1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Red Hat.  All rights reserved.
4 */
5
6#include <linux/pagemap.h>
7#include <linux/sched.h>
8#include <linux/sched/signal.h>
9#include <linux/slab.h>
10#include <linux/math64.h>
11#include <linux/ratelimit.h>
12#include <linux/error-injection.h>
13#include <linux/sched/mm.h>
14#include "ctree.h"
15#include "fs.h"
16#include "messages.h"
17#include "misc.h"
18#include "free-space-cache.h"
19#include "transaction.h"
20#include "disk-io.h"
21#include "extent_io.h"
22#include "space-info.h"
23#include "block-group.h"
24#include "discard.h"
25#include "subpage.h"
26#include "inode-item.h"
27#include "accessors.h"
28#include "file-item.h"
29#include "file.h"
30#include "super.h"
31
32#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
33#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
34#define FORCE_EXTENT_THRESHOLD	SZ_1M
35
36static struct kmem_cache *btrfs_free_space_cachep;
37static struct kmem_cache *btrfs_free_space_bitmap_cachep;
38
39struct btrfs_trim_range {
40	u64 start;
41	u64 bytes;
42	struct list_head list;
43};
44
45static int link_free_space(struct btrfs_free_space_ctl *ctl,
46			   struct btrfs_free_space *info);
47static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
48			      struct btrfs_free_space *info, bool update_stat);
49static int search_bitmap(struct btrfs_free_space_ctl *ctl,
50			 struct btrfs_free_space *bitmap_info, u64 *offset,
51			 u64 *bytes, bool for_alloc);
52static void free_bitmap(struct btrfs_free_space_ctl *ctl,
53			struct btrfs_free_space *bitmap_info);
54static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
55			      struct btrfs_free_space *info, u64 offset,
56			      u64 bytes, bool update_stats);
57
58static void btrfs_crc32c_final(u32 crc, u8 *result)
59{
60	put_unaligned_le32(~crc, result);
61}
62
63static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
64{
65	struct btrfs_free_space *info;
66	struct rb_node *node;
67
68	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
69		info = rb_entry(node, struct btrfs_free_space, offset_index);
70		if (!info->bitmap) {
71			unlink_free_space(ctl, info, true);
72			kmem_cache_free(btrfs_free_space_cachep, info);
73		} else {
74			free_bitmap(ctl, info);
75		}
76
77		cond_resched_lock(&ctl->tree_lock);
78	}
79}
80
81static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
82					       struct btrfs_path *path,
83					       u64 offset)
84{
85	struct btrfs_fs_info *fs_info = root->fs_info;
86	struct btrfs_key key;
87	struct btrfs_key location;
88	struct btrfs_disk_key disk_key;
89	struct btrfs_free_space_header *header;
90	struct extent_buffer *leaf;
91	struct inode *inode = NULL;
92	unsigned nofs_flag;
93	int ret;
94
95	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
96	key.offset = offset;
97	key.type = 0;
98
99	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
100	if (ret < 0)
101		return ERR_PTR(ret);
102	if (ret > 0) {
103		btrfs_release_path(path);
104		return ERR_PTR(-ENOENT);
105	}
106
107	leaf = path->nodes[0];
108	header = btrfs_item_ptr(leaf, path->slots[0],
109				struct btrfs_free_space_header);
110	btrfs_free_space_key(leaf, header, &disk_key);
111	btrfs_disk_key_to_cpu(&location, &disk_key);
112	btrfs_release_path(path);
113
114	/*
115	 * We are often under a trans handle at this point, so we need to make
116	 * sure NOFS is set to keep us from deadlocking.
117	 */
118	nofs_flag = memalloc_nofs_save();
119	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
120	btrfs_release_path(path);
121	memalloc_nofs_restore(nofs_flag);
122	if (IS_ERR(inode))
123		return inode;
124
125	mapping_set_gfp_mask(inode->i_mapping,
126			mapping_gfp_constraint(inode->i_mapping,
127			~(__GFP_FS | __GFP_HIGHMEM)));
128
129	return inode;
130}
131
132struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
133		struct btrfs_path *path)
134{
135	struct btrfs_fs_info *fs_info = block_group->fs_info;
136	struct inode *inode = NULL;
137	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138
139	spin_lock(&block_group->lock);
140	if (block_group->inode)
141		inode = igrab(block_group->inode);
142	spin_unlock(&block_group->lock);
143	if (inode)
144		return inode;
145
146	inode = __lookup_free_space_inode(fs_info->tree_root, path,
147					  block_group->start);
148	if (IS_ERR(inode))
149		return inode;
150
151	spin_lock(&block_group->lock);
152	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
153		btrfs_info(fs_info, "Old style space inode found, converting.");
154		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
155			BTRFS_INODE_NODATACOW;
156		block_group->disk_cache_state = BTRFS_DC_CLEAR;
157	}
158
159	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
160		block_group->inode = igrab(inode);
161	spin_unlock(&block_group->lock);
162
163	return inode;
164}
165
166static int __create_free_space_inode(struct btrfs_root *root,
167				     struct btrfs_trans_handle *trans,
168				     struct btrfs_path *path,
169				     u64 ino, u64 offset)
170{
171	struct btrfs_key key;
172	struct btrfs_disk_key disk_key;
173	struct btrfs_free_space_header *header;
174	struct btrfs_inode_item *inode_item;
175	struct extent_buffer *leaf;
176	/* We inline CRCs for the free disk space cache */
177	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
178			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
179	int ret;
180
181	ret = btrfs_insert_empty_inode(trans, root, path, ino);
182	if (ret)
183		return ret;
184
185	leaf = path->nodes[0];
186	inode_item = btrfs_item_ptr(leaf, path->slots[0],
187				    struct btrfs_inode_item);
188	btrfs_item_key(leaf, &disk_key, path->slots[0]);
189	memzero_extent_buffer(leaf, (unsigned long)inode_item,
190			     sizeof(*inode_item));
191	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
192	btrfs_set_inode_size(leaf, inode_item, 0);
193	btrfs_set_inode_nbytes(leaf, inode_item, 0);
194	btrfs_set_inode_uid(leaf, inode_item, 0);
195	btrfs_set_inode_gid(leaf, inode_item, 0);
196	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
197	btrfs_set_inode_flags(leaf, inode_item, flags);
198	btrfs_set_inode_nlink(leaf, inode_item, 1);
199	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
200	btrfs_set_inode_block_group(leaf, inode_item, offset);
201	btrfs_mark_buffer_dirty(trans, leaf);
202	btrfs_release_path(path);
203
204	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
205	key.offset = offset;
206	key.type = 0;
207	ret = btrfs_insert_empty_item(trans, root, path, &key,
208				      sizeof(struct btrfs_free_space_header));
209	if (ret < 0) {
210		btrfs_release_path(path);
211		return ret;
212	}
213
214	leaf = path->nodes[0];
215	header = btrfs_item_ptr(leaf, path->slots[0],
216				struct btrfs_free_space_header);
217	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
218	btrfs_set_free_space_key(leaf, header, &disk_key);
219	btrfs_mark_buffer_dirty(trans, leaf);
220	btrfs_release_path(path);
221
222	return 0;
223}
224
225int create_free_space_inode(struct btrfs_trans_handle *trans,
226			    struct btrfs_block_group *block_group,
227			    struct btrfs_path *path)
228{
229	int ret;
230	u64 ino;
231
232	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
233	if (ret < 0)
234		return ret;
235
236	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
237					 ino, block_group->start);
238}
239
240/*
241 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
242 * handles lookup, otherwise it takes ownership and iputs the inode.
243 * Don't reuse an inode pointer after passing it into this function.
244 */
245int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
246				  struct inode *inode,
247				  struct btrfs_block_group *block_group)
248{
249	struct btrfs_path *path;
250	struct btrfs_key key;
251	int ret = 0;
252
253	path = btrfs_alloc_path();
254	if (!path)
255		return -ENOMEM;
256
257	if (!inode)
258		inode = lookup_free_space_inode(block_group, path);
259	if (IS_ERR(inode)) {
260		if (PTR_ERR(inode) != -ENOENT)
261			ret = PTR_ERR(inode);
262		goto out;
263	}
264	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
265	if (ret) {
266		btrfs_add_delayed_iput(BTRFS_I(inode));
267		goto out;
268	}
269	clear_nlink(inode);
270	/* One for the block groups ref */
271	spin_lock(&block_group->lock);
272	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
273		block_group->inode = NULL;
274		spin_unlock(&block_group->lock);
275		iput(inode);
276	} else {
277		spin_unlock(&block_group->lock);
278	}
279	/* One for the lookup ref */
280	btrfs_add_delayed_iput(BTRFS_I(inode));
281
282	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
283	key.type = 0;
284	key.offset = block_group->start;
285	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
286				-1, 1);
287	if (ret) {
288		if (ret > 0)
289			ret = 0;
290		goto out;
291	}
292	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
293out:
294	btrfs_free_path(path);
295	return ret;
296}
297
298int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
299				    struct btrfs_block_group *block_group,
300				    struct inode *vfs_inode)
301{
302	struct btrfs_truncate_control control = {
303		.inode = BTRFS_I(vfs_inode),
304		.new_size = 0,
305		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
306		.min_type = BTRFS_EXTENT_DATA_KEY,
307		.clear_extent_range = true,
308	};
309	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
310	struct btrfs_root *root = inode->root;
311	struct extent_state *cached_state = NULL;
312	int ret = 0;
313	bool locked = false;
314
315	if (block_group) {
316		struct btrfs_path *path = btrfs_alloc_path();
317
318		if (!path) {
319			ret = -ENOMEM;
320			goto fail;
321		}
322		locked = true;
323		mutex_lock(&trans->transaction->cache_write_mutex);
324		if (!list_empty(&block_group->io_list)) {
325			list_del_init(&block_group->io_list);
326
327			btrfs_wait_cache_io(trans, block_group, path);
328			btrfs_put_block_group(block_group);
329		}
330
331		/*
332		 * now that we've truncated the cache away, its no longer
333		 * setup or written
334		 */
335		spin_lock(&block_group->lock);
336		block_group->disk_cache_state = BTRFS_DC_CLEAR;
337		spin_unlock(&block_group->lock);
338		btrfs_free_path(path);
339	}
340
341	btrfs_i_size_write(inode, 0);
342	truncate_pagecache(vfs_inode, 0);
343
344	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
345	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
346
347	/*
348	 * We skip the throttling logic for free space cache inodes, so we don't
349	 * need to check for -EAGAIN.
350	 */
351	ret = btrfs_truncate_inode_items(trans, root, &control);
352
353	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
354	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
355
356	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
357	if (ret)
358		goto fail;
359
360	ret = btrfs_update_inode(trans, inode);
361
362fail:
363	if (locked)
364		mutex_unlock(&trans->transaction->cache_write_mutex);
365	if (ret)
366		btrfs_abort_transaction(trans, ret);
367
368	return ret;
369}
370
371static void readahead_cache(struct inode *inode)
372{
373	struct file_ra_state ra;
374	unsigned long last_index;
375
376	file_ra_state_init(&ra, inode->i_mapping);
377	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
378
379	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
380}
381
382static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
383		       int write)
384{
385	int num_pages;
386
387	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
388
389	/* Make sure we can fit our crcs and generation into the first page */
390	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
391		return -ENOSPC;
392
393	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
394
395	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
396	if (!io_ctl->pages)
397		return -ENOMEM;
398
399	io_ctl->num_pages = num_pages;
400	io_ctl->fs_info = inode_to_fs_info(inode);
401	io_ctl->inode = inode;
402
403	return 0;
404}
405ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
406
407static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
408{
409	kfree(io_ctl->pages);
410	io_ctl->pages = NULL;
411}
412
413static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
414{
415	if (io_ctl->cur) {
416		io_ctl->cur = NULL;
417		io_ctl->orig = NULL;
418	}
419}
420
421static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
422{
423	ASSERT(io_ctl->index < io_ctl->num_pages);
424	io_ctl->page = io_ctl->pages[io_ctl->index++];
425	io_ctl->cur = page_address(io_ctl->page);
426	io_ctl->orig = io_ctl->cur;
427	io_ctl->size = PAGE_SIZE;
428	if (clear)
429		clear_page(io_ctl->cur);
430}
431
432static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
433{
434	int i;
435
436	io_ctl_unmap_page(io_ctl);
437
438	for (i = 0; i < io_ctl->num_pages; i++) {
439		if (io_ctl->pages[i]) {
440			btrfs_folio_clear_checked(io_ctl->fs_info,
441					page_folio(io_ctl->pages[i]),
442					page_offset(io_ctl->pages[i]),
443					PAGE_SIZE);
444			unlock_page(io_ctl->pages[i]);
445			put_page(io_ctl->pages[i]);
446		}
447	}
448}
449
450static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
451{
452	struct page *page;
453	struct inode *inode = io_ctl->inode;
454	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
455	int i;
456
457	for (i = 0; i < io_ctl->num_pages; i++) {
458		int ret;
459
460		page = find_or_create_page(inode->i_mapping, i, mask);
461		if (!page) {
462			io_ctl_drop_pages(io_ctl);
463			return -ENOMEM;
464		}
465
466		ret = set_page_extent_mapped(page);
467		if (ret < 0) {
468			unlock_page(page);
469			put_page(page);
470			io_ctl_drop_pages(io_ctl);
471			return ret;
472		}
473
474		io_ctl->pages[i] = page;
475		if (uptodate && !PageUptodate(page)) {
476			btrfs_read_folio(NULL, page_folio(page));
477			lock_page(page);
478			if (page->mapping != inode->i_mapping) {
479				btrfs_err(BTRFS_I(inode)->root->fs_info,
480					  "free space cache page truncated");
481				io_ctl_drop_pages(io_ctl);
482				return -EIO;
483			}
484			if (!PageUptodate(page)) {
485				btrfs_err(BTRFS_I(inode)->root->fs_info,
486					   "error reading free space cache");
487				io_ctl_drop_pages(io_ctl);
488				return -EIO;
489			}
490		}
491	}
492
493	for (i = 0; i < io_ctl->num_pages; i++)
494		clear_page_dirty_for_io(io_ctl->pages[i]);
495
496	return 0;
497}
498
499static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
500{
501	io_ctl_map_page(io_ctl, 1);
502
503	/*
504	 * Skip the csum areas.  If we don't check crcs then we just have a
505	 * 64bit chunk at the front of the first page.
506	 */
507	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
508	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
509
510	put_unaligned_le64(generation, io_ctl->cur);
511	io_ctl->cur += sizeof(u64);
512}
513
514static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
515{
516	u64 cache_gen;
517
518	/*
519	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
520	 * chunk at the front of the first page.
521	 */
522	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
523	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
524
525	cache_gen = get_unaligned_le64(io_ctl->cur);
526	if (cache_gen != generation) {
527		btrfs_err_rl(io_ctl->fs_info,
528			"space cache generation (%llu) does not match inode (%llu)",
529				cache_gen, generation);
530		io_ctl_unmap_page(io_ctl);
531		return -EIO;
532	}
533	io_ctl->cur += sizeof(u64);
534	return 0;
535}
536
537static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
538{
539	u32 *tmp;
540	u32 crc = ~(u32)0;
541	unsigned offset = 0;
542
543	if (index == 0)
544		offset = sizeof(u32) * io_ctl->num_pages;
545
546	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
547	btrfs_crc32c_final(crc, (u8 *)&crc);
548	io_ctl_unmap_page(io_ctl);
549	tmp = page_address(io_ctl->pages[0]);
550	tmp += index;
551	*tmp = crc;
552}
553
554static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
555{
556	u32 *tmp, val;
557	u32 crc = ~(u32)0;
558	unsigned offset = 0;
559
560	if (index == 0)
561		offset = sizeof(u32) * io_ctl->num_pages;
562
563	tmp = page_address(io_ctl->pages[0]);
564	tmp += index;
565	val = *tmp;
566
567	io_ctl_map_page(io_ctl, 0);
568	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
569	btrfs_crc32c_final(crc, (u8 *)&crc);
570	if (val != crc) {
571		btrfs_err_rl(io_ctl->fs_info,
572			"csum mismatch on free space cache");
573		io_ctl_unmap_page(io_ctl);
574		return -EIO;
575	}
576
577	return 0;
578}
579
580static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
581			    void *bitmap)
582{
583	struct btrfs_free_space_entry *entry;
584
585	if (!io_ctl->cur)
586		return -ENOSPC;
587
588	entry = io_ctl->cur;
589	put_unaligned_le64(offset, &entry->offset);
590	put_unaligned_le64(bytes, &entry->bytes);
591	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
592		BTRFS_FREE_SPACE_EXTENT;
593	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
594	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
595
596	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
597		return 0;
598
599	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
600
601	/* No more pages to map */
602	if (io_ctl->index >= io_ctl->num_pages)
603		return 0;
604
605	/* map the next page */
606	io_ctl_map_page(io_ctl, 1);
607	return 0;
608}
609
610static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
611{
612	if (!io_ctl->cur)
613		return -ENOSPC;
614
615	/*
616	 * If we aren't at the start of the current page, unmap this one and
617	 * map the next one if there is any left.
618	 */
619	if (io_ctl->cur != io_ctl->orig) {
620		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
621		if (io_ctl->index >= io_ctl->num_pages)
622			return -ENOSPC;
623		io_ctl_map_page(io_ctl, 0);
624	}
625
626	copy_page(io_ctl->cur, bitmap);
627	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
628	if (io_ctl->index < io_ctl->num_pages)
629		io_ctl_map_page(io_ctl, 0);
630	return 0;
631}
632
633static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
634{
635	/*
636	 * If we're not on the boundary we know we've modified the page and we
637	 * need to crc the page.
638	 */
639	if (io_ctl->cur != io_ctl->orig)
640		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
641	else
642		io_ctl_unmap_page(io_ctl);
643
644	while (io_ctl->index < io_ctl->num_pages) {
645		io_ctl_map_page(io_ctl, 1);
646		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
647	}
648}
649
650static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
651			    struct btrfs_free_space *entry, u8 *type)
652{
653	struct btrfs_free_space_entry *e;
654	int ret;
655
656	if (!io_ctl->cur) {
657		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
658		if (ret)
659			return ret;
660	}
661
662	e = io_ctl->cur;
663	entry->offset = get_unaligned_le64(&e->offset);
664	entry->bytes = get_unaligned_le64(&e->bytes);
665	*type = e->type;
666	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
667	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
668
669	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
670		return 0;
671
672	io_ctl_unmap_page(io_ctl);
673
674	return 0;
675}
676
677static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
678			      struct btrfs_free_space *entry)
679{
680	int ret;
681
682	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
683	if (ret)
684		return ret;
685
686	copy_page(entry->bitmap, io_ctl->cur);
687	io_ctl_unmap_page(io_ctl);
688
689	return 0;
690}
691
692static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
693{
694	struct btrfs_block_group *block_group = ctl->block_group;
695	u64 max_bytes;
696	u64 bitmap_bytes;
697	u64 extent_bytes;
698	u64 size = block_group->length;
699	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
700	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
701
702	max_bitmaps = max_t(u64, max_bitmaps, 1);
703
704	if (ctl->total_bitmaps > max_bitmaps)
705		btrfs_err(block_group->fs_info,
706"invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
707			  block_group->start, block_group->length,
708			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
709			  bytes_per_bg);
710	ASSERT(ctl->total_bitmaps <= max_bitmaps);
711
712	/*
713	 * We are trying to keep the total amount of memory used per 1GiB of
714	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
715	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
716	 * bitmaps, we may end up using more memory than this.
717	 */
718	if (size < SZ_1G)
719		max_bytes = MAX_CACHE_BYTES_PER_GIG;
720	else
721		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
722
723	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
724
725	/*
726	 * we want the extent entry threshold to always be at most 1/2 the max
727	 * bytes we can have, or whatever is less than that.
728	 */
729	extent_bytes = max_bytes - bitmap_bytes;
730	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
731
732	ctl->extents_thresh =
733		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
734}
735
736static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
737				   struct btrfs_free_space_ctl *ctl,
738				   struct btrfs_path *path, u64 offset)
739{
740	struct btrfs_fs_info *fs_info = root->fs_info;
741	struct btrfs_free_space_header *header;
742	struct extent_buffer *leaf;
743	struct btrfs_io_ctl io_ctl;
744	struct btrfs_key key;
745	struct btrfs_free_space *e, *n;
746	LIST_HEAD(bitmaps);
747	u64 num_entries;
748	u64 num_bitmaps;
749	u64 generation;
750	u8 type;
751	int ret = 0;
752
753	/* Nothing in the space cache, goodbye */
754	if (!i_size_read(inode))
755		return 0;
756
757	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
758	key.offset = offset;
759	key.type = 0;
760
761	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
762	if (ret < 0)
763		return 0;
764	else if (ret > 0) {
765		btrfs_release_path(path);
766		return 0;
767	}
768
769	ret = -1;
770
771	leaf = path->nodes[0];
772	header = btrfs_item_ptr(leaf, path->slots[0],
773				struct btrfs_free_space_header);
774	num_entries = btrfs_free_space_entries(leaf, header);
775	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
776	generation = btrfs_free_space_generation(leaf, header);
777	btrfs_release_path(path);
778
779	if (!BTRFS_I(inode)->generation) {
780		btrfs_info(fs_info,
781			   "the free space cache file (%llu) is invalid, skip it",
782			   offset);
783		return 0;
784	}
785
786	if (BTRFS_I(inode)->generation != generation) {
787		btrfs_err(fs_info,
788			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
789			  BTRFS_I(inode)->generation, generation);
790		return 0;
791	}
792
793	if (!num_entries)
794		return 0;
795
796	ret = io_ctl_init(&io_ctl, inode, 0);
797	if (ret)
798		return ret;
799
800	readahead_cache(inode);
801
802	ret = io_ctl_prepare_pages(&io_ctl, true);
803	if (ret)
804		goto out;
805
806	ret = io_ctl_check_crc(&io_ctl, 0);
807	if (ret)
808		goto free_cache;
809
810	ret = io_ctl_check_generation(&io_ctl, generation);
811	if (ret)
812		goto free_cache;
813
814	while (num_entries) {
815		e = kmem_cache_zalloc(btrfs_free_space_cachep,
816				      GFP_NOFS);
817		if (!e) {
818			ret = -ENOMEM;
819			goto free_cache;
820		}
821
822		ret = io_ctl_read_entry(&io_ctl, e, &type);
823		if (ret) {
824			kmem_cache_free(btrfs_free_space_cachep, e);
825			goto free_cache;
826		}
827
828		if (!e->bytes) {
829			ret = -1;
830			kmem_cache_free(btrfs_free_space_cachep, e);
831			goto free_cache;
832		}
833
834		if (type == BTRFS_FREE_SPACE_EXTENT) {
835			spin_lock(&ctl->tree_lock);
836			ret = link_free_space(ctl, e);
837			spin_unlock(&ctl->tree_lock);
838			if (ret) {
839				btrfs_err(fs_info,
840					"Duplicate entries in free space cache, dumping");
841				kmem_cache_free(btrfs_free_space_cachep, e);
842				goto free_cache;
843			}
844		} else {
845			ASSERT(num_bitmaps);
846			num_bitmaps--;
847			e->bitmap = kmem_cache_zalloc(
848					btrfs_free_space_bitmap_cachep, GFP_NOFS);
849			if (!e->bitmap) {
850				ret = -ENOMEM;
851				kmem_cache_free(
852					btrfs_free_space_cachep, e);
853				goto free_cache;
854			}
855			spin_lock(&ctl->tree_lock);
856			ret = link_free_space(ctl, e);
857			if (ret) {
858				spin_unlock(&ctl->tree_lock);
859				btrfs_err(fs_info,
860					"Duplicate entries in free space cache, dumping");
861				kmem_cache_free(btrfs_free_space_cachep, e);
862				goto free_cache;
863			}
864			ctl->total_bitmaps++;
865			recalculate_thresholds(ctl);
866			spin_unlock(&ctl->tree_lock);
867			list_add_tail(&e->list, &bitmaps);
868		}
869
870		num_entries--;
871	}
872
873	io_ctl_unmap_page(&io_ctl);
874
875	/*
876	 * We add the bitmaps at the end of the entries in order that
877	 * the bitmap entries are added to the cache.
878	 */
879	list_for_each_entry_safe(e, n, &bitmaps, list) {
880		list_del_init(&e->list);
881		ret = io_ctl_read_bitmap(&io_ctl, e);
882		if (ret)
883			goto free_cache;
884	}
885
886	io_ctl_drop_pages(&io_ctl);
887	ret = 1;
888out:
889	io_ctl_free(&io_ctl);
890	return ret;
891free_cache:
892	io_ctl_drop_pages(&io_ctl);
893
894	spin_lock(&ctl->tree_lock);
895	__btrfs_remove_free_space_cache(ctl);
896	spin_unlock(&ctl->tree_lock);
897	goto out;
898}
899
900static int copy_free_space_cache(struct btrfs_block_group *block_group,
901				 struct btrfs_free_space_ctl *ctl)
902{
903	struct btrfs_free_space *info;
904	struct rb_node *n;
905	int ret = 0;
906
907	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
908		info = rb_entry(n, struct btrfs_free_space, offset_index);
909		if (!info->bitmap) {
910			const u64 offset = info->offset;
911			const u64 bytes = info->bytes;
912
913			unlink_free_space(ctl, info, true);
914			spin_unlock(&ctl->tree_lock);
915			kmem_cache_free(btrfs_free_space_cachep, info);
916			ret = btrfs_add_free_space(block_group, offset, bytes);
917			spin_lock(&ctl->tree_lock);
918		} else {
919			u64 offset = info->offset;
920			u64 bytes = ctl->unit;
921
922			ret = search_bitmap(ctl, info, &offset, &bytes, false);
923			if (ret == 0) {
924				bitmap_clear_bits(ctl, info, offset, bytes, true);
925				spin_unlock(&ctl->tree_lock);
926				ret = btrfs_add_free_space(block_group, offset,
927							   bytes);
928				spin_lock(&ctl->tree_lock);
929			} else {
930				free_bitmap(ctl, info);
931				ret = 0;
932			}
933		}
934		cond_resched_lock(&ctl->tree_lock);
935	}
936	return ret;
937}
938
939static struct lock_class_key btrfs_free_space_inode_key;
940
941int load_free_space_cache(struct btrfs_block_group *block_group)
942{
943	struct btrfs_fs_info *fs_info = block_group->fs_info;
944	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
945	struct btrfs_free_space_ctl tmp_ctl = {};
946	struct inode *inode;
947	struct btrfs_path *path;
948	int ret = 0;
949	bool matched;
950	u64 used = block_group->used;
951
952	/*
953	 * Because we could potentially discard our loaded free space, we want
954	 * to load everything into a temporary structure first, and then if it's
955	 * valid copy it all into the actual free space ctl.
956	 */
957	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
958
959	/*
960	 * If this block group has been marked to be cleared for one reason or
961	 * another then we can't trust the on disk cache, so just return.
962	 */
963	spin_lock(&block_group->lock);
964	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
965		spin_unlock(&block_group->lock);
966		return 0;
967	}
968	spin_unlock(&block_group->lock);
969
970	path = btrfs_alloc_path();
971	if (!path)
972		return 0;
973	path->search_commit_root = 1;
974	path->skip_locking = 1;
975
976	/*
977	 * We must pass a path with search_commit_root set to btrfs_iget in
978	 * order to avoid a deadlock when allocating extents for the tree root.
979	 *
980	 * When we are COWing an extent buffer from the tree root, when looking
981	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
982	 * block group without its free space cache loaded. When we find one
983	 * we must load its space cache which requires reading its free space
984	 * cache's inode item from the root tree. If this inode item is located
985	 * in the same leaf that we started COWing before, then we end up in
986	 * deadlock on the extent buffer (trying to read lock it when we
987	 * previously write locked it).
988	 *
989	 * It's safe to read the inode item using the commit root because
990	 * block groups, once loaded, stay in memory forever (until they are
991	 * removed) as well as their space caches once loaded. New block groups
992	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
993	 * we will never try to read their inode item while the fs is mounted.
994	 */
995	inode = lookup_free_space_inode(block_group, path);
996	if (IS_ERR(inode)) {
997		btrfs_free_path(path);
998		return 0;
999	}
1000
1001	/* We may have converted the inode and made the cache invalid. */
1002	spin_lock(&block_group->lock);
1003	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1004		spin_unlock(&block_group->lock);
1005		btrfs_free_path(path);
1006		goto out;
1007	}
1008	spin_unlock(&block_group->lock);
1009
1010	/*
1011	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1012	 * free space inodes to prevent false positives related to locks for normal
1013	 * inodes.
1014	 */
1015	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1016			  &btrfs_free_space_inode_key);
1017
1018	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1019				      path, block_group->start);
1020	btrfs_free_path(path);
1021	if (ret <= 0)
1022		goto out;
1023
1024	matched = (tmp_ctl.free_space == (block_group->length - used -
1025					  block_group->bytes_super));
1026
1027	if (matched) {
1028		spin_lock(&tmp_ctl.tree_lock);
1029		ret = copy_free_space_cache(block_group, &tmp_ctl);
1030		spin_unlock(&tmp_ctl.tree_lock);
1031		/*
1032		 * ret == 1 means we successfully loaded the free space cache,
1033		 * so we need to re-set it here.
1034		 */
1035		if (ret == 0)
1036			ret = 1;
1037	} else {
1038		/*
1039		 * We need to call the _locked variant so we don't try to update
1040		 * the discard counters.
1041		 */
1042		spin_lock(&tmp_ctl.tree_lock);
1043		__btrfs_remove_free_space_cache(&tmp_ctl);
1044		spin_unlock(&tmp_ctl.tree_lock);
1045		btrfs_warn(fs_info,
1046			   "block group %llu has wrong amount of free space",
1047			   block_group->start);
1048		ret = -1;
1049	}
1050out:
1051	if (ret < 0) {
1052		/* This cache is bogus, make sure it gets cleared */
1053		spin_lock(&block_group->lock);
1054		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1055		spin_unlock(&block_group->lock);
1056		ret = 0;
1057
1058		btrfs_warn(fs_info,
1059			   "failed to load free space cache for block group %llu, rebuilding it now",
1060			   block_group->start);
1061	}
1062
1063	spin_lock(&ctl->tree_lock);
1064	btrfs_discard_update_discardable(block_group);
1065	spin_unlock(&ctl->tree_lock);
1066	iput(inode);
1067	return ret;
1068}
1069
1070static noinline_for_stack
1071int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1072			      struct btrfs_free_space_ctl *ctl,
1073			      struct btrfs_block_group *block_group,
1074			      int *entries, int *bitmaps,
1075			      struct list_head *bitmap_list)
1076{
1077	int ret;
1078	struct btrfs_free_cluster *cluster = NULL;
1079	struct btrfs_free_cluster *cluster_locked = NULL;
1080	struct rb_node *node = rb_first(&ctl->free_space_offset);
1081	struct btrfs_trim_range *trim_entry;
1082
1083	/* Get the cluster for this block_group if it exists */
1084	if (block_group && !list_empty(&block_group->cluster_list)) {
1085		cluster = list_entry(block_group->cluster_list.next,
1086				     struct btrfs_free_cluster,
1087				     block_group_list);
1088	}
1089
1090	if (!node && cluster) {
1091		cluster_locked = cluster;
1092		spin_lock(&cluster_locked->lock);
1093		node = rb_first(&cluster->root);
1094		cluster = NULL;
1095	}
1096
1097	/* Write out the extent entries */
1098	while (node) {
1099		struct btrfs_free_space *e;
1100
1101		e = rb_entry(node, struct btrfs_free_space, offset_index);
1102		*entries += 1;
1103
1104		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1105				       e->bitmap);
1106		if (ret)
1107			goto fail;
1108
1109		if (e->bitmap) {
1110			list_add_tail(&e->list, bitmap_list);
1111			*bitmaps += 1;
1112		}
1113		node = rb_next(node);
1114		if (!node && cluster) {
1115			node = rb_first(&cluster->root);
1116			cluster_locked = cluster;
1117			spin_lock(&cluster_locked->lock);
1118			cluster = NULL;
1119		}
1120	}
1121	if (cluster_locked) {
1122		spin_unlock(&cluster_locked->lock);
1123		cluster_locked = NULL;
1124	}
1125
1126	/*
1127	 * Make sure we don't miss any range that was removed from our rbtree
1128	 * because trimming is running. Otherwise after a umount+mount (or crash
1129	 * after committing the transaction) we would leak free space and get
1130	 * an inconsistent free space cache report from fsck.
1131	 */
1132	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1133		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1134				       trim_entry->bytes, NULL);
1135		if (ret)
1136			goto fail;
1137		*entries += 1;
1138	}
1139
1140	return 0;
1141fail:
1142	if (cluster_locked)
1143		spin_unlock(&cluster_locked->lock);
1144	return -ENOSPC;
1145}
1146
1147static noinline_for_stack int
1148update_cache_item(struct btrfs_trans_handle *trans,
1149		  struct btrfs_root *root,
1150		  struct inode *inode,
1151		  struct btrfs_path *path, u64 offset,
1152		  int entries, int bitmaps)
1153{
1154	struct btrfs_key key;
1155	struct btrfs_free_space_header *header;
1156	struct extent_buffer *leaf;
1157	int ret;
1158
1159	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1160	key.offset = offset;
1161	key.type = 0;
1162
1163	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1164	if (ret < 0) {
1165		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1166				 EXTENT_DELALLOC, NULL);
1167		goto fail;
1168	}
1169	leaf = path->nodes[0];
1170	if (ret > 0) {
1171		struct btrfs_key found_key;
1172		ASSERT(path->slots[0]);
1173		path->slots[0]--;
1174		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1175		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1176		    found_key.offset != offset) {
1177			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1178					 inode->i_size - 1, EXTENT_DELALLOC,
1179					 NULL);
1180			btrfs_release_path(path);
1181			goto fail;
1182		}
1183	}
1184
1185	BTRFS_I(inode)->generation = trans->transid;
1186	header = btrfs_item_ptr(leaf, path->slots[0],
1187				struct btrfs_free_space_header);
1188	btrfs_set_free_space_entries(leaf, header, entries);
1189	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1190	btrfs_set_free_space_generation(leaf, header, trans->transid);
1191	btrfs_mark_buffer_dirty(trans, leaf);
1192	btrfs_release_path(path);
1193
1194	return 0;
1195
1196fail:
1197	return -1;
1198}
1199
1200static noinline_for_stack int write_pinned_extent_entries(
1201			    struct btrfs_trans_handle *trans,
1202			    struct btrfs_block_group *block_group,
1203			    struct btrfs_io_ctl *io_ctl,
1204			    int *entries)
1205{
1206	u64 start, extent_start, extent_end, len;
1207	struct extent_io_tree *unpin = NULL;
1208	int ret;
1209
1210	if (!block_group)
1211		return 0;
1212
1213	/*
1214	 * We want to add any pinned extents to our free space cache
1215	 * so we don't leak the space
1216	 *
1217	 * We shouldn't have switched the pinned extents yet so this is the
1218	 * right one
1219	 */
1220	unpin = &trans->transaction->pinned_extents;
1221
1222	start = block_group->start;
1223
1224	while (start < block_group->start + block_group->length) {
1225		if (!find_first_extent_bit(unpin, start,
1226					   &extent_start, &extent_end,
1227					   EXTENT_DIRTY, NULL))
1228			return 0;
1229
1230		/* This pinned extent is out of our range */
1231		if (extent_start >= block_group->start + block_group->length)
1232			return 0;
1233
1234		extent_start = max(extent_start, start);
1235		extent_end = min(block_group->start + block_group->length,
1236				 extent_end + 1);
1237		len = extent_end - extent_start;
1238
1239		*entries += 1;
1240		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1241		if (ret)
1242			return -ENOSPC;
1243
1244		start = extent_end;
1245	}
1246
1247	return 0;
1248}
1249
1250static noinline_for_stack int
1251write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1252{
1253	struct btrfs_free_space *entry, *next;
1254	int ret;
1255
1256	/* Write out the bitmaps */
1257	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1258		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1259		if (ret)
1260			return -ENOSPC;
1261		list_del_init(&entry->list);
1262	}
1263
1264	return 0;
1265}
1266
1267static int flush_dirty_cache(struct inode *inode)
1268{
1269	int ret;
1270
1271	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1272	if (ret)
1273		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1274				 EXTENT_DELALLOC, NULL);
1275
1276	return ret;
1277}
1278
1279static void noinline_for_stack
1280cleanup_bitmap_list(struct list_head *bitmap_list)
1281{
1282	struct btrfs_free_space *entry, *next;
1283
1284	list_for_each_entry_safe(entry, next, bitmap_list, list)
1285		list_del_init(&entry->list);
1286}
1287
1288static void noinline_for_stack
1289cleanup_write_cache_enospc(struct inode *inode,
1290			   struct btrfs_io_ctl *io_ctl,
1291			   struct extent_state **cached_state)
1292{
1293	io_ctl_drop_pages(io_ctl);
1294	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1295		      cached_state);
1296}
1297
1298static int __btrfs_wait_cache_io(struct btrfs_root *root,
1299				 struct btrfs_trans_handle *trans,
1300				 struct btrfs_block_group *block_group,
1301				 struct btrfs_io_ctl *io_ctl,
1302				 struct btrfs_path *path, u64 offset)
1303{
1304	int ret;
1305	struct inode *inode = io_ctl->inode;
1306
1307	if (!inode)
1308		return 0;
1309
1310	/* Flush the dirty pages in the cache file. */
1311	ret = flush_dirty_cache(inode);
1312	if (ret)
1313		goto out;
1314
1315	/* Update the cache item to tell everyone this cache file is valid. */
1316	ret = update_cache_item(trans, root, inode, path, offset,
1317				io_ctl->entries, io_ctl->bitmaps);
1318out:
1319	if (ret) {
1320		invalidate_inode_pages2(inode->i_mapping);
1321		BTRFS_I(inode)->generation = 0;
1322		if (block_group)
1323			btrfs_debug(root->fs_info,
1324	  "failed to write free space cache for block group %llu error %d",
1325				  block_group->start, ret);
1326	}
1327	btrfs_update_inode(trans, BTRFS_I(inode));
1328
1329	if (block_group) {
1330		/* the dirty list is protected by the dirty_bgs_lock */
1331		spin_lock(&trans->transaction->dirty_bgs_lock);
1332
1333		/* the disk_cache_state is protected by the block group lock */
1334		spin_lock(&block_group->lock);
1335
1336		/*
1337		 * only mark this as written if we didn't get put back on
1338		 * the dirty list while waiting for IO.   Otherwise our
1339		 * cache state won't be right, and we won't get written again
1340		 */
1341		if (!ret && list_empty(&block_group->dirty_list))
1342			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1343		else if (ret)
1344			block_group->disk_cache_state = BTRFS_DC_ERROR;
1345
1346		spin_unlock(&block_group->lock);
1347		spin_unlock(&trans->transaction->dirty_bgs_lock);
1348		io_ctl->inode = NULL;
1349		iput(inode);
1350	}
1351
1352	return ret;
1353
1354}
1355
1356int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1357			struct btrfs_block_group *block_group,
1358			struct btrfs_path *path)
1359{
1360	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1361				     block_group, &block_group->io_ctl,
1362				     path, block_group->start);
1363}
1364
1365/*
1366 * Write out cached info to an inode.
1367 *
1368 * @inode:       freespace inode we are writing out
1369 * @ctl:         free space cache we are going to write out
1370 * @block_group: block_group for this cache if it belongs to a block_group
1371 * @io_ctl:      holds context for the io
1372 * @trans:       the trans handle
1373 *
1374 * This function writes out a free space cache struct to disk for quick recovery
1375 * on mount.  This will return 0 if it was successful in writing the cache out,
1376 * or an errno if it was not.
1377 */
1378static int __btrfs_write_out_cache(struct inode *inode,
1379				   struct btrfs_free_space_ctl *ctl,
1380				   struct btrfs_block_group *block_group,
1381				   struct btrfs_io_ctl *io_ctl,
1382				   struct btrfs_trans_handle *trans)
1383{
1384	struct extent_state *cached_state = NULL;
1385	LIST_HEAD(bitmap_list);
1386	int entries = 0;
1387	int bitmaps = 0;
1388	int ret;
1389	int must_iput = 0;
1390
1391	if (!i_size_read(inode))
1392		return -EIO;
1393
1394	WARN_ON(io_ctl->pages);
1395	ret = io_ctl_init(io_ctl, inode, 1);
1396	if (ret)
1397		return ret;
1398
1399	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1400		down_write(&block_group->data_rwsem);
1401		spin_lock(&block_group->lock);
1402		if (block_group->delalloc_bytes) {
1403			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1404			spin_unlock(&block_group->lock);
1405			up_write(&block_group->data_rwsem);
1406			BTRFS_I(inode)->generation = 0;
1407			ret = 0;
1408			must_iput = 1;
1409			goto out;
1410		}
1411		spin_unlock(&block_group->lock);
1412	}
1413
1414	/* Lock all pages first so we can lock the extent safely. */
1415	ret = io_ctl_prepare_pages(io_ctl, false);
1416	if (ret)
1417		goto out_unlock;
1418
1419	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1420		    &cached_state);
1421
1422	io_ctl_set_generation(io_ctl, trans->transid);
1423
1424	mutex_lock(&ctl->cache_writeout_mutex);
1425	/* Write out the extent entries in the free space cache */
1426	spin_lock(&ctl->tree_lock);
1427	ret = write_cache_extent_entries(io_ctl, ctl,
1428					 block_group, &entries, &bitmaps,
1429					 &bitmap_list);
1430	if (ret)
1431		goto out_nospc_locked;
1432
1433	/*
1434	 * Some spaces that are freed in the current transaction are pinned,
1435	 * they will be added into free space cache after the transaction is
1436	 * committed, we shouldn't lose them.
1437	 *
1438	 * If this changes while we are working we'll get added back to
1439	 * the dirty list and redo it.  No locking needed
1440	 */
1441	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1442	if (ret)
1443		goto out_nospc_locked;
1444
1445	/*
1446	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1447	 * locked while doing it because a concurrent trim can be manipulating
1448	 * or freeing the bitmap.
1449	 */
1450	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1451	spin_unlock(&ctl->tree_lock);
1452	mutex_unlock(&ctl->cache_writeout_mutex);
1453	if (ret)
1454		goto out_nospc;
1455
1456	/* Zero out the rest of the pages just to make sure */
1457	io_ctl_zero_remaining_pages(io_ctl);
1458
1459	/* Everything is written out, now we dirty the pages in the file. */
1460	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1461				io_ctl->num_pages, 0, i_size_read(inode),
1462				&cached_state, false);
1463	if (ret)
1464		goto out_nospc;
1465
1466	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1467		up_write(&block_group->data_rwsem);
1468	/*
1469	 * Release the pages and unlock the extent, we will flush
1470	 * them out later
1471	 */
1472	io_ctl_drop_pages(io_ctl);
1473	io_ctl_free(io_ctl);
1474
1475	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1476		      &cached_state);
1477
1478	/*
1479	 * at this point the pages are under IO and we're happy,
1480	 * The caller is responsible for waiting on them and updating
1481	 * the cache and the inode
1482	 */
1483	io_ctl->entries = entries;
1484	io_ctl->bitmaps = bitmaps;
1485
1486	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1487	if (ret)
1488		goto out;
1489
1490	return 0;
1491
1492out_nospc_locked:
1493	cleanup_bitmap_list(&bitmap_list);
1494	spin_unlock(&ctl->tree_lock);
1495	mutex_unlock(&ctl->cache_writeout_mutex);
1496
1497out_nospc:
1498	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1499
1500out_unlock:
1501	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1502		up_write(&block_group->data_rwsem);
1503
1504out:
1505	io_ctl->inode = NULL;
1506	io_ctl_free(io_ctl);
1507	if (ret) {
1508		invalidate_inode_pages2(inode->i_mapping);
1509		BTRFS_I(inode)->generation = 0;
1510	}
1511	btrfs_update_inode(trans, BTRFS_I(inode));
1512	if (must_iput)
1513		iput(inode);
1514	return ret;
1515}
1516
1517int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1518			  struct btrfs_block_group *block_group,
1519			  struct btrfs_path *path)
1520{
1521	struct btrfs_fs_info *fs_info = trans->fs_info;
1522	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1523	struct inode *inode;
1524	int ret = 0;
1525
1526	spin_lock(&block_group->lock);
1527	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1528		spin_unlock(&block_group->lock);
1529		return 0;
1530	}
1531	spin_unlock(&block_group->lock);
1532
1533	inode = lookup_free_space_inode(block_group, path);
1534	if (IS_ERR(inode))
1535		return 0;
1536
1537	ret = __btrfs_write_out_cache(inode, ctl, block_group,
1538				      &block_group->io_ctl, trans);
1539	if (ret) {
1540		btrfs_debug(fs_info,
1541	  "failed to write free space cache for block group %llu error %d",
1542			  block_group->start, ret);
1543		spin_lock(&block_group->lock);
1544		block_group->disk_cache_state = BTRFS_DC_ERROR;
1545		spin_unlock(&block_group->lock);
1546
1547		block_group->io_ctl.inode = NULL;
1548		iput(inode);
1549	}
1550
1551	/*
1552	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1553	 * to wait for IO and put the inode
1554	 */
1555
1556	return ret;
1557}
1558
1559static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1560					  u64 offset)
1561{
1562	ASSERT(offset >= bitmap_start);
1563	offset -= bitmap_start;
1564	return (unsigned long)(div_u64(offset, unit));
1565}
1566
1567static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1568{
1569	return (unsigned long)(div_u64(bytes, unit));
1570}
1571
1572static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1573				   u64 offset)
1574{
1575	u64 bitmap_start;
1576	u64 bytes_per_bitmap;
1577
1578	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1579	bitmap_start = offset - ctl->start;
1580	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1581	bitmap_start *= bytes_per_bitmap;
1582	bitmap_start += ctl->start;
1583
1584	return bitmap_start;
1585}
1586
1587static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1588			      struct btrfs_free_cluster *cluster,
1589			      struct btrfs_free_space *new_entry)
1590{
1591	struct rb_root *root;
1592	struct rb_node **p;
1593	struct rb_node *parent = NULL;
1594
1595	lockdep_assert_held(&ctl->tree_lock);
1596
1597	if (cluster) {
1598		lockdep_assert_held(&cluster->lock);
1599		root = &cluster->root;
1600	} else {
1601		root = &ctl->free_space_offset;
1602	}
1603
1604	p = &root->rb_node;
1605
1606	while (*p) {
1607		struct btrfs_free_space *info;
1608
1609		parent = *p;
1610		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1611
1612		if (new_entry->offset < info->offset) {
1613			p = &(*p)->rb_left;
1614		} else if (new_entry->offset > info->offset) {
1615			p = &(*p)->rb_right;
1616		} else {
1617			/*
1618			 * we could have a bitmap entry and an extent entry
1619			 * share the same offset.  If this is the case, we want
1620			 * the extent entry to always be found first if we do a
1621			 * linear search through the tree, since we want to have
1622			 * the quickest allocation time, and allocating from an
1623			 * extent is faster than allocating from a bitmap.  So
1624			 * if we're inserting a bitmap and we find an entry at
1625			 * this offset, we want to go right, or after this entry
1626			 * logically.  If we are inserting an extent and we've
1627			 * found a bitmap, we want to go left, or before
1628			 * logically.
1629			 */
1630			if (new_entry->bitmap) {
1631				if (info->bitmap) {
1632					WARN_ON_ONCE(1);
1633					return -EEXIST;
1634				}
1635				p = &(*p)->rb_right;
1636			} else {
1637				if (!info->bitmap) {
1638					WARN_ON_ONCE(1);
1639					return -EEXIST;
1640				}
1641				p = &(*p)->rb_left;
1642			}
1643		}
1644	}
1645
1646	rb_link_node(&new_entry->offset_index, parent, p);
1647	rb_insert_color(&new_entry->offset_index, root);
1648
1649	return 0;
1650}
1651
1652/*
1653 * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1654 * searched through the bitmap and figured out the largest ->max_extent_size,
1655 * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1656 * allocator the wrong thing, we want to use the actual real max_extent_size
1657 * we've found already if it's larger, or we want to use ->bytes.
1658 *
1659 * This matters because find_free_space() will skip entries who's ->bytes is
1660 * less than the required bytes.  So if we didn't search down this bitmap, we
1661 * may pick some previous entry that has a smaller ->max_extent_size than we
1662 * have.  For example, assume we have two entries, one that has
1663 * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1664 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1665 *  call into find_free_space(), and return with max_extent_size == 4K, because
1666 *  that first bitmap entry had ->max_extent_size set, but the second one did
1667 *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1668 *  8K contiguous range.
1669 *
1670 *  Consider the other case, we have 2 8K chunks in that second entry and still
1671 *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1672 *  allocator comes in it'll fully search our second bitmap, and this time it'll
1673 *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1674 *  right allocation the next loop through.
1675 */
1676static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1677{
1678	if (entry->bitmap && entry->max_extent_size)
1679		return entry->max_extent_size;
1680	return entry->bytes;
1681}
1682
1683/*
1684 * We want the largest entry to be leftmost, so this is inverted from what you'd
1685 * normally expect.
1686 */
1687static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1688{
1689	const struct btrfs_free_space *entry, *exist;
1690
1691	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1692	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1693	return get_max_extent_size(exist) < get_max_extent_size(entry);
1694}
1695
1696/*
1697 * searches the tree for the given offset.
1698 *
1699 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1700 * want a section that has at least bytes size and comes at or after the given
1701 * offset.
1702 */
1703static struct btrfs_free_space *
1704tree_search_offset(struct btrfs_free_space_ctl *ctl,
1705		   u64 offset, int bitmap_only, int fuzzy)
1706{
1707	struct rb_node *n = ctl->free_space_offset.rb_node;
1708	struct btrfs_free_space *entry = NULL, *prev = NULL;
1709
1710	lockdep_assert_held(&ctl->tree_lock);
1711
1712	/* find entry that is closest to the 'offset' */
1713	while (n) {
1714		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1715		prev = entry;
1716
1717		if (offset < entry->offset)
1718			n = n->rb_left;
1719		else if (offset > entry->offset)
1720			n = n->rb_right;
1721		else
1722			break;
1723
1724		entry = NULL;
1725	}
1726
1727	if (bitmap_only) {
1728		if (!entry)
1729			return NULL;
1730		if (entry->bitmap)
1731			return entry;
1732
1733		/*
1734		 * bitmap entry and extent entry may share same offset,
1735		 * in that case, bitmap entry comes after extent entry.
1736		 */
1737		n = rb_next(n);
1738		if (!n)
1739			return NULL;
1740		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1741		if (entry->offset != offset)
1742			return NULL;
1743
1744		WARN_ON(!entry->bitmap);
1745		return entry;
1746	} else if (entry) {
1747		if (entry->bitmap) {
1748			/*
1749			 * if previous extent entry covers the offset,
1750			 * we should return it instead of the bitmap entry
1751			 */
1752			n = rb_prev(&entry->offset_index);
1753			if (n) {
1754				prev = rb_entry(n, struct btrfs_free_space,
1755						offset_index);
1756				if (!prev->bitmap &&
1757				    prev->offset + prev->bytes > offset)
1758					entry = prev;
1759			}
1760		}
1761		return entry;
1762	}
1763
1764	if (!prev)
1765		return NULL;
1766
1767	/* find last entry before the 'offset' */
1768	entry = prev;
1769	if (entry->offset > offset) {
1770		n = rb_prev(&entry->offset_index);
1771		if (n) {
1772			entry = rb_entry(n, struct btrfs_free_space,
1773					offset_index);
1774			ASSERT(entry->offset <= offset);
1775		} else {
1776			if (fuzzy)
1777				return entry;
1778			else
1779				return NULL;
1780		}
1781	}
1782
1783	if (entry->bitmap) {
1784		n = rb_prev(&entry->offset_index);
1785		if (n) {
1786			prev = rb_entry(n, struct btrfs_free_space,
1787					offset_index);
1788			if (!prev->bitmap &&
1789			    prev->offset + prev->bytes > offset)
1790				return prev;
1791		}
1792		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1793			return entry;
1794	} else if (entry->offset + entry->bytes > offset)
1795		return entry;
1796
1797	if (!fuzzy)
1798		return NULL;
1799
1800	while (1) {
1801		n = rb_next(&entry->offset_index);
1802		if (!n)
1803			return NULL;
1804		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1805		if (entry->bitmap) {
1806			if (entry->offset + BITS_PER_BITMAP *
1807			    ctl->unit > offset)
1808				break;
1809		} else {
1810			if (entry->offset + entry->bytes > offset)
1811				break;
1812		}
1813	}
1814	return entry;
1815}
1816
1817static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1818				     struct btrfs_free_space *info,
1819				     bool update_stat)
1820{
1821	lockdep_assert_held(&ctl->tree_lock);
1822
1823	rb_erase(&info->offset_index, &ctl->free_space_offset);
1824	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1825	ctl->free_extents--;
1826
1827	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1828		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1829		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1830	}
1831
1832	if (update_stat)
1833		ctl->free_space -= info->bytes;
1834}
1835
1836static int link_free_space(struct btrfs_free_space_ctl *ctl,
1837			   struct btrfs_free_space *info)
1838{
1839	int ret = 0;
1840
1841	lockdep_assert_held(&ctl->tree_lock);
1842
1843	ASSERT(info->bytes || info->bitmap);
1844	ret = tree_insert_offset(ctl, NULL, info);
1845	if (ret)
1846		return ret;
1847
1848	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1849
1850	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1851		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1852		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1853	}
1854
1855	ctl->free_space += info->bytes;
1856	ctl->free_extents++;
1857	return ret;
1858}
1859
1860static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1861				struct btrfs_free_space *info)
1862{
1863	ASSERT(info->bitmap);
1864
1865	/*
1866	 * If our entry is empty it's because we're on a cluster and we don't
1867	 * want to re-link it into our ctl bytes index.
1868	 */
1869	if (RB_EMPTY_NODE(&info->bytes_index))
1870		return;
1871
1872	lockdep_assert_held(&ctl->tree_lock);
1873
1874	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1875	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1876}
1877
1878static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1879				     struct btrfs_free_space *info,
1880				     u64 offset, u64 bytes, bool update_stat)
1881{
1882	unsigned long start, count, end;
1883	int extent_delta = -1;
1884
1885	start = offset_to_bit(info->offset, ctl->unit, offset);
1886	count = bytes_to_bits(bytes, ctl->unit);
1887	end = start + count;
1888	ASSERT(end <= BITS_PER_BITMAP);
1889
1890	bitmap_clear(info->bitmap, start, count);
1891
1892	info->bytes -= bytes;
1893	if (info->max_extent_size > ctl->unit)
1894		info->max_extent_size = 0;
1895
1896	relink_bitmap_entry(ctl, info);
1897
1898	if (start && test_bit(start - 1, info->bitmap))
1899		extent_delta++;
1900
1901	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1902		extent_delta++;
1903
1904	info->bitmap_extents += extent_delta;
1905	if (!btrfs_free_space_trimmed(info)) {
1906		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1907		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1908	}
1909
1910	if (update_stat)
1911		ctl->free_space -= bytes;
1912}
1913
1914static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1915			    struct btrfs_free_space *info, u64 offset,
1916			    u64 bytes)
1917{
1918	unsigned long start, count, end;
1919	int extent_delta = 1;
1920
1921	start = offset_to_bit(info->offset, ctl->unit, offset);
1922	count = bytes_to_bits(bytes, ctl->unit);
1923	end = start + count;
1924	ASSERT(end <= BITS_PER_BITMAP);
1925
1926	bitmap_set(info->bitmap, start, count);
1927
1928	/*
1929	 * We set some bytes, we have no idea what the max extent size is
1930	 * anymore.
1931	 */
1932	info->max_extent_size = 0;
1933	info->bytes += bytes;
1934	ctl->free_space += bytes;
1935
1936	relink_bitmap_entry(ctl, info);
1937
1938	if (start && test_bit(start - 1, info->bitmap))
1939		extent_delta--;
1940
1941	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1942		extent_delta--;
1943
1944	info->bitmap_extents += extent_delta;
1945	if (!btrfs_free_space_trimmed(info)) {
1946		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1947		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1948	}
1949}
1950
1951/*
1952 * If we can not find suitable extent, we will use bytes to record
1953 * the size of the max extent.
1954 */
1955static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1956			 struct btrfs_free_space *bitmap_info, u64 *offset,
1957			 u64 *bytes, bool for_alloc)
1958{
1959	unsigned long found_bits = 0;
1960	unsigned long max_bits = 0;
1961	unsigned long bits, i;
1962	unsigned long next_zero;
1963	unsigned long extent_bits;
1964
1965	/*
1966	 * Skip searching the bitmap if we don't have a contiguous section that
1967	 * is large enough for this allocation.
1968	 */
1969	if (for_alloc &&
1970	    bitmap_info->max_extent_size &&
1971	    bitmap_info->max_extent_size < *bytes) {
1972		*bytes = bitmap_info->max_extent_size;
1973		return -1;
1974	}
1975
1976	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1977			  max_t(u64, *offset, bitmap_info->offset));
1978	bits = bytes_to_bits(*bytes, ctl->unit);
1979
1980	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1981		if (for_alloc && bits == 1) {
1982			found_bits = 1;
1983			break;
1984		}
1985		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1986					       BITS_PER_BITMAP, i);
1987		extent_bits = next_zero - i;
1988		if (extent_bits >= bits) {
1989			found_bits = extent_bits;
1990			break;
1991		} else if (extent_bits > max_bits) {
1992			max_bits = extent_bits;
1993		}
1994		i = next_zero;
1995	}
1996
1997	if (found_bits) {
1998		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1999		*bytes = (u64)(found_bits) * ctl->unit;
2000		return 0;
2001	}
2002
2003	*bytes = (u64)(max_bits) * ctl->unit;
2004	bitmap_info->max_extent_size = *bytes;
2005	relink_bitmap_entry(ctl, bitmap_info);
2006	return -1;
2007}
2008
2009/* Cache the size of the max extent in bytes */
2010static struct btrfs_free_space *
2011find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2012		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2013{
2014	struct btrfs_free_space *entry;
2015	struct rb_node *node;
2016	u64 tmp;
2017	u64 align_off;
2018	int ret;
2019
2020	if (!ctl->free_space_offset.rb_node)
2021		goto out;
2022again:
2023	if (use_bytes_index) {
2024		node = rb_first_cached(&ctl->free_space_bytes);
2025	} else {
2026		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2027					   0, 1);
2028		if (!entry)
2029			goto out;
2030		node = &entry->offset_index;
2031	}
2032
2033	for (; node; node = rb_next(node)) {
2034		if (use_bytes_index)
2035			entry = rb_entry(node, struct btrfs_free_space,
2036					 bytes_index);
2037		else
2038			entry = rb_entry(node, struct btrfs_free_space,
2039					 offset_index);
2040
2041		/*
2042		 * If we are using the bytes index then all subsequent entries
2043		 * in this tree are going to be < bytes, so simply set the max
2044		 * extent size and exit the loop.
2045		 *
2046		 * If we're using the offset index then we need to keep going
2047		 * through the rest of the tree.
2048		 */
2049		if (entry->bytes < *bytes) {
2050			*max_extent_size = max(get_max_extent_size(entry),
2051					       *max_extent_size);
2052			if (use_bytes_index)
2053				break;
2054			continue;
2055		}
2056
2057		/* make sure the space returned is big enough
2058		 * to match our requested alignment
2059		 */
2060		if (*bytes >= align) {
2061			tmp = entry->offset - ctl->start + align - 1;
2062			tmp = div64_u64(tmp, align);
2063			tmp = tmp * align + ctl->start;
2064			align_off = tmp - entry->offset;
2065		} else {
2066			align_off = 0;
2067			tmp = entry->offset;
2068		}
2069
2070		/*
2071		 * We don't break here if we're using the bytes index because we
2072		 * may have another entry that has the correct alignment that is
2073		 * the right size, so we don't want to miss that possibility.
2074		 * At worst this adds another loop through the logic, but if we
2075		 * broke here we could prematurely ENOSPC.
2076		 */
2077		if (entry->bytes < *bytes + align_off) {
2078			*max_extent_size = max(get_max_extent_size(entry),
2079					       *max_extent_size);
2080			continue;
2081		}
2082
2083		if (entry->bitmap) {
2084			struct rb_node *old_next = rb_next(node);
2085			u64 size = *bytes;
2086
2087			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2088			if (!ret) {
2089				*offset = tmp;
2090				*bytes = size;
2091				return entry;
2092			} else {
2093				*max_extent_size =
2094					max(get_max_extent_size(entry),
2095					    *max_extent_size);
2096			}
2097
2098			/*
2099			 * The bitmap may have gotten re-arranged in the space
2100			 * index here because the max_extent_size may have been
2101			 * updated.  Start from the beginning again if this
2102			 * happened.
2103			 */
2104			if (use_bytes_index && old_next != rb_next(node))
2105				goto again;
2106			continue;
2107		}
2108
2109		*offset = tmp;
2110		*bytes = entry->bytes - align_off;
2111		return entry;
2112	}
2113out:
2114	return NULL;
2115}
2116
2117static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2118			   struct btrfs_free_space *info, u64 offset)
2119{
2120	info->offset = offset_to_bitmap(ctl, offset);
2121	info->bytes = 0;
2122	info->bitmap_extents = 0;
2123	INIT_LIST_HEAD(&info->list);
2124	link_free_space(ctl, info);
2125	ctl->total_bitmaps++;
2126	recalculate_thresholds(ctl);
2127}
2128
2129static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2130			struct btrfs_free_space *bitmap_info)
2131{
2132	/*
2133	 * Normally when this is called, the bitmap is completely empty. However,
2134	 * if we are blowing up the free space cache for one reason or another
2135	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2136	 * we may leave stats on the table.
2137	 */
2138	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2139		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2140			bitmap_info->bitmap_extents;
2141		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2142
2143	}
2144	unlink_free_space(ctl, bitmap_info, true);
2145	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2146	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2147	ctl->total_bitmaps--;
2148	recalculate_thresholds(ctl);
2149}
2150
2151static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2152			      struct btrfs_free_space *bitmap_info,
2153			      u64 *offset, u64 *bytes)
2154{
2155	u64 end;
2156	u64 search_start, search_bytes;
2157	int ret;
2158
2159again:
2160	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2161
2162	/*
2163	 * We need to search for bits in this bitmap.  We could only cover some
2164	 * of the extent in this bitmap thanks to how we add space, so we need
2165	 * to search for as much as it as we can and clear that amount, and then
2166	 * go searching for the next bit.
2167	 */
2168	search_start = *offset;
2169	search_bytes = ctl->unit;
2170	search_bytes = min(search_bytes, end - search_start + 1);
2171	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2172			    false);
2173	if (ret < 0 || search_start != *offset)
2174		return -EINVAL;
2175
2176	/* We may have found more bits than what we need */
2177	search_bytes = min(search_bytes, *bytes);
2178
2179	/* Cannot clear past the end of the bitmap */
2180	search_bytes = min(search_bytes, end - search_start + 1);
2181
2182	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2183	*offset += search_bytes;
2184	*bytes -= search_bytes;
2185
2186	if (*bytes) {
2187		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2188		if (!bitmap_info->bytes)
2189			free_bitmap(ctl, bitmap_info);
2190
2191		/*
2192		 * no entry after this bitmap, but we still have bytes to
2193		 * remove, so something has gone wrong.
2194		 */
2195		if (!next)
2196			return -EINVAL;
2197
2198		bitmap_info = rb_entry(next, struct btrfs_free_space,
2199				       offset_index);
2200
2201		/*
2202		 * if the next entry isn't a bitmap we need to return to let the
2203		 * extent stuff do its work.
2204		 */
2205		if (!bitmap_info->bitmap)
2206			return -EAGAIN;
2207
2208		/*
2209		 * Ok the next item is a bitmap, but it may not actually hold
2210		 * the information for the rest of this free space stuff, so
2211		 * look for it, and if we don't find it return so we can try
2212		 * everything over again.
2213		 */
2214		search_start = *offset;
2215		search_bytes = ctl->unit;
2216		ret = search_bitmap(ctl, bitmap_info, &search_start,
2217				    &search_bytes, false);
2218		if (ret < 0 || search_start != *offset)
2219			return -EAGAIN;
2220
2221		goto again;
2222	} else if (!bitmap_info->bytes)
2223		free_bitmap(ctl, bitmap_info);
2224
2225	return 0;
2226}
2227
2228static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2229			       struct btrfs_free_space *info, u64 offset,
2230			       u64 bytes, enum btrfs_trim_state trim_state)
2231{
2232	u64 bytes_to_set = 0;
2233	u64 end;
2234
2235	/*
2236	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2237	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2238	 */
2239	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2240		if (btrfs_free_space_trimmed(info)) {
2241			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2242				info->bitmap_extents;
2243			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2244		}
2245		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2246	}
2247
2248	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2249
2250	bytes_to_set = min(end - offset, bytes);
2251
2252	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2253
2254	return bytes_to_set;
2255
2256}
2257
2258static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2259		      struct btrfs_free_space *info)
2260{
2261	struct btrfs_block_group *block_group = ctl->block_group;
2262	struct btrfs_fs_info *fs_info = block_group->fs_info;
2263	bool forced = false;
2264
2265#ifdef CONFIG_BTRFS_DEBUG
2266	if (btrfs_should_fragment_free_space(block_group))
2267		forced = true;
2268#endif
2269
2270	/* This is a way to reclaim large regions from the bitmaps. */
2271	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2272		return false;
2273
2274	/*
2275	 * If we are below the extents threshold then we can add this as an
2276	 * extent, and don't have to deal with the bitmap
2277	 */
2278	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2279		/*
2280		 * If this block group has some small extents we don't want to
2281		 * use up all of our free slots in the cache with them, we want
2282		 * to reserve them to larger extents, however if we have plenty
2283		 * of cache left then go ahead an dadd them, no sense in adding
2284		 * the overhead of a bitmap if we don't have to.
2285		 */
2286		if (info->bytes <= fs_info->sectorsize * 8) {
2287			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2288				return false;
2289		} else {
2290			return false;
2291		}
2292	}
2293
2294	/*
2295	 * The original block groups from mkfs can be really small, like 8
2296	 * megabytes, so don't bother with a bitmap for those entries.  However
2297	 * some block groups can be smaller than what a bitmap would cover but
2298	 * are still large enough that they could overflow the 32k memory limit,
2299	 * so allow those block groups to still be allowed to have a bitmap
2300	 * entry.
2301	 */
2302	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2303		return false;
2304
2305	return true;
2306}
2307
2308static const struct btrfs_free_space_op free_space_op = {
2309	.use_bitmap		= use_bitmap,
2310};
2311
2312static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2313			      struct btrfs_free_space *info)
2314{
2315	struct btrfs_free_space *bitmap_info;
2316	struct btrfs_block_group *block_group = NULL;
2317	int added = 0;
2318	u64 bytes, offset, bytes_added;
2319	enum btrfs_trim_state trim_state;
2320	int ret;
2321
2322	bytes = info->bytes;
2323	offset = info->offset;
2324	trim_state = info->trim_state;
2325
2326	if (!ctl->op->use_bitmap(ctl, info))
2327		return 0;
2328
2329	if (ctl->op == &free_space_op)
2330		block_group = ctl->block_group;
2331again:
2332	/*
2333	 * Since we link bitmaps right into the cluster we need to see if we
2334	 * have a cluster here, and if so and it has our bitmap we need to add
2335	 * the free space to that bitmap.
2336	 */
2337	if (block_group && !list_empty(&block_group->cluster_list)) {
2338		struct btrfs_free_cluster *cluster;
2339		struct rb_node *node;
2340		struct btrfs_free_space *entry;
2341
2342		cluster = list_entry(block_group->cluster_list.next,
2343				     struct btrfs_free_cluster,
2344				     block_group_list);
2345		spin_lock(&cluster->lock);
2346		node = rb_first(&cluster->root);
2347		if (!node) {
2348			spin_unlock(&cluster->lock);
2349			goto no_cluster_bitmap;
2350		}
2351
2352		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2353		if (!entry->bitmap) {
2354			spin_unlock(&cluster->lock);
2355			goto no_cluster_bitmap;
2356		}
2357
2358		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2359			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2360							  bytes, trim_state);
2361			bytes -= bytes_added;
2362			offset += bytes_added;
2363		}
2364		spin_unlock(&cluster->lock);
2365		if (!bytes) {
2366			ret = 1;
2367			goto out;
2368		}
2369	}
2370
2371no_cluster_bitmap:
2372	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2373					 1, 0);
2374	if (!bitmap_info) {
2375		ASSERT(added == 0);
2376		goto new_bitmap;
2377	}
2378
2379	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2380					  trim_state);
2381	bytes -= bytes_added;
2382	offset += bytes_added;
2383	added = 0;
2384
2385	if (!bytes) {
2386		ret = 1;
2387		goto out;
2388	} else
2389		goto again;
2390
2391new_bitmap:
2392	if (info && info->bitmap) {
2393		add_new_bitmap(ctl, info, offset);
2394		added = 1;
2395		info = NULL;
2396		goto again;
2397	} else {
2398		spin_unlock(&ctl->tree_lock);
2399
2400		/* no pre-allocated info, allocate a new one */
2401		if (!info) {
2402			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2403						 GFP_NOFS);
2404			if (!info) {
2405				spin_lock(&ctl->tree_lock);
2406				ret = -ENOMEM;
2407				goto out;
2408			}
2409		}
2410
2411		/* allocate the bitmap */
2412		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2413						 GFP_NOFS);
2414		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2415		spin_lock(&ctl->tree_lock);
2416		if (!info->bitmap) {
2417			ret = -ENOMEM;
2418			goto out;
2419		}
2420		goto again;
2421	}
2422
2423out:
2424	if (info) {
2425		if (info->bitmap)
2426			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2427					info->bitmap);
2428		kmem_cache_free(btrfs_free_space_cachep, info);
2429	}
2430
2431	return ret;
2432}
2433
2434/*
2435 * Free space merging rules:
2436 *  1) Merge trimmed areas together
2437 *  2) Let untrimmed areas coalesce with trimmed areas
2438 *  3) Always pull neighboring regions from bitmaps
2439 *
2440 * The above rules are for when we merge free space based on btrfs_trim_state.
2441 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2442 * same reason: to promote larger extent regions which makes life easier for
2443 * find_free_extent().  Rule 2 enables coalescing based on the common path
2444 * being returning free space from btrfs_finish_extent_commit().  So when free
2445 * space is trimmed, it will prevent aggregating trimmed new region and
2446 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2447 * and provide find_free_extent() with the largest extents possible hoping for
2448 * the reuse path.
2449 */
2450static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2451			  struct btrfs_free_space *info, bool update_stat)
2452{
2453	struct btrfs_free_space *left_info = NULL;
2454	struct btrfs_free_space *right_info;
2455	bool merged = false;
2456	u64 offset = info->offset;
2457	u64 bytes = info->bytes;
2458	const bool is_trimmed = btrfs_free_space_trimmed(info);
2459	struct rb_node *right_prev = NULL;
2460
2461	/*
2462	 * first we want to see if there is free space adjacent to the range we
2463	 * are adding, if there is remove that struct and add a new one to
2464	 * cover the entire range
2465	 */
2466	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2467	if (right_info)
2468		right_prev = rb_prev(&right_info->offset_index);
2469
2470	if (right_prev)
2471		left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2472	else if (!right_info)
2473		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2474
2475	/* See try_merge_free_space() comment. */
2476	if (right_info && !right_info->bitmap &&
2477	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2478		unlink_free_space(ctl, right_info, update_stat);
2479		info->bytes += right_info->bytes;
2480		kmem_cache_free(btrfs_free_space_cachep, right_info);
2481		merged = true;
2482	}
2483
2484	/* See try_merge_free_space() comment. */
2485	if (left_info && !left_info->bitmap &&
2486	    left_info->offset + left_info->bytes == offset &&
2487	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2488		unlink_free_space(ctl, left_info, update_stat);
2489		info->offset = left_info->offset;
2490		info->bytes += left_info->bytes;
2491		kmem_cache_free(btrfs_free_space_cachep, left_info);
2492		merged = true;
2493	}
2494
2495	return merged;
2496}
2497
2498static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2499				     struct btrfs_free_space *info,
2500				     bool update_stat)
2501{
2502	struct btrfs_free_space *bitmap;
2503	unsigned long i;
2504	unsigned long j;
2505	const u64 end = info->offset + info->bytes;
2506	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2507	u64 bytes;
2508
2509	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2510	if (!bitmap)
2511		return false;
2512
2513	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2514	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2515	if (j == i)
2516		return false;
2517	bytes = (j - i) * ctl->unit;
2518	info->bytes += bytes;
2519
2520	/* See try_merge_free_space() comment. */
2521	if (!btrfs_free_space_trimmed(bitmap))
2522		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2523
2524	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2525
2526	if (!bitmap->bytes)
2527		free_bitmap(ctl, bitmap);
2528
2529	return true;
2530}
2531
2532static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2533				       struct btrfs_free_space *info,
2534				       bool update_stat)
2535{
2536	struct btrfs_free_space *bitmap;
2537	u64 bitmap_offset;
2538	unsigned long i;
2539	unsigned long j;
2540	unsigned long prev_j;
2541	u64 bytes;
2542
2543	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2544	/* If we're on a boundary, try the previous logical bitmap. */
2545	if (bitmap_offset == info->offset) {
2546		if (info->offset == 0)
2547			return false;
2548		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2549	}
2550
2551	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2552	if (!bitmap)
2553		return false;
2554
2555	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2556	j = 0;
2557	prev_j = (unsigned long)-1;
2558	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2559		if (j > i)
2560			break;
2561		prev_j = j;
2562	}
2563	if (prev_j == i)
2564		return false;
2565
2566	if (prev_j == (unsigned long)-1)
2567		bytes = (i + 1) * ctl->unit;
2568	else
2569		bytes = (i - prev_j) * ctl->unit;
2570
2571	info->offset -= bytes;
2572	info->bytes += bytes;
2573
2574	/* See try_merge_free_space() comment. */
2575	if (!btrfs_free_space_trimmed(bitmap))
2576		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2577
2578	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2579
2580	if (!bitmap->bytes)
2581		free_bitmap(ctl, bitmap);
2582
2583	return true;
2584}
2585
2586/*
2587 * We prefer always to allocate from extent entries, both for clustered and
2588 * non-clustered allocation requests. So when attempting to add a new extent
2589 * entry, try to see if there's adjacent free space in bitmap entries, and if
2590 * there is, migrate that space from the bitmaps to the extent.
2591 * Like this we get better chances of satisfying space allocation requests
2592 * because we attempt to satisfy them based on a single cache entry, and never
2593 * on 2 or more entries - even if the entries represent a contiguous free space
2594 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2595 * ends).
2596 */
2597static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2598			      struct btrfs_free_space *info,
2599			      bool update_stat)
2600{
2601	/*
2602	 * Only work with disconnected entries, as we can change their offset,
2603	 * and must be extent entries.
2604	 */
2605	ASSERT(!info->bitmap);
2606	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2607
2608	if (ctl->total_bitmaps > 0) {
2609		bool stole_end;
2610		bool stole_front = false;
2611
2612		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2613		if (ctl->total_bitmaps > 0)
2614			stole_front = steal_from_bitmap_to_front(ctl, info,
2615								 update_stat);
2616
2617		if (stole_end || stole_front)
2618			try_merge_free_space(ctl, info, update_stat);
2619	}
2620}
2621
2622static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2623			   u64 offset, u64 bytes,
2624			   enum btrfs_trim_state trim_state)
2625{
2626	struct btrfs_fs_info *fs_info = block_group->fs_info;
2627	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2628	struct btrfs_free_space *info;
2629	int ret = 0;
2630	u64 filter_bytes = bytes;
2631
2632	ASSERT(!btrfs_is_zoned(fs_info));
2633
2634	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2635	if (!info)
2636		return -ENOMEM;
2637
2638	info->offset = offset;
2639	info->bytes = bytes;
2640	info->trim_state = trim_state;
2641	RB_CLEAR_NODE(&info->offset_index);
2642	RB_CLEAR_NODE(&info->bytes_index);
2643
2644	spin_lock(&ctl->tree_lock);
2645
2646	if (try_merge_free_space(ctl, info, true))
2647		goto link;
2648
2649	/*
2650	 * There was no extent directly to the left or right of this new
2651	 * extent then we know we're going to have to allocate a new extent, so
2652	 * before we do that see if we need to drop this into a bitmap
2653	 */
2654	ret = insert_into_bitmap(ctl, info);
2655	if (ret < 0) {
2656		goto out;
2657	} else if (ret) {
2658		ret = 0;
2659		goto out;
2660	}
2661link:
2662	/*
2663	 * Only steal free space from adjacent bitmaps if we're sure we're not
2664	 * going to add the new free space to existing bitmap entries - because
2665	 * that would mean unnecessary work that would be reverted. Therefore
2666	 * attempt to steal space from bitmaps if we're adding an extent entry.
2667	 */
2668	steal_from_bitmap(ctl, info, true);
2669
2670	filter_bytes = max(filter_bytes, info->bytes);
2671
2672	ret = link_free_space(ctl, info);
2673	if (ret)
2674		kmem_cache_free(btrfs_free_space_cachep, info);
2675out:
2676	btrfs_discard_update_discardable(block_group);
2677	spin_unlock(&ctl->tree_lock);
2678
2679	if (ret) {
2680		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2681		ASSERT(ret != -EEXIST);
2682	}
2683
2684	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2685		btrfs_discard_check_filter(block_group, filter_bytes);
2686		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2687	}
2688
2689	return ret;
2690}
2691
2692static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2693					u64 bytenr, u64 size, bool used)
2694{
2695	struct btrfs_space_info *sinfo = block_group->space_info;
2696	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2697	u64 offset = bytenr - block_group->start;
2698	u64 to_free, to_unusable;
2699	int bg_reclaim_threshold = 0;
2700	bool initial = (size == block_group->length);
2701	u64 reclaimable_unusable;
2702
2703	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2704
2705	if (!initial)
2706		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2707
2708	spin_lock(&ctl->tree_lock);
2709	if (!used)
2710		to_free = size;
2711	else if (initial)
2712		to_free = block_group->zone_capacity;
2713	else if (offset >= block_group->alloc_offset)
2714		to_free = size;
2715	else if (offset + size <= block_group->alloc_offset)
2716		to_free = 0;
2717	else
2718		to_free = offset + size - block_group->alloc_offset;
2719	to_unusable = size - to_free;
2720
2721	ctl->free_space += to_free;
2722	/*
2723	 * If the block group is read-only, we should account freed space into
2724	 * bytes_readonly.
2725	 */
2726	if (!block_group->ro)
2727		block_group->zone_unusable += to_unusable;
2728	spin_unlock(&ctl->tree_lock);
2729	if (!used) {
2730		spin_lock(&block_group->lock);
2731		block_group->alloc_offset -= size;
2732		spin_unlock(&block_group->lock);
2733	}
2734
2735	reclaimable_unusable = block_group->zone_unusable -
2736			       (block_group->length - block_group->zone_capacity);
2737	/* All the region is now unusable. Mark it as unused and reclaim */
2738	if (block_group->zone_unusable == block_group->length) {
2739		btrfs_mark_bg_unused(block_group);
2740	} else if (bg_reclaim_threshold &&
2741		   reclaimable_unusable >=
2742		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2743		btrfs_mark_bg_to_reclaim(block_group);
2744	}
2745
2746	return 0;
2747}
2748
2749int btrfs_add_free_space(struct btrfs_block_group *block_group,
2750			 u64 bytenr, u64 size)
2751{
2752	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2753
2754	if (btrfs_is_zoned(block_group->fs_info))
2755		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2756						    true);
2757
2758	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2759		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2760
2761	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2762}
2763
2764int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2765				u64 bytenr, u64 size)
2766{
2767	if (btrfs_is_zoned(block_group->fs_info))
2768		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2769						    false);
2770
2771	return btrfs_add_free_space(block_group, bytenr, size);
2772}
2773
2774/*
2775 * This is a subtle distinction because when adding free space back in general,
2776 * we want it to be added as untrimmed for async. But in the case where we add
2777 * it on loading of a block group, we want to consider it trimmed.
2778 */
2779int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2780				       u64 bytenr, u64 size)
2781{
2782	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2783
2784	if (btrfs_is_zoned(block_group->fs_info))
2785		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2786						    true);
2787
2788	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2789	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2790		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2791
2792	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2793}
2794
2795int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2796			    u64 offset, u64 bytes)
2797{
2798	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2799	struct btrfs_free_space *info;
2800	int ret;
2801	bool re_search = false;
2802
2803	if (btrfs_is_zoned(block_group->fs_info)) {
2804		/*
2805		 * This can happen with conventional zones when replaying log.
2806		 * Since the allocation info of tree-log nodes are not recorded
2807		 * to the extent-tree, calculate_alloc_pointer() failed to
2808		 * advance the allocation pointer after last allocated tree log
2809		 * node blocks.
2810		 *
2811		 * This function is called from
2812		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2813		 * Advance the pointer not to overwrite the tree-log nodes.
2814		 */
2815		if (block_group->start + block_group->alloc_offset <
2816		    offset + bytes) {
2817			block_group->alloc_offset =
2818				offset + bytes - block_group->start;
2819		}
2820		return 0;
2821	}
2822
2823	spin_lock(&ctl->tree_lock);
2824
2825again:
2826	ret = 0;
2827	if (!bytes)
2828		goto out_lock;
2829
2830	info = tree_search_offset(ctl, offset, 0, 0);
2831	if (!info) {
2832		/*
2833		 * oops didn't find an extent that matched the space we wanted
2834		 * to remove, look for a bitmap instead
2835		 */
2836		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2837					  1, 0);
2838		if (!info) {
2839			/*
2840			 * If we found a partial bit of our free space in a
2841			 * bitmap but then couldn't find the other part this may
2842			 * be a problem, so WARN about it.
2843			 */
2844			WARN_ON(re_search);
2845			goto out_lock;
2846		}
2847	}
2848
2849	re_search = false;
2850	if (!info->bitmap) {
2851		unlink_free_space(ctl, info, true);
2852		if (offset == info->offset) {
2853			u64 to_free = min(bytes, info->bytes);
2854
2855			info->bytes -= to_free;
2856			info->offset += to_free;
2857			if (info->bytes) {
2858				ret = link_free_space(ctl, info);
2859				WARN_ON(ret);
2860			} else {
2861				kmem_cache_free(btrfs_free_space_cachep, info);
2862			}
2863
2864			offset += to_free;
2865			bytes -= to_free;
2866			goto again;
2867		} else {
2868			u64 old_end = info->bytes + info->offset;
2869
2870			info->bytes = offset - info->offset;
2871			ret = link_free_space(ctl, info);
2872			WARN_ON(ret);
2873			if (ret)
2874				goto out_lock;
2875
2876			/* Not enough bytes in this entry to satisfy us */
2877			if (old_end < offset + bytes) {
2878				bytes -= old_end - offset;
2879				offset = old_end;
2880				goto again;
2881			} else if (old_end == offset + bytes) {
2882				/* all done */
2883				goto out_lock;
2884			}
2885			spin_unlock(&ctl->tree_lock);
2886
2887			ret = __btrfs_add_free_space(block_group,
2888						     offset + bytes,
2889						     old_end - (offset + bytes),
2890						     info->trim_state);
2891			WARN_ON(ret);
2892			goto out;
2893		}
2894	}
2895
2896	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2897	if (ret == -EAGAIN) {
2898		re_search = true;
2899		goto again;
2900	}
2901out_lock:
2902	btrfs_discard_update_discardable(block_group);
2903	spin_unlock(&ctl->tree_lock);
2904out:
2905	return ret;
2906}
2907
2908void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2909			   u64 bytes)
2910{
2911	struct btrfs_fs_info *fs_info = block_group->fs_info;
2912	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2913	struct btrfs_free_space *info;
2914	struct rb_node *n;
2915	int count = 0;
2916
2917	/*
2918	 * Zoned btrfs does not use free space tree and cluster. Just print
2919	 * out the free space after the allocation offset.
2920	 */
2921	if (btrfs_is_zoned(fs_info)) {
2922		btrfs_info(fs_info, "free space %llu active %d",
2923			   block_group->zone_capacity - block_group->alloc_offset,
2924			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2925				    &block_group->runtime_flags));
2926		return;
2927	}
2928
2929	spin_lock(&ctl->tree_lock);
2930	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2931		info = rb_entry(n, struct btrfs_free_space, offset_index);
2932		if (info->bytes >= bytes && !block_group->ro)
2933			count++;
2934		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2935			   info->offset, info->bytes,
2936		       (info->bitmap) ? "yes" : "no");
2937	}
2938	spin_unlock(&ctl->tree_lock);
2939	btrfs_info(fs_info, "block group has cluster?: %s",
2940	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2941	btrfs_info(fs_info,
2942		   "%d free space entries at or bigger than %llu bytes",
2943		   count, bytes);
2944}
2945
2946void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2947			       struct btrfs_free_space_ctl *ctl)
2948{
2949	struct btrfs_fs_info *fs_info = block_group->fs_info;
2950
2951	spin_lock_init(&ctl->tree_lock);
2952	ctl->unit = fs_info->sectorsize;
2953	ctl->start = block_group->start;
2954	ctl->block_group = block_group;
2955	ctl->op = &free_space_op;
2956	ctl->free_space_bytes = RB_ROOT_CACHED;
2957	INIT_LIST_HEAD(&ctl->trimming_ranges);
2958	mutex_init(&ctl->cache_writeout_mutex);
2959
2960	/*
2961	 * we only want to have 32k of ram per block group for keeping
2962	 * track of free space, and if we pass 1/2 of that we want to
2963	 * start converting things over to using bitmaps
2964	 */
2965	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2966}
2967
2968/*
2969 * for a given cluster, put all of its extents back into the free
2970 * space cache.  If the block group passed doesn't match the block group
2971 * pointed to by the cluster, someone else raced in and freed the
2972 * cluster already.  In that case, we just return without changing anything
2973 */
2974static void __btrfs_return_cluster_to_free_space(
2975			     struct btrfs_block_group *block_group,
2976			     struct btrfs_free_cluster *cluster)
2977{
2978	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2979	struct rb_node *node;
2980
2981	lockdep_assert_held(&ctl->tree_lock);
2982
2983	spin_lock(&cluster->lock);
2984	if (cluster->block_group != block_group) {
2985		spin_unlock(&cluster->lock);
2986		return;
2987	}
2988
2989	cluster->block_group = NULL;
2990	cluster->window_start = 0;
2991	list_del_init(&cluster->block_group_list);
2992
2993	node = rb_first(&cluster->root);
2994	while (node) {
2995		struct btrfs_free_space *entry;
2996
2997		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2998		node = rb_next(&entry->offset_index);
2999		rb_erase(&entry->offset_index, &cluster->root);
3000		RB_CLEAR_NODE(&entry->offset_index);
3001
3002		if (!entry->bitmap) {
3003			/* Merging treats extents as if they were new */
3004			if (!btrfs_free_space_trimmed(entry)) {
3005				ctl->discardable_extents[BTRFS_STAT_CURR]--;
3006				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3007					entry->bytes;
3008			}
3009
3010			try_merge_free_space(ctl, entry, false);
3011			steal_from_bitmap(ctl, entry, false);
3012
3013			/* As we insert directly, update these statistics */
3014			if (!btrfs_free_space_trimmed(entry)) {
3015				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3016				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3017					entry->bytes;
3018			}
3019		}
3020		tree_insert_offset(ctl, NULL, entry);
3021		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3022			      entry_less);
3023	}
3024	cluster->root = RB_ROOT;
3025	spin_unlock(&cluster->lock);
3026	btrfs_put_block_group(block_group);
3027}
3028
3029void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3030{
3031	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3032	struct btrfs_free_cluster *cluster;
3033	struct list_head *head;
3034
3035	spin_lock(&ctl->tree_lock);
3036	while ((head = block_group->cluster_list.next) !=
3037	       &block_group->cluster_list) {
3038		cluster = list_entry(head, struct btrfs_free_cluster,
3039				     block_group_list);
3040
3041		WARN_ON(cluster->block_group != block_group);
3042		__btrfs_return_cluster_to_free_space(block_group, cluster);
3043
3044		cond_resched_lock(&ctl->tree_lock);
3045	}
3046	__btrfs_remove_free_space_cache(ctl);
3047	btrfs_discard_update_discardable(block_group);
3048	spin_unlock(&ctl->tree_lock);
3049
3050}
3051
3052/*
3053 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3054 */
3055bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3056{
3057	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3058	struct btrfs_free_space *info;
3059	struct rb_node *node;
3060	bool ret = true;
3061
3062	spin_lock(&ctl->tree_lock);
3063	node = rb_first(&ctl->free_space_offset);
3064
3065	while (node) {
3066		info = rb_entry(node, struct btrfs_free_space, offset_index);
3067
3068		if (!btrfs_free_space_trimmed(info)) {
3069			ret = false;
3070			break;
3071		}
3072
3073		node = rb_next(node);
3074	}
3075
3076	spin_unlock(&ctl->tree_lock);
3077	return ret;
3078}
3079
3080u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3081			       u64 offset, u64 bytes, u64 empty_size,
3082			       u64 *max_extent_size)
3083{
3084	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3085	struct btrfs_discard_ctl *discard_ctl =
3086					&block_group->fs_info->discard_ctl;
3087	struct btrfs_free_space *entry = NULL;
3088	u64 bytes_search = bytes + empty_size;
3089	u64 ret = 0;
3090	u64 align_gap = 0;
3091	u64 align_gap_len = 0;
3092	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3093	bool use_bytes_index = (offset == block_group->start);
3094
3095	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3096
3097	spin_lock(&ctl->tree_lock);
3098	entry = find_free_space(ctl, &offset, &bytes_search,
3099				block_group->full_stripe_len, max_extent_size,
3100				use_bytes_index);
3101	if (!entry)
3102		goto out;
3103
3104	ret = offset;
3105	if (entry->bitmap) {
3106		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3107
3108		if (!btrfs_free_space_trimmed(entry))
3109			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3110
3111		if (!entry->bytes)
3112			free_bitmap(ctl, entry);
3113	} else {
3114		unlink_free_space(ctl, entry, true);
3115		align_gap_len = offset - entry->offset;
3116		align_gap = entry->offset;
3117		align_gap_trim_state = entry->trim_state;
3118
3119		if (!btrfs_free_space_trimmed(entry))
3120			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3121
3122		entry->offset = offset + bytes;
3123		WARN_ON(entry->bytes < bytes + align_gap_len);
3124
3125		entry->bytes -= bytes + align_gap_len;
3126		if (!entry->bytes)
3127			kmem_cache_free(btrfs_free_space_cachep, entry);
3128		else
3129			link_free_space(ctl, entry);
3130	}
3131out:
3132	btrfs_discard_update_discardable(block_group);
3133	spin_unlock(&ctl->tree_lock);
3134
3135	if (align_gap_len)
3136		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3137				       align_gap_trim_state);
3138	return ret;
3139}
3140
3141/*
3142 * given a cluster, put all of its extents back into the free space
3143 * cache.  If a block group is passed, this function will only free
3144 * a cluster that belongs to the passed block group.
3145 *
3146 * Otherwise, it'll get a reference on the block group pointed to by the
3147 * cluster and remove the cluster from it.
3148 */
3149void btrfs_return_cluster_to_free_space(
3150			       struct btrfs_block_group *block_group,
3151			       struct btrfs_free_cluster *cluster)
3152{
3153	struct btrfs_free_space_ctl *ctl;
3154
3155	/* first, get a safe pointer to the block group */
3156	spin_lock(&cluster->lock);
3157	if (!block_group) {
3158		block_group = cluster->block_group;
3159		if (!block_group) {
3160			spin_unlock(&cluster->lock);
3161			return;
3162		}
3163	} else if (cluster->block_group != block_group) {
3164		/* someone else has already freed it don't redo their work */
3165		spin_unlock(&cluster->lock);
3166		return;
3167	}
3168	btrfs_get_block_group(block_group);
3169	spin_unlock(&cluster->lock);
3170
3171	ctl = block_group->free_space_ctl;
3172
3173	/* now return any extents the cluster had on it */
3174	spin_lock(&ctl->tree_lock);
3175	__btrfs_return_cluster_to_free_space(block_group, cluster);
3176	spin_unlock(&ctl->tree_lock);
3177
3178	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3179
3180	/* finally drop our ref */
3181	btrfs_put_block_group(block_group);
3182}
3183
3184static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3185				   struct btrfs_free_cluster *cluster,
3186				   struct btrfs_free_space *entry,
3187				   u64 bytes, u64 min_start,
3188				   u64 *max_extent_size)
3189{
3190	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3191	int err;
3192	u64 search_start = cluster->window_start;
3193	u64 search_bytes = bytes;
3194	u64 ret = 0;
3195
3196	search_start = min_start;
3197	search_bytes = bytes;
3198
3199	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3200	if (err) {
3201		*max_extent_size = max(get_max_extent_size(entry),
3202				       *max_extent_size);
3203		return 0;
3204	}
3205
3206	ret = search_start;
3207	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3208
3209	return ret;
3210}
3211
3212/*
3213 * given a cluster, try to allocate 'bytes' from it, returns 0
3214 * if it couldn't find anything suitably large, or a logical disk offset
3215 * if things worked out
3216 */
3217u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3218			     struct btrfs_free_cluster *cluster, u64 bytes,
3219			     u64 min_start, u64 *max_extent_size)
3220{
3221	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3222	struct btrfs_discard_ctl *discard_ctl =
3223					&block_group->fs_info->discard_ctl;
3224	struct btrfs_free_space *entry = NULL;
3225	struct rb_node *node;
3226	u64 ret = 0;
3227
3228	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3229
3230	spin_lock(&cluster->lock);
3231	if (bytes > cluster->max_size)
3232		goto out;
3233
3234	if (cluster->block_group != block_group)
3235		goto out;
3236
3237	node = rb_first(&cluster->root);
3238	if (!node)
3239		goto out;
3240
3241	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3242	while (1) {
3243		if (entry->bytes < bytes)
3244			*max_extent_size = max(get_max_extent_size(entry),
3245					       *max_extent_size);
3246
3247		if (entry->bytes < bytes ||
3248		    (!entry->bitmap && entry->offset < min_start)) {
3249			node = rb_next(&entry->offset_index);
3250			if (!node)
3251				break;
3252			entry = rb_entry(node, struct btrfs_free_space,
3253					 offset_index);
3254			continue;
3255		}
3256
3257		if (entry->bitmap) {
3258			ret = btrfs_alloc_from_bitmap(block_group,
3259						      cluster, entry, bytes,
3260						      cluster->window_start,
3261						      max_extent_size);
3262			if (ret == 0) {
3263				node = rb_next(&entry->offset_index);
3264				if (!node)
3265					break;
3266				entry = rb_entry(node, struct btrfs_free_space,
3267						 offset_index);
3268				continue;
3269			}
3270			cluster->window_start += bytes;
3271		} else {
3272			ret = entry->offset;
3273
3274			entry->offset += bytes;
3275			entry->bytes -= bytes;
3276		}
3277
3278		break;
3279	}
3280out:
3281	spin_unlock(&cluster->lock);
3282
3283	if (!ret)
3284		return 0;
3285
3286	spin_lock(&ctl->tree_lock);
3287
3288	if (!btrfs_free_space_trimmed(entry))
3289		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3290
3291	ctl->free_space -= bytes;
3292	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3293		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3294
3295	spin_lock(&cluster->lock);
3296	if (entry->bytes == 0) {
3297		rb_erase(&entry->offset_index, &cluster->root);
3298		ctl->free_extents--;
3299		if (entry->bitmap) {
3300			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3301					entry->bitmap);
3302			ctl->total_bitmaps--;
3303			recalculate_thresholds(ctl);
3304		} else if (!btrfs_free_space_trimmed(entry)) {
3305			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3306		}
3307		kmem_cache_free(btrfs_free_space_cachep, entry);
3308	}
3309
3310	spin_unlock(&cluster->lock);
3311	spin_unlock(&ctl->tree_lock);
3312
3313	return ret;
3314}
3315
3316static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3317				struct btrfs_free_space *entry,
3318				struct btrfs_free_cluster *cluster,
3319				u64 offset, u64 bytes,
3320				u64 cont1_bytes, u64 min_bytes)
3321{
3322	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3323	unsigned long next_zero;
3324	unsigned long i;
3325	unsigned long want_bits;
3326	unsigned long min_bits;
3327	unsigned long found_bits;
3328	unsigned long max_bits = 0;
3329	unsigned long start = 0;
3330	unsigned long total_found = 0;
3331	int ret;
3332
3333	lockdep_assert_held(&ctl->tree_lock);
3334
3335	i = offset_to_bit(entry->offset, ctl->unit,
3336			  max_t(u64, offset, entry->offset));
3337	want_bits = bytes_to_bits(bytes, ctl->unit);
3338	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3339
3340	/*
3341	 * Don't bother looking for a cluster in this bitmap if it's heavily
3342	 * fragmented.
3343	 */
3344	if (entry->max_extent_size &&
3345	    entry->max_extent_size < cont1_bytes)
3346		return -ENOSPC;
3347again:
3348	found_bits = 0;
3349	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3350		next_zero = find_next_zero_bit(entry->bitmap,
3351					       BITS_PER_BITMAP, i);
3352		if (next_zero - i >= min_bits) {
3353			found_bits = next_zero - i;
3354			if (found_bits > max_bits)
3355				max_bits = found_bits;
3356			break;
3357		}
3358		if (next_zero - i > max_bits)
3359			max_bits = next_zero - i;
3360		i = next_zero;
3361	}
3362
3363	if (!found_bits) {
3364		entry->max_extent_size = (u64)max_bits * ctl->unit;
3365		return -ENOSPC;
3366	}
3367
3368	if (!total_found) {
3369		start = i;
3370		cluster->max_size = 0;
3371	}
3372
3373	total_found += found_bits;
3374
3375	if (cluster->max_size < found_bits * ctl->unit)
3376		cluster->max_size = found_bits * ctl->unit;
3377
3378	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3379		i = next_zero + 1;
3380		goto again;
3381	}
3382
3383	cluster->window_start = start * ctl->unit + entry->offset;
3384	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3385	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3386
3387	/*
3388	 * We need to know if we're currently on the normal space index when we
3389	 * manipulate the bitmap so that we know we need to remove and re-insert
3390	 * it into the space_index tree.  Clear the bytes_index node here so the
3391	 * bitmap manipulation helpers know not to mess with the space_index
3392	 * until this bitmap entry is added back into the normal cache.
3393	 */
3394	RB_CLEAR_NODE(&entry->bytes_index);
3395
3396	ret = tree_insert_offset(ctl, cluster, entry);
3397	ASSERT(!ret); /* -EEXIST; Logic error */
3398
3399	trace_btrfs_setup_cluster(block_group, cluster,
3400				  total_found * ctl->unit, 1);
3401	return 0;
3402}
3403
3404/*
3405 * This searches the block group for just extents to fill the cluster with.
3406 * Try to find a cluster with at least bytes total bytes, at least one
3407 * extent of cont1_bytes, and other clusters of at least min_bytes.
3408 */
3409static noinline int
3410setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3411			struct btrfs_free_cluster *cluster,
3412			struct list_head *bitmaps, u64 offset, u64 bytes,
3413			u64 cont1_bytes, u64 min_bytes)
3414{
3415	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3416	struct btrfs_free_space *first = NULL;
3417	struct btrfs_free_space *entry = NULL;
3418	struct btrfs_free_space *last;
3419	struct rb_node *node;
3420	u64 window_free;
3421	u64 max_extent;
3422	u64 total_size = 0;
3423
3424	lockdep_assert_held(&ctl->tree_lock);
3425
3426	entry = tree_search_offset(ctl, offset, 0, 1);
3427	if (!entry)
3428		return -ENOSPC;
3429
3430	/*
3431	 * We don't want bitmaps, so just move along until we find a normal
3432	 * extent entry.
3433	 */
3434	while (entry->bitmap || entry->bytes < min_bytes) {
3435		if (entry->bitmap && list_empty(&entry->list))
3436			list_add_tail(&entry->list, bitmaps);
3437		node = rb_next(&entry->offset_index);
3438		if (!node)
3439			return -ENOSPC;
3440		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3441	}
3442
3443	window_free = entry->bytes;
3444	max_extent = entry->bytes;
3445	first = entry;
3446	last = entry;
3447
3448	for (node = rb_next(&entry->offset_index); node;
3449	     node = rb_next(&entry->offset_index)) {
3450		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3451
3452		if (entry->bitmap) {
3453			if (list_empty(&entry->list))
3454				list_add_tail(&entry->list, bitmaps);
3455			continue;
3456		}
3457
3458		if (entry->bytes < min_bytes)
3459			continue;
3460
3461		last = entry;
3462		window_free += entry->bytes;
3463		if (entry->bytes > max_extent)
3464			max_extent = entry->bytes;
3465	}
3466
3467	if (window_free < bytes || max_extent < cont1_bytes)
3468		return -ENOSPC;
3469
3470	cluster->window_start = first->offset;
3471
3472	node = &first->offset_index;
3473
3474	/*
3475	 * now we've found our entries, pull them out of the free space
3476	 * cache and put them into the cluster rbtree
3477	 */
3478	do {
3479		int ret;
3480
3481		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3482		node = rb_next(&entry->offset_index);
3483		if (entry->bitmap || entry->bytes < min_bytes)
3484			continue;
3485
3486		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3487		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3488		ret = tree_insert_offset(ctl, cluster, entry);
3489		total_size += entry->bytes;
3490		ASSERT(!ret); /* -EEXIST; Logic error */
3491	} while (node && entry != last);
3492
3493	cluster->max_size = max_extent;
3494	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3495	return 0;
3496}
3497
3498/*
3499 * This specifically looks for bitmaps that may work in the cluster, we assume
3500 * that we have already failed to find extents that will work.
3501 */
3502static noinline int
3503setup_cluster_bitmap(struct btrfs_block_group *block_group,
3504		     struct btrfs_free_cluster *cluster,
3505		     struct list_head *bitmaps, u64 offset, u64 bytes,
3506		     u64 cont1_bytes, u64 min_bytes)
3507{
3508	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3509	struct btrfs_free_space *entry = NULL;
3510	int ret = -ENOSPC;
3511	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3512
3513	if (ctl->total_bitmaps == 0)
3514		return -ENOSPC;
3515
3516	/*
3517	 * The bitmap that covers offset won't be in the list unless offset
3518	 * is just its start offset.
3519	 */
3520	if (!list_empty(bitmaps))
3521		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3522
3523	if (!entry || entry->offset != bitmap_offset) {
3524		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3525		if (entry && list_empty(&entry->list))
3526			list_add(&entry->list, bitmaps);
3527	}
3528
3529	list_for_each_entry(entry, bitmaps, list) {
3530		if (entry->bytes < bytes)
3531			continue;
3532		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3533					   bytes, cont1_bytes, min_bytes);
3534		if (!ret)
3535			return 0;
3536	}
3537
3538	/*
3539	 * The bitmaps list has all the bitmaps that record free space
3540	 * starting after offset, so no more search is required.
3541	 */
3542	return -ENOSPC;
3543}
3544
3545/*
3546 * here we try to find a cluster of blocks in a block group.  The goal
3547 * is to find at least bytes+empty_size.
3548 * We might not find them all in one contiguous area.
3549 *
3550 * returns zero and sets up cluster if things worked out, otherwise
3551 * it returns -enospc
3552 */
3553int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3554			     struct btrfs_free_cluster *cluster,
3555			     u64 offset, u64 bytes, u64 empty_size)
3556{
3557	struct btrfs_fs_info *fs_info = block_group->fs_info;
3558	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3559	struct btrfs_free_space *entry, *tmp;
3560	LIST_HEAD(bitmaps);
3561	u64 min_bytes;
3562	u64 cont1_bytes;
3563	int ret;
3564
3565	/*
3566	 * Choose the minimum extent size we'll require for this
3567	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3568	 * For metadata, allow allocates with smaller extents.  For
3569	 * data, keep it dense.
3570	 */
3571	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3572		cont1_bytes = bytes + empty_size;
3573		min_bytes = cont1_bytes;
3574	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3575		cont1_bytes = bytes;
3576		min_bytes = fs_info->sectorsize;
3577	} else {
3578		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3579		min_bytes = fs_info->sectorsize;
3580	}
3581
3582	spin_lock(&ctl->tree_lock);
3583
3584	/*
3585	 * If we know we don't have enough space to make a cluster don't even
3586	 * bother doing all the work to try and find one.
3587	 */
3588	if (ctl->free_space < bytes) {
3589		spin_unlock(&ctl->tree_lock);
3590		return -ENOSPC;
3591	}
3592
3593	spin_lock(&cluster->lock);
3594
3595	/* someone already found a cluster, hooray */
3596	if (cluster->block_group) {
3597		ret = 0;
3598		goto out;
3599	}
3600
3601	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3602				 min_bytes);
3603
3604	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3605				      bytes + empty_size,
3606				      cont1_bytes, min_bytes);
3607	if (ret)
3608		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3609					   offset, bytes + empty_size,
3610					   cont1_bytes, min_bytes);
3611
3612	/* Clear our temporary list */
3613	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3614		list_del_init(&entry->list);
3615
3616	if (!ret) {
3617		btrfs_get_block_group(block_group);
3618		list_add_tail(&cluster->block_group_list,
3619			      &block_group->cluster_list);
3620		cluster->block_group = block_group;
3621	} else {
3622		trace_btrfs_failed_cluster_setup(block_group);
3623	}
3624out:
3625	spin_unlock(&cluster->lock);
3626	spin_unlock(&ctl->tree_lock);
3627
3628	return ret;
3629}
3630
3631/*
3632 * simple code to zero out a cluster
3633 */
3634void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3635{
3636	spin_lock_init(&cluster->lock);
3637	spin_lock_init(&cluster->refill_lock);
3638	cluster->root = RB_ROOT;
3639	cluster->max_size = 0;
3640	cluster->fragmented = false;
3641	INIT_LIST_HEAD(&cluster->block_group_list);
3642	cluster->block_group = NULL;
3643}
3644
3645static int do_trimming(struct btrfs_block_group *block_group,
3646		       u64 *total_trimmed, u64 start, u64 bytes,
3647		       u64 reserved_start, u64 reserved_bytes,
3648		       enum btrfs_trim_state reserved_trim_state,
3649		       struct btrfs_trim_range *trim_entry)
3650{
3651	struct btrfs_space_info *space_info = block_group->space_info;
3652	struct btrfs_fs_info *fs_info = block_group->fs_info;
3653	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3654	int ret;
3655	int update = 0;
3656	const u64 end = start + bytes;
3657	const u64 reserved_end = reserved_start + reserved_bytes;
3658	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3659	u64 trimmed = 0;
3660
3661	spin_lock(&space_info->lock);
3662	spin_lock(&block_group->lock);
3663	if (!block_group->ro) {
3664		block_group->reserved += reserved_bytes;
3665		space_info->bytes_reserved += reserved_bytes;
3666		update = 1;
3667	}
3668	spin_unlock(&block_group->lock);
3669	spin_unlock(&space_info->lock);
3670
3671	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3672	if (!ret) {
3673		*total_trimmed += trimmed;
3674		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3675	}
3676
3677	mutex_lock(&ctl->cache_writeout_mutex);
3678	if (reserved_start < start)
3679		__btrfs_add_free_space(block_group, reserved_start,
3680				       start - reserved_start,
3681				       reserved_trim_state);
3682	if (end < reserved_end)
3683		__btrfs_add_free_space(block_group, end, reserved_end - end,
3684				       reserved_trim_state);
3685	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3686	list_del(&trim_entry->list);
3687	mutex_unlock(&ctl->cache_writeout_mutex);
3688
3689	if (update) {
3690		spin_lock(&space_info->lock);
3691		spin_lock(&block_group->lock);
3692		if (block_group->ro)
3693			space_info->bytes_readonly += reserved_bytes;
3694		block_group->reserved -= reserved_bytes;
3695		space_info->bytes_reserved -= reserved_bytes;
3696		spin_unlock(&block_group->lock);
3697		spin_unlock(&space_info->lock);
3698	}
3699
3700	return ret;
3701}
3702
3703/*
3704 * If @async is set, then we will trim 1 region and return.
3705 */
3706static int trim_no_bitmap(struct btrfs_block_group *block_group,
3707			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3708			  bool async)
3709{
3710	struct btrfs_discard_ctl *discard_ctl =
3711					&block_group->fs_info->discard_ctl;
3712	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3713	struct btrfs_free_space *entry;
3714	struct rb_node *node;
3715	int ret = 0;
3716	u64 extent_start;
3717	u64 extent_bytes;
3718	enum btrfs_trim_state extent_trim_state;
3719	u64 bytes;
3720	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3721
3722	while (start < end) {
3723		struct btrfs_trim_range trim_entry;
3724
3725		mutex_lock(&ctl->cache_writeout_mutex);
3726		spin_lock(&ctl->tree_lock);
3727
3728		if (ctl->free_space < minlen)
3729			goto out_unlock;
3730
3731		entry = tree_search_offset(ctl, start, 0, 1);
3732		if (!entry)
3733			goto out_unlock;
3734
3735		/* Skip bitmaps and if async, already trimmed entries */
3736		while (entry->bitmap ||
3737		       (async && btrfs_free_space_trimmed(entry))) {
3738			node = rb_next(&entry->offset_index);
3739			if (!node)
3740				goto out_unlock;
3741			entry = rb_entry(node, struct btrfs_free_space,
3742					 offset_index);
3743		}
3744
3745		if (entry->offset >= end)
3746			goto out_unlock;
3747
3748		extent_start = entry->offset;
3749		extent_bytes = entry->bytes;
3750		extent_trim_state = entry->trim_state;
3751		if (async) {
3752			start = entry->offset;
3753			bytes = entry->bytes;
3754			if (bytes < minlen) {
3755				spin_unlock(&ctl->tree_lock);
3756				mutex_unlock(&ctl->cache_writeout_mutex);
3757				goto next;
3758			}
3759			unlink_free_space(ctl, entry, true);
3760			/*
3761			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3762			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3763			 * X when we come back around.  So trim it now.
3764			 */
3765			if (max_discard_size &&
3766			    bytes >= (max_discard_size +
3767				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3768				bytes = max_discard_size;
3769				extent_bytes = max_discard_size;
3770				entry->offset += max_discard_size;
3771				entry->bytes -= max_discard_size;
3772				link_free_space(ctl, entry);
3773			} else {
3774				kmem_cache_free(btrfs_free_space_cachep, entry);
3775			}
3776		} else {
3777			start = max(start, extent_start);
3778			bytes = min(extent_start + extent_bytes, end) - start;
3779			if (bytes < minlen) {
3780				spin_unlock(&ctl->tree_lock);
3781				mutex_unlock(&ctl->cache_writeout_mutex);
3782				goto next;
3783			}
3784
3785			unlink_free_space(ctl, entry, true);
3786			kmem_cache_free(btrfs_free_space_cachep, entry);
3787		}
3788
3789		spin_unlock(&ctl->tree_lock);
3790		trim_entry.start = extent_start;
3791		trim_entry.bytes = extent_bytes;
3792		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3793		mutex_unlock(&ctl->cache_writeout_mutex);
3794
3795		ret = do_trimming(block_group, total_trimmed, start, bytes,
3796				  extent_start, extent_bytes, extent_trim_state,
3797				  &trim_entry);
3798		if (ret) {
3799			block_group->discard_cursor = start + bytes;
3800			break;
3801		}
3802next:
3803		start += bytes;
3804		block_group->discard_cursor = start;
3805		if (async && *total_trimmed)
3806			break;
3807
3808		if (fatal_signal_pending(current)) {
3809			ret = -ERESTARTSYS;
3810			break;
3811		}
3812
3813		cond_resched();
3814	}
3815
3816	return ret;
3817
3818out_unlock:
3819	block_group->discard_cursor = btrfs_block_group_end(block_group);
3820	spin_unlock(&ctl->tree_lock);
3821	mutex_unlock(&ctl->cache_writeout_mutex);
3822
3823	return ret;
3824}
3825
3826/*
3827 * If we break out of trimming a bitmap prematurely, we should reset the
3828 * trimming bit.  In a rather contrieved case, it's possible to race here so
3829 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3830 *
3831 * start = start of bitmap
3832 * end = near end of bitmap
3833 *
3834 * Thread 1:			Thread 2:
3835 * trim_bitmaps(start)
3836 *				trim_bitmaps(end)
3837 *				end_trimming_bitmap()
3838 * reset_trimming_bitmap()
3839 */
3840static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3841{
3842	struct btrfs_free_space *entry;
3843
3844	spin_lock(&ctl->tree_lock);
3845	entry = tree_search_offset(ctl, offset, 1, 0);
3846	if (entry) {
3847		if (btrfs_free_space_trimmed(entry)) {
3848			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3849				entry->bitmap_extents;
3850			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3851		}
3852		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3853	}
3854
3855	spin_unlock(&ctl->tree_lock);
3856}
3857
3858static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3859				struct btrfs_free_space *entry)
3860{
3861	if (btrfs_free_space_trimming_bitmap(entry)) {
3862		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3863		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3864			entry->bitmap_extents;
3865		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3866	}
3867}
3868
3869/*
3870 * If @async is set, then we will trim 1 region and return.
3871 */
3872static int trim_bitmaps(struct btrfs_block_group *block_group,
3873			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3874			u64 maxlen, bool async)
3875{
3876	struct btrfs_discard_ctl *discard_ctl =
3877					&block_group->fs_info->discard_ctl;
3878	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3879	struct btrfs_free_space *entry;
3880	int ret = 0;
3881	int ret2;
3882	u64 bytes;
3883	u64 offset = offset_to_bitmap(ctl, start);
3884	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3885
3886	while (offset < end) {
3887		bool next_bitmap = false;
3888		struct btrfs_trim_range trim_entry;
3889
3890		mutex_lock(&ctl->cache_writeout_mutex);
3891		spin_lock(&ctl->tree_lock);
3892
3893		if (ctl->free_space < minlen) {
3894			block_group->discard_cursor =
3895				btrfs_block_group_end(block_group);
3896			spin_unlock(&ctl->tree_lock);
3897			mutex_unlock(&ctl->cache_writeout_mutex);
3898			break;
3899		}
3900
3901		entry = tree_search_offset(ctl, offset, 1, 0);
3902		/*
3903		 * Bitmaps are marked trimmed lossily now to prevent constant
3904		 * discarding of the same bitmap (the reason why we are bound
3905		 * by the filters).  So, retrim the block group bitmaps when we
3906		 * are preparing to punt to the unused_bgs list.  This uses
3907		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3908		 * which is the only discard index which sets minlen to 0.
3909		 */
3910		if (!entry || (async && minlen && start == offset &&
3911			       btrfs_free_space_trimmed(entry))) {
3912			spin_unlock(&ctl->tree_lock);
3913			mutex_unlock(&ctl->cache_writeout_mutex);
3914			next_bitmap = true;
3915			goto next;
3916		}
3917
3918		/*
3919		 * Async discard bitmap trimming begins at by setting the start
3920		 * to be key.objectid and the offset_to_bitmap() aligns to the
3921		 * start of the bitmap.  This lets us know we are fully
3922		 * scanning the bitmap rather than only some portion of it.
3923		 */
3924		if (start == offset)
3925			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3926
3927		bytes = minlen;
3928		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3929		if (ret2 || start >= end) {
3930			/*
3931			 * We lossily consider a bitmap trimmed if we only skip
3932			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3933			 */
3934			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3935				end_trimming_bitmap(ctl, entry);
3936			else
3937				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3938			spin_unlock(&ctl->tree_lock);
3939			mutex_unlock(&ctl->cache_writeout_mutex);
3940			next_bitmap = true;
3941			goto next;
3942		}
3943
3944		/*
3945		 * We already trimmed a region, but are using the locking above
3946		 * to reset the trim_state.
3947		 */
3948		if (async && *total_trimmed) {
3949			spin_unlock(&ctl->tree_lock);
3950			mutex_unlock(&ctl->cache_writeout_mutex);
3951			goto out;
3952		}
3953
3954		bytes = min(bytes, end - start);
3955		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3956			spin_unlock(&ctl->tree_lock);
3957			mutex_unlock(&ctl->cache_writeout_mutex);
3958			goto next;
3959		}
3960
3961		/*
3962		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3963		 * If X < @minlen, we won't trim X when we come back around.
3964		 * So trim it now.  We differ here from trimming extents as we
3965		 * don't keep individual state per bit.
3966		 */
3967		if (async &&
3968		    max_discard_size &&
3969		    bytes > (max_discard_size + minlen))
3970			bytes = max_discard_size;
3971
3972		bitmap_clear_bits(ctl, entry, start, bytes, true);
3973		if (entry->bytes == 0)
3974			free_bitmap(ctl, entry);
3975
3976		spin_unlock(&ctl->tree_lock);
3977		trim_entry.start = start;
3978		trim_entry.bytes = bytes;
3979		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3980		mutex_unlock(&ctl->cache_writeout_mutex);
3981
3982		ret = do_trimming(block_group, total_trimmed, start, bytes,
3983				  start, bytes, 0, &trim_entry);
3984		if (ret) {
3985			reset_trimming_bitmap(ctl, offset);
3986			block_group->discard_cursor =
3987				btrfs_block_group_end(block_group);
3988			break;
3989		}
3990next:
3991		if (next_bitmap) {
3992			offset += BITS_PER_BITMAP * ctl->unit;
3993			start = offset;
3994		} else {
3995			start += bytes;
3996		}
3997		block_group->discard_cursor = start;
3998
3999		if (fatal_signal_pending(current)) {
4000			if (start != offset)
4001				reset_trimming_bitmap(ctl, offset);
4002			ret = -ERESTARTSYS;
4003			break;
4004		}
4005
4006		cond_resched();
4007	}
4008
4009	if (offset >= end)
4010		block_group->discard_cursor = end;
4011
4012out:
4013	return ret;
4014}
4015
4016int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4017			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4018{
4019	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4020	int ret;
4021	u64 rem = 0;
4022
4023	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4024
4025	*trimmed = 0;
4026
4027	spin_lock(&block_group->lock);
4028	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4029		spin_unlock(&block_group->lock);
4030		return 0;
4031	}
4032	btrfs_freeze_block_group(block_group);
4033	spin_unlock(&block_group->lock);
4034
4035	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4036	if (ret)
4037		goto out;
4038
4039	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4040	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4041	/* If we ended in the middle of a bitmap, reset the trimming flag */
4042	if (rem)
4043		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4044out:
4045	btrfs_unfreeze_block_group(block_group);
4046	return ret;
4047}
4048
4049int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4050				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4051				   bool async)
4052{
4053	int ret;
4054
4055	*trimmed = 0;
4056
4057	spin_lock(&block_group->lock);
4058	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4059		spin_unlock(&block_group->lock);
4060		return 0;
4061	}
4062	btrfs_freeze_block_group(block_group);
4063	spin_unlock(&block_group->lock);
4064
4065	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4066	btrfs_unfreeze_block_group(block_group);
4067
4068	return ret;
4069}
4070
4071int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4072				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4073				   u64 maxlen, bool async)
4074{
4075	int ret;
4076
4077	*trimmed = 0;
4078
4079	spin_lock(&block_group->lock);
4080	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4081		spin_unlock(&block_group->lock);
4082		return 0;
4083	}
4084	btrfs_freeze_block_group(block_group);
4085	spin_unlock(&block_group->lock);
4086
4087	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4088			   async);
4089
4090	btrfs_unfreeze_block_group(block_group);
4091
4092	return ret;
4093}
4094
4095bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4096{
4097	return btrfs_super_cache_generation(fs_info->super_copy);
4098}
4099
4100static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4101				       struct btrfs_trans_handle *trans)
4102{
4103	struct btrfs_block_group *block_group;
4104	struct rb_node *node;
4105	int ret = 0;
4106
4107	btrfs_info(fs_info, "cleaning free space cache v1");
4108
4109	node = rb_first_cached(&fs_info->block_group_cache_tree);
4110	while (node) {
4111		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4112		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4113		if (ret)
4114			goto out;
4115		node = rb_next(node);
4116	}
4117out:
4118	return ret;
4119}
4120
4121int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4122{
4123	struct btrfs_trans_handle *trans;
4124	int ret;
4125
4126	/*
4127	 * update_super_roots will appropriately set or unset
4128	 * super_copy->cache_generation based on SPACE_CACHE and
4129	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4130	 * transaction commit whether we are enabling space cache v1 and don't
4131	 * have any other work to do, or are disabling it and removing free
4132	 * space inodes.
4133	 */
4134	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4135	if (IS_ERR(trans))
4136		return PTR_ERR(trans);
4137
4138	if (!active) {
4139		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4140		ret = cleanup_free_space_cache_v1(fs_info, trans);
4141		if (ret) {
4142			btrfs_abort_transaction(trans, ret);
4143			btrfs_end_transaction(trans);
4144			goto out;
4145		}
4146	}
4147
4148	ret = btrfs_commit_transaction(trans);
4149out:
4150	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4151
4152	return ret;
4153}
4154
4155int __init btrfs_free_space_init(void)
4156{
4157	btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4158	if (!btrfs_free_space_cachep)
4159		return -ENOMEM;
4160
4161	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4162							PAGE_SIZE, PAGE_SIZE,
4163							0, NULL);
4164	if (!btrfs_free_space_bitmap_cachep) {
4165		kmem_cache_destroy(btrfs_free_space_cachep);
4166		return -ENOMEM;
4167	}
4168
4169	return 0;
4170}
4171
4172void __cold btrfs_free_space_exit(void)
4173{
4174	kmem_cache_destroy(btrfs_free_space_cachep);
4175	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4176}
4177
4178#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4179/*
4180 * Use this if you need to make a bitmap or extent entry specifically, it
4181 * doesn't do any of the merging that add_free_space does, this acts a lot like
4182 * how the free space cache loading stuff works, so you can get really weird
4183 * configurations.
4184 */
4185int test_add_free_space_entry(struct btrfs_block_group *cache,
4186			      u64 offset, u64 bytes, bool bitmap)
4187{
4188	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4189	struct btrfs_free_space *info = NULL, *bitmap_info;
4190	void *map = NULL;
4191	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4192	u64 bytes_added;
4193	int ret;
4194
4195again:
4196	if (!info) {
4197		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4198		if (!info)
4199			return -ENOMEM;
4200	}
4201
4202	if (!bitmap) {
4203		spin_lock(&ctl->tree_lock);
4204		info->offset = offset;
4205		info->bytes = bytes;
4206		info->max_extent_size = 0;
4207		ret = link_free_space(ctl, info);
4208		spin_unlock(&ctl->tree_lock);
4209		if (ret)
4210			kmem_cache_free(btrfs_free_space_cachep, info);
4211		return ret;
4212	}
4213
4214	if (!map) {
4215		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4216		if (!map) {
4217			kmem_cache_free(btrfs_free_space_cachep, info);
4218			return -ENOMEM;
4219		}
4220	}
4221
4222	spin_lock(&ctl->tree_lock);
4223	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4224					 1, 0);
4225	if (!bitmap_info) {
4226		info->bitmap = map;
4227		map = NULL;
4228		add_new_bitmap(ctl, info, offset);
4229		bitmap_info = info;
4230		info = NULL;
4231	}
4232
4233	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4234					  trim_state);
4235
4236	bytes -= bytes_added;
4237	offset += bytes_added;
4238	spin_unlock(&ctl->tree_lock);
4239
4240	if (bytes)
4241		goto again;
4242
4243	if (info)
4244		kmem_cache_free(btrfs_free_space_cachep, info);
4245	if (map)
4246		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4247	return 0;
4248}
4249
4250/*
4251 * Checks to see if the given range is in the free space cache.  This is really
4252 * just used to check the absence of space, so if there is free space in the
4253 * range at all we will return 1.
4254 */
4255int test_check_exists(struct btrfs_block_group *cache,
4256		      u64 offset, u64 bytes)
4257{
4258	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4259	struct btrfs_free_space *info;
4260	int ret = 0;
4261
4262	spin_lock(&ctl->tree_lock);
4263	info = tree_search_offset(ctl, offset, 0, 0);
4264	if (!info) {
4265		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4266					  1, 0);
4267		if (!info)
4268			goto out;
4269	}
4270
4271have_info:
4272	if (info->bitmap) {
4273		u64 bit_off, bit_bytes;
4274		struct rb_node *n;
4275		struct btrfs_free_space *tmp;
4276
4277		bit_off = offset;
4278		bit_bytes = ctl->unit;
4279		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4280		if (!ret) {
4281			if (bit_off == offset) {
4282				ret = 1;
4283				goto out;
4284			} else if (bit_off > offset &&
4285				   offset + bytes > bit_off) {
4286				ret = 1;
4287				goto out;
4288			}
4289		}
4290
4291		n = rb_prev(&info->offset_index);
4292		while (n) {
4293			tmp = rb_entry(n, struct btrfs_free_space,
4294				       offset_index);
4295			if (tmp->offset + tmp->bytes < offset)
4296				break;
4297			if (offset + bytes < tmp->offset) {
4298				n = rb_prev(&tmp->offset_index);
4299				continue;
4300			}
4301			info = tmp;
4302			goto have_info;
4303		}
4304
4305		n = rb_next(&info->offset_index);
4306		while (n) {
4307			tmp = rb_entry(n, struct btrfs_free_space,
4308				       offset_index);
4309			if (offset + bytes < tmp->offset)
4310				break;
4311			if (tmp->offset + tmp->bytes < offset) {
4312				n = rb_next(&tmp->offset_index);
4313				continue;
4314			}
4315			info = tmp;
4316			goto have_info;
4317		}
4318
4319		ret = 0;
4320		goto out;
4321	}
4322
4323	if (info->offset == offset) {
4324		ret = 1;
4325		goto out;
4326	}
4327
4328	if (offset > info->offset && offset < info->offset + info->bytes)
4329		ret = 1;
4330out:
4331	spin_unlock(&ctl->tree_lock);
4332	return ret;
4333}
4334#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4335