1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/bio.h>
7#include <linux/slab.h>
8#include <linux/pagemap.h>
9#include <linux/highmem.h>
10#include <linux/sched/mm.h>
11#include <crypto/hash.h>
12#include "messages.h"
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "bio.h"
17#include "compression.h"
18#include "fs.h"
19#include "accessors.h"
20#include "file-item.h"
21
22#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
23				   sizeof(struct btrfs_item) * 2) / \
24				  size) - 1))
25
26#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
27				       PAGE_SIZE))
28
29/*
30 * Set inode's size according to filesystem options.
31 *
32 * @inode:      inode we want to update the disk_i_size for
33 * @new_i_size: i_size we want to set to, 0 if we use i_size
34 *
35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
36 * returns as it is perfectly fine with a file that has holes without hole file
37 * extent items.
38 *
39 * However without NO_HOLES we need to only return the area that is contiguous
40 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
41 * to an extent that has a gap in between.
42 *
43 * Finally new_i_size should only be set in the case of truncate where we're not
44 * ready to use i_size_read() as the limiter yet.
45 */
46void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
47{
48	struct btrfs_fs_info *fs_info = inode->root->fs_info;
49	u64 start, end, i_size;
50	int ret;
51
52	spin_lock(&inode->lock);
53	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
54	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
55		inode->disk_i_size = i_size;
56		goto out_unlock;
57	}
58
59	ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
60					 &end, EXTENT_DIRTY);
61	if (!ret && start == 0)
62		i_size = min(i_size, end + 1);
63	else
64		i_size = 0;
65	inode->disk_i_size = i_size;
66out_unlock:
67	spin_unlock(&inode->lock);
68}
69
70/*
71 * Mark range within a file as having a new extent inserted.
72 *
73 * @inode: inode being modified
74 * @start: start file offset of the file extent we've inserted
75 * @len:   logical length of the file extent item
76 *
77 * Call when we are inserting a new file extent where there was none before.
78 * Does not need to call this in the case where we're replacing an existing file
79 * extent, however if not sure it's fine to call this multiple times.
80 *
81 * The start and len must match the file extent item, so thus must be sectorsize
82 * aligned.
83 */
84int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
85				      u64 len)
86{
87	if (len == 0)
88		return 0;
89
90	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
91
92	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
93		return 0;
94	return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
95			      EXTENT_DIRTY, NULL);
96}
97
98/*
99 * Mark an inode range as not having a backing extent.
100 *
101 * @inode: inode being modified
102 * @start: start file offset of the file extent we've inserted
103 * @len:   logical length of the file extent item
104 *
105 * Called when we drop a file extent, for example when we truncate.  Doesn't
106 * need to be called for cases where we're replacing a file extent, like when
107 * we've COWed a file extent.
108 *
109 * The start and len must match the file extent item, so thus must be sectorsize
110 * aligned.
111 */
112int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
113					u64 len)
114{
115	if (len == 0)
116		return 0;
117
118	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
119	       len == (u64)-1);
120
121	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
122		return 0;
123	return clear_extent_bit(inode->file_extent_tree, start,
124				start + len - 1, EXTENT_DIRTY, NULL);
125}
126
127static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
128{
129	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
130
131	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
132}
133
134static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
135{
136	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
137
138	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
139}
140
141static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
142{
143	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
144				       fs_info->csum_size);
145
146	return csum_size_to_bytes(fs_info, max_csum_size);
147}
148
149/*
150 * Calculate the total size needed to allocate for an ordered sum structure
151 * spanning @bytes in the file.
152 */
153static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
154{
155	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
156}
157
158int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
159			     struct btrfs_root *root,
160			     u64 objectid, u64 pos, u64 num_bytes)
161{
162	int ret = 0;
163	struct btrfs_file_extent_item *item;
164	struct btrfs_key file_key;
165	struct btrfs_path *path;
166	struct extent_buffer *leaf;
167
168	path = btrfs_alloc_path();
169	if (!path)
170		return -ENOMEM;
171	file_key.objectid = objectid;
172	file_key.offset = pos;
173	file_key.type = BTRFS_EXTENT_DATA_KEY;
174
175	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
176				      sizeof(*item));
177	if (ret < 0)
178		goto out;
179	leaf = path->nodes[0];
180	item = btrfs_item_ptr(leaf, path->slots[0],
181			      struct btrfs_file_extent_item);
182	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
183	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
184	btrfs_set_file_extent_offset(leaf, item, 0);
185	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
186	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
187	btrfs_set_file_extent_generation(leaf, item, trans->transid);
188	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
189	btrfs_set_file_extent_compression(leaf, item, 0);
190	btrfs_set_file_extent_encryption(leaf, item, 0);
191	btrfs_set_file_extent_other_encoding(leaf, item, 0);
192
193	btrfs_mark_buffer_dirty(trans, leaf);
194out:
195	btrfs_free_path(path);
196	return ret;
197}
198
199static struct btrfs_csum_item *
200btrfs_lookup_csum(struct btrfs_trans_handle *trans,
201		  struct btrfs_root *root,
202		  struct btrfs_path *path,
203		  u64 bytenr, int cow)
204{
205	struct btrfs_fs_info *fs_info = root->fs_info;
206	int ret;
207	struct btrfs_key file_key;
208	struct btrfs_key found_key;
209	struct btrfs_csum_item *item;
210	struct extent_buffer *leaf;
211	u64 csum_offset = 0;
212	const u32 csum_size = fs_info->csum_size;
213	int csums_in_item;
214
215	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
216	file_key.offset = bytenr;
217	file_key.type = BTRFS_EXTENT_CSUM_KEY;
218	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
219	if (ret < 0)
220		goto fail;
221	leaf = path->nodes[0];
222	if (ret > 0) {
223		ret = 1;
224		if (path->slots[0] == 0)
225			goto fail;
226		path->slots[0]--;
227		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
228		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
229			goto fail;
230
231		csum_offset = (bytenr - found_key.offset) >>
232				fs_info->sectorsize_bits;
233		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
234		csums_in_item /= csum_size;
235
236		if (csum_offset == csums_in_item) {
237			ret = -EFBIG;
238			goto fail;
239		} else if (csum_offset > csums_in_item) {
240			goto fail;
241		}
242	}
243	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
244	item = (struct btrfs_csum_item *)((unsigned char *)item +
245					  csum_offset * csum_size);
246	return item;
247fail:
248	if (ret > 0)
249		ret = -ENOENT;
250	return ERR_PTR(ret);
251}
252
253int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
254			     struct btrfs_root *root,
255			     struct btrfs_path *path, u64 objectid,
256			     u64 offset, int mod)
257{
258	struct btrfs_key file_key;
259	int ins_len = mod < 0 ? -1 : 0;
260	int cow = mod != 0;
261
262	file_key.objectid = objectid;
263	file_key.offset = offset;
264	file_key.type = BTRFS_EXTENT_DATA_KEY;
265
266	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
267}
268
269/*
270 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
271 * store the result to @dst.
272 *
273 * Return >0 for the number of sectors we found.
274 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
275 * for it. Caller may want to try next sector until one range is hit.
276 * Return <0 for fatal error.
277 */
278static int search_csum_tree(struct btrfs_fs_info *fs_info,
279			    struct btrfs_path *path, u64 disk_bytenr,
280			    u64 len, u8 *dst)
281{
282	struct btrfs_root *csum_root;
283	struct btrfs_csum_item *item = NULL;
284	struct btrfs_key key;
285	const u32 sectorsize = fs_info->sectorsize;
286	const u32 csum_size = fs_info->csum_size;
287	u32 itemsize;
288	int ret;
289	u64 csum_start;
290	u64 csum_len;
291
292	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
293	       IS_ALIGNED(len, sectorsize));
294
295	/* Check if the current csum item covers disk_bytenr */
296	if (path->nodes[0]) {
297		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
298				      struct btrfs_csum_item);
299		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
300		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
301
302		csum_start = key.offset;
303		csum_len = (itemsize / csum_size) * sectorsize;
304
305		if (in_range(disk_bytenr, csum_start, csum_len))
306			goto found;
307	}
308
309	/* Current item doesn't contain the desired range, search again */
310	btrfs_release_path(path);
311	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
312	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
313	if (IS_ERR(item)) {
314		ret = PTR_ERR(item);
315		goto out;
316	}
317	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
318	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
319
320	csum_start = key.offset;
321	csum_len = (itemsize / csum_size) * sectorsize;
322	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
323
324found:
325	ret = (min(csum_start + csum_len, disk_bytenr + len) -
326		   disk_bytenr) >> fs_info->sectorsize_bits;
327	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
328			ret * csum_size);
329out:
330	if (ret == -ENOENT || ret == -EFBIG)
331		ret = 0;
332	return ret;
333}
334
335/*
336 * Lookup the checksum for the read bio in csum tree.
337 *
338 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
339 */
340blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
341{
342	struct btrfs_inode *inode = bbio->inode;
343	struct btrfs_fs_info *fs_info = inode->root->fs_info;
344	struct bio *bio = &bbio->bio;
345	struct btrfs_path *path;
346	const u32 sectorsize = fs_info->sectorsize;
347	const u32 csum_size = fs_info->csum_size;
348	u32 orig_len = bio->bi_iter.bi_size;
349	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
350	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
351	blk_status_t ret = BLK_STS_OK;
352	u32 bio_offset = 0;
353
354	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
355	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
356		return BLK_STS_OK;
357
358	/*
359	 * This function is only called for read bio.
360	 *
361	 * This means two things:
362	 * - All our csums should only be in csum tree
363	 *   No ordered extents csums, as ordered extents are only for write
364	 *   path.
365	 * - No need to bother any other info from bvec
366	 *   Since we're looking up csums, the only important info is the
367	 *   disk_bytenr and the length, which can be extracted from bi_iter
368	 *   directly.
369	 */
370	ASSERT(bio_op(bio) == REQ_OP_READ);
371	path = btrfs_alloc_path();
372	if (!path)
373		return BLK_STS_RESOURCE;
374
375	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
376		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
377		if (!bbio->csum) {
378			btrfs_free_path(path);
379			return BLK_STS_RESOURCE;
380		}
381	} else {
382		bbio->csum = bbio->csum_inline;
383	}
384
385	/*
386	 * If requested number of sectors is larger than one leaf can contain,
387	 * kick the readahead for csum tree.
388	 */
389	if (nblocks > fs_info->csums_per_leaf)
390		path->reada = READA_FORWARD;
391
392	/*
393	 * the free space stuff is only read when it hasn't been
394	 * updated in the current transaction.  So, we can safely
395	 * read from the commit root and sidestep a nasty deadlock
396	 * between reading the free space cache and updating the csum tree.
397	 */
398	if (btrfs_is_free_space_inode(inode)) {
399		path->search_commit_root = 1;
400		path->skip_locking = 1;
401	}
402
403	while (bio_offset < orig_len) {
404		int count;
405		u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
406		u8 *csum_dst = bbio->csum +
407			(bio_offset >> fs_info->sectorsize_bits) * csum_size;
408
409		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
410					 orig_len - bio_offset, csum_dst);
411		if (count < 0) {
412			ret = errno_to_blk_status(count);
413			if (bbio->csum != bbio->csum_inline)
414				kfree(bbio->csum);
415			bbio->csum = NULL;
416			break;
417		}
418
419		/*
420		 * We didn't find a csum for this range.  We need to make sure
421		 * we complain loudly about this, because we are not NODATASUM.
422		 *
423		 * However for the DATA_RELOC inode we could potentially be
424		 * relocating data extents for a NODATASUM inode, so the inode
425		 * itself won't be marked with NODATASUM, but the extent we're
426		 * copying is in fact NODATASUM.  If we don't find a csum we
427		 * assume this is the case.
428		 */
429		if (count == 0) {
430			memset(csum_dst, 0, csum_size);
431			count = 1;
432
433			if (inode->root->root_key.objectid ==
434			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
435				u64 file_offset = bbio->file_offset + bio_offset;
436
437				set_extent_bit(&inode->io_tree, file_offset,
438					       file_offset + sectorsize - 1,
439					       EXTENT_NODATASUM, NULL);
440			} else {
441				btrfs_warn_rl(fs_info,
442			"csum hole found for disk bytenr range [%llu, %llu)",
443				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
444			}
445		}
446		bio_offset += count * sectorsize;
447	}
448
449	btrfs_free_path(path);
450	return ret;
451}
452
453int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
454			    struct list_head *list, int search_commit,
455			    bool nowait)
456{
457	struct btrfs_fs_info *fs_info = root->fs_info;
458	struct btrfs_key key;
459	struct btrfs_path *path;
460	struct extent_buffer *leaf;
461	struct btrfs_ordered_sum *sums;
462	struct btrfs_csum_item *item;
463	LIST_HEAD(tmplist);
464	int ret;
465
466	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
467	       IS_ALIGNED(end + 1, fs_info->sectorsize));
468
469	path = btrfs_alloc_path();
470	if (!path)
471		return -ENOMEM;
472
473	path->nowait = nowait;
474	if (search_commit) {
475		path->skip_locking = 1;
476		path->reada = READA_FORWARD;
477		path->search_commit_root = 1;
478	}
479
480	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
481	key.offset = start;
482	key.type = BTRFS_EXTENT_CSUM_KEY;
483
484	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
485	if (ret < 0)
486		goto fail;
487	if (ret > 0 && path->slots[0] > 0) {
488		leaf = path->nodes[0];
489		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
490
491		/*
492		 * There are two cases we can hit here for the previous csum
493		 * item:
494		 *
495		 *		|<- search range ->|
496		 *	|<- csum item ->|
497		 *
498		 * Or
499		 *				|<- search range ->|
500		 *	|<- csum item ->|
501		 *
502		 * Check if the previous csum item covers the leading part of
503		 * the search range.  If so we have to start from previous csum
504		 * item.
505		 */
506		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
507		    key.type == BTRFS_EXTENT_CSUM_KEY) {
508			if (bytes_to_csum_size(fs_info, start - key.offset) <
509			    btrfs_item_size(leaf, path->slots[0] - 1))
510				path->slots[0]--;
511		}
512	}
513
514	while (start <= end) {
515		u64 csum_end;
516
517		leaf = path->nodes[0];
518		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
519			ret = btrfs_next_leaf(root, path);
520			if (ret < 0)
521				goto fail;
522			if (ret > 0)
523				break;
524			leaf = path->nodes[0];
525		}
526
527		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
528		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
529		    key.type != BTRFS_EXTENT_CSUM_KEY ||
530		    key.offset > end)
531			break;
532
533		if (key.offset > start)
534			start = key.offset;
535
536		csum_end = key.offset + csum_size_to_bytes(fs_info,
537					btrfs_item_size(leaf, path->slots[0]));
538		if (csum_end <= start) {
539			path->slots[0]++;
540			continue;
541		}
542
543		csum_end = min(csum_end, end + 1);
544		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
545				      struct btrfs_csum_item);
546		while (start < csum_end) {
547			unsigned long offset;
548			size_t size;
549
550			size = min_t(size_t, csum_end - start,
551				     max_ordered_sum_bytes(fs_info));
552			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
553				       GFP_NOFS);
554			if (!sums) {
555				ret = -ENOMEM;
556				goto fail;
557			}
558
559			sums->logical = start;
560			sums->len = size;
561
562			offset = bytes_to_csum_size(fs_info, start - key.offset);
563
564			read_extent_buffer(path->nodes[0],
565					   sums->sums,
566					   ((unsigned long)item) + offset,
567					   bytes_to_csum_size(fs_info, size));
568
569			start += size;
570			list_add_tail(&sums->list, &tmplist);
571		}
572		path->slots[0]++;
573	}
574	ret = 0;
575fail:
576	while (ret < 0 && !list_empty(&tmplist)) {
577		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
578		list_del(&sums->list);
579		kfree(sums);
580	}
581	list_splice_tail(&tmplist, list);
582
583	btrfs_free_path(path);
584	return ret;
585}
586
587/*
588 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
589 * we return the result.
590 *
591 * This version will set the corresponding bits in @csum_bitmap to represent
592 * that there is a csum found.
593 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
594 * in is large enough to contain all csums.
595 */
596int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
597			      u64 start, u64 end, u8 *csum_buf,
598			      unsigned long *csum_bitmap)
599{
600	struct btrfs_fs_info *fs_info = root->fs_info;
601	struct btrfs_key key;
602	struct extent_buffer *leaf;
603	struct btrfs_csum_item *item;
604	const u64 orig_start = start;
605	bool free_path = false;
606	int ret;
607
608	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
609	       IS_ALIGNED(end + 1, fs_info->sectorsize));
610
611	if (!path) {
612		path = btrfs_alloc_path();
613		if (!path)
614			return -ENOMEM;
615		free_path = true;
616	}
617
618	/* Check if we can reuse the previous path. */
619	if (path->nodes[0]) {
620		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
621
622		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
623		    key.type == BTRFS_EXTENT_CSUM_KEY &&
624		    key.offset <= start)
625			goto search_forward;
626		btrfs_release_path(path);
627	}
628
629	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
630	key.type = BTRFS_EXTENT_CSUM_KEY;
631	key.offset = start;
632
633	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
634	if (ret < 0)
635		goto fail;
636	if (ret > 0 && path->slots[0] > 0) {
637		leaf = path->nodes[0];
638		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
639
640		/*
641		 * There are two cases we can hit here for the previous csum
642		 * item:
643		 *
644		 *		|<- search range ->|
645		 *	|<- csum item ->|
646		 *
647		 * Or
648		 *				|<- search range ->|
649		 *	|<- csum item ->|
650		 *
651		 * Check if the previous csum item covers the leading part of
652		 * the search range.  If so we have to start from previous csum
653		 * item.
654		 */
655		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
656		    key.type == BTRFS_EXTENT_CSUM_KEY) {
657			if (bytes_to_csum_size(fs_info, start - key.offset) <
658			    btrfs_item_size(leaf, path->slots[0] - 1))
659				path->slots[0]--;
660		}
661	}
662
663search_forward:
664	while (start <= end) {
665		u64 csum_end;
666
667		leaf = path->nodes[0];
668		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
669			ret = btrfs_next_leaf(root, path);
670			if (ret < 0)
671				goto fail;
672			if (ret > 0)
673				break;
674			leaf = path->nodes[0];
675		}
676
677		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
678		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
679		    key.type != BTRFS_EXTENT_CSUM_KEY ||
680		    key.offset > end)
681			break;
682
683		if (key.offset > start)
684			start = key.offset;
685
686		csum_end = key.offset + csum_size_to_bytes(fs_info,
687					btrfs_item_size(leaf, path->slots[0]));
688		if (csum_end <= start) {
689			path->slots[0]++;
690			continue;
691		}
692
693		csum_end = min(csum_end, end + 1);
694		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
695				      struct btrfs_csum_item);
696		while (start < csum_end) {
697			unsigned long offset;
698			size_t size;
699			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
700						start - orig_start);
701
702			size = min_t(size_t, csum_end - start, end + 1 - start);
703
704			offset = bytes_to_csum_size(fs_info, start - key.offset);
705
706			read_extent_buffer(path->nodes[0], csum_dest,
707					   ((unsigned long)item) + offset,
708					   bytes_to_csum_size(fs_info, size));
709
710			bitmap_set(csum_bitmap,
711				(start - orig_start) >> fs_info->sectorsize_bits,
712				size >> fs_info->sectorsize_bits);
713
714			start += size;
715		}
716		path->slots[0]++;
717	}
718	ret = 0;
719fail:
720	if (free_path)
721		btrfs_free_path(path);
722	return ret;
723}
724
725/*
726 * Calculate checksums of the data contained inside a bio.
727 */
728blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
729{
730	struct btrfs_ordered_extent *ordered = bbio->ordered;
731	struct btrfs_inode *inode = bbio->inode;
732	struct btrfs_fs_info *fs_info = inode->root->fs_info;
733	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
734	struct bio *bio = &bbio->bio;
735	struct btrfs_ordered_sum *sums;
736	char *data;
737	struct bvec_iter iter;
738	struct bio_vec bvec;
739	int index;
740	unsigned int blockcount;
741	int i;
742	unsigned nofs_flag;
743
744	nofs_flag = memalloc_nofs_save();
745	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
746		       GFP_KERNEL);
747	memalloc_nofs_restore(nofs_flag);
748
749	if (!sums)
750		return BLK_STS_RESOURCE;
751
752	sums->len = bio->bi_iter.bi_size;
753	INIT_LIST_HEAD(&sums->list);
754
755	sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
756	index = 0;
757
758	shash->tfm = fs_info->csum_shash;
759
760	bio_for_each_segment(bvec, bio, iter) {
761		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
762						 bvec.bv_len + fs_info->sectorsize
763						 - 1);
764
765		for (i = 0; i < blockcount; i++) {
766			data = bvec_kmap_local(&bvec);
767			crypto_shash_digest(shash,
768					    data + (i * fs_info->sectorsize),
769					    fs_info->sectorsize,
770					    sums->sums + index);
771			kunmap_local(data);
772			index += fs_info->csum_size;
773		}
774
775	}
776
777	bbio->sums = sums;
778	btrfs_add_ordered_sum(ordered, sums);
779	return 0;
780}
781
782/*
783 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
784 * record the updated logical address on Zone Append completion.
785 * Allocate just the structure with an empty sums array here for that case.
786 */
787blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
788{
789	bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
790	if (!bbio->sums)
791		return BLK_STS_RESOURCE;
792	bbio->sums->len = bbio->bio.bi_iter.bi_size;
793	bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
794	btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
795	return 0;
796}
797
798/*
799 * Remove one checksum overlapping a range.
800 *
801 * This expects the key to describe the csum pointed to by the path, and it
802 * expects the csum to overlap the range [bytenr, len]
803 *
804 * The csum should not be entirely contained in the range and the range should
805 * not be entirely contained in the csum.
806 *
807 * This calls btrfs_truncate_item with the correct args based on the overlap,
808 * and fixes up the key as required.
809 */
810static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
811				       struct btrfs_path *path,
812				       struct btrfs_key *key,
813				       u64 bytenr, u64 len)
814{
815	struct btrfs_fs_info *fs_info = trans->fs_info;
816	struct extent_buffer *leaf;
817	const u32 csum_size = fs_info->csum_size;
818	u64 csum_end;
819	u64 end_byte = bytenr + len;
820	u32 blocksize_bits = fs_info->sectorsize_bits;
821
822	leaf = path->nodes[0];
823	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
824	csum_end <<= blocksize_bits;
825	csum_end += key->offset;
826
827	if (key->offset < bytenr && csum_end <= end_byte) {
828		/*
829		 *         [ bytenr - len ]
830		 *         [   ]
831		 *   [csum     ]
832		 *   A simple truncate off the end of the item
833		 */
834		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
835		new_size *= csum_size;
836		btrfs_truncate_item(trans, path, new_size, 1);
837	} else if (key->offset >= bytenr && csum_end > end_byte &&
838		   end_byte > key->offset) {
839		/*
840		 *         [ bytenr - len ]
841		 *                 [ ]
842		 *                 [csum     ]
843		 * we need to truncate from the beginning of the csum
844		 */
845		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
846		new_size *= csum_size;
847
848		btrfs_truncate_item(trans, path, new_size, 0);
849
850		key->offset = end_byte;
851		btrfs_set_item_key_safe(trans, path, key);
852	} else {
853		BUG();
854	}
855}
856
857/*
858 * Delete the csum items from the csum tree for a given range of bytes.
859 */
860int btrfs_del_csums(struct btrfs_trans_handle *trans,
861		    struct btrfs_root *root, u64 bytenr, u64 len)
862{
863	struct btrfs_fs_info *fs_info = trans->fs_info;
864	struct btrfs_path *path;
865	struct btrfs_key key;
866	u64 end_byte = bytenr + len;
867	u64 csum_end;
868	struct extent_buffer *leaf;
869	int ret = 0;
870	const u32 csum_size = fs_info->csum_size;
871	u32 blocksize_bits = fs_info->sectorsize_bits;
872
873	ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
874	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
875
876	path = btrfs_alloc_path();
877	if (!path)
878		return -ENOMEM;
879
880	while (1) {
881		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
882		key.offset = end_byte - 1;
883		key.type = BTRFS_EXTENT_CSUM_KEY;
884
885		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
886		if (ret > 0) {
887			ret = 0;
888			if (path->slots[0] == 0)
889				break;
890			path->slots[0]--;
891		} else if (ret < 0) {
892			break;
893		}
894
895		leaf = path->nodes[0];
896		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
897
898		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
899		    key.type != BTRFS_EXTENT_CSUM_KEY) {
900			break;
901		}
902
903		if (key.offset >= end_byte)
904			break;
905
906		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
907		csum_end <<= blocksize_bits;
908		csum_end += key.offset;
909
910		/* this csum ends before we start, we're done */
911		if (csum_end <= bytenr)
912			break;
913
914		/* delete the entire item, it is inside our range */
915		if (key.offset >= bytenr && csum_end <= end_byte) {
916			int del_nr = 1;
917
918			/*
919			 * Check how many csum items preceding this one in this
920			 * leaf correspond to our range and then delete them all
921			 * at once.
922			 */
923			if (key.offset > bytenr && path->slots[0] > 0) {
924				int slot = path->slots[0] - 1;
925
926				while (slot >= 0) {
927					struct btrfs_key pk;
928
929					btrfs_item_key_to_cpu(leaf, &pk, slot);
930					if (pk.offset < bytenr ||
931					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
932					    pk.objectid !=
933					    BTRFS_EXTENT_CSUM_OBJECTID)
934						break;
935					path->slots[0] = slot;
936					del_nr++;
937					key.offset = pk.offset;
938					slot--;
939				}
940			}
941			ret = btrfs_del_items(trans, root, path,
942					      path->slots[0], del_nr);
943			if (ret)
944				break;
945			if (key.offset == bytenr)
946				break;
947		} else if (key.offset < bytenr && csum_end > end_byte) {
948			unsigned long offset;
949			unsigned long shift_len;
950			unsigned long item_offset;
951			/*
952			 *        [ bytenr - len ]
953			 *     [csum                ]
954			 *
955			 * Our bytes are in the middle of the csum,
956			 * we need to split this item and insert a new one.
957			 *
958			 * But we can't drop the path because the
959			 * csum could change, get removed, extended etc.
960			 *
961			 * The trick here is the max size of a csum item leaves
962			 * enough room in the tree block for a single
963			 * item header.  So, we split the item in place,
964			 * adding a new header pointing to the existing
965			 * bytes.  Then we loop around again and we have
966			 * a nicely formed csum item that we can neatly
967			 * truncate.
968			 */
969			offset = (bytenr - key.offset) >> blocksize_bits;
970			offset *= csum_size;
971
972			shift_len = (len >> blocksize_bits) * csum_size;
973
974			item_offset = btrfs_item_ptr_offset(leaf,
975							    path->slots[0]);
976
977			memzero_extent_buffer(leaf, item_offset + offset,
978					     shift_len);
979			key.offset = bytenr;
980
981			/*
982			 * btrfs_split_item returns -EAGAIN when the
983			 * item changed size or key
984			 */
985			ret = btrfs_split_item(trans, root, path, &key, offset);
986			if (ret && ret != -EAGAIN) {
987				btrfs_abort_transaction(trans, ret);
988				break;
989			}
990			ret = 0;
991
992			key.offset = end_byte - 1;
993		} else {
994			truncate_one_csum(trans, path, &key, bytenr, len);
995			if (key.offset < bytenr)
996				break;
997		}
998		btrfs_release_path(path);
999	}
1000	btrfs_free_path(path);
1001	return ret;
1002}
1003
1004static int find_next_csum_offset(struct btrfs_root *root,
1005				 struct btrfs_path *path,
1006				 u64 *next_offset)
1007{
1008	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1009	struct btrfs_key found_key;
1010	int slot = path->slots[0] + 1;
1011	int ret;
1012
1013	if (nritems == 0 || slot >= nritems) {
1014		ret = btrfs_next_leaf(root, path);
1015		if (ret < 0) {
1016			return ret;
1017		} else if (ret > 0) {
1018			*next_offset = (u64)-1;
1019			return 0;
1020		}
1021		slot = path->slots[0];
1022	}
1023
1024	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1025
1026	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1027	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1028		*next_offset = (u64)-1;
1029	else
1030		*next_offset = found_key.offset;
1031
1032	return 0;
1033}
1034
1035int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1036			   struct btrfs_root *root,
1037			   struct btrfs_ordered_sum *sums)
1038{
1039	struct btrfs_fs_info *fs_info = root->fs_info;
1040	struct btrfs_key file_key;
1041	struct btrfs_key found_key;
1042	struct btrfs_path *path;
1043	struct btrfs_csum_item *item;
1044	struct btrfs_csum_item *item_end;
1045	struct extent_buffer *leaf = NULL;
1046	u64 next_offset;
1047	u64 total_bytes = 0;
1048	u64 csum_offset;
1049	u64 bytenr;
1050	u32 ins_size;
1051	int index = 0;
1052	int found_next;
1053	int ret;
1054	const u32 csum_size = fs_info->csum_size;
1055
1056	path = btrfs_alloc_path();
1057	if (!path)
1058		return -ENOMEM;
1059again:
1060	next_offset = (u64)-1;
1061	found_next = 0;
1062	bytenr = sums->logical + total_bytes;
1063	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1064	file_key.offset = bytenr;
1065	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1066
1067	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1068	if (!IS_ERR(item)) {
1069		ret = 0;
1070		leaf = path->nodes[0];
1071		item_end = btrfs_item_ptr(leaf, path->slots[0],
1072					  struct btrfs_csum_item);
1073		item_end = (struct btrfs_csum_item *)((char *)item_end +
1074			   btrfs_item_size(leaf, path->slots[0]));
1075		goto found;
1076	}
1077	ret = PTR_ERR(item);
1078	if (ret != -EFBIG && ret != -ENOENT)
1079		goto out;
1080
1081	if (ret == -EFBIG) {
1082		u32 item_size;
1083		/* we found one, but it isn't big enough yet */
1084		leaf = path->nodes[0];
1085		item_size = btrfs_item_size(leaf, path->slots[0]);
1086		if ((item_size / csum_size) >=
1087		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1088			/* already at max size, make a new one */
1089			goto insert;
1090		}
1091	} else {
1092		/* We didn't find a csum item, insert one. */
1093		ret = find_next_csum_offset(root, path, &next_offset);
1094		if (ret < 0)
1095			goto out;
1096		found_next = 1;
1097		goto insert;
1098	}
1099
1100	/*
1101	 * At this point, we know the tree has a checksum item that ends at an
1102	 * offset matching the start of the checksum range we want to insert.
1103	 * We try to extend that item as much as possible and then add as many
1104	 * checksums to it as they fit.
1105	 *
1106	 * First check if the leaf has enough free space for at least one
1107	 * checksum. If it has go directly to the item extension code, otherwise
1108	 * release the path and do a search for insertion before the extension.
1109	 */
1110	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1111		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1112		csum_offset = (bytenr - found_key.offset) >>
1113			fs_info->sectorsize_bits;
1114		goto extend_csum;
1115	}
1116
1117	btrfs_release_path(path);
1118	path->search_for_extension = 1;
1119	ret = btrfs_search_slot(trans, root, &file_key, path,
1120				csum_size, 1);
1121	path->search_for_extension = 0;
1122	if (ret < 0)
1123		goto out;
1124
1125	if (ret > 0) {
1126		if (path->slots[0] == 0)
1127			goto insert;
1128		path->slots[0]--;
1129	}
1130
1131	leaf = path->nodes[0];
1132	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1133	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1134
1135	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1136	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1137	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1138		goto insert;
1139	}
1140
1141extend_csum:
1142	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1143	    csum_size) {
1144		int extend_nr;
1145		u64 tmp;
1146		u32 diff;
1147
1148		tmp = sums->len - total_bytes;
1149		tmp >>= fs_info->sectorsize_bits;
1150		WARN_ON(tmp < 1);
1151		extend_nr = max_t(int, 1, tmp);
1152
1153		/*
1154		 * A log tree can already have checksum items with a subset of
1155		 * the checksums we are trying to log. This can happen after
1156		 * doing a sequence of partial writes into prealloc extents and
1157		 * fsyncs in between, with a full fsync logging a larger subrange
1158		 * of an extent for which a previous fast fsync logged a smaller
1159		 * subrange. And this happens in particular due to merging file
1160		 * extent items when we complete an ordered extent for a range
1161		 * covered by a prealloc extent - this is done at
1162		 * btrfs_mark_extent_written().
1163		 *
1164		 * So if we try to extend the previous checksum item, which has
1165		 * a range that ends at the start of the range we want to insert,
1166		 * make sure we don't extend beyond the start offset of the next
1167		 * checksum item. If we are at the last item in the leaf, then
1168		 * forget the optimization of extending and add a new checksum
1169		 * item - it is not worth the complexity of releasing the path,
1170		 * getting the first key for the next leaf, repeat the btree
1171		 * search, etc, because log trees are temporary anyway and it
1172		 * would only save a few bytes of leaf space.
1173		 */
1174		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1175			if (path->slots[0] + 1 >=
1176			    btrfs_header_nritems(path->nodes[0])) {
1177				ret = find_next_csum_offset(root, path, &next_offset);
1178				if (ret < 0)
1179					goto out;
1180				found_next = 1;
1181				goto insert;
1182			}
1183
1184			ret = find_next_csum_offset(root, path, &next_offset);
1185			if (ret < 0)
1186				goto out;
1187
1188			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1189			if (tmp <= INT_MAX)
1190				extend_nr = min_t(int, extend_nr, tmp);
1191		}
1192
1193		diff = (csum_offset + extend_nr) * csum_size;
1194		diff = min(diff,
1195			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1196
1197		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1198		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1199		diff /= csum_size;
1200		diff *= csum_size;
1201
1202		btrfs_extend_item(trans, path, diff);
1203		ret = 0;
1204		goto csum;
1205	}
1206
1207insert:
1208	btrfs_release_path(path);
1209	csum_offset = 0;
1210	if (found_next) {
1211		u64 tmp;
1212
1213		tmp = sums->len - total_bytes;
1214		tmp >>= fs_info->sectorsize_bits;
1215		tmp = min(tmp, (next_offset - file_key.offset) >>
1216					 fs_info->sectorsize_bits);
1217
1218		tmp = max_t(u64, 1, tmp);
1219		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1220		ins_size = csum_size * tmp;
1221	} else {
1222		ins_size = csum_size;
1223	}
1224	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1225				      ins_size);
1226	if (ret < 0)
1227		goto out;
1228	leaf = path->nodes[0];
1229csum:
1230	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1231	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1232				      btrfs_item_size(leaf, path->slots[0]));
1233	item = (struct btrfs_csum_item *)((unsigned char *)item +
1234					  csum_offset * csum_size);
1235found:
1236	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1237	ins_size *= csum_size;
1238	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1239			      ins_size);
1240	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1241			    ins_size);
1242
1243	index += ins_size;
1244	ins_size /= csum_size;
1245	total_bytes += ins_size * fs_info->sectorsize;
1246
1247	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1248	if (total_bytes < sums->len) {
1249		btrfs_release_path(path);
1250		cond_resched();
1251		goto again;
1252	}
1253out:
1254	btrfs_free_path(path);
1255	return ret;
1256}
1257
1258void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1259				     const struct btrfs_path *path,
1260				     struct btrfs_file_extent_item *fi,
1261				     struct extent_map *em)
1262{
1263	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1264	struct btrfs_root *root = inode->root;
1265	struct extent_buffer *leaf = path->nodes[0];
1266	const int slot = path->slots[0];
1267	struct btrfs_key key;
1268	u64 extent_start, extent_end;
1269	u64 bytenr;
1270	u8 type = btrfs_file_extent_type(leaf, fi);
1271	int compress_type = btrfs_file_extent_compression(leaf, fi);
1272
1273	btrfs_item_key_to_cpu(leaf, &key, slot);
1274	extent_start = key.offset;
1275	extent_end = btrfs_file_extent_end(path);
1276	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1277	em->generation = btrfs_file_extent_generation(leaf, fi);
1278	if (type == BTRFS_FILE_EXTENT_REG ||
1279	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1280		em->start = extent_start;
1281		em->len = extent_end - extent_start;
1282		em->orig_start = extent_start -
1283			btrfs_file_extent_offset(leaf, fi);
1284		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1285		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1286		if (bytenr == 0) {
1287			em->block_start = EXTENT_MAP_HOLE;
1288			return;
1289		}
1290		if (compress_type != BTRFS_COMPRESS_NONE) {
1291			extent_map_set_compression(em, compress_type);
1292			em->block_start = bytenr;
1293			em->block_len = em->orig_block_len;
1294		} else {
1295			bytenr += btrfs_file_extent_offset(leaf, fi);
1296			em->block_start = bytenr;
1297			em->block_len = em->len;
1298			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1299				em->flags |= EXTENT_FLAG_PREALLOC;
1300		}
1301	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1302		em->block_start = EXTENT_MAP_INLINE;
1303		em->start = extent_start;
1304		em->len = extent_end - extent_start;
1305		/*
1306		 * Initialize orig_start and block_len with the same values
1307		 * as in inode.c:btrfs_get_extent().
1308		 */
1309		em->orig_start = EXTENT_MAP_HOLE;
1310		em->block_len = (u64)-1;
1311		extent_map_set_compression(em, compress_type);
1312	} else {
1313		btrfs_err(fs_info,
1314			  "unknown file extent item type %d, inode %llu, offset %llu, "
1315			  "root %llu", type, btrfs_ino(inode), extent_start,
1316			  root->root_key.objectid);
1317	}
1318}
1319
1320/*
1321 * Returns the end offset (non inclusive) of the file extent item the given path
1322 * points to. If it points to an inline extent, the returned offset is rounded
1323 * up to the sector size.
1324 */
1325u64 btrfs_file_extent_end(const struct btrfs_path *path)
1326{
1327	const struct extent_buffer *leaf = path->nodes[0];
1328	const int slot = path->slots[0];
1329	struct btrfs_file_extent_item *fi;
1330	struct btrfs_key key;
1331	u64 end;
1332
1333	btrfs_item_key_to_cpu(leaf, &key, slot);
1334	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1335	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1336
1337	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1338		end = btrfs_file_extent_ram_bytes(leaf, fi);
1339		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1340	} else {
1341		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1342	}
1343
1344	return end;
1345}
1346