1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/jiffies.h>
4#include <linux/kernel.h>
5#include <linux/ktime.h>
6#include <linux/list.h>
7#include <linux/math64.h>
8#include <linux/sizes.h>
9#include <linux/workqueue.h>
10#include "ctree.h"
11#include "block-group.h"
12#include "discard.h"
13#include "free-space-cache.h"
14#include "fs.h"
15
16/*
17 * This contains the logic to handle async discard.
18 *
19 * Async discard manages trimming of free space outside of transaction commit.
20 * Discarding is done by managing the block_groups on a LRU list based on free
21 * space recency.  Two passes are used to first prioritize discarding extents
22 * and then allow for trimming in the bitmap the best opportunity to coalesce.
23 * The block_groups are maintained on multiple lists to allow for multiple
24 * passes with different discard filter requirements.  A delayed work item is
25 * used to manage discarding with timeout determined by a max of the delay
26 * incurred by the iops rate limit, the byte rate limit, and the max delay of
27 * BTRFS_DISCARD_MAX_DELAY.
28 *
29 * Note, this only keeps track of block_groups that are explicitly for data.
30 * Mixed block_groups are not supported.
31 *
32 * The first list is special to manage discarding of fully free block groups.
33 * This is necessary because we issue a final trim for a full free block group
34 * after forgetting it.  When a block group becomes unused, instead of directly
35 * being added to the unused_bgs list, we add it to this first list.  Then
36 * from there, if it becomes fully discarded, we place it onto the unused_bgs
37 * list.
38 *
39 * The in-memory free space cache serves as the backing state for discard.
40 * Consequently this means there is no persistence.  We opt to load all the
41 * block groups in as not discarded, so the mount case degenerates to the
42 * crashing case.
43 *
44 * As the free space cache uses bitmaps, there exists a tradeoff between
45 * ease/efficiency for find_free_extent() and the accuracy of discard state.
46 * Here we opt to let untrimmed regions merge with everything while only letting
47 * trimmed regions merge with other trimmed regions.  This can cause
48 * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
49 * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
50 * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
51 * this resets the state and we will retry trimming the whole bitmap.  This is a
52 * tradeoff between discard state accuracy and the cost of accounting.
53 */
54
55/* This is an initial delay to give some chance for block reuse */
56#define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
57#define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
58
59#define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
60#define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
61#define BTRFS_DISCARD_MAX_IOPS		(1000U)
62
63/* Monotonically decreasing minimum length filters after index 0 */
64static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
65	0,
66	BTRFS_ASYNC_DISCARD_MAX_FILTER,
67	BTRFS_ASYNC_DISCARD_MIN_FILTER
68};
69
70static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
71					  struct btrfs_block_group *block_group)
72{
73	return &discard_ctl->discard_list[block_group->discard_index];
74}
75
76/*
77 * Determine if async discard should be running.
78 *
79 * @discard_ctl: discard control
80 *
81 * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
82 */
83static bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
84{
85	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
86						     struct btrfs_fs_info,
87						     discard_ctl);
88
89	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
90		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
91}
92
93static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
94				  struct btrfs_block_group *block_group)
95{
96	lockdep_assert_held(&discard_ctl->lock);
97	if (!btrfs_run_discard_work(discard_ctl))
98		return;
99
100	if (list_empty(&block_group->discard_list) ||
101	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
102		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
103			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
104		block_group->discard_eligible_time = (ktime_get_ns() +
105						      BTRFS_DISCARD_DELAY);
106		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
107	}
108	if (list_empty(&block_group->discard_list))
109		btrfs_get_block_group(block_group);
110
111	list_move_tail(&block_group->discard_list,
112		       get_discard_list(discard_ctl, block_group));
113}
114
115static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
116				struct btrfs_block_group *block_group)
117{
118	if (!btrfs_is_block_group_data_only(block_group))
119		return;
120
121	spin_lock(&discard_ctl->lock);
122	__add_to_discard_list(discard_ctl, block_group);
123	spin_unlock(&discard_ctl->lock);
124}
125
126static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
127				       struct btrfs_block_group *block_group)
128{
129	bool queued;
130
131	spin_lock(&discard_ctl->lock);
132
133	queued = !list_empty(&block_group->discard_list);
134
135	if (!btrfs_run_discard_work(discard_ctl)) {
136		spin_unlock(&discard_ctl->lock);
137		return;
138	}
139
140	list_del_init(&block_group->discard_list);
141
142	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
143	block_group->discard_eligible_time = (ktime_get_ns() +
144					      BTRFS_DISCARD_UNUSED_DELAY);
145	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
146	if (!queued)
147		btrfs_get_block_group(block_group);
148	list_add_tail(&block_group->discard_list,
149		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
150
151	spin_unlock(&discard_ctl->lock);
152}
153
154static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
155				     struct btrfs_block_group *block_group)
156{
157	bool running = false;
158	bool queued = false;
159
160	spin_lock(&discard_ctl->lock);
161
162	if (block_group == discard_ctl->block_group) {
163		running = true;
164		discard_ctl->block_group = NULL;
165	}
166
167	block_group->discard_eligible_time = 0;
168	queued = !list_empty(&block_group->discard_list);
169	list_del_init(&block_group->discard_list);
170	/*
171	 * If the block group is currently running in the discard workfn, we
172	 * don't want to deref it, since it's still being used by the workfn.
173	 * The workfn will notice this case and deref the block group when it is
174	 * finished.
175	 */
176	if (queued && !running)
177		btrfs_put_block_group(block_group);
178
179	spin_unlock(&discard_ctl->lock);
180
181	return running;
182}
183
184/*
185 * Find block_group that's up next for discarding.
186 *
187 * @discard_ctl:  discard control
188 * @now:          current time
189 *
190 * Iterate over the discard lists to find the next block_group up for
191 * discarding checking the discard_eligible_time of block_group.
192 */
193static struct btrfs_block_group *find_next_block_group(
194					struct btrfs_discard_ctl *discard_ctl,
195					u64 now)
196{
197	struct btrfs_block_group *ret_block_group = NULL, *block_group;
198	int i;
199
200	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
201		struct list_head *discard_list = &discard_ctl->discard_list[i];
202
203		if (!list_empty(discard_list)) {
204			block_group = list_first_entry(discard_list,
205						       struct btrfs_block_group,
206						       discard_list);
207
208			if (!ret_block_group)
209				ret_block_group = block_group;
210
211			if (ret_block_group->discard_eligible_time < now)
212				break;
213
214			if (ret_block_group->discard_eligible_time >
215			    block_group->discard_eligible_time)
216				ret_block_group = block_group;
217		}
218	}
219
220	return ret_block_group;
221}
222
223/*
224 * Look up next block group and set it for use.
225 *
226 * @discard_ctl:   discard control
227 * @discard_state: the discard_state of the block_group after state management
228 * @discard_index: the discard_index of the block_group after state management
229 * @now:           time when discard was invoked, in ns
230 *
231 * Wrap find_next_block_group() and set the block_group to be in use.
232 * @discard_state's control flow is managed here.  Variables related to
233 * @discard_state are reset here as needed (eg. @discard_cursor).  @discard_state
234 * and @discard_index are remembered as it may change while we're discarding,
235 * but we want the discard to execute in the context determined here.
236 */
237static struct btrfs_block_group *peek_discard_list(
238					struct btrfs_discard_ctl *discard_ctl,
239					enum btrfs_discard_state *discard_state,
240					int *discard_index, u64 now)
241{
242	struct btrfs_block_group *block_group;
243
244	spin_lock(&discard_ctl->lock);
245again:
246	block_group = find_next_block_group(discard_ctl, now);
247
248	if (block_group && now >= block_group->discard_eligible_time) {
249		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
250		    block_group->used != 0) {
251			if (btrfs_is_block_group_data_only(block_group)) {
252				__add_to_discard_list(discard_ctl, block_group);
253			} else {
254				list_del_init(&block_group->discard_list);
255				btrfs_put_block_group(block_group);
256			}
257			goto again;
258		}
259		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
260			block_group->discard_cursor = block_group->start;
261			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
262		}
263		discard_ctl->block_group = block_group;
264	}
265	if (block_group) {
266		*discard_state = block_group->discard_state;
267		*discard_index = block_group->discard_index;
268	}
269	spin_unlock(&discard_ctl->lock);
270
271	return block_group;
272}
273
274/*
275 * Update a block group's filters.
276 *
277 * @block_group:  block group of interest
278 * @bytes:        recently freed region size after coalescing
279 *
280 * Async discard maintains multiple lists with progressively smaller filters
281 * to prioritize discarding based on size.  Should a free space that matches
282 * a larger filter be returned to the free_space_cache, prioritize that discard
283 * by moving @block_group to the proper filter.
284 */
285void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
286				u64 bytes)
287{
288	struct btrfs_discard_ctl *discard_ctl;
289
290	if (!block_group ||
291	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
292		return;
293
294	discard_ctl = &block_group->fs_info->discard_ctl;
295
296	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
297	    bytes >= discard_minlen[block_group->discard_index - 1]) {
298		int i;
299
300		remove_from_discard_list(discard_ctl, block_group);
301
302		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
303		     i++) {
304			if (bytes >= discard_minlen[i]) {
305				block_group->discard_index = i;
306				add_to_discard_list(discard_ctl, block_group);
307				break;
308			}
309		}
310	}
311}
312
313/*
314 * Move a block group along the discard lists.
315 *
316 * @discard_ctl: discard control
317 * @block_group: block_group of interest
318 *
319 * Increment @block_group's discard_index.  If it falls of the list, let it be.
320 * Otherwise add it back to the appropriate list.
321 */
322static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
323				       struct btrfs_block_group *block_group)
324{
325	block_group->discard_index++;
326	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
327		block_group->discard_index = 1;
328		return;
329	}
330
331	add_to_discard_list(discard_ctl, block_group);
332}
333
334/*
335 * Remove a block_group from the discard lists.
336 *
337 * @discard_ctl: discard control
338 * @block_group: block_group of interest
339 *
340 * Remove @block_group from the discard lists.  If necessary, wait on the
341 * current work and then reschedule the delayed work.
342 */
343void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
344			       struct btrfs_block_group *block_group)
345{
346	if (remove_from_discard_list(discard_ctl, block_group)) {
347		cancel_delayed_work_sync(&discard_ctl->work);
348		btrfs_discard_schedule_work(discard_ctl, true);
349	}
350}
351
352/*
353 * Handles queuing the block_groups.
354 *
355 * @discard_ctl: discard control
356 * @block_group: block_group of interest
357 *
358 * Maintain the LRU order of the discard lists.
359 */
360void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
361			      struct btrfs_block_group *block_group)
362{
363	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
364		return;
365
366	if (block_group->used == 0)
367		add_to_discard_unused_list(discard_ctl, block_group);
368	else
369		add_to_discard_list(discard_ctl, block_group);
370
371	if (!delayed_work_pending(&discard_ctl->work))
372		btrfs_discard_schedule_work(discard_ctl, false);
373}
374
375static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
376					  u64 now, bool override)
377{
378	struct btrfs_block_group *block_group;
379
380	if (!btrfs_run_discard_work(discard_ctl))
381		return;
382	if (!override && delayed_work_pending(&discard_ctl->work))
383		return;
384
385	block_group = find_next_block_group(discard_ctl, now);
386	if (block_group) {
387		u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
388		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
389
390		/*
391		 * A single delayed workqueue item is responsible for
392		 * discarding, so we can manage the bytes rate limit by keeping
393		 * track of the previous discard.
394		 */
395		if (kbps_limit && discard_ctl->prev_discard) {
396			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
397			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
398						  NSEC_PER_SEC, bps_limit);
399
400			delay = max(delay, bps_delay);
401		}
402
403		/*
404		 * This timeout is to hopefully prevent immediate discarding
405		 * in a recently allocated block group.
406		 */
407		if (now < block_group->discard_eligible_time) {
408			u64 bg_timeout = block_group->discard_eligible_time - now;
409
410			delay = max(delay, bg_timeout);
411		}
412
413		if (override && discard_ctl->prev_discard) {
414			u64 elapsed = now - discard_ctl->prev_discard_time;
415
416			if (delay > elapsed)
417				delay -= elapsed;
418			else
419				delay = 0;
420		}
421
422		mod_delayed_work(discard_ctl->discard_workers,
423				 &discard_ctl->work, nsecs_to_jiffies(delay));
424	}
425}
426
427/*
428 * Responsible for scheduling the discard work.
429 *
430 * @discard_ctl:  discard control
431 * @override:     override the current timer
432 *
433 * Discards are issued by a delayed workqueue item.  @override is used to
434 * update the current delay as the baseline delay interval is reevaluated on
435 * transaction commit.  This is also maxed with any other rate limit.
436 */
437void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
438				 bool override)
439{
440	const u64 now = ktime_get_ns();
441
442	spin_lock(&discard_ctl->lock);
443	__btrfs_discard_schedule_work(discard_ctl, now, override);
444	spin_unlock(&discard_ctl->lock);
445}
446
447/*
448 * Determine next step of a block_group.
449 *
450 * @discard_ctl: discard control
451 * @block_group: block_group of interest
452 *
453 * Determine the next step for a block group after it's finished going through
454 * a pass on a discard list.  If it is unused and fully trimmed, we can mark it
455 * unused and send it to the unused_bgs path.  Otherwise, pass it onto the
456 * appropriate filter list or let it fall off.
457 */
458static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
459				      struct btrfs_block_group *block_group)
460{
461	remove_from_discard_list(discard_ctl, block_group);
462
463	if (block_group->used == 0) {
464		if (btrfs_is_free_space_trimmed(block_group))
465			btrfs_mark_bg_unused(block_group);
466		else
467			add_to_discard_unused_list(discard_ctl, block_group);
468	} else {
469		btrfs_update_discard_index(discard_ctl, block_group);
470	}
471}
472
473/*
474 * Discard work queue callback
475 *
476 * @work: work
477 *
478 * Find the next block_group to start discarding and then discard a single
479 * region.  It does this in a two-pass fashion: first extents and second
480 * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
481 */
482static void btrfs_discard_workfn(struct work_struct *work)
483{
484	struct btrfs_discard_ctl *discard_ctl;
485	struct btrfs_block_group *block_group;
486	enum btrfs_discard_state discard_state;
487	int discard_index = 0;
488	u64 trimmed = 0;
489	u64 minlen = 0;
490	u64 now = ktime_get_ns();
491
492	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
493
494	block_group = peek_discard_list(discard_ctl, &discard_state,
495					&discard_index, now);
496	if (!block_group || !btrfs_run_discard_work(discard_ctl))
497		return;
498	if (now < block_group->discard_eligible_time) {
499		btrfs_discard_schedule_work(discard_ctl, false);
500		return;
501	}
502
503	/* Perform discarding */
504	minlen = discard_minlen[discard_index];
505
506	if (discard_state == BTRFS_DISCARD_BITMAPS) {
507		u64 maxlen = 0;
508
509		/*
510		 * Use the previous levels minimum discard length as the max
511		 * length filter.  In the case something is added to make a
512		 * region go beyond the max filter, the entire bitmap is set
513		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
514		 */
515		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
516			maxlen = discard_minlen[discard_index - 1];
517
518		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
519				       block_group->discard_cursor,
520				       btrfs_block_group_end(block_group),
521				       minlen, maxlen, true);
522		discard_ctl->discard_bitmap_bytes += trimmed;
523	} else {
524		btrfs_trim_block_group_extents(block_group, &trimmed,
525				       block_group->discard_cursor,
526				       btrfs_block_group_end(block_group),
527				       minlen, true);
528		discard_ctl->discard_extent_bytes += trimmed;
529	}
530
531	/* Determine next steps for a block_group */
532	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
533		if (discard_state == BTRFS_DISCARD_BITMAPS) {
534			btrfs_finish_discard_pass(discard_ctl, block_group);
535		} else {
536			block_group->discard_cursor = block_group->start;
537			spin_lock(&discard_ctl->lock);
538			if (block_group->discard_state !=
539			    BTRFS_DISCARD_RESET_CURSOR)
540				block_group->discard_state =
541							BTRFS_DISCARD_BITMAPS;
542			spin_unlock(&discard_ctl->lock);
543		}
544	}
545
546	now = ktime_get_ns();
547	spin_lock(&discard_ctl->lock);
548	discard_ctl->prev_discard = trimmed;
549	discard_ctl->prev_discard_time = now;
550	/*
551	 * If the block group was removed from the discard list while it was
552	 * running in this workfn, then we didn't deref it, since this function
553	 * still owned that reference. But we set the discard_ctl->block_group
554	 * back to NULL, so we can use that condition to know that now we need
555	 * to deref the block_group.
556	 */
557	if (discard_ctl->block_group == NULL)
558		btrfs_put_block_group(block_group);
559	discard_ctl->block_group = NULL;
560	__btrfs_discard_schedule_work(discard_ctl, now, false);
561	spin_unlock(&discard_ctl->lock);
562}
563
564/*
565 * Recalculate the base delay.
566 *
567 * @discard_ctl: discard control
568 *
569 * Recalculate the base delay which is based off the total number of
570 * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
571 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
572 */
573void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
574{
575	s32 discardable_extents;
576	s64 discardable_bytes;
577	u32 iops_limit;
578	unsigned long min_delay = BTRFS_DISCARD_MIN_DELAY_MSEC;
579	unsigned long delay;
580
581	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
582	if (!discardable_extents)
583		return;
584
585	spin_lock(&discard_ctl->lock);
586
587	/*
588	 * The following is to fix a potential -1 discrepancy that we're not
589	 * sure how to reproduce. But given that this is the only place that
590	 * utilizes these numbers and this is only called by from
591	 * btrfs_finish_extent_commit() which is synchronized, we can correct
592	 * here.
593	 */
594	if (discardable_extents < 0)
595		atomic_add(-discardable_extents,
596			   &discard_ctl->discardable_extents);
597
598	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
599	if (discardable_bytes < 0)
600		atomic64_add(-discardable_bytes,
601			     &discard_ctl->discardable_bytes);
602
603	if (discardable_extents <= 0) {
604		spin_unlock(&discard_ctl->lock);
605		return;
606	}
607
608	iops_limit = READ_ONCE(discard_ctl->iops_limit);
609
610	if (iops_limit) {
611		delay = MSEC_PER_SEC / iops_limit;
612	} else {
613		/*
614		 * Unset iops_limit means go as fast as possible, so allow a
615		 * delay of 0.
616		 */
617		delay = 0;
618		min_delay = 0;
619	}
620
621	delay = clamp(delay, min_delay, BTRFS_DISCARD_MAX_DELAY_MSEC);
622	discard_ctl->delay_ms = delay;
623
624	spin_unlock(&discard_ctl->lock);
625}
626
627/*
628 * Propagate discard counters.
629 *
630 * @block_group: block_group of interest
631 *
632 * Propagate deltas of counters up to the discard_ctl.  It maintains a current
633 * counter and a previous counter passing the delta up to the global stat.
634 * Then the current counter value becomes the previous counter value.
635 */
636void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
637{
638	struct btrfs_free_space_ctl *ctl;
639	struct btrfs_discard_ctl *discard_ctl;
640	s32 extents_delta;
641	s64 bytes_delta;
642
643	if (!block_group ||
644	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
645	    !btrfs_is_block_group_data_only(block_group))
646		return;
647
648	ctl = block_group->free_space_ctl;
649	discard_ctl = &block_group->fs_info->discard_ctl;
650
651	lockdep_assert_held(&ctl->tree_lock);
652	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
653			ctl->discardable_extents[BTRFS_STAT_PREV];
654	if (extents_delta) {
655		atomic_add(extents_delta, &discard_ctl->discardable_extents);
656		ctl->discardable_extents[BTRFS_STAT_PREV] =
657			ctl->discardable_extents[BTRFS_STAT_CURR];
658	}
659
660	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
661		      ctl->discardable_bytes[BTRFS_STAT_PREV];
662	if (bytes_delta) {
663		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
664		ctl->discardable_bytes[BTRFS_STAT_PREV] =
665			ctl->discardable_bytes[BTRFS_STAT_CURR];
666	}
667}
668
669/*
670 * Punt unused_bgs list to discard lists.
671 *
672 * @fs_info: fs_info of interest
673 *
674 * The unused_bgs list needs to be punted to the discard lists because the
675 * order of operations is changed.  In the normal synchronous discard path, the
676 * block groups are trimmed via a single large trim in transaction commit.  This
677 * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
678 * it must be done before going down the unused_bgs path.
679 */
680void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
681{
682	struct btrfs_block_group *block_group, *next;
683
684	spin_lock(&fs_info->unused_bgs_lock);
685	/* We enabled async discard, so punt all to the queue */
686	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
687				 bg_list) {
688		list_del_init(&block_group->bg_list);
689		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
690		/*
691		 * This put is for the get done by btrfs_mark_bg_unused.
692		 * Queueing discard incremented it for discard's reference.
693		 */
694		btrfs_put_block_group(block_group);
695	}
696	spin_unlock(&fs_info->unused_bgs_lock);
697}
698
699/*
700 * Purge discard lists.
701 *
702 * @discard_ctl: discard control
703 *
704 * If we are disabling async discard, we may have intercepted block groups that
705 * are completely free and ready for the unused_bgs path.  As discarding will
706 * now happen in transaction commit or not at all, we can safely mark the
707 * corresponding block groups as unused and they will be sent on their merry
708 * way to the unused_bgs list.
709 */
710static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
711{
712	struct btrfs_block_group *block_group, *next;
713	int i;
714
715	spin_lock(&discard_ctl->lock);
716	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
717		list_for_each_entry_safe(block_group, next,
718					 &discard_ctl->discard_list[i],
719					 discard_list) {
720			list_del_init(&block_group->discard_list);
721			spin_unlock(&discard_ctl->lock);
722			if (block_group->used == 0)
723				btrfs_mark_bg_unused(block_group);
724			spin_lock(&discard_ctl->lock);
725			btrfs_put_block_group(block_group);
726		}
727	}
728	spin_unlock(&discard_ctl->lock);
729}
730
731void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
732{
733	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
734		btrfs_discard_cleanup(fs_info);
735		return;
736	}
737
738	btrfs_discard_punt_unused_bgs_list(fs_info);
739
740	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
741}
742
743void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
744{
745	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
746}
747
748void btrfs_discard_init(struct btrfs_fs_info *fs_info)
749{
750	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
751	int i;
752
753	spin_lock_init(&discard_ctl->lock);
754	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
755
756	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
757		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
758
759	discard_ctl->prev_discard = 0;
760	discard_ctl->prev_discard_time = 0;
761	atomic_set(&discard_ctl->discardable_extents, 0);
762	atomic64_set(&discard_ctl->discardable_bytes, 0);
763	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
764	discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
765	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
766	discard_ctl->kbps_limit = 0;
767	discard_ctl->discard_extent_bytes = 0;
768	discard_ctl->discard_bitmap_bytes = 0;
769	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
770}
771
772void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
773{
774	btrfs_discard_stop(fs_info);
775	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
776	btrfs_discard_purge_list(&fs_info->discard_ctl);
777}
778