1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "space-info.h"
6#include "sysfs.h"
7#include "volumes.h"
8#include "free-space-cache.h"
9#include "ordered-data.h"
10#include "transaction.h"
11#include "block-group.h"
12#include "fs.h"
13#include "accessors.h"
14#include "extent-tree.h"
15
16/*
17 * HOW DOES SPACE RESERVATION WORK
18 *
19 * If you want to know about delalloc specifically, there is a separate comment
20 * for that with the delalloc code.  This comment is about how the whole system
21 * works generally.
22 *
23 * BASIC CONCEPTS
24 *
25 *   1) space_info.  This is the ultimate arbiter of how much space we can use.
26 *   There's a description of the bytes_ fields with the struct declaration,
27 *   refer to that for specifics on each field.  Suffice it to say that for
28 *   reservations we care about total_bytes - SUM(space_info->bytes_) when
29 *   determining if there is space to make an allocation.  There is a space_info
30 *   for METADATA, SYSTEM, and DATA areas.
31 *
32 *   2) block_rsv's.  These are basically buckets for every different type of
33 *   metadata reservation we have.  You can see the comment in the block_rsv
34 *   code on the rules for each type, but generally block_rsv->reserved is how
35 *   much space is accounted for in space_info->bytes_may_use.
36 *
37 *   3) btrfs_calc*_size.  These are the worst case calculations we used based
38 *   on the number of items we will want to modify.  We have one for changing
39 *   items, and one for inserting new items.  Generally we use these helpers to
40 *   determine the size of the block reserves, and then use the actual bytes
41 *   values to adjust the space_info counters.
42 *
43 * MAKING RESERVATIONS, THE NORMAL CASE
44 *
45 *   We call into either btrfs_reserve_data_bytes() or
46 *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
47 *   num_bytes we want to reserve.
48 *
49 *   ->reserve
50 *     space_info->bytes_may_reserve += num_bytes
51 *
52 *   ->extent allocation
53 *     Call btrfs_add_reserved_bytes() which does
54 *     space_info->bytes_may_reserve -= num_bytes
55 *     space_info->bytes_reserved += extent_bytes
56 *
57 *   ->insert reference
58 *     Call btrfs_update_block_group() which does
59 *     space_info->bytes_reserved -= extent_bytes
60 *     space_info->bytes_used += extent_bytes
61 *
62 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
63 *
64 *   Assume we are unable to simply make the reservation because we do not have
65 *   enough space
66 *
67 *   -> __reserve_bytes
68 *     create a reserve_ticket with ->bytes set to our reservation, add it to
69 *     the tail of space_info->tickets, kick async flush thread
70 *
71 *   ->handle_reserve_ticket
72 *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
73 *     on the ticket.
74 *
75 *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
76 *     Flushes various things attempting to free up space.
77 *
78 *   -> btrfs_try_granting_tickets()
79 *     This is called by anything that either subtracts space from
80 *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
81 *     space_info->total_bytes.  This loops through the ->priority_tickets and
82 *     then the ->tickets list checking to see if the reservation can be
83 *     completed.  If it can the space is added to space_info->bytes_may_use and
84 *     the ticket is woken up.
85 *
86 *   -> ticket wakeup
87 *     Check if ->bytes == 0, if it does we got our reservation and we can carry
88 *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
89 *     were interrupted.)
90 *
91 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
92 *
93 *   Same as the above, except we add ourselves to the
94 *   space_info->priority_tickets, and we do not use ticket->wait, we simply
95 *   call flush_space() ourselves for the states that are safe for us to call
96 *   without deadlocking and hope for the best.
97 *
98 * THE FLUSHING STATES
99 *
100 *   Generally speaking we will have two cases for each state, a "nice" state
101 *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
102 *   reduce the locking over head on the various trees, and even to keep from
103 *   doing any work at all in the case of delayed refs.  Each of these delayed
104 *   things however hold reservations, and so letting them run allows us to
105 *   reclaim space so we can make new reservations.
106 *
107 *   FLUSH_DELAYED_ITEMS
108 *     Every inode has a delayed item to update the inode.  Take a simple write
109 *     for example, we would update the inode item at write time to update the
110 *     mtime, and then again at finish_ordered_io() time in order to update the
111 *     isize or bytes.  We keep these delayed items to coalesce these operations
112 *     into a single operation done on demand.  These are an easy way to reclaim
113 *     metadata space.
114 *
115 *   FLUSH_DELALLOC
116 *     Look at the delalloc comment to get an idea of how much space is reserved
117 *     for delayed allocation.  We can reclaim some of this space simply by
118 *     running delalloc, but usually we need to wait for ordered extents to
119 *     reclaim the bulk of this space.
120 *
121 *   FLUSH_DELAYED_REFS
122 *     We have a block reserve for the outstanding delayed refs space, and every
123 *     delayed ref operation holds a reservation.  Running these is a quick way
124 *     to reclaim space, but we want to hold this until the end because COW can
125 *     churn a lot and we can avoid making some extent tree modifications if we
126 *     are able to delay for as long as possible.
127 *
128 *   ALLOC_CHUNK
129 *     We will skip this the first time through space reservation, because of
130 *     overcommit and we don't want to have a lot of useless metadata space when
131 *     our worst case reservations will likely never come true.
132 *
133 *   RUN_DELAYED_IPUTS
134 *     If we're freeing inodes we're likely freeing checksums, file extent
135 *     items, and extent tree items.  Loads of space could be freed up by these
136 *     operations, however they won't be usable until the transaction commits.
137 *
138 *   COMMIT_TRANS
139 *     This will commit the transaction.  Historically we had a lot of logic
140 *     surrounding whether or not we'd commit the transaction, but this waits born
141 *     out of a pre-tickets era where we could end up committing the transaction
142 *     thousands of times in a row without making progress.  Now thanks to our
143 *     ticketing system we know if we're not making progress and can error
144 *     everybody out after a few commits rather than burning the disk hoping for
145 *     a different answer.
146 *
147 * OVERCOMMIT
148 *
149 *   Because we hold so many reservations for metadata we will allow you to
150 *   reserve more space than is currently free in the currently allocate
151 *   metadata space.  This only happens with metadata, data does not allow
152 *   overcommitting.
153 *
154 *   You can see the current logic for when we allow overcommit in
155 *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
156 *   is no unallocated space to be had, all reservations are kept within the
157 *   free space in the allocated metadata chunks.
158 *
159 *   Because of overcommitting, you generally want to use the
160 *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
161 *   thing with or without extra unallocated space.
162 */
163
164u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
165			  bool may_use_included)
166{
167	ASSERT(s_info);
168	return s_info->bytes_used + s_info->bytes_reserved +
169		s_info->bytes_pinned + s_info->bytes_readonly +
170		s_info->bytes_zone_unusable +
171		(may_use_included ? s_info->bytes_may_use : 0);
172}
173
174/*
175 * after adding space to the filesystem, we need to clear the full flags
176 * on all the space infos.
177 */
178void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
179{
180	struct list_head *head = &info->space_info;
181	struct btrfs_space_info *found;
182
183	list_for_each_entry(found, head, list)
184		found->full = 0;
185}
186
187/*
188 * Block groups with more than this value (percents) of unusable space will be
189 * scheduled for background reclaim.
190 */
191#define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
192
193/*
194 * Calculate chunk size depending on volume type (regular or zoned).
195 */
196static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
197{
198	if (btrfs_is_zoned(fs_info))
199		return fs_info->zone_size;
200
201	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
202
203	if (flags & BTRFS_BLOCK_GROUP_DATA)
204		return BTRFS_MAX_DATA_CHUNK_SIZE;
205	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
206		return SZ_32M;
207
208	/* Handle BTRFS_BLOCK_GROUP_METADATA */
209	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
210		return SZ_1G;
211
212	return SZ_256M;
213}
214
215/*
216 * Update default chunk size.
217 */
218void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
219					u64 chunk_size)
220{
221	WRITE_ONCE(space_info->chunk_size, chunk_size);
222}
223
224static int create_space_info(struct btrfs_fs_info *info, u64 flags)
225{
226
227	struct btrfs_space_info *space_info;
228	int i;
229	int ret;
230
231	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
232	if (!space_info)
233		return -ENOMEM;
234
235	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
236		INIT_LIST_HEAD(&space_info->block_groups[i]);
237	init_rwsem(&space_info->groups_sem);
238	spin_lock_init(&space_info->lock);
239	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
240	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
241	INIT_LIST_HEAD(&space_info->ro_bgs);
242	INIT_LIST_HEAD(&space_info->tickets);
243	INIT_LIST_HEAD(&space_info->priority_tickets);
244	space_info->clamp = 1;
245	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
246
247	if (btrfs_is_zoned(info))
248		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
249
250	ret = btrfs_sysfs_add_space_info_type(info, space_info);
251	if (ret)
252		return ret;
253
254	list_add(&space_info->list, &info->space_info);
255	if (flags & BTRFS_BLOCK_GROUP_DATA)
256		info->data_sinfo = space_info;
257
258	return ret;
259}
260
261int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
262{
263	struct btrfs_super_block *disk_super;
264	u64 features;
265	u64 flags;
266	int mixed = 0;
267	int ret;
268
269	disk_super = fs_info->super_copy;
270	if (!btrfs_super_root(disk_super))
271		return -EINVAL;
272
273	features = btrfs_super_incompat_flags(disk_super);
274	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
275		mixed = 1;
276
277	flags = BTRFS_BLOCK_GROUP_SYSTEM;
278	ret = create_space_info(fs_info, flags);
279	if (ret)
280		goto out;
281
282	if (mixed) {
283		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
284		ret = create_space_info(fs_info, flags);
285	} else {
286		flags = BTRFS_BLOCK_GROUP_METADATA;
287		ret = create_space_info(fs_info, flags);
288		if (ret)
289			goto out;
290
291		flags = BTRFS_BLOCK_GROUP_DATA;
292		ret = create_space_info(fs_info, flags);
293	}
294out:
295	return ret;
296}
297
298void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
299				struct btrfs_block_group *block_group)
300{
301	struct btrfs_space_info *found;
302	int factor, index;
303
304	factor = btrfs_bg_type_to_factor(block_group->flags);
305
306	found = btrfs_find_space_info(info, block_group->flags);
307	ASSERT(found);
308	spin_lock(&found->lock);
309	found->total_bytes += block_group->length;
310	found->disk_total += block_group->length * factor;
311	found->bytes_used += block_group->used;
312	found->disk_used += block_group->used * factor;
313	found->bytes_readonly += block_group->bytes_super;
314	found->bytes_zone_unusable += block_group->zone_unusable;
315	if (block_group->length > 0)
316		found->full = 0;
317	btrfs_try_granting_tickets(info, found);
318	spin_unlock(&found->lock);
319
320	block_group->space_info = found;
321
322	index = btrfs_bg_flags_to_raid_index(block_group->flags);
323	down_write(&found->groups_sem);
324	list_add_tail(&block_group->list, &found->block_groups[index]);
325	up_write(&found->groups_sem);
326}
327
328struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
329					       u64 flags)
330{
331	struct list_head *head = &info->space_info;
332	struct btrfs_space_info *found;
333
334	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
335
336	list_for_each_entry(found, head, list) {
337		if (found->flags & flags)
338			return found;
339	}
340	return NULL;
341}
342
343static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
344			  struct btrfs_space_info *space_info,
345			  enum btrfs_reserve_flush_enum flush)
346{
347	struct btrfs_space_info *data_sinfo;
348	u64 profile;
349	u64 avail;
350	u64 data_chunk_size;
351	int factor;
352
353	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
354		profile = btrfs_system_alloc_profile(fs_info);
355	else
356		profile = btrfs_metadata_alloc_profile(fs_info);
357
358	avail = atomic64_read(&fs_info->free_chunk_space);
359
360	/*
361	 * If we have dup, raid1 or raid10 then only half of the free
362	 * space is actually usable.  For raid56, the space info used
363	 * doesn't include the parity drive, so we don't have to
364	 * change the math
365	 */
366	factor = btrfs_bg_type_to_factor(profile);
367	avail = div_u64(avail, factor);
368	if (avail == 0)
369		return 0;
370
371	/*
372	 * Calculate the data_chunk_size, space_info->chunk_size is the
373	 * "optimal" chunk size based on the fs size.  However when we actually
374	 * allocate the chunk we will strip this down further, making it no more
375	 * than 10% of the disk or 1G, whichever is smaller.
376	 */
377	data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
378	data_chunk_size = min(data_sinfo->chunk_size,
379			      mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
380	data_chunk_size = min_t(u64, data_chunk_size, SZ_1G);
381
382	/*
383	 * Since data allocations immediately use block groups as part of the
384	 * reservation, because we assume that data reservations will == actual
385	 * usage, we could potentially overcommit and then immediately have that
386	 * available space used by a data allocation, which could put us in a
387	 * bind when we get close to filling the file system.
388	 *
389	 * To handle this simply remove the data_chunk_size from the available
390	 * space.  If we are relatively empty this won't affect our ability to
391	 * overcommit much, and if we're very close to full it'll keep us from
392	 * getting into a position where we've given ourselves very little
393	 * metadata wiggle room.
394	 */
395	if (avail <= data_chunk_size)
396		return 0;
397	avail -= data_chunk_size;
398
399	/*
400	 * If we aren't flushing all things, let us overcommit up to
401	 * 1/2th of the space. If we can flush, don't let us overcommit
402	 * too much, let it overcommit up to 1/8 of the space.
403	 */
404	if (flush == BTRFS_RESERVE_FLUSH_ALL)
405		avail >>= 3;
406	else
407		avail >>= 1;
408	return avail;
409}
410
411int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
412			 struct btrfs_space_info *space_info, u64 bytes,
413			 enum btrfs_reserve_flush_enum flush)
414{
415	u64 avail;
416	u64 used;
417
418	/* Don't overcommit when in mixed mode */
419	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
420		return 0;
421
422	used = btrfs_space_info_used(space_info, true);
423	avail = calc_available_free_space(fs_info, space_info, flush);
424
425	if (used + bytes < space_info->total_bytes + avail)
426		return 1;
427	return 0;
428}
429
430static void remove_ticket(struct btrfs_space_info *space_info,
431			  struct reserve_ticket *ticket)
432{
433	if (!list_empty(&ticket->list)) {
434		list_del_init(&ticket->list);
435		ASSERT(space_info->reclaim_size >= ticket->bytes);
436		space_info->reclaim_size -= ticket->bytes;
437	}
438}
439
440/*
441 * This is for space we already have accounted in space_info->bytes_may_use, so
442 * basically when we're returning space from block_rsv's.
443 */
444void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
445				struct btrfs_space_info *space_info)
446{
447	struct list_head *head;
448	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
449
450	lockdep_assert_held(&space_info->lock);
451
452	head = &space_info->priority_tickets;
453again:
454	while (!list_empty(head)) {
455		struct reserve_ticket *ticket;
456		u64 used = btrfs_space_info_used(space_info, true);
457
458		ticket = list_first_entry(head, struct reserve_ticket, list);
459
460		/* Check and see if our ticket can be satisfied now. */
461		if ((used + ticket->bytes <= space_info->total_bytes) ||
462		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
463					 flush)) {
464			btrfs_space_info_update_bytes_may_use(fs_info,
465							      space_info,
466							      ticket->bytes);
467			remove_ticket(space_info, ticket);
468			ticket->bytes = 0;
469			space_info->tickets_id++;
470			wake_up(&ticket->wait);
471		} else {
472			break;
473		}
474	}
475
476	if (head == &space_info->priority_tickets) {
477		head = &space_info->tickets;
478		flush = BTRFS_RESERVE_FLUSH_ALL;
479		goto again;
480	}
481}
482
483#define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
484do {									\
485	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
486	spin_lock(&__rsv->lock);					\
487	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
488		   __rsv->size, __rsv->reserved);			\
489	spin_unlock(&__rsv->lock);					\
490} while (0)
491
492static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
493{
494	switch (space_info->flags) {
495	case BTRFS_BLOCK_GROUP_SYSTEM:
496		return "SYSTEM";
497	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
498		return "DATA+METADATA";
499	case BTRFS_BLOCK_GROUP_DATA:
500		return "DATA";
501	case BTRFS_BLOCK_GROUP_METADATA:
502		return "METADATA";
503	default:
504		return "UNKNOWN";
505	}
506}
507
508static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
509{
510	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
511	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
512	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
513	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
514	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
515}
516
517static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
518				    struct btrfs_space_info *info)
519{
520	const char *flag_str = space_info_flag_to_str(info);
521	lockdep_assert_held(&info->lock);
522
523	/* The free space could be negative in case of overcommit */
524	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
525		   flag_str,
526		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
527		   info->full ? "" : "not ");
528	btrfs_info(fs_info,
529"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
530		info->total_bytes, info->bytes_used, info->bytes_pinned,
531		info->bytes_reserved, info->bytes_may_use,
532		info->bytes_readonly, info->bytes_zone_unusable);
533}
534
535void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
536			   struct btrfs_space_info *info, u64 bytes,
537			   int dump_block_groups)
538{
539	struct btrfs_block_group *cache;
540	u64 total_avail = 0;
541	int index = 0;
542
543	spin_lock(&info->lock);
544	__btrfs_dump_space_info(fs_info, info);
545	dump_global_block_rsv(fs_info);
546	spin_unlock(&info->lock);
547
548	if (!dump_block_groups)
549		return;
550
551	down_read(&info->groups_sem);
552again:
553	list_for_each_entry(cache, &info->block_groups[index], list) {
554		u64 avail;
555
556		spin_lock(&cache->lock);
557		avail = cache->length - cache->used - cache->pinned -
558			cache->reserved - cache->delalloc_bytes -
559			cache->bytes_super - cache->zone_unusable;
560		btrfs_info(fs_info,
561"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
562			   cache->start, cache->length, cache->used, cache->pinned,
563			   cache->reserved, cache->delalloc_bytes,
564			   cache->bytes_super, cache->zone_unusable,
565			   avail, cache->ro ? "[readonly]" : "");
566		spin_unlock(&cache->lock);
567		btrfs_dump_free_space(cache, bytes);
568		total_avail += avail;
569	}
570	if (++index < BTRFS_NR_RAID_TYPES)
571		goto again;
572	up_read(&info->groups_sem);
573
574	btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
575}
576
577static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
578					u64 to_reclaim)
579{
580	u64 bytes;
581	u64 nr;
582
583	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
584	nr = div64_u64(to_reclaim, bytes);
585	if (!nr)
586		nr = 1;
587	return nr;
588}
589
590#define EXTENT_SIZE_PER_ITEM	SZ_256K
591
592/*
593 * shrink metadata reservation for delalloc
594 */
595static void shrink_delalloc(struct btrfs_fs_info *fs_info,
596			    struct btrfs_space_info *space_info,
597			    u64 to_reclaim, bool wait_ordered,
598			    bool for_preempt)
599{
600	struct btrfs_trans_handle *trans;
601	u64 delalloc_bytes;
602	u64 ordered_bytes;
603	u64 items;
604	long time_left;
605	int loops;
606
607	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
608	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
609	if (delalloc_bytes == 0 && ordered_bytes == 0)
610		return;
611
612	/* Calc the number of the pages we need flush for space reservation */
613	if (to_reclaim == U64_MAX) {
614		items = U64_MAX;
615	} else {
616		/*
617		 * to_reclaim is set to however much metadata we need to
618		 * reclaim, but reclaiming that much data doesn't really track
619		 * exactly.  What we really want to do is reclaim full inode's
620		 * worth of reservations, however that's not available to us
621		 * here.  We will take a fraction of the delalloc bytes for our
622		 * flushing loops and hope for the best.  Delalloc will expand
623		 * the amount we write to cover an entire dirty extent, which
624		 * will reclaim the metadata reservation for that range.  If
625		 * it's not enough subsequent flush stages will be more
626		 * aggressive.
627		 */
628		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
629		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
630	}
631
632	trans = current->journal_info;
633
634	/*
635	 * If we are doing more ordered than delalloc we need to just wait on
636	 * ordered extents, otherwise we'll waste time trying to flush delalloc
637	 * that likely won't give us the space back we need.
638	 */
639	if (ordered_bytes > delalloc_bytes && !for_preempt)
640		wait_ordered = true;
641
642	loops = 0;
643	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
644		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
645		long nr_pages = min_t(u64, temp, LONG_MAX);
646		int async_pages;
647
648		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
649
650		/*
651		 * We need to make sure any outstanding async pages are now
652		 * processed before we continue.  This is because things like
653		 * sync_inode() try to be smart and skip writing if the inode is
654		 * marked clean.  We don't use filemap_fwrite for flushing
655		 * because we want to control how many pages we write out at a
656		 * time, thus this is the only safe way to make sure we've
657		 * waited for outstanding compressed workers to have started
658		 * their jobs and thus have ordered extents set up properly.
659		 *
660		 * This exists because we do not want to wait for each
661		 * individual inode to finish its async work, we simply want to
662		 * start the IO on everybody, and then come back here and wait
663		 * for all of the async work to catch up.  Once we're done with
664		 * that we know we'll have ordered extents for everything and we
665		 * can decide if we wait for that or not.
666		 *
667		 * If we choose to replace this in the future, make absolutely
668		 * sure that the proper waiting is being done in the async case,
669		 * as there have been bugs in that area before.
670		 */
671		async_pages = atomic_read(&fs_info->async_delalloc_pages);
672		if (!async_pages)
673			goto skip_async;
674
675		/*
676		 * We don't want to wait forever, if we wrote less pages in this
677		 * loop than we have outstanding, only wait for that number of
678		 * pages, otherwise we can wait for all async pages to finish
679		 * before continuing.
680		 */
681		if (async_pages > nr_pages)
682			async_pages -= nr_pages;
683		else
684			async_pages = 0;
685		wait_event(fs_info->async_submit_wait,
686			   atomic_read(&fs_info->async_delalloc_pages) <=
687			   async_pages);
688skip_async:
689		loops++;
690		if (wait_ordered && !trans) {
691			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
692		} else {
693			time_left = schedule_timeout_killable(1);
694			if (time_left)
695				break;
696		}
697
698		/*
699		 * If we are for preemption we just want a one-shot of delalloc
700		 * flushing so we can stop flushing if we decide we don't need
701		 * to anymore.
702		 */
703		if (for_preempt)
704			break;
705
706		spin_lock(&space_info->lock);
707		if (list_empty(&space_info->tickets) &&
708		    list_empty(&space_info->priority_tickets)) {
709			spin_unlock(&space_info->lock);
710			break;
711		}
712		spin_unlock(&space_info->lock);
713
714		delalloc_bytes = percpu_counter_sum_positive(
715						&fs_info->delalloc_bytes);
716		ordered_bytes = percpu_counter_sum_positive(
717						&fs_info->ordered_bytes);
718	}
719}
720
721/*
722 * Try to flush some data based on policy set by @state. This is only advisory
723 * and may fail for various reasons. The caller is supposed to examine the
724 * state of @space_info to detect the outcome.
725 */
726static void flush_space(struct btrfs_fs_info *fs_info,
727		       struct btrfs_space_info *space_info, u64 num_bytes,
728		       enum btrfs_flush_state state, bool for_preempt)
729{
730	struct btrfs_root *root = fs_info->tree_root;
731	struct btrfs_trans_handle *trans;
732	int nr;
733	int ret = 0;
734
735	switch (state) {
736	case FLUSH_DELAYED_ITEMS_NR:
737	case FLUSH_DELAYED_ITEMS:
738		if (state == FLUSH_DELAYED_ITEMS_NR)
739			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
740		else
741			nr = -1;
742
743		trans = btrfs_join_transaction_nostart(root);
744		if (IS_ERR(trans)) {
745			ret = PTR_ERR(trans);
746			if (ret == -ENOENT)
747				ret = 0;
748			break;
749		}
750		ret = btrfs_run_delayed_items_nr(trans, nr);
751		btrfs_end_transaction(trans);
752		break;
753	case FLUSH_DELALLOC:
754	case FLUSH_DELALLOC_WAIT:
755	case FLUSH_DELALLOC_FULL:
756		if (state == FLUSH_DELALLOC_FULL)
757			num_bytes = U64_MAX;
758		shrink_delalloc(fs_info, space_info, num_bytes,
759				state != FLUSH_DELALLOC, for_preempt);
760		break;
761	case FLUSH_DELAYED_REFS_NR:
762	case FLUSH_DELAYED_REFS:
763		trans = btrfs_join_transaction_nostart(root);
764		if (IS_ERR(trans)) {
765			ret = PTR_ERR(trans);
766			if (ret == -ENOENT)
767				ret = 0;
768			break;
769		}
770		if (state == FLUSH_DELAYED_REFS_NR)
771			btrfs_run_delayed_refs(trans, num_bytes);
772		else
773			btrfs_run_delayed_refs(trans, 0);
774		btrfs_end_transaction(trans);
775		break;
776	case ALLOC_CHUNK:
777	case ALLOC_CHUNK_FORCE:
778		trans = btrfs_join_transaction(root);
779		if (IS_ERR(trans)) {
780			ret = PTR_ERR(trans);
781			break;
782		}
783		ret = btrfs_chunk_alloc(trans,
784				btrfs_get_alloc_profile(fs_info, space_info->flags),
785				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
786					CHUNK_ALLOC_FORCE);
787		btrfs_end_transaction(trans);
788
789		if (ret > 0 || ret == -ENOSPC)
790			ret = 0;
791		break;
792	case RUN_DELAYED_IPUTS:
793		/*
794		 * If we have pending delayed iputs then we could free up a
795		 * bunch of pinned space, so make sure we run the iputs before
796		 * we do our pinned bytes check below.
797		 */
798		btrfs_run_delayed_iputs(fs_info);
799		btrfs_wait_on_delayed_iputs(fs_info);
800		break;
801	case COMMIT_TRANS:
802		ASSERT(current->journal_info == NULL);
803		/*
804		 * We don't want to start a new transaction, just attach to the
805		 * current one or wait it fully commits in case its commit is
806		 * happening at the moment. Note: we don't use a nostart join
807		 * because that does not wait for a transaction to fully commit
808		 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
809		 */
810		trans = btrfs_attach_transaction_barrier(root);
811		if (IS_ERR(trans)) {
812			ret = PTR_ERR(trans);
813			if (ret == -ENOENT)
814				ret = 0;
815			break;
816		}
817		ret = btrfs_commit_transaction(trans);
818		break;
819	default:
820		ret = -ENOSPC;
821		break;
822	}
823
824	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
825				ret, for_preempt);
826	return;
827}
828
829static inline u64
830btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
831				 struct btrfs_space_info *space_info)
832{
833	u64 used;
834	u64 avail;
835	u64 to_reclaim = space_info->reclaim_size;
836
837	lockdep_assert_held(&space_info->lock);
838
839	avail = calc_available_free_space(fs_info, space_info,
840					  BTRFS_RESERVE_FLUSH_ALL);
841	used = btrfs_space_info_used(space_info, true);
842
843	/*
844	 * We may be flushing because suddenly we have less space than we had
845	 * before, and now we're well over-committed based on our current free
846	 * space.  If that's the case add in our overage so we make sure to put
847	 * appropriate pressure on the flushing state machine.
848	 */
849	if (space_info->total_bytes + avail < used)
850		to_reclaim += used - (space_info->total_bytes + avail);
851
852	return to_reclaim;
853}
854
855static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
856				    struct btrfs_space_info *space_info)
857{
858	const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
859	u64 ordered, delalloc;
860	u64 thresh;
861	u64 used;
862
863	thresh = mult_perc(space_info->total_bytes, 90);
864
865	lockdep_assert_held(&space_info->lock);
866
867	/* If we're just plain full then async reclaim just slows us down. */
868	if ((space_info->bytes_used + space_info->bytes_reserved +
869	     global_rsv_size) >= thresh)
870		return false;
871
872	used = space_info->bytes_may_use + space_info->bytes_pinned;
873
874	/* The total flushable belongs to the global rsv, don't flush. */
875	if (global_rsv_size >= used)
876		return false;
877
878	/*
879	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
880	 * that devoted to other reservations then there's no sense in flushing,
881	 * we don't have a lot of things that need flushing.
882	 */
883	if (used - global_rsv_size <= SZ_128M)
884		return false;
885
886	/*
887	 * We have tickets queued, bail so we don't compete with the async
888	 * flushers.
889	 */
890	if (space_info->reclaim_size)
891		return false;
892
893	/*
894	 * If we have over half of the free space occupied by reservations or
895	 * pinned then we want to start flushing.
896	 *
897	 * We do not do the traditional thing here, which is to say
898	 *
899	 *   if (used >= ((total_bytes + avail) / 2))
900	 *     return 1;
901	 *
902	 * because this doesn't quite work how we want.  If we had more than 50%
903	 * of the space_info used by bytes_used and we had 0 available we'd just
904	 * constantly run the background flusher.  Instead we want it to kick in
905	 * if our reclaimable space exceeds our clamped free space.
906	 *
907	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
908	 * the following:
909	 *
910	 * Amount of RAM        Minimum threshold       Maximum threshold
911	 *
912	 *        256GiB                     1GiB                  128GiB
913	 *        128GiB                   512MiB                   64GiB
914	 *         64GiB                   256MiB                   32GiB
915	 *         32GiB                   128MiB                   16GiB
916	 *         16GiB                    64MiB                    8GiB
917	 *
918	 * These are the range our thresholds will fall in, corresponding to how
919	 * much delalloc we need for the background flusher to kick in.
920	 */
921
922	thresh = calc_available_free_space(fs_info, space_info,
923					   BTRFS_RESERVE_FLUSH_ALL);
924	used = space_info->bytes_used + space_info->bytes_reserved +
925	       space_info->bytes_readonly + global_rsv_size;
926	if (used < space_info->total_bytes)
927		thresh += space_info->total_bytes - used;
928	thresh >>= space_info->clamp;
929
930	used = space_info->bytes_pinned;
931
932	/*
933	 * If we have more ordered bytes than delalloc bytes then we're either
934	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
935	 * around.  Preemptive flushing is only useful in that it can free up
936	 * space before tickets need to wait for things to finish.  In the case
937	 * of ordered extents, preemptively waiting on ordered extents gets us
938	 * nothing, if our reservations are tied up in ordered extents we'll
939	 * simply have to slow down writers by forcing them to wait on ordered
940	 * extents.
941	 *
942	 * In the case that ordered is larger than delalloc, only include the
943	 * block reserves that we would actually be able to directly reclaim
944	 * from.  In this case if we're heavy on metadata operations this will
945	 * clearly be heavy enough to warrant preemptive flushing.  In the case
946	 * of heavy DIO or ordered reservations, preemptive flushing will just
947	 * waste time and cause us to slow down.
948	 *
949	 * We want to make sure we truly are maxed out on ordered however, so
950	 * cut ordered in half, and if it's still higher than delalloc then we
951	 * can keep flushing.  This is to avoid the case where we start
952	 * flushing, and now delalloc == ordered and we stop preemptively
953	 * flushing when we could still have several gigs of delalloc to flush.
954	 */
955	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
956	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
957	if (ordered >= delalloc)
958		used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
959			btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
960	else
961		used += space_info->bytes_may_use - global_rsv_size;
962
963	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
964		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
965}
966
967static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
968				  struct btrfs_space_info *space_info,
969				  struct reserve_ticket *ticket)
970{
971	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
972	u64 min_bytes;
973
974	if (!ticket->steal)
975		return false;
976
977	if (global_rsv->space_info != space_info)
978		return false;
979
980	spin_lock(&global_rsv->lock);
981	min_bytes = mult_perc(global_rsv->size, 10);
982	if (global_rsv->reserved < min_bytes + ticket->bytes) {
983		spin_unlock(&global_rsv->lock);
984		return false;
985	}
986	global_rsv->reserved -= ticket->bytes;
987	remove_ticket(space_info, ticket);
988	ticket->bytes = 0;
989	wake_up(&ticket->wait);
990	space_info->tickets_id++;
991	if (global_rsv->reserved < global_rsv->size)
992		global_rsv->full = 0;
993	spin_unlock(&global_rsv->lock);
994
995	return true;
996}
997
998/*
999 * We've exhausted our flushing, start failing tickets.
1000 *
1001 * @fs_info - fs_info for this fs
1002 * @space_info - the space info we were flushing
1003 *
1004 * We call this when we've exhausted our flushing ability and haven't made
1005 * progress in satisfying tickets.  The reservation code handles tickets in
1006 * order, so if there is a large ticket first and then smaller ones we could
1007 * very well satisfy the smaller tickets.  This will attempt to wake up any
1008 * tickets in the list to catch this case.
1009 *
1010 * This function returns true if it was able to make progress by clearing out
1011 * other tickets, or if it stumbles across a ticket that was smaller than the
1012 * first ticket.
1013 */
1014static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1015				   struct btrfs_space_info *space_info)
1016{
1017	struct reserve_ticket *ticket;
1018	u64 tickets_id = space_info->tickets_id;
1019	const bool aborted = BTRFS_FS_ERROR(fs_info);
1020
1021	trace_btrfs_fail_all_tickets(fs_info, space_info);
1022
1023	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1024		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1025		__btrfs_dump_space_info(fs_info, space_info);
1026	}
1027
1028	while (!list_empty(&space_info->tickets) &&
1029	       tickets_id == space_info->tickets_id) {
1030		ticket = list_first_entry(&space_info->tickets,
1031					  struct reserve_ticket, list);
1032
1033		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1034			return true;
1035
1036		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1037			btrfs_info(fs_info, "failing ticket with %llu bytes",
1038				   ticket->bytes);
1039
1040		remove_ticket(space_info, ticket);
1041		if (aborted)
1042			ticket->error = -EIO;
1043		else
1044			ticket->error = -ENOSPC;
1045		wake_up(&ticket->wait);
1046
1047		/*
1048		 * We're just throwing tickets away, so more flushing may not
1049		 * trip over btrfs_try_granting_tickets, so we need to call it
1050		 * here to see if we can make progress with the next ticket in
1051		 * the list.
1052		 */
1053		if (!aborted)
1054			btrfs_try_granting_tickets(fs_info, space_info);
1055	}
1056	return (tickets_id != space_info->tickets_id);
1057}
1058
1059/*
1060 * This is for normal flushers, we can wait all goddamned day if we want to.  We
1061 * will loop and continuously try to flush as long as we are making progress.
1062 * We count progress as clearing off tickets each time we have to loop.
1063 */
1064static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1065{
1066	struct btrfs_fs_info *fs_info;
1067	struct btrfs_space_info *space_info;
1068	u64 to_reclaim;
1069	enum btrfs_flush_state flush_state;
1070	int commit_cycles = 0;
1071	u64 last_tickets_id;
1072
1073	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1074	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1075
1076	spin_lock(&space_info->lock);
1077	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1078	if (!to_reclaim) {
1079		space_info->flush = 0;
1080		spin_unlock(&space_info->lock);
1081		return;
1082	}
1083	last_tickets_id = space_info->tickets_id;
1084	spin_unlock(&space_info->lock);
1085
1086	flush_state = FLUSH_DELAYED_ITEMS_NR;
1087	do {
1088		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1089		spin_lock(&space_info->lock);
1090		if (list_empty(&space_info->tickets)) {
1091			space_info->flush = 0;
1092			spin_unlock(&space_info->lock);
1093			return;
1094		}
1095		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1096							      space_info);
1097		if (last_tickets_id == space_info->tickets_id) {
1098			flush_state++;
1099		} else {
1100			last_tickets_id = space_info->tickets_id;
1101			flush_state = FLUSH_DELAYED_ITEMS_NR;
1102			if (commit_cycles)
1103				commit_cycles--;
1104		}
1105
1106		/*
1107		 * We do not want to empty the system of delalloc unless we're
1108		 * under heavy pressure, so allow one trip through the flushing
1109		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1110		 */
1111		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1112			flush_state++;
1113
1114		/*
1115		 * We don't want to force a chunk allocation until we've tried
1116		 * pretty hard to reclaim space.  Think of the case where we
1117		 * freed up a bunch of space and so have a lot of pinned space
1118		 * to reclaim.  We would rather use that than possibly create a
1119		 * underutilized metadata chunk.  So if this is our first run
1120		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1121		 * commit the transaction.  If nothing has changed the next go
1122		 * around then we can force a chunk allocation.
1123		 */
1124		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1125			flush_state++;
1126
1127		if (flush_state > COMMIT_TRANS) {
1128			commit_cycles++;
1129			if (commit_cycles > 2) {
1130				if (maybe_fail_all_tickets(fs_info, space_info)) {
1131					flush_state = FLUSH_DELAYED_ITEMS_NR;
1132					commit_cycles--;
1133				} else {
1134					space_info->flush = 0;
1135				}
1136			} else {
1137				flush_state = FLUSH_DELAYED_ITEMS_NR;
1138			}
1139		}
1140		spin_unlock(&space_info->lock);
1141	} while (flush_state <= COMMIT_TRANS);
1142}
1143
1144/*
1145 * This handles pre-flushing of metadata space before we get to the point that
1146 * we need to start blocking threads on tickets.  The logic here is different
1147 * from the other flush paths because it doesn't rely on tickets to tell us how
1148 * much we need to flush, instead it attempts to keep us below the 80% full
1149 * watermark of space by flushing whichever reservation pool is currently the
1150 * largest.
1151 */
1152static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1153{
1154	struct btrfs_fs_info *fs_info;
1155	struct btrfs_space_info *space_info;
1156	struct btrfs_block_rsv *delayed_block_rsv;
1157	struct btrfs_block_rsv *delayed_refs_rsv;
1158	struct btrfs_block_rsv *global_rsv;
1159	struct btrfs_block_rsv *trans_rsv;
1160	int loops = 0;
1161
1162	fs_info = container_of(work, struct btrfs_fs_info,
1163			       preempt_reclaim_work);
1164	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1165	delayed_block_rsv = &fs_info->delayed_block_rsv;
1166	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1167	global_rsv = &fs_info->global_block_rsv;
1168	trans_rsv = &fs_info->trans_block_rsv;
1169
1170	spin_lock(&space_info->lock);
1171	while (need_preemptive_reclaim(fs_info, space_info)) {
1172		enum btrfs_flush_state flush;
1173		u64 delalloc_size = 0;
1174		u64 to_reclaim, block_rsv_size;
1175		const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1176
1177		loops++;
1178
1179		/*
1180		 * We don't have a precise counter for the metadata being
1181		 * reserved for delalloc, so we'll approximate it by subtracting
1182		 * out the block rsv's space from the bytes_may_use.  If that
1183		 * amount is higher than the individual reserves, then we can
1184		 * assume it's tied up in delalloc reservations.
1185		 */
1186		block_rsv_size = global_rsv_size +
1187			btrfs_block_rsv_reserved(delayed_block_rsv) +
1188			btrfs_block_rsv_reserved(delayed_refs_rsv) +
1189			btrfs_block_rsv_reserved(trans_rsv);
1190		if (block_rsv_size < space_info->bytes_may_use)
1191			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1192
1193		/*
1194		 * We don't want to include the global_rsv in our calculation,
1195		 * because that's space we can't touch.  Subtract it from the
1196		 * block_rsv_size for the next checks.
1197		 */
1198		block_rsv_size -= global_rsv_size;
1199
1200		/*
1201		 * We really want to avoid flushing delalloc too much, as it
1202		 * could result in poor allocation patterns, so only flush it if
1203		 * it's larger than the rest of the pools combined.
1204		 */
1205		if (delalloc_size > block_rsv_size) {
1206			to_reclaim = delalloc_size;
1207			flush = FLUSH_DELALLOC;
1208		} else if (space_info->bytes_pinned >
1209			   (btrfs_block_rsv_reserved(delayed_block_rsv) +
1210			    btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1211			to_reclaim = space_info->bytes_pinned;
1212			flush = COMMIT_TRANS;
1213		} else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1214			   btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1215			to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1216			flush = FLUSH_DELAYED_ITEMS_NR;
1217		} else {
1218			to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1219			flush = FLUSH_DELAYED_REFS_NR;
1220		}
1221
1222		spin_unlock(&space_info->lock);
1223
1224		/*
1225		 * We don't want to reclaim everything, just a portion, so scale
1226		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1227		 * reclaim 1 items worth.
1228		 */
1229		to_reclaim >>= 2;
1230		if (!to_reclaim)
1231			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1232		flush_space(fs_info, space_info, to_reclaim, flush, true);
1233		cond_resched();
1234		spin_lock(&space_info->lock);
1235	}
1236
1237	/* We only went through once, back off our clamping. */
1238	if (loops == 1 && !space_info->reclaim_size)
1239		space_info->clamp = max(1, space_info->clamp - 1);
1240	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1241	spin_unlock(&space_info->lock);
1242}
1243
1244/*
1245 * FLUSH_DELALLOC_WAIT:
1246 *   Space is freed from flushing delalloc in one of two ways.
1247 *
1248 *   1) compression is on and we allocate less space than we reserved
1249 *   2) we are overwriting existing space
1250 *
1251 *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1252 *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1253 *   length to ->bytes_reserved, and subtracts the reserved space from
1254 *   ->bytes_may_use.
1255 *
1256 *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1257 *   extent in the range we are overwriting, which creates a delayed ref for
1258 *   that freed extent.  This however is not reclaimed until the transaction
1259 *   commits, thus the next stages.
1260 *
1261 * RUN_DELAYED_IPUTS
1262 *   If we are freeing inodes, we want to make sure all delayed iputs have
1263 *   completed, because they could have been on an inode with i_nlink == 0, and
1264 *   thus have been truncated and freed up space.  But again this space is not
1265 *   immediately re-usable, it comes in the form of a delayed ref, which must be
1266 *   run and then the transaction must be committed.
1267 *
1268 * COMMIT_TRANS
1269 *   This is where we reclaim all of the pinned space generated by running the
1270 *   iputs
1271 *
1272 * ALLOC_CHUNK_FORCE
1273 *   For data we start with alloc chunk force, however we could have been full
1274 *   before, and then the transaction commit could have freed new block groups,
1275 *   so if we now have space to allocate do the force chunk allocation.
1276 */
1277static const enum btrfs_flush_state data_flush_states[] = {
1278	FLUSH_DELALLOC_FULL,
1279	RUN_DELAYED_IPUTS,
1280	COMMIT_TRANS,
1281	ALLOC_CHUNK_FORCE,
1282};
1283
1284static void btrfs_async_reclaim_data_space(struct work_struct *work)
1285{
1286	struct btrfs_fs_info *fs_info;
1287	struct btrfs_space_info *space_info;
1288	u64 last_tickets_id;
1289	enum btrfs_flush_state flush_state = 0;
1290
1291	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1292	space_info = fs_info->data_sinfo;
1293
1294	spin_lock(&space_info->lock);
1295	if (list_empty(&space_info->tickets)) {
1296		space_info->flush = 0;
1297		spin_unlock(&space_info->lock);
1298		return;
1299	}
1300	last_tickets_id = space_info->tickets_id;
1301	spin_unlock(&space_info->lock);
1302
1303	while (!space_info->full) {
1304		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1305		spin_lock(&space_info->lock);
1306		if (list_empty(&space_info->tickets)) {
1307			space_info->flush = 0;
1308			spin_unlock(&space_info->lock);
1309			return;
1310		}
1311
1312		/* Something happened, fail everything and bail. */
1313		if (BTRFS_FS_ERROR(fs_info))
1314			goto aborted_fs;
1315		last_tickets_id = space_info->tickets_id;
1316		spin_unlock(&space_info->lock);
1317	}
1318
1319	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1320		flush_space(fs_info, space_info, U64_MAX,
1321			    data_flush_states[flush_state], false);
1322		spin_lock(&space_info->lock);
1323		if (list_empty(&space_info->tickets)) {
1324			space_info->flush = 0;
1325			spin_unlock(&space_info->lock);
1326			return;
1327		}
1328
1329		if (last_tickets_id == space_info->tickets_id) {
1330			flush_state++;
1331		} else {
1332			last_tickets_id = space_info->tickets_id;
1333			flush_state = 0;
1334		}
1335
1336		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1337			if (space_info->full) {
1338				if (maybe_fail_all_tickets(fs_info, space_info))
1339					flush_state = 0;
1340				else
1341					space_info->flush = 0;
1342			} else {
1343				flush_state = 0;
1344			}
1345
1346			/* Something happened, fail everything and bail. */
1347			if (BTRFS_FS_ERROR(fs_info))
1348				goto aborted_fs;
1349
1350		}
1351		spin_unlock(&space_info->lock);
1352	}
1353	return;
1354
1355aborted_fs:
1356	maybe_fail_all_tickets(fs_info, space_info);
1357	space_info->flush = 0;
1358	spin_unlock(&space_info->lock);
1359}
1360
1361void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1362{
1363	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1364	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1365	INIT_WORK(&fs_info->preempt_reclaim_work,
1366		  btrfs_preempt_reclaim_metadata_space);
1367}
1368
1369static const enum btrfs_flush_state priority_flush_states[] = {
1370	FLUSH_DELAYED_ITEMS_NR,
1371	FLUSH_DELAYED_ITEMS,
1372	ALLOC_CHUNK,
1373};
1374
1375static const enum btrfs_flush_state evict_flush_states[] = {
1376	FLUSH_DELAYED_ITEMS_NR,
1377	FLUSH_DELAYED_ITEMS,
1378	FLUSH_DELAYED_REFS_NR,
1379	FLUSH_DELAYED_REFS,
1380	FLUSH_DELALLOC,
1381	FLUSH_DELALLOC_WAIT,
1382	FLUSH_DELALLOC_FULL,
1383	ALLOC_CHUNK,
1384	COMMIT_TRANS,
1385};
1386
1387static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1388				struct btrfs_space_info *space_info,
1389				struct reserve_ticket *ticket,
1390				const enum btrfs_flush_state *states,
1391				int states_nr)
1392{
1393	u64 to_reclaim;
1394	int flush_state = 0;
1395
1396	spin_lock(&space_info->lock);
1397	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1398	/*
1399	 * This is the priority reclaim path, so to_reclaim could be >0 still
1400	 * because we may have only satisfied the priority tickets and still
1401	 * left non priority tickets on the list.  We would then have
1402	 * to_reclaim but ->bytes == 0.
1403	 */
1404	if (ticket->bytes == 0) {
1405		spin_unlock(&space_info->lock);
1406		return;
1407	}
1408
1409	while (flush_state < states_nr) {
1410		spin_unlock(&space_info->lock);
1411		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1412			    false);
1413		flush_state++;
1414		spin_lock(&space_info->lock);
1415		if (ticket->bytes == 0) {
1416			spin_unlock(&space_info->lock);
1417			return;
1418		}
1419	}
1420
1421	/*
1422	 * Attempt to steal from the global rsv if we can, except if the fs was
1423	 * turned into error mode due to a transaction abort when flushing space
1424	 * above, in that case fail with the abort error instead of returning
1425	 * success to the caller if we can steal from the global rsv - this is
1426	 * just to have caller fail immeditelly instead of later when trying to
1427	 * modify the fs, making it easier to debug -ENOSPC problems.
1428	 */
1429	if (BTRFS_FS_ERROR(fs_info)) {
1430		ticket->error = BTRFS_FS_ERROR(fs_info);
1431		remove_ticket(space_info, ticket);
1432	} else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1433		ticket->error = -ENOSPC;
1434		remove_ticket(space_info, ticket);
1435	}
1436
1437	/*
1438	 * We must run try_granting_tickets here because we could be a large
1439	 * ticket in front of a smaller ticket that can now be satisfied with
1440	 * the available space.
1441	 */
1442	btrfs_try_granting_tickets(fs_info, space_info);
1443	spin_unlock(&space_info->lock);
1444}
1445
1446static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1447					struct btrfs_space_info *space_info,
1448					struct reserve_ticket *ticket)
1449{
1450	spin_lock(&space_info->lock);
1451
1452	/* We could have been granted before we got here. */
1453	if (ticket->bytes == 0) {
1454		spin_unlock(&space_info->lock);
1455		return;
1456	}
1457
1458	while (!space_info->full) {
1459		spin_unlock(&space_info->lock);
1460		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1461		spin_lock(&space_info->lock);
1462		if (ticket->bytes == 0) {
1463			spin_unlock(&space_info->lock);
1464			return;
1465		}
1466	}
1467
1468	ticket->error = -ENOSPC;
1469	remove_ticket(space_info, ticket);
1470	btrfs_try_granting_tickets(fs_info, space_info);
1471	spin_unlock(&space_info->lock);
1472}
1473
1474static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1475				struct btrfs_space_info *space_info,
1476				struct reserve_ticket *ticket)
1477
1478{
1479	DEFINE_WAIT(wait);
1480	int ret = 0;
1481
1482	spin_lock(&space_info->lock);
1483	while (ticket->bytes > 0 && ticket->error == 0) {
1484		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1485		if (ret) {
1486			/*
1487			 * Delete us from the list. After we unlock the space
1488			 * info, we don't want the async reclaim job to reserve
1489			 * space for this ticket. If that would happen, then the
1490			 * ticket's task would not known that space was reserved
1491			 * despite getting an error, resulting in a space leak
1492			 * (bytes_may_use counter of our space_info).
1493			 */
1494			remove_ticket(space_info, ticket);
1495			ticket->error = -EINTR;
1496			break;
1497		}
1498		spin_unlock(&space_info->lock);
1499
1500		schedule();
1501
1502		finish_wait(&ticket->wait, &wait);
1503		spin_lock(&space_info->lock);
1504	}
1505	spin_unlock(&space_info->lock);
1506}
1507
1508/*
1509 * Do the appropriate flushing and waiting for a ticket.
1510 *
1511 * @fs_info:    the filesystem
1512 * @space_info: space info for the reservation
1513 * @ticket:     ticket for the reservation
1514 * @start_ns:   timestamp when the reservation started
1515 * @orig_bytes: amount of bytes originally reserved
1516 * @flush:      how much we can flush
1517 *
1518 * This does the work of figuring out how to flush for the ticket, waiting for
1519 * the reservation, and returning the appropriate error if there is one.
1520 */
1521static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1522				 struct btrfs_space_info *space_info,
1523				 struct reserve_ticket *ticket,
1524				 u64 start_ns, u64 orig_bytes,
1525				 enum btrfs_reserve_flush_enum flush)
1526{
1527	int ret;
1528
1529	switch (flush) {
1530	case BTRFS_RESERVE_FLUSH_DATA:
1531	case BTRFS_RESERVE_FLUSH_ALL:
1532	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1533		wait_reserve_ticket(fs_info, space_info, ticket);
1534		break;
1535	case BTRFS_RESERVE_FLUSH_LIMIT:
1536		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1537						priority_flush_states,
1538						ARRAY_SIZE(priority_flush_states));
1539		break;
1540	case BTRFS_RESERVE_FLUSH_EVICT:
1541		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1542						evict_flush_states,
1543						ARRAY_SIZE(evict_flush_states));
1544		break;
1545	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1546		priority_reclaim_data_space(fs_info, space_info, ticket);
1547		break;
1548	default:
1549		ASSERT(0);
1550		break;
1551	}
1552
1553	ret = ticket->error;
1554	ASSERT(list_empty(&ticket->list));
1555	/*
1556	 * Check that we can't have an error set if the reservation succeeded,
1557	 * as that would confuse tasks and lead them to error out without
1558	 * releasing reserved space (if an error happens the expectation is that
1559	 * space wasn't reserved at all).
1560	 */
1561	ASSERT(!(ticket->bytes == 0 && ticket->error));
1562	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1563				   start_ns, flush, ticket->error);
1564	return ret;
1565}
1566
1567/*
1568 * This returns true if this flush state will go through the ordinary flushing
1569 * code.
1570 */
1571static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1572{
1573	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1574		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1575}
1576
1577static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1578				       struct btrfs_space_info *space_info)
1579{
1580	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1581	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1582
1583	/*
1584	 * If we're heavy on ordered operations then clamping won't help us.  We
1585	 * need to clamp specifically to keep up with dirty'ing buffered
1586	 * writers, because there's not a 1:1 correlation of writing delalloc
1587	 * and freeing space, like there is with flushing delayed refs or
1588	 * delayed nodes.  If we're already more ordered than delalloc then
1589	 * we're keeping up, otherwise we aren't and should probably clamp.
1590	 */
1591	if (ordered < delalloc)
1592		space_info->clamp = min(space_info->clamp + 1, 8);
1593}
1594
1595static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1596{
1597	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1598		flush == BTRFS_RESERVE_FLUSH_EVICT);
1599}
1600
1601/*
1602 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1603 * fail as quickly as possible.
1604 */
1605static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1606{
1607	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1608		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1609}
1610
1611/*
1612 * Try to reserve bytes from the block_rsv's space.
1613 *
1614 * @fs_info:    the filesystem
1615 * @space_info: space info we want to allocate from
1616 * @orig_bytes: number of bytes we want
1617 * @flush:      whether or not we can flush to make our reservation
1618 *
1619 * This will reserve orig_bytes number of bytes from the space info associated
1620 * with the block_rsv.  If there is not enough space it will make an attempt to
1621 * flush out space to make room.  It will do this by flushing delalloc if
1622 * possible or committing the transaction.  If flush is 0 then no attempts to
1623 * regain reservations will be made and this will fail if there is not enough
1624 * space already.
1625 */
1626static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1627			   struct btrfs_space_info *space_info, u64 orig_bytes,
1628			   enum btrfs_reserve_flush_enum flush)
1629{
1630	struct work_struct *async_work;
1631	struct reserve_ticket ticket;
1632	u64 start_ns = 0;
1633	u64 used;
1634	int ret = -ENOSPC;
1635	bool pending_tickets;
1636
1637	ASSERT(orig_bytes);
1638	/*
1639	 * If have a transaction handle (current->journal_info != NULL), then
1640	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1641	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1642	 * flushing methods can trigger transaction commits.
1643	 */
1644	if (current->journal_info) {
1645		/* One assert per line for easier debugging. */
1646		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1647		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1648		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1649	}
1650
1651	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1652		async_work = &fs_info->async_data_reclaim_work;
1653	else
1654		async_work = &fs_info->async_reclaim_work;
1655
1656	spin_lock(&space_info->lock);
1657	used = btrfs_space_info_used(space_info, true);
1658
1659	/*
1660	 * We don't want NO_FLUSH allocations to jump everybody, they can
1661	 * generally handle ENOSPC in a different way, so treat them the same as
1662	 * normal flushers when it comes to skipping pending tickets.
1663	 */
1664	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1665		pending_tickets = !list_empty(&space_info->tickets) ||
1666			!list_empty(&space_info->priority_tickets);
1667	else
1668		pending_tickets = !list_empty(&space_info->priority_tickets);
1669
1670	/*
1671	 * Carry on if we have enough space (short-circuit) OR call
1672	 * can_overcommit() to ensure we can overcommit to continue.
1673	 */
1674	if (!pending_tickets &&
1675	    ((used + orig_bytes <= space_info->total_bytes) ||
1676	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1677		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1678						      orig_bytes);
1679		ret = 0;
1680	}
1681
1682	/*
1683	 * Things are dire, we need to make a reservation so we don't abort.  We
1684	 * will let this reservation go through as long as we have actual space
1685	 * left to allocate for the block.
1686	 */
1687	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1688		used = btrfs_space_info_used(space_info, false);
1689		if (used + orig_bytes <= space_info->total_bytes) {
1690			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1691							      orig_bytes);
1692			ret = 0;
1693		}
1694	}
1695
1696	/*
1697	 * If we couldn't make a reservation then setup our reservation ticket
1698	 * and kick the async worker if it's not already running.
1699	 *
1700	 * If we are a priority flusher then we just need to add our ticket to
1701	 * the list and we will do our own flushing further down.
1702	 */
1703	if (ret && can_ticket(flush)) {
1704		ticket.bytes = orig_bytes;
1705		ticket.error = 0;
1706		space_info->reclaim_size += ticket.bytes;
1707		init_waitqueue_head(&ticket.wait);
1708		ticket.steal = can_steal(flush);
1709		if (trace_btrfs_reserve_ticket_enabled())
1710			start_ns = ktime_get_ns();
1711
1712		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1713		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1714		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1715			list_add_tail(&ticket.list, &space_info->tickets);
1716			if (!space_info->flush) {
1717				/*
1718				 * We were forced to add a reserve ticket, so
1719				 * our preemptive flushing is unable to keep
1720				 * up.  Clamp down on the threshold for the
1721				 * preemptive flushing in order to keep up with
1722				 * the workload.
1723				 */
1724				maybe_clamp_preempt(fs_info, space_info);
1725
1726				space_info->flush = 1;
1727				trace_btrfs_trigger_flush(fs_info,
1728							  space_info->flags,
1729							  orig_bytes, flush,
1730							  "enospc");
1731				queue_work(system_unbound_wq, async_work);
1732			}
1733		} else {
1734			list_add_tail(&ticket.list,
1735				      &space_info->priority_tickets);
1736		}
1737	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1738		/*
1739		 * We will do the space reservation dance during log replay,
1740		 * which means we won't have fs_info->fs_root set, so don't do
1741		 * the async reclaim as we will panic.
1742		 */
1743		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1744		    !work_busy(&fs_info->preempt_reclaim_work) &&
1745		    need_preemptive_reclaim(fs_info, space_info)) {
1746			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1747						  orig_bytes, flush, "preempt");
1748			queue_work(system_unbound_wq,
1749				   &fs_info->preempt_reclaim_work);
1750		}
1751	}
1752	spin_unlock(&space_info->lock);
1753	if (!ret || !can_ticket(flush))
1754		return ret;
1755
1756	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1757				     orig_bytes, flush);
1758}
1759
1760/*
1761 * Try to reserve metadata bytes from the block_rsv's space.
1762 *
1763 * @fs_info:    the filesystem
1764 * @space_info: the space_info we're allocating for
1765 * @orig_bytes: number of bytes we want
1766 * @flush:      whether or not we can flush to make our reservation
1767 *
1768 * This will reserve orig_bytes number of bytes from the space info associated
1769 * with the block_rsv.  If there is not enough space it will make an attempt to
1770 * flush out space to make room.  It will do this by flushing delalloc if
1771 * possible or committing the transaction.  If flush is 0 then no attempts to
1772 * regain reservations will be made and this will fail if there is not enough
1773 * space already.
1774 */
1775int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1776				 struct btrfs_space_info *space_info,
1777				 u64 orig_bytes,
1778				 enum btrfs_reserve_flush_enum flush)
1779{
1780	int ret;
1781
1782	ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1783	if (ret == -ENOSPC) {
1784		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1785					      space_info->flags, orig_bytes, 1);
1786
1787		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1788			btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0);
1789	}
1790	return ret;
1791}
1792
1793/*
1794 * Try to reserve data bytes for an allocation.
1795 *
1796 * @fs_info: the filesystem
1797 * @bytes:   number of bytes we need
1798 * @flush:   how we are allowed to flush
1799 *
1800 * This will reserve bytes from the data space info.  If there is not enough
1801 * space then we will attempt to flush space as specified by flush.
1802 */
1803int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1804			     enum btrfs_reserve_flush_enum flush)
1805{
1806	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1807	int ret;
1808
1809	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1810	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1811	       flush == BTRFS_RESERVE_NO_FLUSH);
1812	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1813
1814	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1815	if (ret == -ENOSPC) {
1816		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1817					      data_sinfo->flags, bytes, 1);
1818		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1819			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1820	}
1821	return ret;
1822}
1823
1824/* Dump all the space infos when we abort a transaction due to ENOSPC. */
1825__cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1826{
1827	struct btrfs_space_info *space_info;
1828
1829	btrfs_info(fs_info, "dumping space info:");
1830	list_for_each_entry(space_info, &fs_info->space_info, list) {
1831		spin_lock(&space_info->lock);
1832		__btrfs_dump_space_info(fs_info, space_info);
1833		spin_unlock(&space_info->lock);
1834	}
1835	dump_global_block_rsv(fs_info);
1836}
1837
1838/*
1839 * Account the unused space of all the readonly block group in the space_info.
1840 * takes mirrors into account.
1841 */
1842u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1843{
1844	struct btrfs_block_group *block_group;
1845	u64 free_bytes = 0;
1846	int factor;
1847
1848	/* It's df, we don't care if it's racy */
1849	if (list_empty(&sinfo->ro_bgs))
1850		return 0;
1851
1852	spin_lock(&sinfo->lock);
1853	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1854		spin_lock(&block_group->lock);
1855
1856		if (!block_group->ro) {
1857			spin_unlock(&block_group->lock);
1858			continue;
1859		}
1860
1861		factor = btrfs_bg_type_to_factor(block_group->flags);
1862		free_bytes += (block_group->length -
1863			       block_group->used) * factor;
1864
1865		spin_unlock(&block_group->lock);
1866	}
1867	spin_unlock(&sinfo->lock);
1868
1869	return free_bytes;
1870}
1871