1// SPDX-License-Identifier: GPL-2.0
2
3#include "messages.h"
4#include "ctree.h"
5#include "delalloc-space.h"
6#include "block-rsv.h"
7#include "btrfs_inode.h"
8#include "space-info.h"
9#include "qgroup.h"
10#include "fs.h"
11
12/*
13 * HOW DOES THIS WORK
14 *
15 * There are two stages to data reservations, one for data and one for metadata
16 * to handle the new extents and checksums generated by writing data.
17 *
18 *
19 * DATA RESERVATION
20 *   The general flow of the data reservation is as follows
21 *
22 *   -> Reserve
23 *     We call into btrfs_reserve_data_bytes() for the user request bytes that
24 *     they wish to write.  We make this reservation and add it to
25 *     space_info->bytes_may_use.  We set EXTENT_DELALLOC on the inode io_tree
26 *     for the range and carry on if this is buffered, or follow up trying to
27 *     make a real allocation if we are pre-allocating or doing O_DIRECT.
28 *
29 *   -> Use
30 *     At writepages()/prealloc/O_DIRECT time we will call into
31 *     btrfs_reserve_extent() for some part or all of this range of bytes.  We
32 *     will make the allocation and subtract space_info->bytes_may_use by the
33 *     original requested length and increase the space_info->bytes_reserved by
34 *     the allocated length.  This distinction is important because compression
35 *     may allocate a smaller on disk extent than we previously reserved.
36 *
37 *   -> Allocation
38 *     finish_ordered_io() will insert the new file extent item for this range,
39 *     and then add a delayed ref update for the extent tree.  Once that delayed
40 *     ref is written the extent size is subtracted from
41 *     space_info->bytes_reserved and added to space_info->bytes_used.
42 *
43 *   Error handling
44 *
45 *   -> By the reservation maker
46 *     This is the simplest case, we haven't completed our operation and we know
47 *     how much we reserved, we can simply call
48 *     btrfs_free_reserved_data_space*() and it will be removed from
49 *     space_info->bytes_may_use.
50 *
51 *   -> After the reservation has been made, but before cow_file_range()
52 *     This is specifically for the delalloc case.  You must clear
53 *     EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
54 *     be subtracted from space_info->bytes_may_use.
55 *
56 * METADATA RESERVATION
57 *   The general metadata reservation lifetimes are discussed elsewhere, this
58 *   will just focus on how it is used for delalloc space.
59 *
60 *   We keep track of two things on a per inode bases
61 *
62 *   ->outstanding_extents
63 *     This is the number of file extent items we'll need to handle all of the
64 *     outstanding DELALLOC space we have in this inode.  We limit the maximum
65 *     size of an extent, so a large contiguous dirty area may require more than
66 *     one outstanding_extent, which is why count_max_extents() is used to
67 *     determine how many outstanding_extents get added.
68 *
69 *   ->csum_bytes
70 *     This is essentially how many dirty bytes we have for this inode, so we
71 *     can calculate the number of checksum items we would have to add in order
72 *     to checksum our outstanding data.
73 *
74 *   We keep a per-inode block_rsv in order to make it easier to keep track of
75 *   our reservation.  We use btrfs_calculate_inode_block_rsv_size() to
76 *   calculate the current theoretical maximum reservation we would need for the
77 *   metadata for this inode.  We call this and then adjust our reservation as
78 *   necessary, either by attempting to reserve more space, or freeing up excess
79 *   space.
80 *
81 * OUTSTANDING_EXTENTS HANDLING
82 *
83 *  ->outstanding_extents is used for keeping track of how many extents we will
84 *  need to use for this inode, and it will fluctuate depending on where you are
85 *  in the life cycle of the dirty data.  Consider the following normal case for
86 *  a completely clean inode, with a num_bytes < our maximum allowed extent size
87 *
88 *  -> reserve
89 *    ->outstanding_extents += 1 (current value is 1)
90 *
91 *  -> set_delalloc
92 *    ->outstanding_extents += 1 (current value is 2)
93 *
94 *  -> btrfs_delalloc_release_extents()
95 *    ->outstanding_extents -= 1 (current value is 1)
96 *
97 *    We must call this once we are done, as we hold our reservation for the
98 *    duration of our operation, and then assume set_delalloc will update the
99 *    counter appropriately.
100 *
101 *  -> add ordered extent
102 *    ->outstanding_extents += 1 (current value is 2)
103 *
104 *  -> btrfs_clear_delalloc_extent
105 *    ->outstanding_extents -= 1 (current value is 1)
106 *
107 *  -> finish_ordered_io/btrfs_remove_ordered_extent
108 *    ->outstanding_extents -= 1 (current value is 0)
109 *
110 *  Each stage is responsible for their own accounting of the extent, thus
111 *  making error handling and cleanup easier.
112 */
113
114int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
115{
116	struct btrfs_root *root = inode->root;
117	struct btrfs_fs_info *fs_info = root->fs_info;
118	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
119
120	/* Make sure bytes are sectorsize aligned */
121	bytes = ALIGN(bytes, fs_info->sectorsize);
122
123	if (btrfs_is_free_space_inode(inode))
124		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
125
126	return btrfs_reserve_data_bytes(fs_info, bytes, flush);
127}
128
129int btrfs_check_data_free_space(struct btrfs_inode *inode,
130				struct extent_changeset **reserved, u64 start,
131				u64 len, bool noflush)
132{
133	struct btrfs_fs_info *fs_info = inode->root->fs_info;
134	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
135	int ret;
136
137	/* align the range */
138	len = round_up(start + len, fs_info->sectorsize) -
139	      round_down(start, fs_info->sectorsize);
140	start = round_down(start, fs_info->sectorsize);
141
142	if (noflush)
143		flush = BTRFS_RESERVE_NO_FLUSH;
144	else if (btrfs_is_free_space_inode(inode))
145		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
146
147	ret = btrfs_reserve_data_bytes(fs_info, len, flush);
148	if (ret < 0)
149		return ret;
150
151	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
152	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
153	if (ret < 0) {
154		btrfs_free_reserved_data_space_noquota(fs_info, len);
155		extent_changeset_free(*reserved);
156		*reserved = NULL;
157	} else {
158		ret = 0;
159	}
160	return ret;
161}
162
163/*
164 * Called if we need to clear a data reservation for this inode
165 * Normally in a error case.
166 *
167 * This one will *NOT* use accurate qgroup reserved space API, just for case
168 * which we can't sleep and is sure it won't affect qgroup reserved space.
169 * Like clear_bit_hook().
170 */
171void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info,
172					    u64 len)
173{
174	struct btrfs_space_info *data_sinfo;
175
176	ASSERT(IS_ALIGNED(len, fs_info->sectorsize));
177
178	data_sinfo = fs_info->data_sinfo;
179	btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len);
180}
181
182/*
183 * Called if we need to clear a data reservation for this inode
184 * Normally in a error case.
185 *
186 * This one will handle the per-inode data rsv map for accurate reserved
187 * space framework.
188 */
189void btrfs_free_reserved_data_space(struct btrfs_inode *inode,
190			struct extent_changeset *reserved, u64 start, u64 len)
191{
192	struct btrfs_fs_info *fs_info = inode->root->fs_info;
193
194	/* Make sure the range is aligned to sectorsize */
195	len = round_up(start + len, fs_info->sectorsize) -
196	      round_down(start, fs_info->sectorsize);
197	start = round_down(start, fs_info->sectorsize);
198
199	btrfs_free_reserved_data_space_noquota(fs_info, len);
200	btrfs_qgroup_free_data(inode, reserved, start, len, NULL);
201}
202
203/*
204 * Release any excessive reservations for an inode.
205 *
206 * @inode:       the inode we need to release from
207 * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup
208 *               meta reservation needs to know if we are freeing qgroup
209 *               reservation or just converting it into per-trans.  Normally
210 *               @qgroup_free is true for error handling, and false for normal
211 *               release.
212 *
213 * This is the same as btrfs_block_rsv_release, except that it handles the
214 * tracepoint for the reservation.
215 */
216static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
217{
218	struct btrfs_fs_info *fs_info = inode->root->fs_info;
219	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
220	u64 released = 0;
221	u64 qgroup_to_release = 0;
222
223	/*
224	 * Since we statically set the block_rsv->size we just want to say we
225	 * are releasing 0 bytes, and then we'll just get the reservation over
226	 * the size free'd.
227	 */
228	released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
229					   &qgroup_to_release);
230	if (released > 0)
231		trace_btrfs_space_reservation(fs_info, "delalloc",
232					      btrfs_ino(inode), released, 0);
233	if (qgroup_free)
234		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
235	else
236		btrfs_qgroup_convert_reserved_meta(inode->root,
237						   qgroup_to_release);
238}
239
240static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
241						 struct btrfs_inode *inode)
242{
243	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
244	u64 reserve_size = 0;
245	u64 qgroup_rsv_size = 0;
246	unsigned outstanding_extents;
247
248	lockdep_assert_held(&inode->lock);
249	outstanding_extents = inode->outstanding_extents;
250
251	/*
252	 * Insert size for the number of outstanding extents, 1 normal size for
253	 * updating the inode.
254	 */
255	if (outstanding_extents) {
256		reserve_size = btrfs_calc_insert_metadata_size(fs_info,
257						outstanding_extents);
258		reserve_size += btrfs_calc_metadata_size(fs_info, 1);
259	}
260	if (!(inode->flags & BTRFS_INODE_NODATASUM)) {
261		u64 csum_leaves;
262
263		csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
264		reserve_size += btrfs_calc_insert_metadata_size(fs_info, csum_leaves);
265	}
266	/*
267	 * For qgroup rsv, the calculation is very simple:
268	 * account one nodesize for each outstanding extent
269	 *
270	 * This is overestimating in most cases.
271	 */
272	qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
273
274	spin_lock(&block_rsv->lock);
275	block_rsv->size = reserve_size;
276	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
277	spin_unlock(&block_rsv->lock);
278}
279
280static void calc_inode_reservations(struct btrfs_inode *inode,
281				    u64 num_bytes, u64 disk_num_bytes,
282				    u64 *meta_reserve, u64 *qgroup_reserve)
283{
284	struct btrfs_fs_info *fs_info = inode->root->fs_info;
285	u64 nr_extents = count_max_extents(fs_info, num_bytes);
286	u64 csum_leaves;
287	u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
288
289	if (inode->flags & BTRFS_INODE_NODATASUM)
290		csum_leaves = 0;
291	else
292		csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes);
293
294	*meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
295						nr_extents + csum_leaves);
296
297	/*
298	 * finish_ordered_io has to update the inode, so add the space required
299	 * for an inode update.
300	 */
301	*meta_reserve += inode_update;
302	*qgroup_reserve = nr_extents * fs_info->nodesize;
303}
304
305int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
306				    u64 disk_num_bytes, bool noflush)
307{
308	struct btrfs_root *root = inode->root;
309	struct btrfs_fs_info *fs_info = root->fs_info;
310	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
311	u64 meta_reserve, qgroup_reserve;
312	unsigned nr_extents;
313	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
314	int ret = 0;
315
316	/*
317	 * If we are a free space inode we need to not flush since we will be in
318	 * the middle of a transaction commit.  We also don't need the delalloc
319	 * mutex since we won't race with anybody.  We need this mostly to make
320	 * lockdep shut its filthy mouth.
321	 *
322	 * If we have a transaction open (can happen if we call truncate_block
323	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
324	 */
325	if (noflush || btrfs_is_free_space_inode(inode)) {
326		flush = BTRFS_RESERVE_NO_FLUSH;
327	} else {
328		if (current->journal_info)
329			flush = BTRFS_RESERVE_FLUSH_LIMIT;
330	}
331
332	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
333	disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize);
334
335	/*
336	 * We always want to do it this way, every other way is wrong and ends
337	 * in tears.  Pre-reserving the amount we are going to add will always
338	 * be the right way, because otherwise if we have enough parallelism we
339	 * could end up with thousands of inodes all holding little bits of
340	 * reservations they were able to make previously and the only way to
341	 * reclaim that space is to ENOSPC out the operations and clear
342	 * everything out and try again, which is bad.  This way we just
343	 * over-reserve slightly, and clean up the mess when we are done.
344	 */
345	calc_inode_reservations(inode, num_bytes, disk_num_bytes,
346				&meta_reserve, &qgroup_reserve);
347	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true,
348						 noflush);
349	if (ret)
350		return ret;
351	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
352					   meta_reserve, flush);
353	if (ret) {
354		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
355		return ret;
356	}
357
358	/*
359	 * Now we need to update our outstanding extents and csum bytes _first_
360	 * and then add the reservation to the block_rsv.  This keeps us from
361	 * racing with an ordered completion or some such that would think it
362	 * needs to free the reservation we just made.
363	 */
364	nr_extents = count_max_extents(fs_info, num_bytes);
365	spin_lock(&inode->lock);
366	btrfs_mod_outstanding_extents(inode, nr_extents);
367	if (!(inode->flags & BTRFS_INODE_NODATASUM))
368		inode->csum_bytes += disk_num_bytes;
369	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
370	spin_unlock(&inode->lock);
371
372	/* Now we can safely add our space to our block rsv */
373	btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
374	trace_btrfs_space_reservation(root->fs_info, "delalloc",
375				      btrfs_ino(inode), meta_reserve, 1);
376
377	spin_lock(&block_rsv->lock);
378	block_rsv->qgroup_rsv_reserved += qgroup_reserve;
379	spin_unlock(&block_rsv->lock);
380
381	return 0;
382}
383
384/*
385 * Release a metadata reservation for an inode.
386 *
387 * @inode:        the inode to release the reservation for.
388 * @num_bytes:    the number of bytes we are releasing.
389 * @qgroup_free:  free qgroup reservation or convert it to per-trans reservation
390 *
391 * This will release the metadata reservation for an inode.  This can be called
392 * once we complete IO for a given set of bytes to release their metadata
393 * reservations, or on error for the same reason.
394 */
395void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
396				     bool qgroup_free)
397{
398	struct btrfs_fs_info *fs_info = inode->root->fs_info;
399
400	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
401	spin_lock(&inode->lock);
402	if (!(inode->flags & BTRFS_INODE_NODATASUM))
403		inode->csum_bytes -= num_bytes;
404	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
405	spin_unlock(&inode->lock);
406
407	if (btrfs_is_testing(fs_info))
408		return;
409
410	btrfs_inode_rsv_release(inode, qgroup_free);
411}
412
413/*
414 * Release our outstanding_extents for an inode.
415 *
416 * @inode:      the inode to balance the reservation for.
417 * @num_bytes:  the number of bytes we originally reserved with
418 *
419 * When we reserve space we increase outstanding_extents for the extents we may
420 * add.  Once we've set the range as delalloc or created our ordered extents we
421 * have outstanding_extents to track the real usage, so we use this to free our
422 * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
423 * with btrfs_delalloc_reserve_metadata.
424 */
425void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
426{
427	struct btrfs_fs_info *fs_info = inode->root->fs_info;
428	unsigned num_extents;
429
430	spin_lock(&inode->lock);
431	num_extents = count_max_extents(fs_info, num_bytes);
432	btrfs_mod_outstanding_extents(inode, -num_extents);
433	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
434	spin_unlock(&inode->lock);
435
436	if (btrfs_is_testing(fs_info))
437		return;
438
439	btrfs_inode_rsv_release(inode, true);
440}
441
442/*
443 * Reserve data and metadata space for delalloc
444 *
445 * @inode:     inode we're writing to
446 * @start:     start range we are writing to
447 * @len:       how long the range we are writing to
448 * @reserved:  mandatory parameter, record actually reserved qgroup ranges of
449 * 	       current reservation.
450 *
451 * This will do the following things
452 *
453 * - reserve space in data space info for num bytes and reserve precious
454 *   corresponding qgroup space
455 *   (Done in check_data_free_space)
456 *
457 * - reserve space for metadata space, based on the number of outstanding
458 *   extents and how much csums will be needed also reserve metadata space in a
459 *   per root over-reserve method.
460 * - add to the inodes->delalloc_bytes
461 * - add it to the fs_info's delalloc inodes list.
462 *   (Above 3 all done in delalloc_reserve_metadata)
463 *
464 * Return 0 for success
465 * Return <0 for error(-ENOSPC or -EDQUOT)
466 */
467int btrfs_delalloc_reserve_space(struct btrfs_inode *inode,
468			struct extent_changeset **reserved, u64 start, u64 len)
469{
470	int ret;
471
472	ret = btrfs_check_data_free_space(inode, reserved, start, len, false);
473	if (ret < 0)
474		return ret;
475	ret = btrfs_delalloc_reserve_metadata(inode, len, len, false);
476	if (ret < 0) {
477		btrfs_free_reserved_data_space(inode, *reserved, start, len);
478		extent_changeset_free(*reserved);
479		*reserved = NULL;
480	}
481	return ret;
482}
483
484/*
485 * Release data and metadata space for delalloc
486 *
487 * @inode:       inode we're releasing space for
488 * @reserved:    list of changed/reserved ranges
489 * @start:       start position of the space already reserved
490 * @len:         length of the space already reserved
491 * @qgroup_free: should qgroup reserved-space also be freed
492 *
493 * Release the metadata space that was not used and will decrement
494 * ->delalloc_bytes and remove it from the fs_info->delalloc_inodes list if
495 * there are no delalloc bytes left.  Also it will handle the qgroup reserved
496 * space.
497 */
498void btrfs_delalloc_release_space(struct btrfs_inode *inode,
499				  struct extent_changeset *reserved,
500				  u64 start, u64 len, bool qgroup_free)
501{
502	btrfs_delalloc_release_metadata(inode, len, qgroup_free);
503	btrfs_free_reserved_data_space(inode, reserved, start, len);
504}
505