid, bool error)
6982{
6983	if (error)
6984		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6985			      devid, uuid);
6986	else
6987		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6988			      devid, uuid);
6989}
6990
6991u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6992{
6993	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6994
6995	return div_u64(map->chunk_len, data_stripes);
6996}
6997
6998#if BITS_PER_LONG == 32
6999/*
7000 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7001 * can't be accessed on 32bit systems.
7002 *
7003 * This function do mount time check to reject the fs if it already has
7004 * metadata chunk beyond that limit.
7005 */
7006static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7007				  u64 logical, u64 length, u64 type)
7008{
7009	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7010		return 0;
7011
7012	if (logical + length < MAX_LFS_FILESIZE)
7013		return 0;
7014
7015	btrfs_err_32bit_limit(fs_info);
7016	return -EOVERFLOW;
7017}
7018
7019/*
7020 * This is to give early warning for any metadata chunk reaching
7021 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7022 * Although we can still access the metadata, it's not going to be possible
7023 * once the limit is reached.
7024 */
7025static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7026				  u64 logical, u64 length, u64 type)
7027{
7028	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7029		return;
7030
7031	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7032		return;
7033
7034	btrfs_warn_32bit_limit(fs_info);
7035}
7036#endif
7037
7038static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7039						  u64 devid, u8 *uuid)
7040{
7041	struct btrfs_device *dev;
7042
7043	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7044		btrfs_report_missing_device(fs_info, devid, uuid, true);
7045		return ERR_PTR(-ENOENT);
7046	}
7047
7048	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7049	if (IS_ERR(dev)) {
7050		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7051			  devid, PTR_ERR(dev));
7052		return dev;
7053	}
7054	btrfs_report_missing_device(fs_info, devid, uuid, false);
7055
7056	return dev;
7057}
7058
7059static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7060			  struct btrfs_chunk *chunk)
7061{
7062	BTRFS_DEV_LOOKUP_ARGS(args);
7063	struct btrfs_fs_info *fs_info = leaf->fs_info;
7064	struct btrfs_chunk_map *map;
7065	u64 logical;
7066	u64 length;
7067	u64 devid;
7068	u64 type;
7069	u8 uuid[BTRFS_UUID_SIZE];
7070	int index;
7071	int num_stripes;
7072	int ret;
7073	int i;
7074
7075	logical = key->offset;
7076	length = btrfs_chunk_length(leaf, chunk);
7077	type = btrfs_chunk_type(leaf, chunk);
7078	index = btrfs_bg_flags_to_raid_index(type);
7079	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7080
7081#if BITS_PER_LONG == 32
7082	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7083	if (ret < 0)
7084		return ret;
7085	warn_32bit_meta_chunk(fs_info, logical, length, type);
7086#endif
7087
7088	/*
7089	 * Only need to verify chunk item if we're reading from sys chunk array,
7090	 * as chunk item in tree block is already verified by tree-checker.
7091	 */
7092	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7093		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7094		if (ret)
7095			return ret;
7096	}
7097
7098	map = btrfs_find_chunk_map(fs_info, logical, 1);
7099
7100	/* already mapped? */
7101	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7102		btrfs_free_chunk_map(map);
7103		return 0;
7104	} else if (map) {
7105		btrfs_free_chunk_map(map);
7106	}
7107
7108	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7109	if (!map)
7110		return -ENOMEM;
7111
7112	map->start = logical;
7113	map->chunk_len = length;
7114	map->num_stripes = num_stripes;
7115	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7116	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7117	map->type = type;
7118	/*
7119	 * We can't use the sub_stripes value, as for profiles other than
7120	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7121	 * older mkfs (<v5.4).
7122	 * In that case, it can cause divide-by-zero errors later.
7123	 * Since currently sub_stripes is fixed for each profile, let's
7124	 * use the trusted value instead.
7125	 */
7126	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7127	map->verified_stripes = 0;
7128	map->stripe_size = btrfs_calc_stripe_length(map);
7129	for (i = 0; i < num_stripes; i++) {
7130		map->stripes[i].physical =
7131			btrfs_stripe_offset_nr(leaf, chunk, i);
7132		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7133		args.devid = devid;
7134		read_extent_buffer(leaf, uuid, (unsigned long)
7135				   btrfs_stripe_dev_uuid_nr(chunk, i),
7136				   BTRFS_UUID_SIZE);
7137		args.uuid = uuid;
7138		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7139		if (!map->stripes[i].dev) {
7140			map->stripes[i].dev = handle_missing_device(fs_info,
7141								    devid, uuid);
7142			if (IS_ERR(map->stripes[i].dev)) {
7143				ret = PTR_ERR(map->stripes[i].dev);
7144				btrfs_free_chunk_map(map);
7145				return ret;
7146			}
7147		}
7148
7149		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7150				&(map->stripes[i].dev->dev_state));
7151	}
7152
7153	ret = btrfs_add_chunk_map(fs_info, map);
7154	if (ret < 0) {
7155		btrfs_err(fs_info,
7156			  "failed to add chunk map, start=%llu len=%llu: %d",
7157			  map->start, map->chunk_len, ret);
7158	}
7159
7160	return ret;
7161}
7162
7163static void fill_device_from_item(struct extent_buffer *leaf,
7164				 struct btrfs_dev_item *dev_item,
7165				 struct btrfs_device *device)
7166{
7167	unsigned long ptr;
7168
7169	device->devid = btrfs_device_id(leaf, dev_item);
7170	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7171	device->total_bytes = device->disk_total_bytes;
7172	device->commit_total_bytes = device->disk_total_bytes;
7173	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7174	device->commit_bytes_used = device->bytes_used;
7175	device->type = btrfs_device_type(leaf, dev_item);
7176	device->io_align = btrfs_device_io_align(leaf, dev_item);
7177	device->io_width = btrfs_device_io_width(leaf, dev_item);
7178	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7179	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7180	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7181
7182	ptr = btrfs_device_uuid(dev_item);
7183	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7184}
7185
7186static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7187						  u8 *fsid)
7188{
7189	struct btrfs_fs_devices *fs_devices;
7190	int ret;
7191
7192	lockdep_assert_held(&uuid_mutex);
7193	ASSERT(fsid);
7194
7195	/* This will match only for multi-device seed fs */
7196	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7197		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7198			return fs_devices;
7199
7200
7201	fs_devices = find_fsid(fsid, NULL);
7202	if (!fs_devices) {
7203		if (!btrfs_test_opt(fs_info, DEGRADED))
7204			return ERR_PTR(-ENOENT);
7205
7206		fs_devices = alloc_fs_devices(fsid);
7207		if (IS_ERR(fs_devices))
7208			return fs_devices;
7209
7210		fs_devices->seeding = true;
7211		fs_devices->opened = 1;
7212		return fs_devices;
7213	}
7214
7215	/*
7216	 * Upon first call for a seed fs fsid, just create a private copy of the
7217	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7218	 */
7219	fs_devices = clone_fs_devices(fs_devices);
7220	if (IS_ERR(fs_devices))
7221		return fs_devices;
7222
7223	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7224	if (ret) {
7225		free_fs_devices(fs_devices);
7226		return ERR_PTR(ret);
7227	}
7228
7229	if (!fs_devices->seeding) {
7230		close_fs_devices(fs_devices);
7231		free_fs_devices(fs_devices);
7232		return ERR_PTR(-EINVAL);
7233	}
7234
7235	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7236
7237	return fs_devices;
7238}
7239
7240static int read_one_dev(struct extent_buffer *leaf,
7241			struct btrfs_dev_item *dev_item)
7242{
7243	BTRFS_DEV_LOOKUP_ARGS(args);
7244	struct btrfs_fs_info *fs_info = leaf->fs_info;
7245	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7246	struct btrfs_device *device;
7247	u64 devid;
7248	int ret;
7249	u8 fs_uuid[BTRFS_FSID_SIZE];
7250	u8 dev_uuid[BTRFS_UUID_SIZE];
7251
7252	devid = btrfs_device_id(leaf, dev_item);
7253	args.devid = devid;
7254	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7255			   BTRFS_UUID_SIZE);
7256	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7257			   BTRFS_FSID_SIZE);
7258	args.uuid = dev_uuid;
7259	args.fsid = fs_uuid;
7260
7261	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7262		fs_devices = open_seed_devices(fs_info, fs_uuid);
7263		if (IS_ERR(fs_devices))
7264			return PTR_ERR(fs_devices);
7265	}
7266
7267	device = btrfs_find_device(fs_info->fs_devices, &args);
7268	if (!device) {
7269		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7270			btrfs_report_missing_device(fs_info, devid,
7271							dev_uuid, true);
7272			return -ENOENT;
7273		}
7274
7275		device = add_missing_dev(fs_devices, devid, dev_uuid);
7276		if (IS_ERR(device)) {
7277			btrfs_err(fs_info,
7278				"failed to add missing dev %llu: %ld",
7279				devid, PTR_ERR(device));
7280			return PTR_ERR(device);
7281		}
7282		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7283	} else {
7284		if (!device->bdev) {
7285			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7286				btrfs_report_missing_device(fs_info,
7287						devid, dev_uuid, true);
7288				return -ENOENT;
7289			}
7290			btrfs_report_missing_device(fs_info, devid,
7291							dev_uuid, false);
7292		}
7293
7294		if (!device->bdev &&
7295		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7296			/*
7297			 * this happens when a device that was properly setup
7298			 * in the device info lists suddenly goes bad.
7299			 * device->bdev is NULL, and so we have to set
7300			 * device->missing to one here
7301			 */
7302			device->fs_devices->missing_devices++;
7303			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7304		}
7305
7306		/* Move the device to its own fs_devices */
7307		if (device->fs_devices != fs_devices) {
7308			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7309							&device->dev_state));
7310
7311			list_move(&device->dev_list, &fs_devices->devices);
7312			device->fs_devices->num_devices--;
7313			fs_devices->num_devices++;
7314
7315			device->fs_devices->missing_devices--;
7316			fs_devices->missing_devices++;
7317
7318			device->fs_devices = fs_devices;
7319		}
7320	}
7321
7322	if (device->fs_devices != fs_info->fs_devices) {
7323		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7324		if (device->generation !=
7325		    btrfs_device_generation(leaf, dev_item))
7326			return -EINVAL;
7327	}
7328
7329	fill_device_from_item(leaf, dev_item, device);
7330	if (device->bdev) {
7331		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7332
7333		if (device->total_bytes > max_total_bytes) {
7334			btrfs_err(fs_info,
7335			"device total_bytes should be at most %llu but found %llu",
7336				  max_total_bytes, device->total_bytes);
7337			return -EINVAL;
7338		}
7339	}
7340	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7341	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7342	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7343		device->fs_devices->total_rw_bytes += device->total_bytes;
7344		atomic64_add(device->total_bytes - device->bytes_used,
7345				&fs_info->free_chunk_space);
7346	}
7347	ret = 0;
7348	return ret;
7349}
7350
7351int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7352{
7353	struct btrfs_super_block *super_copy = fs_info->super_copy;
7354	struct extent_buffer *sb;
7355	struct btrfs_disk_key *disk_key;
7356	struct btrfs_chunk *chunk;
7357	u8 *array_ptr;
7358	unsigned long sb_array_offset;
7359	int ret = 0;
7360	u32 num_stripes;
7361	u32 array_size;
7362	u32 len = 0;
7363	u32 cur_offset;
7364	u64 type;
7365	struct btrfs_key key;
7366
7367	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7368
7369	/*
7370	 * We allocated a dummy extent, just to use extent buffer accessors.
7371	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7372	 * that's fine, we will not go beyond system chunk array anyway.
7373	 */
7374	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7375	if (!sb)
7376		return -ENOMEM;
7377	set_extent_buffer_uptodate(sb);
7378
7379	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7380	array_size = btrfs_super_sys_array_size(super_copy);
7381
7382	array_ptr = super_copy->sys_chunk_array;
7383	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7384	cur_offset = 0;
7385
7386	while (cur_offset < array_size) {
7387		disk_key = (struct btrfs_disk_key *)array_ptr;
7388		len = sizeof(*disk_key);
7389		if (cur_offset + len > array_size)
7390			goto out_short_read;
7391
7392		btrfs_disk_key_to_cpu(&key, disk_key);
7393
7394		array_ptr += len;
7395		sb_array_offset += len;
7396		cur_offset += len;
7397
7398		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7399			btrfs_err(fs_info,
7400			    "unexpected item type %u in sys_array at offset %u",
7401				  (u32)key.type, cur_offset);
7402			ret = -EIO;
7403			break;
7404		}
7405
7406		chunk = (struct btrfs_chunk *)sb_array_offset;
7407		/*
7408		 * At least one btrfs_chunk with one stripe must be present,
7409		 * exact stripe count check comes afterwards
7410		 */
7411		len = btrfs_chunk_item_size(1);
7412		if (cur_offset + len > array_size)
7413			goto out_short_read;
7414
7415		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7416		if (!num_stripes) {
7417			btrfs_err(fs_info,
7418			"invalid number of stripes %u in sys_array at offset %u",
7419				  num_stripes, cur_offset);
7420			ret = -EIO;
7421			break;
7422		}
7423
7424		type = btrfs_chunk_type(sb, chunk);
7425		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7426			btrfs_err(fs_info,
7427			"invalid chunk type %llu in sys_array at offset %u",
7428				  type, cur_offset);
7429			ret = -EIO;
7430			break;
7431		}
7432
7433		len = btrfs_chunk_item_size(num_stripes);
7434		if (cur_offset + len > array_size)
7435			goto out_short_read;
7436
7437		ret = read_one_chunk(&key, sb, chunk);
7438		if (ret)
7439			break;
7440
7441		array_ptr += len;
7442		sb_array_offset += len;
7443		cur_offset += len;
7444	}
7445	clear_extent_buffer_uptodate(sb);
7446	free_extent_buffer_stale(sb);
7447	return ret;
7448
7449out_short_read:
7450	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7451			len, cur_offset);
7452	clear_extent_buffer_uptodate(sb);
7453	free_extent_buffer_stale(sb);
7454	return -EIO;
7455}
7456
7457/*
7458 * Check if all chunks in the fs are OK for read-write degraded mount
7459 *
7460 * If the @failing_dev is specified, it's accounted as missing.
7461 *
7462 * Return true if all chunks meet the minimal RW mount requirements.
7463 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7464 */
7465bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7466					struct btrfs_device *failing_dev)
7467{
7468	struct btrfs_chunk_map *map;
7469	u64 next_start;
7470	bool ret = true;
7471
7472	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7473	/* No chunk at all? Return false anyway */
7474	if (!map) {
7475		ret = false;
7476		goto out;
7477	}
7478	while (map) {
7479		int missing = 0;
7480		int max_tolerated;
7481		int i;
7482
7483		max_tolerated =
7484			btrfs_get_num_tolerated_disk_barrier_failures(
7485					map->type);
7486		for (i = 0; i < map->num_stripes; i++) {
7487			struct btrfs_device *dev = map->stripes[i].dev;
7488
7489			if (!dev || !dev->bdev ||
7490			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7491			    dev->last_flush_error)
7492				missing++;
7493			else if (failing_dev && failing_dev == dev)
7494				missing++;
7495		}
7496		if (missing > max_tolerated) {
7497			if (!failing_dev)
7498				btrfs_warn(fs_info,
7499	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7500				   map->start, missing, max_tolerated);
7501			btrfs_free_chunk_map(map);
7502			ret = false;
7503			goto out;
7504		}
7505		next_start = map->start + map->chunk_len;
7506		btrfs_free_chunk_map(map);
7507
7508		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7509	}
7510out:
7511	return ret;
7512}
7513
7514static void readahead_tree_node_children(struct extent_buffer *node)
7515{
7516	int i;
7517	const int nr_items = btrfs_header_nritems(node);
7518
7519	for (i = 0; i < nr_items; i++)
7520		btrfs_readahead_node_child(node, i);
7521}
7522
7523int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7524{
7525	struct btrfs_root *root = fs_info->chunk_root;
7526	struct btrfs_path *path;
7527	struct extent_buffer *leaf;
7528	struct btrfs_key key;
7529	struct btrfs_key found_key;
7530	int ret;
7531	int slot;
7532	int iter_ret = 0;
7533	u64 total_dev = 0;
7534	u64 last_ra_node = 0;
7535
7536	path = btrfs_alloc_path();
7537	if (!path)
7538		return -ENOMEM;
7539
7540	/*
7541	 * uuid_mutex is needed only if we are mounting a sprout FS
7542	 * otherwise we don't need it.
7543	 */
7544	mutex_lock(&uuid_mutex);
7545
7546	/*
7547	 * It is possible for mount and umount to race in such a way that
7548	 * we execute this code path, but open_fs_devices failed to clear
7549	 * total_rw_bytes. We certainly want it cleared before reading the
7550	 * device items, so clear it here.
7551	 */
7552	fs_info->fs_devices->total_rw_bytes = 0;
7553
7554	/*
7555	 * Lockdep complains about possible circular locking dependency between
7556	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7557	 * used for freeze procection of a fs (struct super_block.s_writers),
7558	 * which we take when starting a transaction, and extent buffers of the
7559	 * chunk tree if we call read_one_dev() while holding a lock on an
7560	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7561	 * and at this point there can't be any concurrent task modifying the
7562	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7563	 */
7564	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7565	path->skip_locking = 1;
7566
7567	/*
7568	 * Read all device items, and then all the chunk items. All
7569	 * device items are found before any chunk item (their object id
7570	 * is smaller than the lowest possible object id for a chunk
7571	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7572	 */
7573	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7574	key.offset = 0;
7575	key.type = 0;
7576	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7577		struct extent_buffer *node = path->nodes[1];
7578
7579		leaf = path->nodes[0];
7580		slot = path->slots[0];
7581
7582		if (node) {
7583			if (last_ra_node != node->start) {
7584				readahead_tree_node_children(node);
7585				last_ra_node = node->start;
7586			}
7587		}
7588		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7589			struct btrfs_dev_item *dev_item;
7590			dev_item = btrfs_item_ptr(leaf, slot,
7591						  struct btrfs_dev_item);
7592			ret = read_one_dev(leaf, dev_item);
7593			if (ret)
7594				goto error;
7595			total_dev++;
7596		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7597			struct btrfs_chunk *chunk;
7598
7599			/*
7600			 * We are only called at mount time, so no need to take
7601			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7602			 * we always lock first fs_info->chunk_mutex before
7603			 * acquiring any locks on the chunk tree. This is a
7604			 * requirement for chunk allocation, see the comment on
7605			 * top of btrfs_chunk_alloc() for details.
7606			 */
7607			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7608			ret = read_one_chunk(&found_key, leaf, chunk);
7609			if (ret)
7610				goto error;
7611		}
7612	}
7613	/* Catch error found during iteration */
7614	if (iter_ret < 0) {
7615		ret = iter_ret;
7616		goto error;
7617	}
7618
7619	/*
7620	 * After loading chunk tree, we've got all device information,
7621	 * do another round of validation checks.
7622	 */
7623	if (total_dev != fs_info->fs_devices->total_devices) {
7624		btrfs_warn(fs_info,
7625"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7626			  btrfs_super_num_devices(fs_info->super_copy),
7627			  total_dev);
7628		fs_info->fs_devices->total_devices = total_dev;
7629		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7630	}
7631	if (btrfs_super_total_bytes(fs_info->super_copy) <
7632	    fs_info->fs_devices->total_rw_bytes) {
7633		btrfs_err(fs_info,
7634	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7635			  btrfs_super_total_bytes(fs_info->super_copy),
7636			  fs_info->fs_devices->total_rw_bytes);
7637		ret = -EINVAL;
7638		goto error;
7639	}
7640	ret = 0;
7641error:
7642	mutex_unlock(&uuid_mutex);
7643
7644	btrfs_free_path(path);
7645	return ret;
7646}
7647
7648int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7649{
7650	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7651	struct btrfs_device *device;
7652	int ret = 0;
7653
7654	fs_devices->fs_info = fs_info;
7655
7656	mutex_lock(&fs_devices->device_list_mutex);
7657	list_for_each_entry(device, &fs_devices->devices, dev_list)
7658		device->fs_info = fs_info;
7659
7660	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7661		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7662			device->fs_info = fs_info;
7663			ret = btrfs_get_dev_zone_info(device, false);
7664			if (ret)
7665				break;
7666		}
7667
7668		seed_devs->fs_info = fs_info;
7669	}
7670	mutex_unlock(&fs_devices->device_list_mutex);
7671
7672	return ret;
7673}
7674
7675static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7676				 const struct btrfs_dev_stats_item *ptr,
7677				 int index)
7678{
7679	u64 val;
7680
7681	read_extent_buffer(eb, &val,
7682			   offsetof(struct btrfs_dev_stats_item, values) +
7683			    ((unsigned long)ptr) + (index * sizeof(u64)),
7684			   sizeof(val));
7685	return val;
7686}
7687
7688static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7689				      struct btrfs_dev_stats_item *ptr,
7690				      int index, u64 val)
7691{
7692	write_extent_buffer(eb, &val,
7693			    offsetof(struct btrfs_dev_stats_item, values) +
7694			     ((unsigned long)ptr) + (index * sizeof(u64)),
7695			    sizeof(val));
7696}
7697
7698static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7699				       struct btrfs_path *path)
7700{
7701	struct btrfs_dev_stats_item *ptr;
7702	struct extent_buffer *eb;
7703	struct btrfs_key key;
7704	int item_size;
7705	int i, ret, slot;
7706
7707	if (!device->fs_info->dev_root)
7708		return 0;
7709
7710	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7711	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7712	key.offset = device->devid;
7713	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7714	if (ret) {
7715		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7716			btrfs_dev_stat_set(device, i, 0);
7717		device->dev_stats_valid = 1;
7718		btrfs_release_path(path);
7719		return ret < 0 ? ret : 0;
7720	}
7721	slot = path->slots[0];
7722	eb = path->nodes[0];
7723	item_size = btrfs_item_size(eb, slot);
7724
7725	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7726
7727	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7728		if (item_size >= (1 + i) * sizeof(__le64))
7729			btrfs_dev_stat_set(device, i,
7730					   btrfs_dev_stats_value(eb, ptr, i));
7731		else
7732			btrfs_dev_stat_set(device, i, 0);
7733	}
7734
7735	device->dev_stats_valid = 1;
7736	btrfs_dev_stat_print_on_load(device);
7737	btrfs_release_path(path);
7738
7739	return 0;
7740}
7741
7742int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7743{
7744	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7745	struct btrfs_device *device;
7746	struct btrfs_path *path = NULL;
7747	int ret = 0;
7748
7749	path = btrfs_alloc_path();
7750	if (!path)
7751		return -ENOMEM;
7752
7753	mutex_lock(&fs_devices->device_list_mutex);
7754	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7755		ret = btrfs_device_init_dev_stats(device, path);
7756		if (ret)
7757			goto out;
7758	}
7759	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7760		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7761			ret = btrfs_device_init_dev_stats(device, path);
7762			if (ret)
7763				goto out;
7764		}
7765	}
7766out:
7767	mutex_unlock(&fs_devices->device_list_mutex);
7768
7769	btrfs_free_path(path);
7770	return ret;
7771}
7772
7773static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7774				struct btrfs_device *device)
7775{
7776	struct btrfs_fs_info *fs_info = trans->fs_info;
7777	struct btrfs_root *dev_root = fs_info->dev_root;
7778	struct btrfs_path *path;
7779	struct btrfs_key key;
7780	struct extent_buffer *eb;
7781	struct btrfs_dev_stats_item *ptr;
7782	int ret;
7783	int i;
7784
7785	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7786	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7787	key.offset = device->devid;
7788
7789	path = btrfs_alloc_path();
7790	if (!path)
7791		return -ENOMEM;
7792	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7793	if (ret < 0) {
7794		btrfs_warn_in_rcu(fs_info,
7795			"error %d while searching for dev_stats item for device %s",
7796				  ret, btrfs_dev_name(device));
7797		goto out;
7798	}
7799
7800	if (ret == 0 &&
7801	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7802		/* need to delete old one and insert a new one */
7803		ret = btrfs_del_item(trans, dev_root, path);
7804		if (ret != 0) {
7805			btrfs_warn_in_rcu(fs_info,
7806				"delete too small dev_stats item for device %s failed %d",
7807					  btrfs_dev_name(device), ret);
7808			goto out;
7809		}
7810		ret = 1;
7811	}
7812
7813	if (ret == 1) {
7814		/* need to insert a new item */
7815		btrfs_release_path(path);
7816		ret = btrfs_insert_empty_item(trans, dev_root, path,
7817					      &key, sizeof(*ptr));
7818		if (ret < 0) {
7819			btrfs_warn_in_rcu(fs_info,
7820				"insert dev_stats item for device %s failed %d",
7821				btrfs_dev_name(device), ret);
7822			goto out;
7823		}
7824	}
7825
7826	eb = path->nodes[0];
7827	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7828	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7829		btrfs_set_dev_stats_value(eb, ptr, i,
7830					  btrfs_dev_stat_read(device, i));
7831	btrfs_mark_buffer_dirty(trans, eb);
7832
7833out:
7834	btrfs_free_path(path);
7835	return ret;
7836}
7837
7838/*
7839 * called from commit_transaction. Writes all changed device stats to disk.
7840 */
7841int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7842{
7843	struct btrfs_fs_info *fs_info = trans->fs_info;
7844	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7845	struct btrfs_device *device;
7846	int stats_cnt;
7847	int ret = 0;
7848
7849	mutex_lock(&fs_devices->device_list_mutex);
7850	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7851		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7852		if (!device->dev_stats_valid || stats_cnt == 0)
7853			continue;
7854
7855
7856		/*
7857		 * There is a LOAD-LOAD control dependency between the value of
7858		 * dev_stats_ccnt and updating the on-disk values which requires
7859		 * reading the in-memory counters. Such control dependencies
7860		 * require explicit read memory barriers.
7861		 *
7862		 * This memory barriers pairs with smp_mb__before_atomic in
7863		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7864		 * barrier implied by atomic_xchg in
7865		 * btrfs_dev_stats_read_and_reset
7866		 */
7867		smp_rmb();
7868
7869		ret = update_dev_stat_item(trans, device);
7870		if (!ret)
7871			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7872	}
7873	mutex_unlock(&fs_devices->device_list_mutex);
7874
7875	return ret;
7876}
7877
7878void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7879{
7880	btrfs_dev_stat_inc(dev, index);
7881
7882	if (!dev->dev_stats_valid)
7883		return;
7884	btrfs_err_rl_in_rcu(dev->fs_info,
7885		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7886			   btrfs_dev_name(dev),
7887			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7888			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7889			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7890			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7891			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7892}
7893
7894static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7895{
7896	int i;
7897
7898	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7899		if (btrfs_dev_stat_read(dev, i) != 0)
7900			break;
7901	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7902		return; /* all values == 0, suppress message */
7903
7904	btrfs_info_in_rcu(dev->fs_info,
7905		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7906	       btrfs_dev_name(dev),
7907	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7908	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7909	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7910	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7911	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7912}
7913
7914int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7915			struct btrfs_ioctl_get_dev_stats *stats)
7916{
7917	BTRFS_DEV_LOOKUP_ARGS(args);
7918	struct btrfs_device *dev;
7919	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7920	int i;
7921
7922	mutex_lock(&fs_devices->device_list_mutex);
7923	args.devid = stats->devid;
7924	dev = btrfs_find_device(fs_info->fs_devices, &args);
7925	mutex_unlock(&fs_devices->device_list_mutex);
7926
7927	if (!dev) {
7928		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7929		return -ENODEV;
7930	} else if (!dev->dev_stats_valid) {
7931		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7932		return -ENODEV;
7933	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7934		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7935			if (stats->nr_items > i)
7936				stats->values[i] =
7937					btrfs_dev_stat_read_and_reset(dev, i);
7938			else
7939				btrfs_dev_stat_set(dev, i, 0);
7940		}
7941		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7942			   current->comm, task_pid_nr(current));
7943	} else {
7944		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7945			if (stats->nr_items > i)
7946				stats->values[i] = btrfs_dev_stat_read(dev, i);
7947	}
7948	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7949		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7950	return 0;
7951}
7952
7953/*
7954 * Update the size and bytes used for each device where it changed.  This is
7955 * delayed since we would otherwise get errors while writing out the
7956 * superblocks.
7957 *
7958 * Must be invoked during transaction commit.
7959 */
7960void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7961{
7962	struct btrfs_device *curr, *next;
7963
7964	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7965
7966	if (list_empty(&trans->dev_update_list))
7967		return;
7968
7969	/*
7970	 * We don't need the device_list_mutex here.  This list is owned by the
7971	 * transaction and the transaction must complete before the device is
7972	 * released.
7973	 */
7974	mutex_lock(&trans->fs_info->chunk_mutex);
7975	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7976				 post_commit_list) {
7977		list_del_init(&curr->post_commit_list);
7978		curr->commit_total_bytes = curr->disk_total_bytes;
7979		curr->commit_bytes_used = curr->bytes_used;
7980	}
7981	mutex_unlock(&trans->fs_info->chunk_mutex);
7982}
7983
7984/*
7985 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7986 */
7987int btrfs_bg_type_to_factor(u64 flags)
7988{
7989	const int index = btrfs_bg_flags_to_raid_index(flags);
7990
7991	return btrfs_raid_array[index].ncopies;
7992}
7993
7994
7995
7996static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7997				 u64 chunk_offset, u64 devid,
7998				 u64 physical_offset, u64 physical_len)
7999{
8000	struct btrfs_dev_lookup_args args = { .devid = devid };
8001	struct btrfs_chunk_map *map;
8002	struct btrfs_device *dev;
8003	u64 stripe_len;
8004	bool found = false;
8005	int ret = 0;
8006	int i;
8007
8008	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
8009	if (!map) {
8010		btrfs_err(fs_info,
8011"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8012			  physical_offset, devid);
8013		ret = -EUCLEAN;
8014		goto out;
8015	}
8016
8017	stripe_len = btrfs_calc_stripe_length(map);
8018	if (physical_len != stripe_len) {
8019		btrfs_err(fs_info,
8020"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8021			  physical_offset, devid, map->start, physical_len,
8022			  stripe_len);
8023		ret = -EUCLEAN;
8024		goto out;
8025	}
8026
8027	/*
8028	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8029	 * space. Although kernel can handle it without problem, better to warn
8030	 * the users.
8031	 */
8032	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8033		btrfs_warn(fs_info,
8034		"devid %llu physical %llu len %llu inside the reserved space",
8035			   devid, physical_offset, physical_len);
8036
8037	for (i = 0; i < map->num_stripes; i++) {
8038		if (map->stripes[i].dev->devid == devid &&
8039		    map->stripes[i].physical == physical_offset) {
8040			found = true;
8041			if (map->verified_stripes >= map->num_stripes) {
8042				btrfs_err(fs_info,
8043				"too many dev extents for chunk %llu found",
8044					  map->start);
8045				ret = -EUCLEAN;
8046				goto out;
8047			}
8048			map->verified_stripes++;
8049			break;
8050		}
8051	}
8052	if (!found) {
8053		btrfs_err(fs_info,
8054	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8055			physical_offset, devid);
8056		ret = -EUCLEAN;
8057	}
8058
8059	/* Make sure no dev extent is beyond device boundary */
8060	dev = btrfs_find_device(fs_info->fs_devices, &args);
8061	if (!dev) {
8062		btrfs_err(fs_info, "failed to find devid %llu", devid);
8063		ret = -EUCLEAN;
8064		goto out;
8065	}
8066
8067	if (physical_offset + physical_len > dev->disk_total_bytes) {
8068		btrfs_err(fs_info,
8069"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8070			  devid, physical_offset, physical_len,
8071			  dev->disk_total_bytes);
8072		ret = -EUCLEAN;
8073		goto out;
8074	}
8075
8076	if (dev->zone_info) {
8077		u64 zone_size = dev->zone_info->zone_size;
8078
8079		if (!IS_ALIGNED(physical_offset, zone_size) ||
8080		    !IS_ALIGNED(physical_len, zone_size)) {
8081			btrfs_err(fs_info,
8082"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8083				  devid, physical_offset, physical_len);
8084			ret = -EUCLEAN;
8085			goto out;
8086		}
8087	}
8088
8089out:
8090	btrfs_free_chunk_map(map);
8091	return ret;
8092}
8093
8094static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8095{
8096	struct rb_node *node;
8097	int ret = 0;
8098
8099	read_lock(&fs_info->mapping_tree_lock);
8100	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8101		struct btrfs_chunk_map *map;
8102
8103		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8104		if (map->num_stripes != map->verified_stripes) {
8105			btrfs_err(fs_info,
8106			"chunk %llu has missing dev extent, have %d expect %d",
8107				  map->start, map->verified_stripes, map->num_stripes);
8108			ret = -EUCLEAN;
8109			goto out;
8110		}
8111	}
8112out:
8113	read_unlock(&fs_info->mapping_tree_lock);
8114	return ret;
8115}
8116
8117/*
8118 * Ensure that all dev extents are mapped to correct chunk, otherwise
8119 * later chunk allocation/free would cause unexpected behavior.
8120 *
8121 * NOTE: This will iterate through the whole device tree, which should be of
8122 * the same size level as the chunk tree.  This slightly increases mount time.
8123 */
8124int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8125{
8126	struct btrfs_path *path;
8127	struct btrfs_root *root = fs_info->dev_root;
8128	struct btrfs_key key;
8129	u64 prev_devid = 0;
8130	u64 prev_dev_ext_end = 0;
8131	int ret = 0;
8132
8133	/*
8134	 * We don't have a dev_root because we mounted with ignorebadroots and
8135	 * failed to load the root, so we want to skip the verification in this
8136	 * case for sure.
8137	 *
8138	 * However if the dev root is fine, but the tree itself is corrupted
8139	 * we'd still fail to mount.  This verification is only to make sure
8140	 * writes can happen safely, so instead just bypass this check
8141	 * completely in the case of IGNOREBADROOTS.
8142	 */
8143	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8144		return 0;
8145
8146	key.objectid = 1;
8147	key.type = BTRFS_DEV_EXTENT_KEY;
8148	key.offset = 0;
8149
8150	path = btrfs_alloc_path();
8151	if (!path)
8152		return -ENOMEM;
8153
8154	path->reada = READA_FORWARD;
8155	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8156	if (ret < 0)
8157		goto out;
8158
8159	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8160		ret = btrfs_next_leaf(root, path);
8161		if (ret < 0)
8162			goto out;
8163		/* No dev extents at all? Not good */
8164		if (ret > 0) {
8165			ret = -EUCLEAN;
8166			goto out;
8167		}
8168	}
8169	while (1) {
8170		struct extent_buffer *leaf = path->nodes[0];
8171		struct btrfs_dev_extent *dext;
8172		int slot = path->slots[0];
8173		u64 chunk_offset;
8174		u64 physical_offset;
8175		u64 physical_len;
8176		u64 devid;
8177
8178		btrfs_item_key_to_cpu(leaf, &key, slot);
8179		if (key.type != BTRFS_DEV_EXTENT_KEY)
8180			break;
8181		devid = key.objectid;
8182		physical_offset = key.offset;
8183
8184		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8185		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8186		physical_len = btrfs_dev_extent_length(leaf, dext);
8187
8188		/* Check if this dev extent overlaps with the previous one */
8189		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8190			btrfs_err(fs_info,
8191"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8192				  devid, physical_offset, prev_dev_ext_end);
8193			ret = -EUCLEAN;
8194			goto out;
8195		}
8196
8197		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8198					    physical_offset, physical_len);
8199		if (ret < 0)
8200			goto out;
8201		prev_devid = devid;
8202		prev_dev_ext_end = physical_offset + physical_len;
8203
8204		ret = btrfs_next_item(root, path);
8205		if (ret < 0)
8206			goto out;
8207		if (ret > 0) {
8208			ret = 0;
8209			break;
8210		}
8211	}
8212
8213	/* Ensure all chunks have corresponding dev extents */
8214	ret = verify_chunk_dev_extent_mapping(fs_info);
8215out:
8216	btrfs_free_path(path);
8217	return ret;
8218}
8219
8220/*
8221 * Check whether the given block group or device is pinned by any inode being
8222 * used as a swapfile.
8223 */
8224bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8225{
8226	struct btrfs_swapfile_pin *sp;
8227	struct rb_node *node;
8228
8229	spin_lock(&fs_info->swapfile_pins_lock);
8230	node = fs_info->swapfile_pins.rb_node;
8231	while (node) {
8232		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8233		if (ptr < sp->ptr)
8234			node = node->rb_left;
8235		else if (ptr > sp->ptr)
8236			node = node->rb_right;
8237		else
8238			break;
8239	}
8240	spin_unlock(&fs_info->swapfile_pins_lock);
8241	return node != NULL;
8242}
8243
8244static int relocating_repair_kthread(void *data)
8245{
8246	struct btrfs_block_group *cache = data;
8247	struct btrfs_fs_info *fs_info = cache->fs_info;
8248	u64 target;
8249	int ret = 0;
8250
8251	target = cache->start;
8252	btrfs_put_block_group(cache);
8253
8254	sb_start_write(fs_info->sb);
8255	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8256		btrfs_info(fs_info,
8257			   "zoned: skip relocating block group %llu to repair: EBUSY",
8258			   target);
8259		sb_end_write(fs_info->sb);
8260		return -EBUSY;
8261	}
8262
8263	mutex_lock(&fs_info->reclaim_bgs_lock);
8264
8265	/* Ensure block group still exists */
8266	cache = btrfs_lookup_block_group(fs_info, target);
8267	if (!cache)
8268		goto out;
8269
8270	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8271		goto out;
8272
8273	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8274	if (ret < 0)
8275		goto out;
8276
8277	btrfs_info(fs_info,
8278		   "zoned: relocating block group %llu to repair IO failure",
8279		   target);
8280	ret = btrfs_relocate_chunk(fs_info, target);
8281
8282out:
8283	if (cache)
8284		btrfs_put_block_group(cache);
8285	mutex_unlock(&fs_info->reclaim_bgs_lock);
8286	btrfs_exclop_finish(fs_info);
8287	sb_end_write(fs_info->sb);
8288
8289	return ret;
8290}
8291
8292bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8293{
8294	struct btrfs_block_group *cache;
8295
8296	if (!btrfs_is_zoned(fs_info))
8297		return false;
8298
8299	/* Do not attempt to repair in degraded state */
8300	if (btrfs_test_opt(fs_info, DEGRADED))
8301		return true;
8302
8303	cache = btrfs_lookup_block_group(fs_info, logical);
8304	if (!cache)
8305		return true;
8306
8307	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8308		btrfs_put_block_group(cache);
8309		return true;
8310	}
8311
8312	kthread_run(relocating_repair_kthread, cache,
8313		    "btrfs-relocating-repair");
8314
8315	return true;
8316}
8317
8318static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8319				    struct btrfs_io_stripe *smap,
8320				    u64 logical)
8321{
8322	int data_stripes = nr_bioc_data_stripes(bioc);
8323	int i;
8324
8325	for (i = 0; i < data_stripes; i++) {
8326		u64 stripe_start = bioc->full_stripe_logical +
8327				   btrfs_stripe_nr_to_offset(i);
8328
8329		if (logical >= stripe_start &&
8330		    logical < stripe_start + BTRFS_STRIPE_LEN)
8331			break;
8332	}
8333	ASSERT(i < data_stripes);
8334	smap->dev = bioc->stripes[i].dev;
8335	smap->physical = bioc->stripes[i].physical +
8336			((logical - bioc->full_stripe_logical) &
8337			 BTRFS_STRIPE_LEN_MASK);
8338}
8339
8340/*
8341 * Map a repair write into a single device.
8342 *
8343 * A repair write is triggered by read time repair or scrub, which would only
8344 * update the contents of a single device.
8345 * Not update any other mirrors nor go through RMW path.
8346 *
8347 * Callers should ensure:
8348 *
8349 * - Call btrfs_bio_counter_inc_blocked() first
8350 * - The range does not cross stripe boundary
8351 * - Has a valid @mirror_num passed in.
8352 */
8353int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8354			   struct btrfs_io_stripe *smap, u64 logical,
8355			   u32 length, int mirror_num)
8356{
8357	struct btrfs_io_context *bioc = NULL;
8358	u64 map_length = length;
8359	int mirror_ret = mirror_num;
8360	int ret;
8361
8362	ASSERT(mirror_num > 0);
8363
8364	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8365			      &bioc, smap, &mirror_ret);
8366	if (ret < 0)
8367		return ret;
8368
8369	/* The map range should not cross stripe boundary. */
8370	ASSERT(map_length >= length);
8371
8372	/* Already mapped to single stripe. */
8373	if (!bioc)
8374		goto out;
8375
8376	/* Map the RAID56 multi-stripe writes to a single one. */
8377	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8378		map_raid56_repair_block(bioc, smap, logical);
8379		goto out;
8380	}
8381
8382	ASSERT(mirror_num <= bioc->num_stripes);
8383	smap->dev = bioc->stripes[mirror_num - 1].dev;
8384	smap->physical = bioc->stripes[mirror_num - 1].physical;
8385out:
8386	btrfs_put_bioc(bioc);
8387	ASSERT(smap->dev);
8388	return 0;
8389}
8390