1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/ratelimit.h>
8#include <linux/sched/mm.h>
9#include <crypto/hash.h>
10#include "ctree.h"
11#include "discard.h"
12#include "volumes.h"
13#include "disk-io.h"
14#include "ordered-data.h"
15#include "transaction.h"
16#include "backref.h"
17#include "extent_io.h"
18#include "dev-replace.h"
19#include "raid56.h"
20#include "block-group.h"
21#include "zoned.h"
22#include "fs.h"
23#include "accessors.h"
24#include "file-item.h"
25#include "scrub.h"
26#include "raid-stripe-tree.h"
27
28/*
29 * This is only the first step towards a full-features scrub. It reads all
30 * extent and super block and verifies the checksums. In case a bad checksum
31 * is found or the extent cannot be read, good data will be written back if
32 * any can be found.
33 *
34 * Future enhancements:
35 *  - In case an unrepairable extent is encountered, track which files are
36 *    affected and report them
37 *  - track and record media errors, throw out bad devices
38 *  - add a mode to also read unallocated space
39 */
40
41struct scrub_ctx;
42
43/*
44 * The following value only influences the performance.
45 *
46 * This determines how many stripes would be submitted in one go,
47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48 */
49#define SCRUB_STRIPES_PER_GROUP		8
50
51/*
52 * How many groups we have for each sctx.
53 *
54 * This would be 8M per device, the same value as the old scrub in-flight bios
55 * size limit.
56 */
57#define SCRUB_GROUPS_PER_SCTX		16
58
59#define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61/*
62 * The following value times PAGE_SIZE needs to be large enough to match the
63 * largest node/leaf/sector size that shall be supported.
64 */
65#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67/* Represent one sector and its needed info to verify the content. */
68struct scrub_sector_verification {
69	bool is_metadata;
70
71	union {
72		/*
73		 * Csum pointer for data csum verification.  Should point to a
74		 * sector csum inside scrub_stripe::csums.
75		 *
76		 * NULL if this data sector has no csum.
77		 */
78		u8 *csum;
79
80		/*
81		 * Extra info for metadata verification.  All sectors inside a
82		 * tree block share the same generation.
83		 */
84		u64 generation;
85	};
86};
87
88enum scrub_stripe_flags {
89	/* Set when @mirror_num, @dev, @physical and @logical are set. */
90	SCRUB_STRIPE_FLAG_INITIALIZED,
91
92	/* Set when the read-repair is finished. */
93	SCRUB_STRIPE_FLAG_REPAIR_DONE,
94
95	/*
96	 * Set for data stripes if it's triggered from P/Q stripe.
97	 * During such scrub, we should not report errors in data stripes, nor
98	 * update the accounting.
99	 */
100	SCRUB_STRIPE_FLAG_NO_REPORT,
101};
102
103#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
104
105/*
106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107 */
108struct scrub_stripe {
109	struct scrub_ctx *sctx;
110	struct btrfs_block_group *bg;
111
112	struct page *pages[SCRUB_STRIPE_PAGES];
113	struct scrub_sector_verification *sectors;
114
115	struct btrfs_device *dev;
116	u64 logical;
117	u64 physical;
118
119	u16 mirror_num;
120
121	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
122	u16 nr_sectors;
123
124	/*
125	 * How many data/meta extents are in this stripe.  Only for scrub status
126	 * reporting purposes.
127	 */
128	u16 nr_data_extents;
129	u16 nr_meta_extents;
130
131	atomic_t pending_io;
132	wait_queue_head_t io_wait;
133	wait_queue_head_t repair_wait;
134
135	/*
136	 * Indicate the states of the stripe.  Bits are defined in
137	 * scrub_stripe_flags enum.
138	 */
139	unsigned long state;
140
141	/* Indicate which sectors are covered by extent items. */
142	unsigned long extent_sector_bitmap;
143
144	/*
145	 * The errors hit during the initial read of the stripe.
146	 *
147	 * Would be utilized for error reporting and repair.
148	 *
149	 * The remaining init_nr_* records the number of errors hit, only used
150	 * by error reporting.
151	 */
152	unsigned long init_error_bitmap;
153	unsigned int init_nr_io_errors;
154	unsigned int init_nr_csum_errors;
155	unsigned int init_nr_meta_errors;
156
157	/*
158	 * The following error bitmaps are all for the current status.
159	 * Every time we submit a new read, these bitmaps may be updated.
160	 *
161	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162	 *
163	 * IO and csum errors can happen for both metadata and data.
164	 */
165	unsigned long error_bitmap;
166	unsigned long io_error_bitmap;
167	unsigned long csum_error_bitmap;
168	unsigned long meta_error_bitmap;
169
170	/* For writeback (repair or replace) error reporting. */
171	unsigned long write_error_bitmap;
172
173	/* Writeback can be concurrent, thus we need to protect the bitmap. */
174	spinlock_t write_error_lock;
175
176	/*
177	 * Checksum for the whole stripe if this stripe is inside a data block
178	 * group.
179	 */
180	u8 *csums;
181
182	struct work_struct work;
183};
184
185struct scrub_ctx {
186	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
187	struct scrub_stripe	*raid56_data_stripes;
188	struct btrfs_fs_info	*fs_info;
189	struct btrfs_path	extent_path;
190	struct btrfs_path	csum_path;
191	int			first_free;
192	int			cur_stripe;
193	atomic_t		cancel_req;
194	int			readonly;
195
196	/* State of IO submission throttling affecting the associated device */
197	ktime_t			throttle_deadline;
198	u64			throttle_sent;
199
200	int			is_dev_replace;
201	u64			write_pointer;
202
203	struct mutex            wr_lock;
204	struct btrfs_device     *wr_tgtdev;
205
206	/*
207	 * statistics
208	 */
209	struct btrfs_scrub_progress stat;
210	spinlock_t		stat_lock;
211
212	/*
213	 * Use a ref counter to avoid use-after-free issues. Scrub workers
214	 * decrement bios_in_flight and workers_pending and then do a wakeup
215	 * on the list_wait wait queue. We must ensure the main scrub task
216	 * doesn't free the scrub context before or while the workers are
217	 * doing the wakeup() call.
218	 */
219	refcount_t              refs;
220};
221
222struct scrub_warning {
223	struct btrfs_path	*path;
224	u64			extent_item_size;
225	const char		*errstr;
226	u64			physical;
227	u64			logical;
228	struct btrfs_device	*dev;
229};
230
231static void release_scrub_stripe(struct scrub_stripe *stripe)
232{
233	if (!stripe)
234		return;
235
236	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
237		if (stripe->pages[i])
238			__free_page(stripe->pages[i]);
239		stripe->pages[i] = NULL;
240	}
241	kfree(stripe->sectors);
242	kfree(stripe->csums);
243	stripe->sectors = NULL;
244	stripe->csums = NULL;
245	stripe->sctx = NULL;
246	stripe->state = 0;
247}
248
249static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
250			     struct scrub_stripe *stripe)
251{
252	int ret;
253
254	memset(stripe, 0, sizeof(*stripe));
255
256	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
257	stripe->state = 0;
258
259	init_waitqueue_head(&stripe->io_wait);
260	init_waitqueue_head(&stripe->repair_wait);
261	atomic_set(&stripe->pending_io, 0);
262	spin_lock_init(&stripe->write_error_lock);
263
264	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
265	if (ret < 0)
266		goto error;
267
268	stripe->sectors = kcalloc(stripe->nr_sectors,
269				  sizeof(struct scrub_sector_verification),
270				  GFP_KERNEL);
271	if (!stripe->sectors)
272		goto error;
273
274	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
275				fs_info->csum_size, GFP_KERNEL);
276	if (!stripe->csums)
277		goto error;
278	return 0;
279error:
280	release_scrub_stripe(stripe);
281	return -ENOMEM;
282}
283
284static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
285{
286	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
287}
288
289static void scrub_put_ctx(struct scrub_ctx *sctx);
290
291static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
292{
293	while (atomic_read(&fs_info->scrub_pause_req)) {
294		mutex_unlock(&fs_info->scrub_lock);
295		wait_event(fs_info->scrub_pause_wait,
296		   atomic_read(&fs_info->scrub_pause_req) == 0);
297		mutex_lock(&fs_info->scrub_lock);
298	}
299}
300
301static void scrub_pause_on(struct btrfs_fs_info *fs_info)
302{
303	atomic_inc(&fs_info->scrubs_paused);
304	wake_up(&fs_info->scrub_pause_wait);
305}
306
307static void scrub_pause_off(struct btrfs_fs_info *fs_info)
308{
309	mutex_lock(&fs_info->scrub_lock);
310	__scrub_blocked_if_needed(fs_info);
311	atomic_dec(&fs_info->scrubs_paused);
312	mutex_unlock(&fs_info->scrub_lock);
313
314	wake_up(&fs_info->scrub_pause_wait);
315}
316
317static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318{
319	scrub_pause_on(fs_info);
320	scrub_pause_off(fs_info);
321}
322
323static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
324{
325	int i;
326
327	if (!sctx)
328		return;
329
330	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
331		release_scrub_stripe(&sctx->stripes[i]);
332
333	kvfree(sctx);
334}
335
336static void scrub_put_ctx(struct scrub_ctx *sctx)
337{
338	if (refcount_dec_and_test(&sctx->refs))
339		scrub_free_ctx(sctx);
340}
341
342static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
343		struct btrfs_fs_info *fs_info, int is_dev_replace)
344{
345	struct scrub_ctx *sctx;
346	int		i;
347
348	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
349	 * kvzalloc().
350	 */
351	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
352	if (!sctx)
353		goto nomem;
354	refcount_set(&sctx->refs, 1);
355	sctx->is_dev_replace = is_dev_replace;
356	sctx->fs_info = fs_info;
357	sctx->extent_path.search_commit_root = 1;
358	sctx->extent_path.skip_locking = 1;
359	sctx->csum_path.search_commit_root = 1;
360	sctx->csum_path.skip_locking = 1;
361	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
362		int ret;
363
364		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
365		if (ret < 0)
366			goto nomem;
367		sctx->stripes[i].sctx = sctx;
368	}
369	sctx->first_free = 0;
370	atomic_set(&sctx->cancel_req, 0);
371
372	spin_lock_init(&sctx->stat_lock);
373	sctx->throttle_deadline = 0;
374
375	mutex_init(&sctx->wr_lock);
376	if (is_dev_replace) {
377		WARN_ON(!fs_info->dev_replace.tgtdev);
378		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
379	}
380
381	return sctx;
382
383nomem:
384	scrub_free_ctx(sctx);
385	return ERR_PTR(-ENOMEM);
386}
387
388static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
389				     u64 root, void *warn_ctx)
390{
391	u32 nlink;
392	int ret;
393	int i;
394	unsigned nofs_flag;
395	struct extent_buffer *eb;
396	struct btrfs_inode_item *inode_item;
397	struct scrub_warning *swarn = warn_ctx;
398	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
399	struct inode_fs_paths *ipath = NULL;
400	struct btrfs_root *local_root;
401	struct btrfs_key key;
402
403	local_root = btrfs_get_fs_root(fs_info, root, true);
404	if (IS_ERR(local_root)) {
405		ret = PTR_ERR(local_root);
406		goto err;
407	}
408
409	/*
410	 * this makes the path point to (inum INODE_ITEM ioff)
411	 */
412	key.objectid = inum;
413	key.type = BTRFS_INODE_ITEM_KEY;
414	key.offset = 0;
415
416	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
417	if (ret) {
418		btrfs_put_root(local_root);
419		btrfs_release_path(swarn->path);
420		goto err;
421	}
422
423	eb = swarn->path->nodes[0];
424	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
425					struct btrfs_inode_item);
426	nlink = btrfs_inode_nlink(eb, inode_item);
427	btrfs_release_path(swarn->path);
428
429	/*
430	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
431	 * uses GFP_NOFS in this context, so we keep it consistent but it does
432	 * not seem to be strictly necessary.
433	 */
434	nofs_flag = memalloc_nofs_save();
435	ipath = init_ipath(4096, local_root, swarn->path);
436	memalloc_nofs_restore(nofs_flag);
437	if (IS_ERR(ipath)) {
438		btrfs_put_root(local_root);
439		ret = PTR_ERR(ipath);
440		ipath = NULL;
441		goto err;
442	}
443	ret = paths_from_inode(inum, ipath);
444
445	if (ret < 0)
446		goto err;
447
448	/*
449	 * we deliberately ignore the bit ipath might have been too small to
450	 * hold all of the paths here
451	 */
452	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
453		btrfs_warn_in_rcu(fs_info,
454"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
455				  swarn->errstr, swarn->logical,
456				  btrfs_dev_name(swarn->dev),
457				  swarn->physical,
458				  root, inum, offset,
459				  fs_info->sectorsize, nlink,
460				  (char *)(unsigned long)ipath->fspath->val[i]);
461
462	btrfs_put_root(local_root);
463	free_ipath(ipath);
464	return 0;
465
466err:
467	btrfs_warn_in_rcu(fs_info,
468			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
469			  swarn->errstr, swarn->logical,
470			  btrfs_dev_name(swarn->dev),
471			  swarn->physical,
472			  root, inum, offset, ret);
473
474	free_ipath(ipath);
475	return 0;
476}
477
478static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
479				       bool is_super, u64 logical, u64 physical)
480{
481	struct btrfs_fs_info *fs_info = dev->fs_info;
482	struct btrfs_path *path;
483	struct btrfs_key found_key;
484	struct extent_buffer *eb;
485	struct btrfs_extent_item *ei;
486	struct scrub_warning swarn;
487	u64 flags = 0;
488	u32 item_size;
489	int ret;
490
491	/* Super block error, no need to search extent tree. */
492	if (is_super) {
493		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
494				  errstr, btrfs_dev_name(dev), physical);
495		return;
496	}
497	path = btrfs_alloc_path();
498	if (!path)
499		return;
500
501	swarn.physical = physical;
502	swarn.logical = logical;
503	swarn.errstr = errstr;
504	swarn.dev = NULL;
505
506	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
507				  &flags);
508	if (ret < 0)
509		goto out;
510
511	swarn.extent_item_size = found_key.offset;
512
513	eb = path->nodes[0];
514	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
515	item_size = btrfs_item_size(eb, path->slots[0]);
516
517	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
518		unsigned long ptr = 0;
519		u8 ref_level;
520		u64 ref_root;
521
522		while (true) {
523			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
524						      item_size, &ref_root,
525						      &ref_level);
526			if (ret < 0) {
527				btrfs_warn(fs_info,
528				"failed to resolve tree backref for logical %llu: %d",
529						  swarn.logical, ret);
530				break;
531			}
532			if (ret > 0)
533				break;
534			btrfs_warn_in_rcu(fs_info,
535"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
536				errstr, swarn.logical, btrfs_dev_name(dev),
537				swarn.physical, (ref_level ? "node" : "leaf"),
538				ref_level, ref_root);
539		}
540		btrfs_release_path(path);
541	} else {
542		struct btrfs_backref_walk_ctx ctx = { 0 };
543
544		btrfs_release_path(path);
545
546		ctx.bytenr = found_key.objectid;
547		ctx.extent_item_pos = swarn.logical - found_key.objectid;
548		ctx.fs_info = fs_info;
549
550		swarn.path = path;
551		swarn.dev = dev;
552
553		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
554	}
555
556out:
557	btrfs_free_path(path);
558}
559
560static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
561{
562	int ret = 0;
563	u64 length;
564
565	if (!btrfs_is_zoned(sctx->fs_info))
566		return 0;
567
568	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
569		return 0;
570
571	if (sctx->write_pointer < physical) {
572		length = physical - sctx->write_pointer;
573
574		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
575						sctx->write_pointer, length);
576		if (!ret)
577			sctx->write_pointer = physical;
578	}
579	return ret;
580}
581
582static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
583{
584	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
585	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
586
587	return stripe->pages[page_index];
588}
589
590static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
591						 int sector_nr)
592{
593	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
594
595	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
596}
597
598static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
599{
600	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
601	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
602	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
603	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
604	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
605	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
606	u8 on_disk_csum[BTRFS_CSUM_SIZE];
607	u8 calculated_csum[BTRFS_CSUM_SIZE];
608	struct btrfs_header *header;
609
610	/*
611	 * Here we don't have a good way to attach the pages (and subpages)
612	 * to a dummy extent buffer, thus we have to directly grab the members
613	 * from pages.
614	 */
615	header = (struct btrfs_header *)(page_address(first_page) + first_off);
616	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
617
618	if (logical != btrfs_stack_header_bytenr(header)) {
619		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
620		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621		btrfs_warn_rl(fs_info,
622		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
623			      logical, stripe->mirror_num,
624			      btrfs_stack_header_bytenr(header), logical);
625		return;
626	}
627	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
628		   BTRFS_FSID_SIZE) != 0) {
629		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
630		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
631		btrfs_warn_rl(fs_info,
632		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
633			      logical, stripe->mirror_num,
634			      header->fsid, fs_info->fs_devices->fsid);
635		return;
636	}
637	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
638		   BTRFS_UUID_SIZE) != 0) {
639		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
640		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
641		btrfs_warn_rl(fs_info,
642		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
643			      logical, stripe->mirror_num,
644			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
645		return;
646	}
647
648	/* Now check tree block csum. */
649	shash->tfm = fs_info->csum_shash;
650	crypto_shash_init(shash);
651	crypto_shash_update(shash, page_address(first_page) + first_off +
652			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
653
654	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
655		struct page *page = scrub_stripe_get_page(stripe, i);
656		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
657
658		crypto_shash_update(shash, page_address(page) + page_off,
659				    fs_info->sectorsize);
660	}
661
662	crypto_shash_final(shash, calculated_csum);
663	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
664		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
665		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666		btrfs_warn_rl(fs_info,
667		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
668			      logical, stripe->mirror_num,
669			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
670			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
671		return;
672	}
673	if (stripe->sectors[sector_nr].generation !=
674	    btrfs_stack_header_generation(header)) {
675		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
676		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
677		btrfs_warn_rl(fs_info,
678		"tree block %llu mirror %u has bad generation, has %llu want %llu",
679			      logical, stripe->mirror_num,
680			      btrfs_stack_header_generation(header),
681			      stripe->sectors[sector_nr].generation);
682		return;
683	}
684	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
685	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
686	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
687}
688
689static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
690{
691	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
692	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
693	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
694	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
695	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
696	u8 csum_buf[BTRFS_CSUM_SIZE];
697	int ret;
698
699	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
700
701	/* Sector not utilized, skip it. */
702	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
703		return;
704
705	/* IO error, no need to check. */
706	if (test_bit(sector_nr, &stripe->io_error_bitmap))
707		return;
708
709	/* Metadata, verify the full tree block. */
710	if (sector->is_metadata) {
711		/*
712		 * Check if the tree block crosses the stripe boundary.  If
713		 * crossed the boundary, we cannot verify it but only give a
714		 * warning.
715		 *
716		 * This can only happen on a very old filesystem where chunks
717		 * are not ensured to be stripe aligned.
718		 */
719		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
720			btrfs_warn_rl(fs_info,
721			"tree block at %llu crosses stripe boundary %llu",
722				      stripe->logical +
723				      (sector_nr << fs_info->sectorsize_bits),
724				      stripe->logical);
725			return;
726		}
727		scrub_verify_one_metadata(stripe, sector_nr);
728		return;
729	}
730
731	/*
732	 * Data is easier, we just verify the data csum (if we have it).  For
733	 * cases without csum, we have no other choice but to trust it.
734	 */
735	if (!sector->csum) {
736		clear_bit(sector_nr, &stripe->error_bitmap);
737		return;
738	}
739
740	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
741	if (ret < 0) {
742		set_bit(sector_nr, &stripe->csum_error_bitmap);
743		set_bit(sector_nr, &stripe->error_bitmap);
744	} else {
745		clear_bit(sector_nr, &stripe->csum_error_bitmap);
746		clear_bit(sector_nr, &stripe->error_bitmap);
747	}
748}
749
750/* Verify specified sectors of a stripe. */
751static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
752{
753	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
754	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
755	int sector_nr;
756
757	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
758		scrub_verify_one_sector(stripe, sector_nr);
759		if (stripe->sectors[sector_nr].is_metadata)
760			sector_nr += sectors_per_tree - 1;
761	}
762}
763
764static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
765{
766	int i;
767
768	for (i = 0; i < stripe->nr_sectors; i++) {
769		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
770		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
771			break;
772	}
773	ASSERT(i < stripe->nr_sectors);
774	return i;
775}
776
777/*
778 * Repair read is different to the regular read:
779 *
780 * - Only reads the failed sectors
781 * - May have extra blocksize limits
782 */
783static void scrub_repair_read_endio(struct btrfs_bio *bbio)
784{
785	struct scrub_stripe *stripe = bbio->private;
786	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
787	struct bio_vec *bvec;
788	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
789	u32 bio_size = 0;
790	int i;
791
792	ASSERT(sector_nr < stripe->nr_sectors);
793
794	bio_for_each_bvec_all(bvec, &bbio->bio, i)
795		bio_size += bvec->bv_len;
796
797	if (bbio->bio.bi_status) {
798		bitmap_set(&stripe->io_error_bitmap, sector_nr,
799			   bio_size >> fs_info->sectorsize_bits);
800		bitmap_set(&stripe->error_bitmap, sector_nr,
801			   bio_size >> fs_info->sectorsize_bits);
802	} else {
803		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
804			     bio_size >> fs_info->sectorsize_bits);
805	}
806	bio_put(&bbio->bio);
807	if (atomic_dec_and_test(&stripe->pending_io))
808		wake_up(&stripe->io_wait);
809}
810
811static int calc_next_mirror(int mirror, int num_copies)
812{
813	ASSERT(mirror <= num_copies);
814	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
815}
816
817static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
818					    int mirror, int blocksize, bool wait)
819{
820	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
821	struct btrfs_bio *bbio = NULL;
822	const unsigned long old_error_bitmap = stripe->error_bitmap;
823	int i;
824
825	ASSERT(stripe->mirror_num >= 1);
826	ASSERT(atomic_read(&stripe->pending_io) == 0);
827
828	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
829		struct page *page;
830		int pgoff;
831		int ret;
832
833		page = scrub_stripe_get_page(stripe, i);
834		pgoff = scrub_stripe_get_page_offset(stripe, i);
835
836		/* The current sector cannot be merged, submit the bio. */
837		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
838			     bbio->bio.bi_iter.bi_size >= blocksize)) {
839			ASSERT(bbio->bio.bi_iter.bi_size);
840			atomic_inc(&stripe->pending_io);
841			btrfs_submit_bio(bbio, mirror);
842			if (wait)
843				wait_scrub_stripe_io(stripe);
844			bbio = NULL;
845		}
846
847		if (!bbio) {
848			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
849				fs_info, scrub_repair_read_endio, stripe);
850			bbio->bio.bi_iter.bi_sector = (stripe->logical +
851				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
852		}
853
854		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
855		ASSERT(ret == fs_info->sectorsize);
856	}
857	if (bbio) {
858		ASSERT(bbio->bio.bi_iter.bi_size);
859		atomic_inc(&stripe->pending_io);
860		btrfs_submit_bio(bbio, mirror);
861		if (wait)
862			wait_scrub_stripe_io(stripe);
863	}
864}
865
866static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
867				       struct scrub_stripe *stripe)
868{
869	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
870				      DEFAULT_RATELIMIT_BURST);
871	struct btrfs_fs_info *fs_info = sctx->fs_info;
872	struct btrfs_device *dev = NULL;
873	u64 physical = 0;
874	int nr_data_sectors = 0;
875	int nr_meta_sectors = 0;
876	int nr_nodatacsum_sectors = 0;
877	int nr_repaired_sectors = 0;
878	int sector_nr;
879
880	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
881		return;
882
883	/*
884	 * Init needed infos for error reporting.
885	 *
886	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
887	 * thus no need for dev/physical, error reporting still needs dev and physical.
888	 */
889	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
890		u64 mapped_len = fs_info->sectorsize;
891		struct btrfs_io_context *bioc = NULL;
892		int stripe_index = stripe->mirror_num - 1;
893		int ret;
894
895		/* For scrub, our mirror_num should always start at 1. */
896		ASSERT(stripe->mirror_num >= 1);
897		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
898				      stripe->logical, &mapped_len, &bioc,
899				      NULL, NULL);
900		/*
901		 * If we failed, dev will be NULL, and later detailed reports
902		 * will just be skipped.
903		 */
904		if (ret < 0)
905			goto skip;
906		physical = bioc->stripes[stripe_index].physical;
907		dev = bioc->stripes[stripe_index].dev;
908		btrfs_put_bioc(bioc);
909	}
910
911skip:
912	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
913		bool repaired = false;
914
915		if (stripe->sectors[sector_nr].is_metadata) {
916			nr_meta_sectors++;
917		} else {
918			nr_data_sectors++;
919			if (!stripe->sectors[sector_nr].csum)
920				nr_nodatacsum_sectors++;
921		}
922
923		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
924		    !test_bit(sector_nr, &stripe->error_bitmap)) {
925			nr_repaired_sectors++;
926			repaired = true;
927		}
928
929		/* Good sector from the beginning, nothing need to be done. */
930		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
931			continue;
932
933		/*
934		 * Report error for the corrupted sectors.  If repaired, just
935		 * output the message of repaired message.
936		 */
937		if (repaired) {
938			if (dev) {
939				btrfs_err_rl_in_rcu(fs_info,
940			"fixed up error at logical %llu on dev %s physical %llu",
941					    stripe->logical, btrfs_dev_name(dev),
942					    physical);
943			} else {
944				btrfs_err_rl_in_rcu(fs_info,
945			"fixed up error at logical %llu on mirror %u",
946					    stripe->logical, stripe->mirror_num);
947			}
948			continue;
949		}
950
951		/* The remaining are all for unrepaired. */
952		if (dev) {
953			btrfs_err_rl_in_rcu(fs_info,
954	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
955					    stripe->logical, btrfs_dev_name(dev),
956					    physical);
957		} else {
958			btrfs_err_rl_in_rcu(fs_info,
959	"unable to fixup (regular) error at logical %llu on mirror %u",
960					    stripe->logical, stripe->mirror_num);
961		}
962
963		if (test_bit(sector_nr, &stripe->io_error_bitmap))
964			if (__ratelimit(&rs) && dev)
965				scrub_print_common_warning("i/o error", dev, false,
966						     stripe->logical, physical);
967		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
968			if (__ratelimit(&rs) && dev)
969				scrub_print_common_warning("checksum error", dev, false,
970						     stripe->logical, physical);
971		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
972			if (__ratelimit(&rs) && dev)
973				scrub_print_common_warning("header error", dev, false,
974						     stripe->logical, physical);
975	}
976
977	spin_lock(&sctx->stat_lock);
978	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
979	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
980	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
981	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
982	sctx->stat.no_csum += nr_nodatacsum_sectors;
983	sctx->stat.read_errors += stripe->init_nr_io_errors;
984	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
985	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
986	sctx->stat.uncorrectable_errors +=
987		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
988	sctx->stat.corrected_errors += nr_repaired_sectors;
989	spin_unlock(&sctx->stat_lock);
990}
991
992static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
993				unsigned long write_bitmap, bool dev_replace);
994
995/*
996 * The main entrance for all read related scrub work, including:
997 *
998 * - Wait for the initial read to finish
999 * - Verify and locate any bad sectors
1000 * - Go through the remaining mirrors and try to read as large blocksize as
1001 *   possible
1002 * - Go through all mirrors (including the failed mirror) sector-by-sector
1003 * - Submit writeback for repaired sectors
1004 *
1005 * Writeback for dev-replace does not happen here, it needs extra
1006 * synchronization for zoned devices.
1007 */
1008static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009{
1010	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011	struct scrub_ctx *sctx = stripe->sctx;
1012	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014					  stripe->bg->length);
1015	int mirror;
1016	int i;
1017
1018	ASSERT(stripe->mirror_num > 0);
1019
1020	wait_scrub_stripe_io(stripe);
1021	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1022	/* Save the initial failed bitmap for later repair and report usage. */
1023	stripe->init_error_bitmap = stripe->error_bitmap;
1024	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1025						  stripe->nr_sectors);
1026	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1027						    stripe->nr_sectors);
1028	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1029						    stripe->nr_sectors);
1030
1031	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1032		goto out;
1033
1034	/*
1035	 * Try all remaining mirrors.
1036	 *
1037	 * Here we still try to read as large block as possible, as this is
1038	 * faster and we have extra safety nets to rely on.
1039	 */
1040	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1041	     mirror != stripe->mirror_num;
1042	     mirror = calc_next_mirror(mirror, num_copies)) {
1043		const unsigned long old_error_bitmap = stripe->error_bitmap;
1044
1045		scrub_stripe_submit_repair_read(stripe, mirror,
1046						BTRFS_STRIPE_LEN, false);
1047		wait_scrub_stripe_io(stripe);
1048		scrub_verify_one_stripe(stripe, old_error_bitmap);
1049		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1050			goto out;
1051	}
1052
1053	/*
1054	 * Last safety net, try re-checking all mirrors, including the failed
1055	 * one, sector-by-sector.
1056	 *
1057	 * As if one sector failed the drive's internal csum, the whole read
1058	 * containing the offending sector would be marked as error.
1059	 * Thus here we do sector-by-sector read.
1060	 *
1061	 * This can be slow, thus we only try it as the last resort.
1062	 */
1063
1064	for (i = 0, mirror = stripe->mirror_num;
1065	     i < num_copies;
1066	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1067		const unsigned long old_error_bitmap = stripe->error_bitmap;
1068
1069		scrub_stripe_submit_repair_read(stripe, mirror,
1070						fs_info->sectorsize, true);
1071		wait_scrub_stripe_io(stripe);
1072		scrub_verify_one_stripe(stripe, old_error_bitmap);
1073		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1074			goto out;
1075	}
1076out:
1077	/*
1078	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1079	 * in-place, but queue the bg to be relocated.
1080	 */
1081	if (btrfs_is_zoned(fs_info)) {
1082		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1083			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1084	} else if (!sctx->readonly) {
1085		unsigned long repaired;
1086
1087		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1088			      &stripe->error_bitmap, stripe->nr_sectors);
1089		scrub_write_sectors(sctx, stripe, repaired, false);
1090		wait_scrub_stripe_io(stripe);
1091	}
1092
1093	scrub_stripe_report_errors(sctx, stripe);
1094	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095	wake_up(&stripe->repair_wait);
1096}
1097
1098static void scrub_read_endio(struct btrfs_bio *bbio)
1099{
1100	struct scrub_stripe *stripe = bbio->private;
1101	struct bio_vec *bvec;
1102	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103	int num_sectors;
1104	u32 bio_size = 0;
1105	int i;
1106
1107	ASSERT(sector_nr < stripe->nr_sectors);
1108	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109		bio_size += bvec->bv_len;
1110	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111
1112	if (bbio->bio.bi_status) {
1113		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115	} else {
1116		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117	}
1118	bio_put(&bbio->bio);
1119	if (atomic_dec_and_test(&stripe->pending_io)) {
1120		wake_up(&stripe->io_wait);
1121		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123	}
1124}
1125
1126static void scrub_write_endio(struct btrfs_bio *bbio)
1127{
1128	struct scrub_stripe *stripe = bbio->private;
1129	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130	struct bio_vec *bvec;
1131	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132	u32 bio_size = 0;
1133	int i;
1134
1135	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136		bio_size += bvec->bv_len;
1137
1138	if (bbio->bio.bi_status) {
1139		unsigned long flags;
1140
1141		spin_lock_irqsave(&stripe->write_error_lock, flags);
1142		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143			   bio_size >> fs_info->sectorsize_bits);
1144		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145	}
1146	bio_put(&bbio->bio);
1147
1148	if (atomic_dec_and_test(&stripe->pending_io))
1149		wake_up(&stripe->io_wait);
1150}
1151
1152static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153				   struct scrub_stripe *stripe,
1154				   struct btrfs_bio *bbio, bool dev_replace)
1155{
1156	struct btrfs_fs_info *fs_info = sctx->fs_info;
1157	u32 bio_len = bbio->bio.bi_iter.bi_size;
1158	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159		      stripe->logical;
1160
1161	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162	atomic_inc(&stripe->pending_io);
1163	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164	if (!btrfs_is_zoned(fs_info))
1165		return;
1166	/*
1167	 * For zoned writeback, queue depth must be 1, thus we must wait for
1168	 * the write to finish before the next write.
1169	 */
1170	wait_scrub_stripe_io(stripe);
1171
1172	/*
1173	 * And also need to update the write pointer if write finished
1174	 * successfully.
1175	 */
1176	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177		      &stripe->write_error_bitmap))
1178		sctx->write_pointer += bio_len;
1179}
1180
1181/*
1182 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183 *
1184 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185 *
1186 * - Only needs logical bytenr and mirror_num
1187 *   Just like the scrub read path
1188 *
1189 * - Would only result in writes to the specified mirror
1190 *   Unlike the regular writeback path, which would write back to all stripes
1191 *
1192 * - Handle dev-replace and read-repair writeback differently
1193 */
1194static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195				unsigned long write_bitmap, bool dev_replace)
1196{
1197	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198	struct btrfs_bio *bbio = NULL;
1199	int sector_nr;
1200
1201	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204		int ret;
1205
1206		/* We should only writeback sectors covered by an extent. */
1207		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208
1209		/* Cannot merge with previous sector, submit the current one. */
1210		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212			bbio = NULL;
1213		}
1214		if (!bbio) {
1215			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216					       fs_info, scrub_write_endio, stripe);
1217			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218				(sector_nr << fs_info->sectorsize_bits)) >>
1219				SECTOR_SHIFT;
1220		}
1221		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222		ASSERT(ret == fs_info->sectorsize);
1223	}
1224	if (bbio)
1225		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1226}
1227
1228/*
1229 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231 */
1232static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233				  unsigned int bio_size)
1234{
1235	const int time_slice = 1000;
1236	s64 delta;
1237	ktime_t now;
1238	u32 div;
1239	u64 bwlimit;
1240
1241	bwlimit = READ_ONCE(device->scrub_speed_max);
1242	if (bwlimit == 0)
1243		return;
1244
1245	/*
1246	 * Slice is divided into intervals when the IO is submitted, adjust by
1247	 * bwlimit and maximum of 64 intervals.
1248	 */
1249	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250	div = min_t(u32, 64, div);
1251
1252	/* Start new epoch, set deadline */
1253	now = ktime_get();
1254	if (sctx->throttle_deadline == 0) {
1255		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256		sctx->throttle_sent = 0;
1257	}
1258
1259	/* Still in the time to send? */
1260	if (ktime_before(now, sctx->throttle_deadline)) {
1261		/* If current bio is within the limit, send it */
1262		sctx->throttle_sent += bio_size;
1263		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264			return;
1265
1266		/* We're over the limit, sleep until the rest of the slice */
1267		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268	} else {
1269		/* New request after deadline, start new epoch */
1270		delta = 0;
1271	}
1272
1273	if (delta) {
1274		long timeout;
1275
1276		timeout = div_u64(delta * HZ, 1000);
1277		schedule_timeout_interruptible(timeout);
1278	}
1279
1280	/* Next call will start the deadline period */
1281	sctx->throttle_deadline = 0;
1282}
1283
1284/*
1285 * Given a physical address, this will calculate it's
1286 * logical offset. if this is a parity stripe, it will return
1287 * the most left data stripe's logical offset.
1288 *
1289 * return 0 if it is a data stripe, 1 means parity stripe.
1290 */
1291static int get_raid56_logic_offset(u64 physical, int num,
1292				   struct btrfs_chunk_map *map, u64 *offset,
1293				   u64 *stripe_start)
1294{
1295	int i;
1296	int j = 0;
1297	u64 last_offset;
1298	const int data_stripes = nr_data_stripes(map);
1299
1300	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301	if (stripe_start)
1302		*stripe_start = last_offset;
1303
1304	*offset = last_offset;
1305	for (i = 0; i < data_stripes; i++) {
1306		u32 stripe_nr;
1307		u32 stripe_index;
1308		u32 rot;
1309
1310		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1311
1312		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1313
1314		/* Work out the disk rotation on this stripe-set */
1315		rot = stripe_nr % map->num_stripes;
1316		/* calculate which stripe this data locates */
1317		rot += i;
1318		stripe_index = rot % map->num_stripes;
1319		if (stripe_index == num)
1320			return 0;
1321		if (stripe_index < num)
1322			j++;
1323	}
1324	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325	return 1;
1326}
1327
1328/*
1329 * Return 0 if the extent item range covers any byte of the range.
1330 * Return <0 if the extent item is before @search_start.
1331 * Return >0 if the extent item is after @start_start + @search_len.
1332 */
1333static int compare_extent_item_range(struct btrfs_path *path,
1334				     u64 search_start, u64 search_len)
1335{
1336	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337	u64 len;
1338	struct btrfs_key key;
1339
1340	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342	       key.type == BTRFS_METADATA_ITEM_KEY);
1343	if (key.type == BTRFS_METADATA_ITEM_KEY)
1344		len = fs_info->nodesize;
1345	else
1346		len = key.offset;
1347
1348	if (key.objectid + len <= search_start)
1349		return -1;
1350	if (key.objectid >= search_start + search_len)
1351		return 1;
1352	return 0;
1353}
1354
1355/*
1356 * Locate one extent item which covers any byte in range
1357 * [@search_start, @search_start + @search_length)
1358 *
1359 * If the path is not initialized, we will initialize the search by doing
1360 * a btrfs_search_slot().
1361 * If the path is already initialized, we will use the path as the initial
1362 * slot, to avoid duplicated btrfs_search_slot() calls.
1363 *
1364 * NOTE: If an extent item starts before @search_start, we will still
1365 * return the extent item. This is for data extent crossing stripe boundary.
1366 *
1367 * Return 0 if we found such extent item, and @path will point to the extent item.
1368 * Return >0 if no such extent item can be found, and @path will be released.
1369 * Return <0 if hit fatal error, and @path will be released.
1370 */
1371static int find_first_extent_item(struct btrfs_root *extent_root,
1372				  struct btrfs_path *path,
1373				  u64 search_start, u64 search_len)
1374{
1375	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376	struct btrfs_key key;
1377	int ret;
1378
1379	/* Continue using the existing path */
1380	if (path->nodes[0])
1381		goto search_forward;
1382
1383	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384		key.type = BTRFS_METADATA_ITEM_KEY;
1385	else
1386		key.type = BTRFS_EXTENT_ITEM_KEY;
1387	key.objectid = search_start;
1388	key.offset = (u64)-1;
1389
1390	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391	if (ret < 0)
1392		return ret;
1393	if (ret == 0) {
1394		/*
1395		 * Key with offset -1 found, there would have to exist an extent
1396		 * item with such offset, but this is out of the valid range.
1397		 */
1398		btrfs_release_path(path);
1399		return -EUCLEAN;
1400	}
1401
1402	/*
1403	 * Here we intentionally pass 0 as @min_objectid, as there could be
1404	 * an extent item starting before @search_start.
1405	 */
1406	ret = btrfs_previous_extent_item(extent_root, path, 0);
1407	if (ret < 0)
1408		return ret;
1409	/*
1410	 * No matter whether we have found an extent item, the next loop will
1411	 * properly do every check on the key.
1412	 */
1413search_forward:
1414	while (true) {
1415		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1416		if (key.objectid >= search_start + search_len)
1417			break;
1418		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1419		    key.type != BTRFS_EXTENT_ITEM_KEY)
1420			goto next;
1421
1422		ret = compare_extent_item_range(path, search_start, search_len);
1423		if (ret == 0)
1424			return ret;
1425		if (ret > 0)
1426			break;
1427next:
1428		ret = btrfs_next_item(extent_root, path);
1429		if (ret) {
1430			/* Either no more items or a fatal error. */
1431			btrfs_release_path(path);
1432			return ret;
1433		}
1434	}
1435	btrfs_release_path(path);
1436	return 1;
1437}
1438
1439static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1440			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1441{
1442	struct btrfs_key key;
1443	struct btrfs_extent_item *ei;
1444
1445	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1446	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1447	       key.type == BTRFS_EXTENT_ITEM_KEY);
1448	*extent_start_ret = key.objectid;
1449	if (key.type == BTRFS_METADATA_ITEM_KEY)
1450		*size_ret = path->nodes[0]->fs_info->nodesize;
1451	else
1452		*size_ret = key.offset;
1453	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1454	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1455	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1456}
1457
1458static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1459					u64 physical, u64 physical_end)
1460{
1461	struct btrfs_fs_info *fs_info = sctx->fs_info;
1462	int ret = 0;
1463
1464	if (!btrfs_is_zoned(fs_info))
1465		return 0;
1466
1467	mutex_lock(&sctx->wr_lock);
1468	if (sctx->write_pointer < physical_end) {
1469		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1470						    physical,
1471						    sctx->write_pointer);
1472		if (ret)
1473			btrfs_err(fs_info,
1474				  "zoned: failed to recover write pointer");
1475	}
1476	mutex_unlock(&sctx->wr_lock);
1477	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1478
1479	return ret;
1480}
1481
1482static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1483				 struct scrub_stripe *stripe,
1484				 u64 extent_start, u64 extent_len,
1485				 u64 extent_flags, u64 extent_gen)
1486{
1487	for (u64 cur_logical = max(stripe->logical, extent_start);
1488	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1489			       extent_start + extent_len);
1490	     cur_logical += fs_info->sectorsize) {
1491		const int nr_sector = (cur_logical - stripe->logical) >>
1492				      fs_info->sectorsize_bits;
1493		struct scrub_sector_verification *sector =
1494						&stripe->sectors[nr_sector];
1495
1496		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1497		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1498			sector->is_metadata = true;
1499			sector->generation = extent_gen;
1500		}
1501	}
1502}
1503
1504static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1505{
1506	stripe->extent_sector_bitmap = 0;
1507	stripe->init_error_bitmap = 0;
1508	stripe->init_nr_io_errors = 0;
1509	stripe->init_nr_csum_errors = 0;
1510	stripe->init_nr_meta_errors = 0;
1511	stripe->error_bitmap = 0;
1512	stripe->io_error_bitmap = 0;
1513	stripe->csum_error_bitmap = 0;
1514	stripe->meta_error_bitmap = 0;
1515}
1516
1517/*
1518 * Locate one stripe which has at least one extent in its range.
1519 *
1520 * Return 0 if found such stripe, and store its info into @stripe.
1521 * Return >0 if there is no such stripe in the specified range.
1522 * Return <0 for error.
1523 */
1524static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1525					struct btrfs_path *extent_path,
1526					struct btrfs_path *csum_path,
1527					struct btrfs_device *dev, u64 physical,
1528					int mirror_num, u64 logical_start,
1529					u32 logical_len,
1530					struct scrub_stripe *stripe)
1531{
1532	struct btrfs_fs_info *fs_info = bg->fs_info;
1533	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1534	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1535	const u64 logical_end = logical_start + logical_len;
1536	u64 cur_logical = logical_start;
1537	u64 stripe_end;
1538	u64 extent_start;
1539	u64 extent_len;
1540	u64 extent_flags;
1541	u64 extent_gen;
1542	int ret;
1543
1544	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1545				   stripe->nr_sectors);
1546	scrub_stripe_reset_bitmaps(stripe);
1547
1548	/* The range must be inside the bg. */
1549	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1550
1551	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1552				     logical_len);
1553	/* Either error or not found. */
1554	if (ret)
1555		goto out;
1556	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1557			&extent_gen);
1558	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1559		stripe->nr_meta_extents++;
1560	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1561		stripe->nr_data_extents++;
1562	cur_logical = max(extent_start, cur_logical);
1563
1564	/*
1565	 * Round down to stripe boundary.
1566	 *
1567	 * The extra calculation against bg->start is to handle block groups
1568	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1569	 */
1570	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1571			  bg->start;
1572	stripe->physical = physical + stripe->logical - logical_start;
1573	stripe->dev = dev;
1574	stripe->bg = bg;
1575	stripe->mirror_num = mirror_num;
1576	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1577
1578	/* Fill the first extent info into stripe->sectors[] array. */
1579	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1580			     extent_flags, extent_gen);
1581	cur_logical = extent_start + extent_len;
1582
1583	/* Fill the extent info for the remaining sectors. */
1584	while (cur_logical <= stripe_end) {
1585		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1586					     stripe_end - cur_logical + 1);
1587		if (ret < 0)
1588			goto out;
1589		if (ret > 0) {
1590			ret = 0;
1591			break;
1592		}
1593		get_extent_info(extent_path, &extent_start, &extent_len,
1594				&extent_flags, &extent_gen);
1595		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1596			stripe->nr_meta_extents++;
1597		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1598			stripe->nr_data_extents++;
1599		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1600				     extent_flags, extent_gen);
1601		cur_logical = extent_start + extent_len;
1602	}
1603
1604	/* Now fill the data csum. */
1605	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1606		int sector_nr;
1607		unsigned long csum_bitmap = 0;
1608
1609		/* Csum space should have already been allocated. */
1610		ASSERT(stripe->csums);
1611
1612		/*
1613		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1614		 * should contain at most 16 sectors.
1615		 */
1616		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1617
1618		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1619						stripe->logical, stripe_end,
1620						stripe->csums, &csum_bitmap);
1621		if (ret < 0)
1622			goto out;
1623		if (ret > 0)
1624			ret = 0;
1625
1626		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1627			stripe->sectors[sector_nr].csum = stripe->csums +
1628				sector_nr * fs_info->csum_size;
1629		}
1630	}
1631	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1632out:
1633	return ret;
1634}
1635
1636static void scrub_reset_stripe(struct scrub_stripe *stripe)
1637{
1638	scrub_stripe_reset_bitmaps(stripe);
1639
1640	stripe->nr_meta_extents = 0;
1641	stripe->nr_data_extents = 0;
1642	stripe->state = 0;
1643
1644	for (int i = 0; i < stripe->nr_sectors; i++) {
1645		stripe->sectors[i].is_metadata = false;
1646		stripe->sectors[i].csum = NULL;
1647		stripe->sectors[i].generation = 0;
1648	}
1649}
1650
1651static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1652					    struct scrub_stripe *stripe)
1653{
1654	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1655	struct btrfs_bio *bbio = NULL;
1656	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1657				      stripe->bg->length - stripe->logical) >>
1658				  fs_info->sectorsize_bits;
1659	u64 stripe_len = BTRFS_STRIPE_LEN;
1660	int mirror = stripe->mirror_num;
1661	int i;
1662
1663	atomic_inc(&stripe->pending_io);
1664
1665	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1666		struct page *page = scrub_stripe_get_page(stripe, i);
1667		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1668
1669		/* We're beyond the chunk boundary, no need to read anymore. */
1670		if (i >= nr_sectors)
1671			break;
1672
1673		/* The current sector cannot be merged, submit the bio. */
1674		if (bbio &&
1675		    ((i > 0 &&
1676		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1677		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1678			ASSERT(bbio->bio.bi_iter.bi_size);
1679			atomic_inc(&stripe->pending_io);
1680			btrfs_submit_bio(bbio, mirror);
1681			bbio = NULL;
1682		}
1683
1684		if (!bbio) {
1685			struct btrfs_io_stripe io_stripe = {};
1686			struct btrfs_io_context *bioc = NULL;
1687			const u64 logical = stripe->logical +
1688					    (i << fs_info->sectorsize_bits);
1689			int err;
1690
1691			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1692					       fs_info, scrub_read_endio, stripe);
1693			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1694
1695			io_stripe.is_scrub = true;
1696			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1697					      &stripe_len, &bioc, &io_stripe,
1698					      &mirror);
1699			btrfs_put_bioc(bioc);
1700			if (err) {
1701				btrfs_bio_end_io(bbio,
1702						 errno_to_blk_status(err));
1703				return;
1704			}
1705		}
1706
1707		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1708	}
1709
1710	if (bbio) {
1711		ASSERT(bbio->bio.bi_iter.bi_size);
1712		atomic_inc(&stripe->pending_io);
1713		btrfs_submit_bio(bbio, mirror);
1714	}
1715
1716	if (atomic_dec_and_test(&stripe->pending_io)) {
1717		wake_up(&stripe->io_wait);
1718		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1719		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1720	}
1721}
1722
1723static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1724				      struct scrub_stripe *stripe)
1725{
1726	struct btrfs_fs_info *fs_info = sctx->fs_info;
1727	struct btrfs_bio *bbio;
1728	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1729				      stripe->bg->length - stripe->logical) >>
1730				  fs_info->sectorsize_bits;
1731	int mirror = stripe->mirror_num;
1732
1733	ASSERT(stripe->bg);
1734	ASSERT(stripe->mirror_num > 0);
1735	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1736
1737	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1738		scrub_submit_extent_sector_read(sctx, stripe);
1739		return;
1740	}
1741
1742	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1743			       scrub_read_endio, stripe);
1744
1745	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1746	/* Read the whole range inside the chunk boundary. */
1747	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1748		struct page *page = scrub_stripe_get_page(stripe, cur);
1749		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1750		int ret;
1751
1752		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1753		/* We should have allocated enough bio vectors. */
1754		ASSERT(ret == fs_info->sectorsize);
1755	}
1756	atomic_inc(&stripe->pending_io);
1757
1758	/*
1759	 * For dev-replace, either user asks to avoid the source dev, or
1760	 * the device is missing, we try the next mirror instead.
1761	 */
1762	if (sctx->is_dev_replace &&
1763	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1764	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1765	     !stripe->dev->bdev)) {
1766		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1767						  stripe->bg->length);
1768
1769		mirror = calc_next_mirror(mirror, num_copies);
1770	}
1771	btrfs_submit_bio(bbio, mirror);
1772}
1773
1774static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1775{
1776	int i;
1777
1778	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1779		if (stripe->sectors[i].is_metadata) {
1780			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1781
1782			btrfs_err(fs_info,
1783			"stripe %llu has unrepaired metadata sector at %llu",
1784				  stripe->logical,
1785				  stripe->logical + (i << fs_info->sectorsize_bits));
1786			return true;
1787		}
1788	}
1789	return false;
1790}
1791
1792static void submit_initial_group_read(struct scrub_ctx *sctx,
1793				      unsigned int first_slot,
1794				      unsigned int nr_stripes)
1795{
1796	struct blk_plug plug;
1797
1798	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1799	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1800
1801	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1802			      btrfs_stripe_nr_to_offset(nr_stripes));
1803	blk_start_plug(&plug);
1804	for (int i = 0; i < nr_stripes; i++) {
1805		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1806
1807		/* Those stripes should be initialized. */
1808		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1809		scrub_submit_initial_read(sctx, stripe);
1810	}
1811	blk_finish_plug(&plug);
1812}
1813
1814static int flush_scrub_stripes(struct scrub_ctx *sctx)
1815{
1816	struct btrfs_fs_info *fs_info = sctx->fs_info;
1817	struct scrub_stripe *stripe;
1818	const int nr_stripes = sctx->cur_stripe;
1819	int ret = 0;
1820
1821	if (!nr_stripes)
1822		return 0;
1823
1824	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1825
1826	/* Submit the stripes which are populated but not submitted. */
1827	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1828		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1829
1830		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1831	}
1832
1833	for (int i = 0; i < nr_stripes; i++) {
1834		stripe = &sctx->stripes[i];
1835
1836		wait_event(stripe->repair_wait,
1837			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1838	}
1839
1840	/* Submit for dev-replace. */
1841	if (sctx->is_dev_replace) {
1842		/*
1843		 * For dev-replace, if we know there is something wrong with
1844		 * metadata, we should immediately abort.
1845		 */
1846		for (int i = 0; i < nr_stripes; i++) {
1847			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1848				ret = -EIO;
1849				goto out;
1850			}
1851		}
1852		for (int i = 0; i < nr_stripes; i++) {
1853			unsigned long good;
1854
1855			stripe = &sctx->stripes[i];
1856
1857			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1858
1859			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1860				      &stripe->error_bitmap, stripe->nr_sectors);
1861			scrub_write_sectors(sctx, stripe, good, true);
1862		}
1863	}
1864
1865	/* Wait for the above writebacks to finish. */
1866	for (int i = 0; i < nr_stripes; i++) {
1867		stripe = &sctx->stripes[i];
1868
1869		wait_scrub_stripe_io(stripe);
1870		scrub_reset_stripe(stripe);
1871	}
1872out:
1873	sctx->cur_stripe = 0;
1874	return ret;
1875}
1876
1877static void raid56_scrub_wait_endio(struct bio *bio)
1878{
1879	complete(bio->bi_private);
1880}
1881
1882static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1883			      struct btrfs_device *dev, int mirror_num,
1884			      u64 logical, u32 length, u64 physical,
1885			      u64 *found_logical_ret)
1886{
1887	struct scrub_stripe *stripe;
1888	int ret;
1889
1890	/*
1891	 * There should always be one slot left, as caller filling the last
1892	 * slot should flush them all.
1893	 */
1894	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1895
1896	/* @found_logical_ret must be specified. */
1897	ASSERT(found_logical_ret);
1898
1899	stripe = &sctx->stripes[sctx->cur_stripe];
1900	scrub_reset_stripe(stripe);
1901	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1902					   &sctx->csum_path, dev, physical,
1903					   mirror_num, logical, length, stripe);
1904	/* Either >0 as no more extents or <0 for error. */
1905	if (ret)
1906		return ret;
1907	*found_logical_ret = stripe->logical;
1908	sctx->cur_stripe++;
1909
1910	/* We filled one group, submit it. */
1911	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1912		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1913
1914		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1915	}
1916
1917	/* Last slot used, flush them all. */
1918	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1919		return flush_scrub_stripes(sctx);
1920	return 0;
1921}
1922
1923static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1924				      struct btrfs_device *scrub_dev,
1925				      struct btrfs_block_group *bg,
1926				      struct btrfs_chunk_map *map,
1927				      u64 full_stripe_start)
1928{
1929	DECLARE_COMPLETION_ONSTACK(io_done);
1930	struct btrfs_fs_info *fs_info = sctx->fs_info;
1931	struct btrfs_raid_bio *rbio;
1932	struct btrfs_io_context *bioc = NULL;
1933	struct btrfs_path extent_path = { 0 };
1934	struct btrfs_path csum_path = { 0 };
1935	struct bio *bio;
1936	struct scrub_stripe *stripe;
1937	bool all_empty = true;
1938	const int data_stripes = nr_data_stripes(map);
1939	unsigned long extent_bitmap = 0;
1940	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1941	int ret;
1942
1943	ASSERT(sctx->raid56_data_stripes);
1944
1945	/*
1946	 * For data stripe search, we cannot re-use the same extent/csum paths,
1947	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1948	 * we have to use our own extent/csum paths.
1949	 */
1950	extent_path.search_commit_root = 1;
1951	extent_path.skip_locking = 1;
1952	csum_path.search_commit_root = 1;
1953	csum_path.skip_locking = 1;
1954
1955	for (int i = 0; i < data_stripes; i++) {
1956		int stripe_index;
1957		int rot;
1958		u64 physical;
1959
1960		stripe = &sctx->raid56_data_stripes[i];
1961		rot = div_u64(full_stripe_start - bg->start,
1962			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1963		stripe_index = (i + rot) % map->num_stripes;
1964		physical = map->stripes[stripe_index].physical +
1965			   btrfs_stripe_nr_to_offset(rot);
1966
1967		scrub_reset_stripe(stripe);
1968		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1969		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1970				map->stripes[stripe_index].dev, physical, 1,
1971				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1972				BTRFS_STRIPE_LEN, stripe);
1973		if (ret < 0)
1974			goto out;
1975		/*
1976		 * No extent in this data stripe, need to manually mark them
1977		 * initialized to make later read submission happy.
1978		 */
1979		if (ret > 0) {
1980			stripe->logical = full_stripe_start +
1981					  btrfs_stripe_nr_to_offset(i);
1982			stripe->dev = map->stripes[stripe_index].dev;
1983			stripe->mirror_num = 1;
1984			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1985		}
1986	}
1987
1988	/* Check if all data stripes are empty. */
1989	for (int i = 0; i < data_stripes; i++) {
1990		stripe = &sctx->raid56_data_stripes[i];
1991		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1992			all_empty = false;
1993			break;
1994		}
1995	}
1996	if (all_empty) {
1997		ret = 0;
1998		goto out;
1999	}
2000
2001	for (int i = 0; i < data_stripes; i++) {
2002		stripe = &sctx->raid56_data_stripes[i];
2003		scrub_submit_initial_read(sctx, stripe);
2004	}
2005	for (int i = 0; i < data_stripes; i++) {
2006		stripe = &sctx->raid56_data_stripes[i];
2007
2008		wait_event(stripe->repair_wait,
2009			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2010	}
2011	/* For now, no zoned support for RAID56. */
2012	ASSERT(!btrfs_is_zoned(sctx->fs_info));
2013
2014	/*
2015	 * Now all data stripes are properly verified. Check if we have any
2016	 * unrepaired, if so abort immediately or we could further corrupt the
2017	 * P/Q stripes.
2018	 *
2019	 * During the loop, also populate extent_bitmap.
2020	 */
2021	for (int i = 0; i < data_stripes; i++) {
2022		unsigned long error;
2023
2024		stripe = &sctx->raid56_data_stripes[i];
2025
2026		/*
2027		 * We should only check the errors where there is an extent.
2028		 * As we may hit an empty data stripe while it's missing.
2029		 */
2030		bitmap_and(&error, &stripe->error_bitmap,
2031			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2032		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2033			btrfs_err(fs_info,
2034"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2035				  full_stripe_start, i, stripe->nr_sectors,
2036				  &error);
2037			ret = -EIO;
2038			goto out;
2039		}
2040		bitmap_or(&extent_bitmap, &extent_bitmap,
2041			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
2042	}
2043
2044	/* Now we can check and regenerate the P/Q stripe. */
2045	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2046	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2047	bio->bi_private = &io_done;
2048	bio->bi_end_io = raid56_scrub_wait_endio;
2049
2050	btrfs_bio_counter_inc_blocked(fs_info);
2051	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2052			      &length, &bioc, NULL, NULL);
2053	if (ret < 0) {
2054		btrfs_put_bioc(bioc);
2055		btrfs_bio_counter_dec(fs_info);
2056		goto out;
2057	}
2058	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2059				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2060	btrfs_put_bioc(bioc);
2061	if (!rbio) {
2062		ret = -ENOMEM;
2063		btrfs_bio_counter_dec(fs_info);
2064		goto out;
2065	}
2066	/* Use the recovered stripes as cache to avoid read them from disk again. */
2067	for (int i = 0; i < data_stripes; i++) {
2068		stripe = &sctx->raid56_data_stripes[i];
2069
2070		raid56_parity_cache_data_pages(rbio, stripe->pages,
2071				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2072	}
2073	raid56_parity_submit_scrub_rbio(rbio);
2074	wait_for_completion_io(&io_done);
2075	ret = blk_status_to_errno(bio->bi_status);
2076	bio_put(bio);
2077	btrfs_bio_counter_dec(fs_info);
2078
2079	btrfs_release_path(&extent_path);
2080	btrfs_release_path(&csum_path);
2081out:
2082	return ret;
2083}
2084
2085/*
2086 * Scrub one range which can only has simple mirror based profile.
2087 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2088 *  RAID0/RAID10).
2089 *
2090 * Since we may need to handle a subset of block group, we need @logical_start
2091 * and @logical_length parameter.
2092 */
2093static int scrub_simple_mirror(struct scrub_ctx *sctx,
2094			       struct btrfs_block_group *bg,
2095			       struct btrfs_chunk_map *map,
2096			       u64 logical_start, u64 logical_length,
2097			       struct btrfs_device *device,
2098			       u64 physical, int mirror_num)
2099{
2100	struct btrfs_fs_info *fs_info = sctx->fs_info;
2101	const u64 logical_end = logical_start + logical_length;
2102	u64 cur_logical = logical_start;
2103	int ret;
2104
2105	/* The range must be inside the bg */
2106	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2107
2108	/* Go through each extent items inside the logical range */
2109	while (cur_logical < logical_end) {
2110		u64 found_logical = U64_MAX;
2111		u64 cur_physical = physical + cur_logical - logical_start;
2112
2113		/* Canceled? */
2114		if (atomic_read(&fs_info->scrub_cancel_req) ||
2115		    atomic_read(&sctx->cancel_req)) {
2116			ret = -ECANCELED;
2117			break;
2118		}
2119		/* Paused? */
2120		if (atomic_read(&fs_info->scrub_pause_req)) {
2121			/* Push queued extents */
2122			scrub_blocked_if_needed(fs_info);
2123		}
2124		/* Block group removed? */
2125		spin_lock(&bg->lock);
2126		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2127			spin_unlock(&bg->lock);
2128			ret = 0;
2129			break;
2130		}
2131		spin_unlock(&bg->lock);
2132
2133		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2134					 cur_logical, logical_end - cur_logical,
2135					 cur_physical, &found_logical);
2136		if (ret > 0) {
2137			/* No more extent, just update the accounting */
2138			sctx->stat.last_physical = physical + logical_length;
2139			ret = 0;
2140			break;
2141		}
2142		if (ret < 0)
2143			break;
2144
2145		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2146		ASSERT(found_logical != U64_MAX);
2147		cur_logical = found_logical + BTRFS_STRIPE_LEN;
2148
2149		/* Don't hold CPU for too long time */
2150		cond_resched();
2151	}
2152	return ret;
2153}
2154
2155/* Calculate the full stripe length for simple stripe based profiles */
2156static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2157{
2158	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2159			    BTRFS_BLOCK_GROUP_RAID10));
2160
2161	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2162}
2163
2164/* Get the logical bytenr for the stripe */
2165static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2166				     struct btrfs_block_group *bg,
2167				     int stripe_index)
2168{
2169	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2170			    BTRFS_BLOCK_GROUP_RAID10));
2171	ASSERT(stripe_index < map->num_stripes);
2172
2173	/*
2174	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2175	 * skip.
2176	 */
2177	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2178	       bg->start;
2179}
2180
2181/* Get the mirror number for the stripe */
2182static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2183{
2184	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2185			    BTRFS_BLOCK_GROUP_RAID10));
2186	ASSERT(stripe_index < map->num_stripes);
2187
2188	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2189	return stripe_index % map->sub_stripes + 1;
2190}
2191
2192static int scrub_simple_stripe(struct scrub_ctx *sctx,
2193			       struct btrfs_block_group *bg,
2194			       struct btrfs_chunk_map *map,
2195			       struct btrfs_device *device,
2196			       int stripe_index)
2197{
2198	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2199	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2200	const u64 orig_physical = map->stripes[stripe_index].physical;
2201	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2202	u64 cur_logical = orig_logical;
2203	u64 cur_physical = orig_physical;
2204	int ret = 0;
2205
2206	while (cur_logical < bg->start + bg->length) {
2207		/*
2208		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2209		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2210		 * this stripe.
2211		 */
2212		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2213					  BTRFS_STRIPE_LEN, device, cur_physical,
2214					  mirror_num);
2215		if (ret)
2216			return ret;
2217		/* Skip to next stripe which belongs to the target device */
2218		cur_logical += logical_increment;
2219		/* For physical offset, we just go to next stripe */
2220		cur_physical += BTRFS_STRIPE_LEN;
2221	}
2222	return ret;
2223}
2224
2225static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2226					   struct btrfs_block_group *bg,
2227					   struct btrfs_chunk_map *map,
2228					   struct btrfs_device *scrub_dev,
2229					   int stripe_index)
2230{
2231	struct btrfs_fs_info *fs_info = sctx->fs_info;
2232	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2233	const u64 chunk_logical = bg->start;
2234	int ret;
2235	int ret2;
2236	u64 physical = map->stripes[stripe_index].physical;
2237	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2238	const u64 physical_end = physical + dev_stripe_len;
2239	u64 logical;
2240	u64 logic_end;
2241	/* The logical increment after finishing one stripe */
2242	u64 increment;
2243	/* Offset inside the chunk */
2244	u64 offset;
2245	u64 stripe_logical;
2246	int stop_loop = 0;
2247
2248	/* Extent_path should be released by now. */
2249	ASSERT(sctx->extent_path.nodes[0] == NULL);
2250
2251	scrub_blocked_if_needed(fs_info);
2252
2253	if (sctx->is_dev_replace &&
2254	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2255		mutex_lock(&sctx->wr_lock);
2256		sctx->write_pointer = physical;
2257		mutex_unlock(&sctx->wr_lock);
2258	}
2259
2260	/* Prepare the extra data stripes used by RAID56. */
2261	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2262		ASSERT(sctx->raid56_data_stripes == NULL);
2263
2264		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2265						    sizeof(struct scrub_stripe),
2266						    GFP_KERNEL);
2267		if (!sctx->raid56_data_stripes) {
2268			ret = -ENOMEM;
2269			goto out;
2270		}
2271		for (int i = 0; i < nr_data_stripes(map); i++) {
2272			ret = init_scrub_stripe(fs_info,
2273						&sctx->raid56_data_stripes[i]);
2274			if (ret < 0)
2275				goto out;
2276			sctx->raid56_data_stripes[i].bg = bg;
2277			sctx->raid56_data_stripes[i].sctx = sctx;
2278		}
2279	}
2280	/*
2281	 * There used to be a big double loop to handle all profiles using the
2282	 * same routine, which grows larger and more gross over time.
2283	 *
2284	 * So here we handle each profile differently, so simpler profiles
2285	 * have simpler scrubbing function.
2286	 */
2287	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2288			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2289		/*
2290		 * Above check rules out all complex profile, the remaining
2291		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2292		 * mirrored duplication without stripe.
2293		 *
2294		 * Only @physical and @mirror_num needs to calculated using
2295		 * @stripe_index.
2296		 */
2297		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2298				scrub_dev, map->stripes[stripe_index].physical,
2299				stripe_index + 1);
2300		offset = 0;
2301		goto out;
2302	}
2303	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2304		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2305		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2306		goto out;
2307	}
2308
2309	/* Only RAID56 goes through the old code */
2310	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2311	ret = 0;
2312
2313	/* Calculate the logical end of the stripe */
2314	get_raid56_logic_offset(physical_end, stripe_index,
2315				map, &logic_end, NULL);
2316	logic_end += chunk_logical;
2317
2318	/* Initialize @offset in case we need to go to out: label */
2319	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2320	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2321
2322	/*
2323	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2324	 * using their physical offset.
2325	 */
2326	while (physical < physical_end) {
2327		ret = get_raid56_logic_offset(physical, stripe_index, map,
2328					      &logical, &stripe_logical);
2329		logical += chunk_logical;
2330		if (ret) {
2331			/* it is parity strip */
2332			stripe_logical += chunk_logical;
2333			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2334							 map, stripe_logical);
2335			if (ret)
2336				goto out;
2337			goto next;
2338		}
2339
2340		/*
2341		 * Now we're at a data stripe, scrub each extents in the range.
2342		 *
2343		 * At this stage, if we ignore the repair part, inside each data
2344		 * stripe it is no different than SINGLE profile.
2345		 * We can reuse scrub_simple_mirror() here, as the repair part
2346		 * is still based on @mirror_num.
2347		 */
2348		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2349					  scrub_dev, physical, 1);
2350		if (ret < 0)
2351			goto out;
2352next:
2353		logical += increment;
2354		physical += BTRFS_STRIPE_LEN;
2355		spin_lock(&sctx->stat_lock);
2356		if (stop_loop)
2357			sctx->stat.last_physical =
2358				map->stripes[stripe_index].physical + dev_stripe_len;
2359		else
2360			sctx->stat.last_physical = physical;
2361		spin_unlock(&sctx->stat_lock);
2362		if (stop_loop)
2363			break;
2364	}
2365out:
2366	ret2 = flush_scrub_stripes(sctx);
2367	if (!ret)
2368		ret = ret2;
2369	btrfs_release_path(&sctx->extent_path);
2370	btrfs_release_path(&sctx->csum_path);
2371
2372	if (sctx->raid56_data_stripes) {
2373		for (int i = 0; i < nr_data_stripes(map); i++)
2374			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2375		kfree(sctx->raid56_data_stripes);
2376		sctx->raid56_data_stripes = NULL;
2377	}
2378
2379	if (sctx->is_dev_replace && ret >= 0) {
2380		int ret2;
2381
2382		ret2 = sync_write_pointer_for_zoned(sctx,
2383				chunk_logical + offset,
2384				map->stripes[stripe_index].physical,
2385				physical_end);
2386		if (ret2)
2387			ret = ret2;
2388	}
2389
2390	return ret < 0 ? ret : 0;
2391}
2392
2393static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2394					  struct btrfs_block_group *bg,
2395					  struct btrfs_device *scrub_dev,
2396					  u64 dev_offset,
2397					  u64 dev_extent_len)
2398{
2399	struct btrfs_fs_info *fs_info = sctx->fs_info;
2400	struct btrfs_chunk_map *map;
2401	int i;
2402	int ret = 0;
2403
2404	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2405	if (!map) {
2406		/*
2407		 * Might have been an unused block group deleted by the cleaner
2408		 * kthread or relocation.
2409		 */
2410		spin_lock(&bg->lock);
2411		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2412			ret = -EINVAL;
2413		spin_unlock(&bg->lock);
2414
2415		return ret;
2416	}
2417	if (map->start != bg->start)
2418		goto out;
2419	if (map->chunk_len < dev_extent_len)
2420		goto out;
2421
2422	for (i = 0; i < map->num_stripes; ++i) {
2423		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2424		    map->stripes[i].physical == dev_offset) {
2425			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2426			if (ret)
2427				goto out;
2428		}
2429	}
2430out:
2431	btrfs_free_chunk_map(map);
2432
2433	return ret;
2434}
2435
2436static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2437					  struct btrfs_block_group *cache)
2438{
2439	struct btrfs_fs_info *fs_info = cache->fs_info;
2440	struct btrfs_trans_handle *trans;
2441
2442	if (!btrfs_is_zoned(fs_info))
2443		return 0;
2444
2445	btrfs_wait_block_group_reservations(cache);
2446	btrfs_wait_nocow_writers(cache);
2447	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2448
2449	trans = btrfs_join_transaction(root);
2450	if (IS_ERR(trans))
2451		return PTR_ERR(trans);
2452	return btrfs_commit_transaction(trans);
2453}
2454
2455static noinline_for_stack
2456int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2457			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2458{
2459	struct btrfs_dev_extent *dev_extent = NULL;
2460	struct btrfs_path *path;
2461	struct btrfs_fs_info *fs_info = sctx->fs_info;
2462	struct btrfs_root *root = fs_info->dev_root;
2463	u64 chunk_offset;
2464	int ret = 0;
2465	int ro_set;
2466	int slot;
2467	struct extent_buffer *l;
2468	struct btrfs_key key;
2469	struct btrfs_key found_key;
2470	struct btrfs_block_group *cache;
2471	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2472
2473	path = btrfs_alloc_path();
2474	if (!path)
2475		return -ENOMEM;
2476
2477	path->reada = READA_FORWARD;
2478	path->search_commit_root = 1;
2479	path->skip_locking = 1;
2480
2481	key.objectid = scrub_dev->devid;
2482	key.offset = 0ull;
2483	key.type = BTRFS_DEV_EXTENT_KEY;
2484
2485	while (1) {
2486		u64 dev_extent_len;
2487
2488		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2489		if (ret < 0)
2490			break;
2491		if (ret > 0) {
2492			if (path->slots[0] >=
2493			    btrfs_header_nritems(path->nodes[0])) {
2494				ret = btrfs_next_leaf(root, path);
2495				if (ret < 0)
2496					break;
2497				if (ret > 0) {
2498					ret = 0;
2499					break;
2500				}
2501			} else {
2502				ret = 0;
2503			}
2504		}
2505
2506		l = path->nodes[0];
2507		slot = path->slots[0];
2508
2509		btrfs_item_key_to_cpu(l, &found_key, slot);
2510
2511		if (found_key.objectid != scrub_dev->devid)
2512			break;
2513
2514		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2515			break;
2516
2517		if (found_key.offset >= end)
2518			break;
2519
2520		if (found_key.offset < key.offset)
2521			break;
2522
2523		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2524		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2525
2526		if (found_key.offset + dev_extent_len <= start)
2527			goto skip;
2528
2529		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2530
2531		/*
2532		 * get a reference on the corresponding block group to prevent
2533		 * the chunk from going away while we scrub it
2534		 */
2535		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2536
2537		/* some chunks are removed but not committed to disk yet,
2538		 * continue scrubbing */
2539		if (!cache)
2540			goto skip;
2541
2542		ASSERT(cache->start <= chunk_offset);
2543		/*
2544		 * We are using the commit root to search for device extents, so
2545		 * that means we could have found a device extent item from a
2546		 * block group that was deleted in the current transaction. The
2547		 * logical start offset of the deleted block group, stored at
2548		 * @chunk_offset, might be part of the logical address range of
2549		 * a new block group (which uses different physical extents).
2550		 * In this case btrfs_lookup_block_group() has returned the new
2551		 * block group, and its start address is less than @chunk_offset.
2552		 *
2553		 * We skip such new block groups, because it's pointless to
2554		 * process them, as we won't find their extents because we search
2555		 * for them using the commit root of the extent tree. For a device
2556		 * replace it's also fine to skip it, we won't miss copying them
2557		 * to the target device because we have the write duplication
2558		 * setup through the regular write path (by btrfs_map_block()),
2559		 * and we have committed a transaction when we started the device
2560		 * replace, right after setting up the device replace state.
2561		 */
2562		if (cache->start < chunk_offset) {
2563			btrfs_put_block_group(cache);
2564			goto skip;
2565		}
2566
2567		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2568			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2569				btrfs_put_block_group(cache);
2570				goto skip;
2571			}
2572		}
2573
2574		/*
2575		 * Make sure that while we are scrubbing the corresponding block
2576		 * group doesn't get its logical address and its device extents
2577		 * reused for another block group, which can possibly be of a
2578		 * different type and different profile. We do this to prevent
2579		 * false error detections and crashes due to bogus attempts to
2580		 * repair extents.
2581		 */
2582		spin_lock(&cache->lock);
2583		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2584			spin_unlock(&cache->lock);
2585			btrfs_put_block_group(cache);
2586			goto skip;
2587		}
2588		btrfs_freeze_block_group(cache);
2589		spin_unlock(&cache->lock);
2590
2591		/*
2592		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2593		 * to avoid deadlock caused by:
2594		 * btrfs_inc_block_group_ro()
2595		 * -> btrfs_wait_for_commit()
2596		 * -> btrfs_commit_transaction()
2597		 * -> btrfs_scrub_pause()
2598		 */
2599		scrub_pause_on(fs_info);
2600
2601		/*
2602		 * Don't do chunk preallocation for scrub.
2603		 *
2604		 * This is especially important for SYSTEM bgs, or we can hit
2605		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2606		 * 1. The only SYSTEM bg is marked RO.
2607		 *    Since SYSTEM bg is small, that's pretty common.
2608		 * 2. New SYSTEM bg will be allocated
2609		 *    Due to regular version will allocate new chunk.
2610		 * 3. New SYSTEM bg is empty and will get cleaned up
2611		 *    Before cleanup really happens, it's marked RO again.
2612		 * 4. Empty SYSTEM bg get scrubbed
2613		 *    We go back to 2.
2614		 *
2615		 * This can easily boost the amount of SYSTEM chunks if cleaner
2616		 * thread can't be triggered fast enough, and use up all space
2617		 * of btrfs_super_block::sys_chunk_array
2618		 *
2619		 * While for dev replace, we need to try our best to mark block
2620		 * group RO, to prevent race between:
2621		 * - Write duplication
2622		 *   Contains latest data
2623		 * - Scrub copy
2624		 *   Contains data from commit tree
2625		 *
2626		 * If target block group is not marked RO, nocow writes can
2627		 * be overwritten by scrub copy, causing data corruption.
2628		 * So for dev-replace, it's not allowed to continue if a block
2629		 * group is not RO.
2630		 */
2631		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2632		if (!ret && sctx->is_dev_replace) {
2633			ret = finish_extent_writes_for_zoned(root, cache);
2634			if (ret) {
2635				btrfs_dec_block_group_ro(cache);
2636				scrub_pause_off(fs_info);
2637				btrfs_put_block_group(cache);
2638				break;
2639			}
2640		}
2641
2642		if (ret == 0) {
2643			ro_set = 1;
2644		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2645			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2646			/*
2647			 * btrfs_inc_block_group_ro return -ENOSPC when it
2648			 * failed in creating new chunk for metadata.
2649			 * It is not a problem for scrub, because
2650			 * metadata are always cowed, and our scrub paused
2651			 * commit_transactions.
2652			 *
2653			 * For RAID56 chunks, we have to mark them read-only
2654			 * for scrub, as later we would use our own cache
2655			 * out of RAID56 realm.
2656			 * Thus we want the RAID56 bg to be marked RO to
2657			 * prevent RMW from screwing up out cache.
2658			 */
2659			ro_set = 0;
2660		} else if (ret == -ETXTBSY) {
2661			btrfs_warn(fs_info,
2662		   "skipping scrub of block group %llu due to active swapfile",
2663				   cache->start);
2664			scrub_pause_off(fs_info);
2665			ret = 0;
2666			goto skip_unfreeze;
2667		} else {
2668			btrfs_warn(fs_info,
2669				   "failed setting block group ro: %d", ret);
2670			btrfs_unfreeze_block_group(cache);
2671			btrfs_put_block_group(cache);
2672			scrub_pause_off(fs_info);
2673			break;
2674		}
2675
2676		/*
2677		 * Now the target block is marked RO, wait for nocow writes to
2678		 * finish before dev-replace.
2679		 * COW is fine, as COW never overwrites extents in commit tree.
2680		 */
2681		if (sctx->is_dev_replace) {
2682			btrfs_wait_nocow_writers(cache);
2683			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2684					cache->length);
2685		}
2686
2687		scrub_pause_off(fs_info);
2688		down_write(&dev_replace->rwsem);
2689		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2690		dev_replace->cursor_left = found_key.offset;
2691		dev_replace->item_needs_writeback = 1;
2692		up_write(&dev_replace->rwsem);
2693
2694		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2695				  dev_extent_len);
2696		if (sctx->is_dev_replace &&
2697		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2698						      cache, found_key.offset))
2699			ro_set = 0;
2700
2701		down_write(&dev_replace->rwsem);
2702		dev_replace->cursor_left = dev_replace->cursor_right;
2703		dev_replace->item_needs_writeback = 1;
2704		up_write(&dev_replace->rwsem);
2705
2706		if (ro_set)
2707			btrfs_dec_block_group_ro(cache);
2708
2709		/*
2710		 * We might have prevented the cleaner kthread from deleting
2711		 * this block group if it was already unused because we raced
2712		 * and set it to RO mode first. So add it back to the unused
2713		 * list, otherwise it might not ever be deleted unless a manual
2714		 * balance is triggered or it becomes used and unused again.
2715		 */
2716		spin_lock(&cache->lock);
2717		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2718		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2719			spin_unlock(&cache->lock);
2720			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2721				btrfs_discard_queue_work(&fs_info->discard_ctl,
2722							 cache);
2723			else
2724				btrfs_mark_bg_unused(cache);
2725		} else {
2726			spin_unlock(&cache->lock);
2727		}
2728skip_unfreeze:
2729		btrfs_unfreeze_block_group(cache);
2730		btrfs_put_block_group(cache);
2731		if (ret)
2732			break;
2733		if (sctx->is_dev_replace &&
2734		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2735			ret = -EIO;
2736			break;
2737		}
2738		if (sctx->stat.malloc_errors > 0) {
2739			ret = -ENOMEM;
2740			break;
2741		}
2742skip:
2743		key.offset = found_key.offset + dev_extent_len;
2744		btrfs_release_path(path);
2745	}
2746
2747	btrfs_free_path(path);
2748
2749	return ret;
2750}
2751
2752static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2753			   struct page *page, u64 physical, u64 generation)
2754{
2755	struct btrfs_fs_info *fs_info = sctx->fs_info;
2756	struct bio_vec bvec;
2757	struct bio bio;
2758	struct btrfs_super_block *sb = page_address(page);
2759	int ret;
2760
2761	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2762	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2763	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2764	ret = submit_bio_wait(&bio);
2765	bio_uninit(&bio);
2766
2767	if (ret < 0)
2768		return ret;
2769	ret = btrfs_check_super_csum(fs_info, sb);
2770	if (ret != 0) {
2771		btrfs_err_rl(fs_info,
2772			"super block at physical %llu devid %llu has bad csum",
2773			physical, dev->devid);
2774		return -EIO;
2775	}
2776	if (btrfs_super_generation(sb) != generation) {
2777		btrfs_err_rl(fs_info,
2778"super block at physical %llu devid %llu has bad generation %llu expect %llu",
2779			     physical, dev->devid,
2780			     btrfs_super_generation(sb), generation);
2781		return -EUCLEAN;
2782	}
2783
2784	return btrfs_validate_super(fs_info, sb, -1);
2785}
2786
2787static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2788					   struct btrfs_device *scrub_dev)
2789{
2790	int	i;
2791	u64	bytenr;
2792	u64	gen;
2793	int ret = 0;
2794	struct page *page;
2795	struct btrfs_fs_info *fs_info = sctx->fs_info;
2796
2797	if (BTRFS_FS_ERROR(fs_info))
2798		return -EROFS;
2799
2800	page = alloc_page(GFP_KERNEL);
2801	if (!page) {
2802		spin_lock(&sctx->stat_lock);
2803		sctx->stat.malloc_errors++;
2804		spin_unlock(&sctx->stat_lock);
2805		return -ENOMEM;
2806	}
2807
2808	/* Seed devices of a new filesystem has their own generation. */
2809	if (scrub_dev->fs_devices != fs_info->fs_devices)
2810		gen = scrub_dev->generation;
2811	else
2812		gen = btrfs_get_last_trans_committed(fs_info);
2813
2814	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2815		ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2816		if (ret == -ENOENT)
2817			break;
2818
2819		if (ret) {
2820			spin_lock(&sctx->stat_lock);
2821			sctx->stat.super_errors++;
2822			spin_unlock(&sctx->stat_lock);
2823			continue;
2824		}
2825
2826		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2827		    scrub_dev->commit_total_bytes)
2828			break;
2829		if (!btrfs_check_super_location(scrub_dev, bytenr))
2830			continue;
2831
2832		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2833		if (ret) {
2834			spin_lock(&sctx->stat_lock);
2835			sctx->stat.super_errors++;
2836			spin_unlock(&sctx->stat_lock);
2837		}
2838	}
2839	__free_page(page);
2840	return 0;
2841}
2842
2843static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2844{
2845	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2846					&fs_info->scrub_lock)) {
2847		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2848
2849		fs_info->scrub_workers = NULL;
2850		mutex_unlock(&fs_info->scrub_lock);
2851
2852		if (scrub_workers)
2853			destroy_workqueue(scrub_workers);
2854	}
2855}
2856
2857/*
2858 * get a reference count on fs_info->scrub_workers. start worker if necessary
2859 */
2860static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2861{
2862	struct workqueue_struct *scrub_workers = NULL;
2863	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2864	int max_active = fs_info->thread_pool_size;
2865	int ret = -ENOMEM;
2866
2867	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2868		return 0;
2869
2870	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2871	if (!scrub_workers)
2872		return -ENOMEM;
2873
2874	mutex_lock(&fs_info->scrub_lock);
2875	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2876		ASSERT(fs_info->scrub_workers == NULL);
2877		fs_info->scrub_workers = scrub_workers;
2878		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2879		mutex_unlock(&fs_info->scrub_lock);
2880		return 0;
2881	}
2882	/* Other thread raced in and created the workers for us */
2883	refcount_inc(&fs_info->scrub_workers_refcnt);
2884	mutex_unlock(&fs_info->scrub_lock);
2885
2886	ret = 0;
2887
2888	destroy_workqueue(scrub_workers);
2889	return ret;
2890}
2891
2892int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2893		    u64 end, struct btrfs_scrub_progress *progress,
2894		    int readonly, int is_dev_replace)
2895{
2896	struct btrfs_dev_lookup_args args = { .devid = devid };
2897	struct scrub_ctx *sctx;
2898	int ret;
2899	struct btrfs_device *dev;
2900	unsigned int nofs_flag;
2901	bool need_commit = false;
2902
2903	if (btrfs_fs_closing(fs_info))
2904		return -EAGAIN;
2905
2906	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2907	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2908
2909	/*
2910	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2911	 * value (max nodesize / min sectorsize), thus nodesize should always
2912	 * be fine.
2913	 */
2914	ASSERT(fs_info->nodesize <=
2915	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2916
2917	/* Allocate outside of device_list_mutex */
2918	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2919	if (IS_ERR(sctx))
2920		return PTR_ERR(sctx);
2921
2922	ret = scrub_workers_get(fs_info);
2923	if (ret)
2924		goto out_free_ctx;
2925
2926	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2927	dev = btrfs_find_device(fs_info->fs_devices, &args);
2928	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2929		     !is_dev_replace)) {
2930		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2931		ret = -ENODEV;
2932		goto out;
2933	}
2934
2935	if (!is_dev_replace && !readonly &&
2936	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2937		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2938		btrfs_err_in_rcu(fs_info,
2939			"scrub on devid %llu: filesystem on %s is not writable",
2940				 devid, btrfs_dev_name(dev));
2941		ret = -EROFS;
2942		goto out;
2943	}
2944
2945	mutex_lock(&fs_info->scrub_lock);
2946	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2947	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2948		mutex_unlock(&fs_info->scrub_lock);
2949		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2950		ret = -EIO;
2951		goto out;
2952	}
2953
2954	down_read(&fs_info->dev_replace.rwsem);
2955	if (dev->scrub_ctx ||
2956	    (!is_dev_replace &&
2957	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2958		up_read(&fs_info->dev_replace.rwsem);
2959		mutex_unlock(&fs_info->scrub_lock);
2960		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2961		ret = -EINPROGRESS;
2962		goto out;
2963	}
2964	up_read(&fs_info->dev_replace.rwsem);
2965
2966	sctx->readonly = readonly;
2967	dev->scrub_ctx = sctx;
2968	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2969
2970	/*
2971	 * checking @scrub_pause_req here, we can avoid
2972	 * race between committing transaction and scrubbing.
2973	 */
2974	__scrub_blocked_if_needed(fs_info);
2975	atomic_inc(&fs_info->scrubs_running);
2976	mutex_unlock(&fs_info->scrub_lock);
2977
2978	/*
2979	 * In order to avoid deadlock with reclaim when there is a transaction
2980	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2981	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2982	 * invoked by our callees. The pausing request is done when the
2983	 * transaction commit starts, and it blocks the transaction until scrub
2984	 * is paused (done at specific points at scrub_stripe() or right above
2985	 * before incrementing fs_info->scrubs_running).
2986	 */
2987	nofs_flag = memalloc_nofs_save();
2988	if (!is_dev_replace) {
2989		u64 old_super_errors;
2990
2991		spin_lock(&sctx->stat_lock);
2992		old_super_errors = sctx->stat.super_errors;
2993		spin_unlock(&sctx->stat_lock);
2994
2995		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2996		/*
2997		 * by holding device list mutex, we can
2998		 * kick off writing super in log tree sync.
2999		 */
3000		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3001		ret = scrub_supers(sctx, dev);
3002		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003
3004		spin_lock(&sctx->stat_lock);
3005		/*
3006		 * Super block errors found, but we can not commit transaction
3007		 * at current context, since btrfs_commit_transaction() needs
3008		 * to pause the current running scrub (hold by ourselves).
3009		 */
3010		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3011			need_commit = true;
3012		spin_unlock(&sctx->stat_lock);
3013	}
3014
3015	if (!ret)
3016		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3017	memalloc_nofs_restore(nofs_flag);
3018
3019	atomic_dec(&fs_info->scrubs_running);
3020	wake_up(&fs_info->scrub_pause_wait);
3021
3022	if (progress)
3023		memcpy(progress, &sctx->stat, sizeof(*progress));
3024
3025	if (!is_dev_replace)
3026		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3027			ret ? "not finished" : "finished", devid, ret);
3028
3029	mutex_lock(&fs_info->scrub_lock);
3030	dev->scrub_ctx = NULL;
3031	mutex_unlock(&fs_info->scrub_lock);
3032
3033	scrub_workers_put(fs_info);
3034	scrub_put_ctx(sctx);
3035
3036	/*
3037	 * We found some super block errors before, now try to force a
3038	 * transaction commit, as scrub has finished.
3039	 */
3040	if (need_commit) {
3041		struct btrfs_trans_handle *trans;
3042
3043		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3044		if (IS_ERR(trans)) {
3045			ret = PTR_ERR(trans);
3046			btrfs_err(fs_info,
3047	"scrub: failed to start transaction to fix super block errors: %d", ret);
3048			return ret;
3049		}
3050		ret = btrfs_commit_transaction(trans);
3051		if (ret < 0)
3052			btrfs_err(fs_info,
3053	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3054	}
3055	return ret;
3056out:
3057	scrub_workers_put(fs_info);
3058out_free_ctx:
3059	scrub_free_ctx(sctx);
3060
3061	return ret;
3062}
3063
3064void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3065{
3066	mutex_lock(&fs_info->scrub_lock);
3067	atomic_inc(&fs_info->scrub_pause_req);
3068	while (atomic_read(&fs_info->scrubs_paused) !=
3069	       atomic_read(&fs_info->scrubs_running)) {
3070		mutex_unlock(&fs_info->scrub_lock);
3071		wait_event(fs_info->scrub_pause_wait,
3072			   atomic_read(&fs_info->scrubs_paused) ==
3073			   atomic_read(&fs_info->scrubs_running));
3074		mutex_lock(&fs_info->scrub_lock);
3075	}
3076	mutex_unlock(&fs_info->scrub_lock);
3077}
3078
3079void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3080{
3081	atomic_dec(&fs_info->scrub_pause_req);
3082	wake_up(&fs_info->scrub_pause_wait);
3083}
3084
3085int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3086{
3087	mutex_lock(&fs_info->scrub_lock);
3088	if (!atomic_read(&fs_info->scrubs_running)) {
3089		mutex_unlock(&fs_info->scrub_lock);
3090		return -ENOTCONN;
3091	}
3092
3093	atomic_inc(&fs_info->scrub_cancel_req);
3094	while (atomic_read(&fs_info->scrubs_running)) {
3095		mutex_unlock(&fs_info->scrub_lock);
3096		wait_event(fs_info->scrub_pause_wait,
3097			   atomic_read(&fs_info->scrubs_running) == 0);
3098		mutex_lock(&fs_info->scrub_lock);
3099	}
3100	atomic_dec(&fs_info->scrub_cancel_req);
3101	mutex_unlock(&fs_info->scrub_lock);
3102
3103	return 0;
3104}
3105
3106int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3107{
3108	struct btrfs_fs_info *fs_info = dev->fs_info;
3109	struct scrub_ctx *sctx;
3110
3111	mutex_lock(&fs_info->scrub_lock);
3112	sctx = dev->scrub_ctx;
3113	if (!sctx) {
3114		mutex_unlock(&fs_info->scrub_lock);
3115		return -ENOTCONN;
3116	}
3117	atomic_inc(&sctx->cancel_req);
3118	while (dev->scrub_ctx) {
3119		mutex_unlock(&fs_info->scrub_lock);
3120		wait_event(fs_info->scrub_pause_wait,
3121			   dev->scrub_ctx == NULL);
3122		mutex_lock(&fs_info->scrub_lock);
3123	}
3124	mutex_unlock(&fs_info->scrub_lock);
3125
3126	return 0;
3127}
3128
3129int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3130			 struct btrfs_scrub_progress *progress)
3131{
3132	struct btrfs_dev_lookup_args args = { .devid = devid };
3133	struct btrfs_device *dev;
3134	struct scrub_ctx *sctx = NULL;
3135
3136	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3137	dev = btrfs_find_device(fs_info->fs_devices, &args);
3138	if (dev)
3139		sctx = dev->scrub_ctx;
3140	if (sctx)
3141		memcpy(progress, &sctx->stat, sizeof(*progress));
3142	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3143
3144	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3145}
3146