1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include "ctree.h"
8#include "disk-io.h"
9#include "transaction.h"
10#include "locking.h"
11#include "accessors.h"
12#include "messages.h"
13#include "delalloc-space.h"
14#include "subpage.h"
15#include "defrag.h"
16#include "file-item.h"
17#include "super.h"
18
19static struct kmem_cache *btrfs_inode_defrag_cachep;
20
21/*
22 * When auto defrag is enabled we queue up these defrag structs to remember
23 * which inodes need defragging passes.
24 */
25struct inode_defrag {
26	struct rb_node rb_node;
27	/* Inode number */
28	u64 ino;
29	/*
30	 * Transid where the defrag was added, we search for extents newer than
31	 * this.
32	 */
33	u64 transid;
34
35	/* Root objectid */
36	u64 root;
37
38	/*
39	 * The extent size threshold for autodefrag.
40	 *
41	 * This value is different for compressed/non-compressed extents, thus
42	 * needs to be passed from higher layer.
43	 * (aka, inode_should_defrag())
44	 */
45	u32 extent_thresh;
46};
47
48static int __compare_inode_defrag(struct inode_defrag *defrag1,
49				  struct inode_defrag *defrag2)
50{
51	if (defrag1->root > defrag2->root)
52		return 1;
53	else if (defrag1->root < defrag2->root)
54		return -1;
55	else if (defrag1->ino > defrag2->ino)
56		return 1;
57	else if (defrag1->ino < defrag2->ino)
58		return -1;
59	else
60		return 0;
61}
62
63/*
64 * Pop a record for an inode into the defrag tree.  The lock must be held
65 * already.
66 *
67 * If you're inserting a record for an older transid than an existing record,
68 * the transid already in the tree is lowered.
69 *
70 * If an existing record is found the defrag item you pass in is freed.
71 */
72static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
73				    struct inode_defrag *defrag)
74{
75	struct btrfs_fs_info *fs_info = inode->root->fs_info;
76	struct inode_defrag *entry;
77	struct rb_node **p;
78	struct rb_node *parent = NULL;
79	int ret;
80
81	p = &fs_info->defrag_inodes.rb_node;
82	while (*p) {
83		parent = *p;
84		entry = rb_entry(parent, struct inode_defrag, rb_node);
85
86		ret = __compare_inode_defrag(defrag, entry);
87		if (ret < 0)
88			p = &parent->rb_left;
89		else if (ret > 0)
90			p = &parent->rb_right;
91		else {
92			/*
93			 * If we're reinserting an entry for an old defrag run,
94			 * make sure to lower the transid of our existing
95			 * record.
96			 */
97			if (defrag->transid < entry->transid)
98				entry->transid = defrag->transid;
99			entry->extent_thresh = min(defrag->extent_thresh,
100						   entry->extent_thresh);
101			return -EEXIST;
102		}
103	}
104	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
105	rb_link_node(&defrag->rb_node, parent, p);
106	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
107	return 0;
108}
109
110static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
111{
112	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
113		return 0;
114
115	if (btrfs_fs_closing(fs_info))
116		return 0;
117
118	return 1;
119}
120
121/*
122 * Insert a defrag record for this inode if auto defrag is enabled.
123 */
124int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
125			   struct btrfs_inode *inode, u32 extent_thresh)
126{
127	struct btrfs_root *root = inode->root;
128	struct btrfs_fs_info *fs_info = root->fs_info;
129	struct inode_defrag *defrag;
130	u64 transid;
131	int ret;
132
133	if (!__need_auto_defrag(fs_info))
134		return 0;
135
136	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
137		return 0;
138
139	if (trans)
140		transid = trans->transid;
141	else
142		transid = inode->root->last_trans;
143
144	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
145	if (!defrag)
146		return -ENOMEM;
147
148	defrag->ino = btrfs_ino(inode);
149	defrag->transid = transid;
150	defrag->root = root->root_key.objectid;
151	defrag->extent_thresh = extent_thresh;
152
153	spin_lock(&fs_info->defrag_inodes_lock);
154	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
155		/*
156		 * If we set IN_DEFRAG flag and evict the inode from memory,
157		 * and then re-read this inode, this new inode doesn't have
158		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
159		 */
160		ret = __btrfs_add_inode_defrag(inode, defrag);
161		if (ret)
162			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
163	} else {
164		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
165	}
166	spin_unlock(&fs_info->defrag_inodes_lock);
167	return 0;
168}
169
170/*
171 * Pick the defragable inode that we want, if it doesn't exist, we will get the
172 * next one.
173 */
174static struct inode_defrag *btrfs_pick_defrag_inode(
175			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
176{
177	struct inode_defrag *entry = NULL;
178	struct inode_defrag tmp;
179	struct rb_node *p;
180	struct rb_node *parent = NULL;
181	int ret;
182
183	tmp.ino = ino;
184	tmp.root = root;
185
186	spin_lock(&fs_info->defrag_inodes_lock);
187	p = fs_info->defrag_inodes.rb_node;
188	while (p) {
189		parent = p;
190		entry = rb_entry(parent, struct inode_defrag, rb_node);
191
192		ret = __compare_inode_defrag(&tmp, entry);
193		if (ret < 0)
194			p = parent->rb_left;
195		else if (ret > 0)
196			p = parent->rb_right;
197		else
198			goto out;
199	}
200
201	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
202		parent = rb_next(parent);
203		if (parent)
204			entry = rb_entry(parent, struct inode_defrag, rb_node);
205		else
206			entry = NULL;
207	}
208out:
209	if (entry)
210		rb_erase(parent, &fs_info->defrag_inodes);
211	spin_unlock(&fs_info->defrag_inodes_lock);
212	return entry;
213}
214
215void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
216{
217	struct inode_defrag *defrag;
218	struct rb_node *node;
219
220	spin_lock(&fs_info->defrag_inodes_lock);
221	node = rb_first(&fs_info->defrag_inodes);
222	while (node) {
223		rb_erase(node, &fs_info->defrag_inodes);
224		defrag = rb_entry(node, struct inode_defrag, rb_node);
225		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
226
227		cond_resched_lock(&fs_info->defrag_inodes_lock);
228
229		node = rb_first(&fs_info->defrag_inodes);
230	}
231	spin_unlock(&fs_info->defrag_inodes_lock);
232}
233
234#define BTRFS_DEFRAG_BATCH	1024
235
236static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
237				    struct inode_defrag *defrag)
238{
239	struct btrfs_root *inode_root;
240	struct inode *inode;
241	struct btrfs_ioctl_defrag_range_args range;
242	int ret = 0;
243	u64 cur = 0;
244
245again:
246	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
247		goto cleanup;
248	if (!__need_auto_defrag(fs_info))
249		goto cleanup;
250
251	/* Get the inode */
252	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
253	if (IS_ERR(inode_root)) {
254		ret = PTR_ERR(inode_root);
255		goto cleanup;
256	}
257
258	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
259	btrfs_put_root(inode_root);
260	if (IS_ERR(inode)) {
261		ret = PTR_ERR(inode);
262		goto cleanup;
263	}
264
265	if (cur >= i_size_read(inode)) {
266		iput(inode);
267		goto cleanup;
268	}
269
270	/* Do a chunk of defrag */
271	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
272	memset(&range, 0, sizeof(range));
273	range.len = (u64)-1;
274	range.start = cur;
275	range.extent_thresh = defrag->extent_thresh;
276
277	sb_start_write(fs_info->sb);
278	ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
279				       BTRFS_DEFRAG_BATCH);
280	sb_end_write(fs_info->sb);
281	iput(inode);
282
283	if (ret < 0)
284		goto cleanup;
285
286	cur = max(cur + fs_info->sectorsize, range.start);
287	goto again;
288
289cleanup:
290	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
291	return ret;
292}
293
294/*
295 * Run through the list of inodes in the FS that need defragging.
296 */
297int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
298{
299	struct inode_defrag *defrag;
300	u64 first_ino = 0;
301	u64 root_objectid = 0;
302
303	atomic_inc(&fs_info->defrag_running);
304	while (1) {
305		/* Pause the auto defragger. */
306		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
307			break;
308
309		if (!__need_auto_defrag(fs_info))
310			break;
311
312		/* find an inode to defrag */
313		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
314		if (!defrag) {
315			if (root_objectid || first_ino) {
316				root_objectid = 0;
317				first_ino = 0;
318				continue;
319			} else {
320				break;
321			}
322		}
323
324		first_ino = defrag->ino + 1;
325		root_objectid = defrag->root;
326
327		__btrfs_run_defrag_inode(fs_info, defrag);
328	}
329	atomic_dec(&fs_info->defrag_running);
330
331	/*
332	 * During unmount, we use the transaction_wait queue to wait for the
333	 * defragger to stop.
334	 */
335	wake_up(&fs_info->transaction_wait);
336	return 0;
337}
338
339/*
340 * Check if two blocks addresses are close, used by defrag.
341 */
342static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
343{
344	if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
345		return true;
346	if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
347		return true;
348	return false;
349}
350
351/*
352 * Go through all the leaves pointed to by a node and reallocate them so that
353 * disk order is close to key order.
354 */
355static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
356			      struct btrfs_root *root,
357			      struct extent_buffer *parent,
358			      int start_slot, u64 *last_ret,
359			      struct btrfs_key *progress)
360{
361	struct btrfs_fs_info *fs_info = root->fs_info;
362	const u32 blocksize = fs_info->nodesize;
363	const int end_slot = btrfs_header_nritems(parent) - 1;
364	u64 search_start = *last_ret;
365	u64 last_block = 0;
366	int ret = 0;
367	bool progress_passed = false;
368
369	/*
370	 * COWing must happen through a running transaction, which always
371	 * matches the current fs generation (it's a transaction with a state
372	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
373	 * into error state to prevent the commit of any transaction.
374	 */
375	if (unlikely(trans->transaction != fs_info->running_transaction ||
376		     trans->transid != fs_info->generation)) {
377		btrfs_abort_transaction(trans, -EUCLEAN);
378		btrfs_crit(fs_info,
379"unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
380			   parent->start, btrfs_root_id(root), trans->transid,
381			   fs_info->running_transaction->transid,
382			   fs_info->generation);
383		return -EUCLEAN;
384	}
385
386	if (btrfs_header_nritems(parent) <= 1)
387		return 0;
388
389	for (int i = start_slot; i <= end_slot; i++) {
390		struct extent_buffer *cur;
391		struct btrfs_disk_key disk_key;
392		u64 blocknr;
393		u64 other;
394		bool close = true;
395
396		btrfs_node_key(parent, &disk_key, i);
397		if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
398			continue;
399
400		progress_passed = true;
401		blocknr = btrfs_node_blockptr(parent, i);
402		if (last_block == 0)
403			last_block = blocknr;
404
405		if (i > 0) {
406			other = btrfs_node_blockptr(parent, i - 1);
407			close = close_blocks(blocknr, other, blocksize);
408		}
409		if (!close && i < end_slot) {
410			other = btrfs_node_blockptr(parent, i + 1);
411			close = close_blocks(blocknr, other, blocksize);
412		}
413		if (close) {
414			last_block = blocknr;
415			continue;
416		}
417
418		cur = btrfs_read_node_slot(parent, i);
419		if (IS_ERR(cur))
420			return PTR_ERR(cur);
421		if (search_start == 0)
422			search_start = last_block;
423
424		btrfs_tree_lock(cur);
425		ret = btrfs_force_cow_block(trans, root, cur, parent, i,
426					    &cur, search_start,
427					    min(16 * blocksize,
428						(end_slot - i) * blocksize),
429					    BTRFS_NESTING_COW);
430		if (ret) {
431			btrfs_tree_unlock(cur);
432			free_extent_buffer(cur);
433			break;
434		}
435		search_start = cur->start;
436		last_block = cur->start;
437		*last_ret = search_start;
438		btrfs_tree_unlock(cur);
439		free_extent_buffer(cur);
440	}
441	return ret;
442}
443
444/*
445 * Defrag all the leaves in a given btree.
446 * Read all the leaves and try to get key order to
447 * better reflect disk order
448 */
449
450static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
451			       struct btrfs_root *root)
452{
453	struct btrfs_path *path = NULL;
454	struct btrfs_key key;
455	int ret = 0;
456	int wret;
457	int level;
458	int next_key_ret = 0;
459	u64 last_ret = 0;
460
461	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
462		goto out;
463
464	path = btrfs_alloc_path();
465	if (!path) {
466		ret = -ENOMEM;
467		goto out;
468	}
469
470	level = btrfs_header_level(root->node);
471
472	if (level == 0)
473		goto out;
474
475	if (root->defrag_progress.objectid == 0) {
476		struct extent_buffer *root_node;
477		u32 nritems;
478
479		root_node = btrfs_lock_root_node(root);
480		nritems = btrfs_header_nritems(root_node);
481		root->defrag_max.objectid = 0;
482		/* from above we know this is not a leaf */
483		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
484				      nritems - 1);
485		btrfs_tree_unlock(root_node);
486		free_extent_buffer(root_node);
487		memset(&key, 0, sizeof(key));
488	} else {
489		memcpy(&key, &root->defrag_progress, sizeof(key));
490	}
491
492	path->keep_locks = 1;
493
494	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
495	if (ret < 0)
496		goto out;
497	if (ret > 0) {
498		ret = 0;
499		goto out;
500	}
501	btrfs_release_path(path);
502	/*
503	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
504	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
505	 * a deadlock (attempting to write lock an already write locked leaf).
506	 */
507	path->lowest_level = 1;
508	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
509
510	if (wret < 0) {
511		ret = wret;
512		goto out;
513	}
514	if (!path->nodes[1]) {
515		ret = 0;
516		goto out;
517	}
518	/*
519	 * The node at level 1 must always be locked when our path has
520	 * keep_locks set and lowest_level is 1, regardless of the value of
521	 * path->slots[1].
522	 */
523	ASSERT(path->locks[1] != 0);
524	ret = btrfs_realloc_node(trans, root,
525				 path->nodes[1], 0,
526				 &last_ret,
527				 &root->defrag_progress);
528	if (ret) {
529		WARN_ON(ret == -EAGAIN);
530		goto out;
531	}
532	/*
533	 * Now that we reallocated the node we can find the next key. Note that
534	 * btrfs_find_next_key() can release our path and do another search
535	 * without COWing, this is because even with path->keep_locks = 1,
536	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
537	 * node when path->slots[node_level - 1] does not point to the last
538	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
539	 * we search for the next key after reallocating our node.
540	 */
541	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
542	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
543					   BTRFS_OLDEST_GENERATION);
544	if (next_key_ret == 0) {
545		memcpy(&root->defrag_progress, &key, sizeof(key));
546		ret = -EAGAIN;
547	}
548out:
549	btrfs_free_path(path);
550	if (ret == -EAGAIN) {
551		if (root->defrag_max.objectid > root->defrag_progress.objectid)
552			goto done;
553		if (root->defrag_max.type > root->defrag_progress.type)
554			goto done;
555		if (root->defrag_max.offset > root->defrag_progress.offset)
556			goto done;
557		ret = 0;
558	}
559done:
560	if (ret != -EAGAIN)
561		memset(&root->defrag_progress, 0,
562		       sizeof(root->defrag_progress));
563
564	return ret;
565}
566
567/*
568 * Defrag a given btree.  Every leaf in the btree is read and defragmented.
569 */
570int btrfs_defrag_root(struct btrfs_root *root)
571{
572	struct btrfs_fs_info *fs_info = root->fs_info;
573	int ret;
574
575	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
576		return 0;
577
578	while (1) {
579		struct btrfs_trans_handle *trans;
580
581		trans = btrfs_start_transaction(root, 0);
582		if (IS_ERR(trans)) {
583			ret = PTR_ERR(trans);
584			break;
585		}
586
587		ret = btrfs_defrag_leaves(trans, root);
588
589		btrfs_end_transaction(trans);
590		btrfs_btree_balance_dirty(fs_info);
591		cond_resched();
592
593		if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
594			break;
595
596		if (btrfs_defrag_cancelled(fs_info)) {
597			btrfs_debug(fs_info, "defrag_root cancelled");
598			ret = -EAGAIN;
599			break;
600		}
601	}
602	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
603	return ret;
604}
605
606/*
607 * Defrag specific helper to get an extent map.
608 *
609 * Differences between this and btrfs_get_extent() are:
610 *
611 * - No extent_map will be added to inode->extent_tree
612 *   To reduce memory usage in the long run.
613 *
614 * - Extra optimization to skip file extents older than @newer_than
615 *   By using btrfs_search_forward() we can skip entire file ranges that
616 *   have extents created in past transactions, because btrfs_search_forward()
617 *   will not visit leaves and nodes with a generation smaller than given
618 *   minimal generation threshold (@newer_than).
619 *
620 * Return valid em if we find a file extent matching the requirement.
621 * Return NULL if we can not find a file extent matching the requirement.
622 *
623 * Return ERR_PTR() for error.
624 */
625static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
626					    u64 start, u64 newer_than)
627{
628	struct btrfs_root *root = inode->root;
629	struct btrfs_file_extent_item *fi;
630	struct btrfs_path path = { 0 };
631	struct extent_map *em;
632	struct btrfs_key key;
633	u64 ino = btrfs_ino(inode);
634	int ret;
635
636	em = alloc_extent_map();
637	if (!em) {
638		ret = -ENOMEM;
639		goto err;
640	}
641
642	key.objectid = ino;
643	key.type = BTRFS_EXTENT_DATA_KEY;
644	key.offset = start;
645
646	if (newer_than) {
647		ret = btrfs_search_forward(root, &key, &path, newer_than);
648		if (ret < 0)
649			goto err;
650		/* Can't find anything newer */
651		if (ret > 0)
652			goto not_found;
653	} else {
654		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
655		if (ret < 0)
656			goto err;
657	}
658	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
659		/*
660		 * If btrfs_search_slot() makes path to point beyond nritems,
661		 * we should not have an empty leaf, as this inode must at
662		 * least have its INODE_ITEM.
663		 */
664		ASSERT(btrfs_header_nritems(path.nodes[0]));
665		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
666	}
667	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
668	/* Perfect match, no need to go one slot back */
669	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
670	    key.offset == start)
671		goto iterate;
672
673	/* We didn't find a perfect match, needs to go one slot back */
674	if (path.slots[0] > 0) {
675		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
676		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
677			path.slots[0]--;
678	}
679
680iterate:
681	/* Iterate through the path to find a file extent covering @start */
682	while (true) {
683		u64 extent_end;
684
685		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
686			goto next;
687
688		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
689
690		/*
691		 * We may go one slot back to INODE_REF/XATTR item, then
692		 * need to go forward until we reach an EXTENT_DATA.
693		 * But we should still has the correct ino as key.objectid.
694		 */
695		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
696			goto next;
697
698		/* It's beyond our target range, definitely not extent found */
699		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
700			goto not_found;
701
702		/*
703		 *	|	|<- File extent ->|
704		 *	\- start
705		 *
706		 * This means there is a hole between start and key.offset.
707		 */
708		if (key.offset > start) {
709			em->start = start;
710			em->orig_start = start;
711			em->block_start = EXTENT_MAP_HOLE;
712			em->len = key.offset - start;
713			break;
714		}
715
716		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
717				    struct btrfs_file_extent_item);
718		extent_end = btrfs_file_extent_end(&path);
719
720		/*
721		 *	|<- file extent ->|	|
722		 *				\- start
723		 *
724		 * We haven't reached start, search next slot.
725		 */
726		if (extent_end <= start)
727			goto next;
728
729		/* Now this extent covers @start, convert it to em */
730		btrfs_extent_item_to_extent_map(inode, &path, fi, em);
731		break;
732next:
733		ret = btrfs_next_item(root, &path);
734		if (ret < 0)
735			goto err;
736		if (ret > 0)
737			goto not_found;
738	}
739	btrfs_release_path(&path);
740	return em;
741
742not_found:
743	btrfs_release_path(&path);
744	free_extent_map(em);
745	return NULL;
746
747err:
748	btrfs_release_path(&path);
749	free_extent_map(em);
750	return ERR_PTR(ret);
751}
752
753static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
754					       u64 newer_than, bool locked)
755{
756	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
757	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
758	struct extent_map *em;
759	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
760
761	/*
762	 * Hopefully we have this extent in the tree already, try without the
763	 * full extent lock.
764	 */
765	read_lock(&em_tree->lock);
766	em = lookup_extent_mapping(em_tree, start, sectorsize);
767	read_unlock(&em_tree->lock);
768
769	/*
770	 * We can get a merged extent, in that case, we need to re-search
771	 * tree to get the original em for defrag.
772	 *
773	 * If @newer_than is 0 or em::generation < newer_than, we can trust
774	 * this em, as either we don't care about the generation, or the
775	 * merged extent map will be rejected anyway.
776	 */
777	if (em && (em->flags & EXTENT_FLAG_MERGED) &&
778	    newer_than && em->generation >= newer_than) {
779		free_extent_map(em);
780		em = NULL;
781	}
782
783	if (!em) {
784		struct extent_state *cached = NULL;
785		u64 end = start + sectorsize - 1;
786
787		/* Get the big lock and read metadata off disk. */
788		if (!locked)
789			lock_extent(io_tree, start, end, &cached);
790		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
791		if (!locked)
792			unlock_extent(io_tree, start, end, &cached);
793
794		if (IS_ERR(em))
795			return NULL;
796	}
797
798	return em;
799}
800
801static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
802				   const struct extent_map *em)
803{
804	if (extent_map_is_compressed(em))
805		return BTRFS_MAX_COMPRESSED;
806	return fs_info->max_extent_size;
807}
808
809static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
810				     u32 extent_thresh, u64 newer_than, bool locked)
811{
812	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
813	struct extent_map *next;
814	bool ret = false;
815
816	/* This is the last extent */
817	if (em->start + em->len >= i_size_read(inode))
818		return false;
819
820	/*
821	 * Here we need to pass @newer_then when checking the next extent, or
822	 * we will hit a case we mark current extent for defrag, but the next
823	 * one will not be a target.
824	 * This will just cause extra IO without really reducing the fragments.
825	 */
826	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
827	/* No more em or hole */
828	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
829		goto out;
830	if (next->flags & EXTENT_FLAG_PREALLOC)
831		goto out;
832	/*
833	 * If the next extent is at its max capacity, defragging current extent
834	 * makes no sense, as the total number of extents won't change.
835	 */
836	if (next->len >= get_extent_max_capacity(fs_info, em))
837		goto out;
838	/* Skip older extent */
839	if (next->generation < newer_than)
840		goto out;
841	/* Also check extent size */
842	if (next->len >= extent_thresh)
843		goto out;
844
845	ret = true;
846out:
847	free_extent_map(next);
848	return ret;
849}
850
851/*
852 * Prepare one page to be defragged.
853 *
854 * This will ensure:
855 *
856 * - Returned page is locked and has been set up properly.
857 * - No ordered extent exists in the page.
858 * - The page is uptodate.
859 *
860 * NOTE: Caller should also wait for page writeback after the cluster is
861 * prepared, here we don't do writeback wait for each page.
862 */
863static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index)
864{
865	struct address_space *mapping = inode->vfs_inode.i_mapping;
866	gfp_t mask = btrfs_alloc_write_mask(mapping);
867	u64 page_start = (u64)index << PAGE_SHIFT;
868	u64 page_end = page_start + PAGE_SIZE - 1;
869	struct extent_state *cached_state = NULL;
870	struct folio *folio;
871	int ret;
872
873again:
874	folio = __filemap_get_folio(mapping, index,
875				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
876	if (IS_ERR(folio))
877		return folio;
878
879	/*
880	 * Since we can defragment files opened read-only, we can encounter
881	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
882	 * can't do I/O using huge pages yet, so return an error for now.
883	 * Filesystem transparent huge pages are typically only used for
884	 * executables that explicitly enable them, so this isn't very
885	 * restrictive.
886	 */
887	if (folio_test_large(folio)) {
888		folio_unlock(folio);
889		folio_put(folio);
890		return ERR_PTR(-ETXTBSY);
891	}
892
893	ret = set_folio_extent_mapped(folio);
894	if (ret < 0) {
895		folio_unlock(folio);
896		folio_put(folio);
897		return ERR_PTR(ret);
898	}
899
900	/* Wait for any existing ordered extent in the range */
901	while (1) {
902		struct btrfs_ordered_extent *ordered;
903
904		lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
905		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
906		unlock_extent(&inode->io_tree, page_start, page_end,
907			      &cached_state);
908		if (!ordered)
909			break;
910
911		folio_unlock(folio);
912		btrfs_start_ordered_extent(ordered);
913		btrfs_put_ordered_extent(ordered);
914		folio_lock(folio);
915		/*
916		 * We unlocked the folio above, so we need check if it was
917		 * released or not.
918		 */
919		if (folio->mapping != mapping || !folio->private) {
920			folio_unlock(folio);
921			folio_put(folio);
922			goto again;
923		}
924	}
925
926	/*
927	 * Now the page range has no ordered extent any more.  Read the page to
928	 * make it uptodate.
929	 */
930	if (!folio_test_uptodate(folio)) {
931		btrfs_read_folio(NULL, folio);
932		folio_lock(folio);
933		if (folio->mapping != mapping || !folio->private) {
934			folio_unlock(folio);
935			folio_put(folio);
936			goto again;
937		}
938		if (!folio_test_uptodate(folio)) {
939			folio_unlock(folio);
940			folio_put(folio);
941			return ERR_PTR(-EIO);
942		}
943	}
944	return folio;
945}
946
947struct defrag_target_range {
948	struct list_head list;
949	u64 start;
950	u64 len;
951};
952
953/*
954 * Collect all valid target extents.
955 *
956 * @start:	   file offset to lookup
957 * @len:	   length to lookup
958 * @extent_thresh: file extent size threshold, any extent size >= this value
959 *		   will be ignored
960 * @newer_than:    only defrag extents newer than this value
961 * @do_compress:   whether the defrag is doing compression
962 *		   if true, @extent_thresh will be ignored and all regular
963 *		   file extents meeting @newer_than will be targets.
964 * @locked:	   if the range has already held extent lock
965 * @target_list:   list of targets file extents
966 */
967static int defrag_collect_targets(struct btrfs_inode *inode,
968				  u64 start, u64 len, u32 extent_thresh,
969				  u64 newer_than, bool do_compress,
970				  bool locked, struct list_head *target_list,
971				  u64 *last_scanned_ret)
972{
973	struct btrfs_fs_info *fs_info = inode->root->fs_info;
974	bool last_is_target = false;
975	u64 cur = start;
976	int ret = 0;
977
978	while (cur < start + len) {
979		struct extent_map *em;
980		struct defrag_target_range *new;
981		bool next_mergeable = true;
982		u64 range_len;
983
984		last_is_target = false;
985		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
986		if (!em)
987			break;
988
989		/*
990		 * If the file extent is an inlined one, we may still want to
991		 * defrag it (fallthrough) if it will cause a regular extent.
992		 * This is for users who want to convert inline extents to
993		 * regular ones through max_inline= mount option.
994		 */
995		if (em->block_start == EXTENT_MAP_INLINE &&
996		    em->len <= inode->root->fs_info->max_inline)
997			goto next;
998
999		/* Skip holes and preallocated extents. */
1000		if (em->block_start == EXTENT_MAP_HOLE ||
1001		    (em->flags & EXTENT_FLAG_PREALLOC))
1002			goto next;
1003
1004		/* Skip older extent */
1005		if (em->generation < newer_than)
1006			goto next;
1007
1008		/* This em is under writeback, no need to defrag */
1009		if (em->generation == (u64)-1)
1010			goto next;
1011
1012		/*
1013		 * Our start offset might be in the middle of an existing extent
1014		 * map, so take that into account.
1015		 */
1016		range_len = em->len - (cur - em->start);
1017		/*
1018		 * If this range of the extent map is already flagged for delalloc,
1019		 * skip it, because:
1020		 *
1021		 * 1) We could deadlock later, when trying to reserve space for
1022		 *    delalloc, because in case we can't immediately reserve space
1023		 *    the flusher can start delalloc and wait for the respective
1024		 *    ordered extents to complete. The deadlock would happen
1025		 *    because we do the space reservation while holding the range
1026		 *    locked, and starting writeback, or finishing an ordered
1027		 *    extent, requires locking the range;
1028		 *
1029		 * 2) If there's delalloc there, it means there's dirty pages for
1030		 *    which writeback has not started yet (we clean the delalloc
1031		 *    flag when starting writeback and after creating an ordered
1032		 *    extent). If we mark pages in an adjacent range for defrag,
1033		 *    then we will have a larger contiguous range for delalloc,
1034		 *    very likely resulting in a larger extent after writeback is
1035		 *    triggered (except in a case of free space fragmentation).
1036		 */
1037		if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
1038					  EXTENT_DELALLOC))
1039			goto next;
1040
1041		/*
1042		 * For do_compress case, we want to compress all valid file
1043		 * extents, thus no @extent_thresh or mergeable check.
1044		 */
1045		if (do_compress)
1046			goto add;
1047
1048		/* Skip too large extent */
1049		if (em->len >= extent_thresh)
1050			goto next;
1051
1052		/*
1053		 * Skip extents already at its max capacity, this is mostly for
1054		 * compressed extents, which max cap is only 128K.
1055		 */
1056		if (em->len >= get_extent_max_capacity(fs_info, em))
1057			goto next;
1058
1059		/*
1060		 * Normally there are no more extents after an inline one, thus
1061		 * @next_mergeable will normally be false and not defragged.
1062		 * So if an inline extent passed all above checks, just add it
1063		 * for defrag, and be converted to regular extents.
1064		 */
1065		if (em->block_start == EXTENT_MAP_INLINE)
1066			goto add;
1067
1068		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1069						extent_thresh, newer_than, locked);
1070		if (!next_mergeable) {
1071			struct defrag_target_range *last;
1072
1073			/* Empty target list, no way to merge with last entry */
1074			if (list_empty(target_list))
1075				goto next;
1076			last = list_entry(target_list->prev,
1077					  struct defrag_target_range, list);
1078			/* Not mergeable with last entry */
1079			if (last->start + last->len != cur)
1080				goto next;
1081
1082			/* Mergeable, fall through to add it to @target_list. */
1083		}
1084
1085add:
1086		last_is_target = true;
1087		range_len = min(extent_map_end(em), start + len) - cur;
1088		/*
1089		 * This one is a good target, check if it can be merged into
1090		 * last range of the target list.
1091		 */
1092		if (!list_empty(target_list)) {
1093			struct defrag_target_range *last;
1094
1095			last = list_entry(target_list->prev,
1096					  struct defrag_target_range, list);
1097			ASSERT(last->start + last->len <= cur);
1098			if (last->start + last->len == cur) {
1099				/* Mergeable, enlarge the last entry */
1100				last->len += range_len;
1101				goto next;
1102			}
1103			/* Fall through to allocate a new entry */
1104		}
1105
1106		/* Allocate new defrag_target_range */
1107		new = kmalloc(sizeof(*new), GFP_NOFS);
1108		if (!new) {
1109			free_extent_map(em);
1110			ret = -ENOMEM;
1111			break;
1112		}
1113		new->start = cur;
1114		new->len = range_len;
1115		list_add_tail(&new->list, target_list);
1116
1117next:
1118		cur = extent_map_end(em);
1119		free_extent_map(em);
1120	}
1121	if (ret < 0) {
1122		struct defrag_target_range *entry;
1123		struct defrag_target_range *tmp;
1124
1125		list_for_each_entry_safe(entry, tmp, target_list, list) {
1126			list_del_init(&entry->list);
1127			kfree(entry);
1128		}
1129	}
1130	if (!ret && last_scanned_ret) {
1131		/*
1132		 * If the last extent is not a target, the caller can skip to
1133		 * the end of that extent.
1134		 * Otherwise, we can only go the end of the specified range.
1135		 */
1136		if (!last_is_target)
1137			*last_scanned_ret = max(cur, *last_scanned_ret);
1138		else
1139			*last_scanned_ret = max(start + len, *last_scanned_ret);
1140	}
1141	return ret;
1142}
1143
1144#define CLUSTER_SIZE	(SZ_256K)
1145static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1146
1147/*
1148 * Defrag one contiguous target range.
1149 *
1150 * @inode:	target inode
1151 * @target:	target range to defrag
1152 * @pages:	locked pages covering the defrag range
1153 * @nr_pages:	number of locked pages
1154 *
1155 * Caller should ensure:
1156 *
1157 * - Pages are prepared
1158 *   Pages should be locked, no ordered extent in the pages range,
1159 *   no writeback.
1160 *
1161 * - Extent bits are locked
1162 */
1163static int defrag_one_locked_target(struct btrfs_inode *inode,
1164				    struct defrag_target_range *target,
1165				    struct folio **folios, int nr_pages,
1166				    struct extent_state **cached_state)
1167{
1168	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1169	struct extent_changeset *data_reserved = NULL;
1170	const u64 start = target->start;
1171	const u64 len = target->len;
1172	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1173	unsigned long start_index = start >> PAGE_SHIFT;
1174	unsigned long first_index = folios[0]->index;
1175	int ret = 0;
1176	int i;
1177
1178	ASSERT(last_index - first_index + 1 <= nr_pages);
1179
1180	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1181	if (ret < 0)
1182		return ret;
1183	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1184			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1185			 EXTENT_DEFRAG, cached_state);
1186	set_extent_bit(&inode->io_tree, start, start + len - 1,
1187		       EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1188
1189	/* Update the page status */
1190	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1191		folio_clear_checked(folios[i]);
1192		btrfs_folio_clamp_set_dirty(fs_info, folios[i], start, len);
1193	}
1194	btrfs_delalloc_release_extents(inode, len);
1195	extent_changeset_free(data_reserved);
1196
1197	return ret;
1198}
1199
1200static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1201			    u32 extent_thresh, u64 newer_than, bool do_compress,
1202			    u64 *last_scanned_ret)
1203{
1204	struct extent_state *cached_state = NULL;
1205	struct defrag_target_range *entry;
1206	struct defrag_target_range *tmp;
1207	LIST_HEAD(target_list);
1208	struct folio **folios;
1209	const u32 sectorsize = inode->root->fs_info->sectorsize;
1210	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1211	u64 start_index = start >> PAGE_SHIFT;
1212	unsigned int nr_pages = last_index - start_index + 1;
1213	int ret = 0;
1214	int i;
1215
1216	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1217	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1218
1219	folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS);
1220	if (!folios)
1221		return -ENOMEM;
1222
1223	/* Prepare all pages */
1224	for (i = 0; i < nr_pages; i++) {
1225		folios[i] = defrag_prepare_one_folio(inode, start_index + i);
1226		if (IS_ERR(folios[i])) {
1227			ret = PTR_ERR(folios[i]);
1228			nr_pages = i;
1229			goto free_folios;
1230		}
1231	}
1232	for (i = 0; i < nr_pages; i++)
1233		folio_wait_writeback(folios[i]);
1234
1235	/* Lock the pages range */
1236	lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1237		    (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1238		    &cached_state);
1239	/*
1240	 * Now we have a consistent view about the extent map, re-check
1241	 * which range really needs to be defragged.
1242	 *
1243	 * And this time we have extent locked already, pass @locked = true
1244	 * so that we won't relock the extent range and cause deadlock.
1245	 */
1246	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1247				     newer_than, do_compress, true,
1248				     &target_list, last_scanned_ret);
1249	if (ret < 0)
1250		goto unlock_extent;
1251
1252	list_for_each_entry(entry, &target_list, list) {
1253		ret = defrag_one_locked_target(inode, entry, folios, nr_pages,
1254					       &cached_state);
1255		if (ret < 0)
1256			break;
1257	}
1258
1259	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1260		list_del_init(&entry->list);
1261		kfree(entry);
1262	}
1263unlock_extent:
1264	unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1265		      (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1266		      &cached_state);
1267free_folios:
1268	for (i = 0; i < nr_pages; i++) {
1269		folio_unlock(folios[i]);
1270		folio_put(folios[i]);
1271	}
1272	kfree(folios);
1273	return ret;
1274}
1275
1276static int defrag_one_cluster(struct btrfs_inode *inode,
1277			      struct file_ra_state *ra,
1278			      u64 start, u32 len, u32 extent_thresh,
1279			      u64 newer_than, bool do_compress,
1280			      unsigned long *sectors_defragged,
1281			      unsigned long max_sectors,
1282			      u64 *last_scanned_ret)
1283{
1284	const u32 sectorsize = inode->root->fs_info->sectorsize;
1285	struct defrag_target_range *entry;
1286	struct defrag_target_range *tmp;
1287	LIST_HEAD(target_list);
1288	int ret;
1289
1290	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1291				     newer_than, do_compress, false,
1292				     &target_list, NULL);
1293	if (ret < 0)
1294		goto out;
1295
1296	list_for_each_entry(entry, &target_list, list) {
1297		u32 range_len = entry->len;
1298
1299		/* Reached or beyond the limit */
1300		if (max_sectors && *sectors_defragged >= max_sectors) {
1301			ret = 1;
1302			break;
1303		}
1304
1305		if (max_sectors)
1306			range_len = min_t(u32, range_len,
1307				(max_sectors - *sectors_defragged) * sectorsize);
1308
1309		/*
1310		 * If defrag_one_range() has updated last_scanned_ret,
1311		 * our range may already be invalid (e.g. hole punched).
1312		 * Skip if our range is before last_scanned_ret, as there is
1313		 * no need to defrag the range anymore.
1314		 */
1315		if (entry->start + range_len <= *last_scanned_ret)
1316			continue;
1317
1318		if (ra)
1319			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1320				ra, NULL, entry->start >> PAGE_SHIFT,
1321				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1322				(entry->start >> PAGE_SHIFT) + 1);
1323		/*
1324		 * Here we may not defrag any range if holes are punched before
1325		 * we locked the pages.
1326		 * But that's fine, it only affects the @sectors_defragged
1327		 * accounting.
1328		 */
1329		ret = defrag_one_range(inode, entry->start, range_len,
1330				       extent_thresh, newer_than, do_compress,
1331				       last_scanned_ret);
1332		if (ret < 0)
1333			break;
1334		*sectors_defragged += range_len >>
1335				      inode->root->fs_info->sectorsize_bits;
1336	}
1337out:
1338	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1339		list_del_init(&entry->list);
1340		kfree(entry);
1341	}
1342	if (ret >= 0)
1343		*last_scanned_ret = max(*last_scanned_ret, start + len);
1344	return ret;
1345}
1346
1347/*
1348 * Entry point to file defragmentation.
1349 *
1350 * @inode:	   inode to be defragged
1351 * @ra:		   readahead state (can be NUL)
1352 * @range:	   defrag options including range and flags
1353 * @newer_than:	   minimum transid to defrag
1354 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1355 *		   will be defragged.
1356 *
1357 * Return <0 for error.
1358 * Return >=0 for the number of sectors defragged, and range->start will be updated
1359 * to indicate the file offset where next defrag should be started at.
1360 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1361 *  defragging all the range).
1362 */
1363int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1364		      struct btrfs_ioctl_defrag_range_args *range,
1365		      u64 newer_than, unsigned long max_to_defrag)
1366{
1367	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1368	unsigned long sectors_defragged = 0;
1369	u64 isize = i_size_read(inode);
1370	u64 cur;
1371	u64 last_byte;
1372	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1373	bool ra_allocated = false;
1374	int compress_type = BTRFS_COMPRESS_ZLIB;
1375	int ret = 0;
1376	u32 extent_thresh = range->extent_thresh;
1377	pgoff_t start_index;
1378
1379	if (isize == 0)
1380		return 0;
1381
1382	if (range->start >= isize)
1383		return -EINVAL;
1384
1385	if (do_compress) {
1386		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1387			return -EINVAL;
1388		if (range->compress_type)
1389			compress_type = range->compress_type;
1390	}
1391
1392	if (extent_thresh == 0)
1393		extent_thresh = SZ_256K;
1394
1395	if (range->start + range->len > range->start) {
1396		/* Got a specific range */
1397		last_byte = min(isize, range->start + range->len);
1398	} else {
1399		/* Defrag until file end */
1400		last_byte = isize;
1401	}
1402
1403	/* Align the range */
1404	cur = round_down(range->start, fs_info->sectorsize);
1405	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1406
1407	/*
1408	 * If we were not given a ra, allocate a readahead context. As
1409	 * readahead is just an optimization, defrag will work without it so
1410	 * we don't error out.
1411	 */
1412	if (!ra) {
1413		ra_allocated = true;
1414		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1415		if (ra)
1416			file_ra_state_init(ra, inode->i_mapping);
1417	}
1418
1419	/*
1420	 * Make writeback start from the beginning of the range, so that the
1421	 * defrag range can be written sequentially.
1422	 */
1423	start_index = cur >> PAGE_SHIFT;
1424	if (start_index < inode->i_mapping->writeback_index)
1425		inode->i_mapping->writeback_index = start_index;
1426
1427	while (cur < last_byte) {
1428		const unsigned long prev_sectors_defragged = sectors_defragged;
1429		u64 last_scanned = cur;
1430		u64 cluster_end;
1431
1432		if (btrfs_defrag_cancelled(fs_info)) {
1433			ret = -EAGAIN;
1434			break;
1435		}
1436
1437		/* We want the cluster end at page boundary when possible */
1438		cluster_end = (((cur >> PAGE_SHIFT) +
1439			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1440		cluster_end = min(cluster_end, last_byte);
1441
1442		btrfs_inode_lock(BTRFS_I(inode), 0);
1443		if (IS_SWAPFILE(inode)) {
1444			ret = -ETXTBSY;
1445			btrfs_inode_unlock(BTRFS_I(inode), 0);
1446			break;
1447		}
1448		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1449			btrfs_inode_unlock(BTRFS_I(inode), 0);
1450			break;
1451		}
1452		if (do_compress)
1453			BTRFS_I(inode)->defrag_compress = compress_type;
1454		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1455				cluster_end + 1 - cur, extent_thresh,
1456				newer_than, do_compress, &sectors_defragged,
1457				max_to_defrag, &last_scanned);
1458
1459		if (sectors_defragged > prev_sectors_defragged)
1460			balance_dirty_pages_ratelimited(inode->i_mapping);
1461
1462		btrfs_inode_unlock(BTRFS_I(inode), 0);
1463		if (ret < 0)
1464			break;
1465		cur = max(cluster_end + 1, last_scanned);
1466		if (ret > 0) {
1467			ret = 0;
1468			break;
1469		}
1470		cond_resched();
1471	}
1472
1473	if (ra_allocated)
1474		kfree(ra);
1475	/*
1476	 * Update range.start for autodefrag, this will indicate where to start
1477	 * in next run.
1478	 */
1479	range->start = cur;
1480	if (sectors_defragged) {
1481		/*
1482		 * We have defragged some sectors, for compression case they
1483		 * need to be written back immediately.
1484		 */
1485		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1486			filemap_flush(inode->i_mapping);
1487			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1488				     &BTRFS_I(inode)->runtime_flags))
1489				filemap_flush(inode->i_mapping);
1490		}
1491		if (range->compress_type == BTRFS_COMPRESS_LZO)
1492			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1493		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1494			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1495		ret = sectors_defragged;
1496	}
1497	if (do_compress) {
1498		btrfs_inode_lock(BTRFS_I(inode), 0);
1499		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1500		btrfs_inode_unlock(BTRFS_I(inode), 0);
1501	}
1502	return ret;
1503}
1504
1505void __cold btrfs_auto_defrag_exit(void)
1506{
1507	kmem_cache_destroy(btrfs_inode_defrag_cachep);
1508}
1509
1510int __init btrfs_auto_defrag_init(void)
1511{
1512	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1513					sizeof(struct inode_defrag), 0, 0, NULL);
1514	if (!btrfs_inode_defrag_cachep)
1515		return -ENOMEM;
1516
1517	return 0;
1518}
1519