1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/highmem.h>
12#include <linux/fs.h>
13#include <linux/rwsem.h>
14#include <linux/semaphore.h>
15#include <linux/completion.h>
16#include <linux/backing-dev.h>
17#include <linux/wait.h>
18#include <linux/slab.h>
19#include <trace/events/btrfs.h>
20#include <asm/unaligned.h>
21#include <linux/pagemap.h>
22#include <linux/btrfs.h>
23#include <linux/btrfs_tree.h>
24#include <linux/workqueue.h>
25#include <linux/security.h>
26#include <linux/sizes.h>
27#include <linux/dynamic_debug.h>
28#include <linux/refcount.h>
29#include <linux/crc32c.h>
30#include <linux/iomap.h>
31#include "extent-io-tree.h"
32#include "extent_io.h"
33#include "extent_map.h"
34#include "async-thread.h"
35#include "block-rsv.h"
36#include "locking.h"
37
38struct btrfs_trans_handle;
39struct btrfs_transaction;
40struct btrfs_pending_snapshot;
41struct btrfs_delayed_ref_root;
42struct btrfs_space_info;
43struct btrfs_block_group;
44extern struct kmem_cache *btrfs_trans_handle_cachep;
45extern struct kmem_cache *btrfs_bit_radix_cachep;
46extern struct kmem_cache *btrfs_path_cachep;
47extern struct kmem_cache *btrfs_free_space_cachep;
48extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49struct btrfs_ordered_sum;
50struct btrfs_ref;
51struct btrfs_bio;
52
53#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
54
55/*
56 * Maximum number of mirrors that can be available for all profiles counting
57 * the target device of dev-replace as one. During an active device replace
58 * procedure, the target device of the copy operation is a mirror for the
59 * filesystem data as well that can be used to read data in order to repair
60 * read errors on other disks.
61 *
62 * Current value is derived from RAID1C4 with 4 copies.
63 */
64#define BTRFS_MAX_MIRRORS (4 + 1)
65
66#define BTRFS_MAX_LEVEL 8
67
68#define BTRFS_OLDEST_GENERATION	0ULL
69
70/*
71 * we can actually store much bigger names, but lets not confuse the rest
72 * of linux
73 */
74#define BTRFS_NAME_LEN 255
75
76/*
77 * Theoretical limit is larger, but we keep this down to a sane
78 * value. That should limit greatly the possibility of collisions on
79 * inode ref items.
80 */
81#define BTRFS_LINK_MAX 65535U
82
83#define BTRFS_EMPTY_DIR_SIZE 0
84
85/* ioprio of readahead is set to idle */
86#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
87
88#define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
89
90/*
91 * Use large batch size to reduce overhead of metadata updates.  On the reader
92 * side, we only read it when we are close to ENOSPC and the read overhead is
93 * mostly related to the number of CPUs, so it is OK to use arbitrary large
94 * value here.
95 */
96#define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
97
98#define BTRFS_MAX_EXTENT_SIZE SZ_128M
99
100/*
101 * Deltas are an effective way to populate global statistics.  Give macro names
102 * to make it clear what we're doing.  An example is discard_extents in
103 * btrfs_free_space_ctl.
104 */
105#define BTRFS_STAT_NR_ENTRIES	2
106#define BTRFS_STAT_CURR		0
107#define BTRFS_STAT_PREV		1
108
109/*
110 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
111 */
112static inline u32 count_max_extents(u64 size)
113{
114	return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
115}
116
117static inline unsigned long btrfs_chunk_item_size(int num_stripes)
118{
119	BUG_ON(num_stripes == 0);
120	return sizeof(struct btrfs_chunk) +
121		sizeof(struct btrfs_stripe) * (num_stripes - 1);
122}
123
124/*
125 * Runtime (in-memory) states of filesystem
126 */
127enum {
128	/* Global indicator of serious filesystem errors */
129	BTRFS_FS_STATE_ERROR,
130	/*
131	 * Filesystem is being remounted, allow to skip some operations, like
132	 * defrag
133	 */
134	BTRFS_FS_STATE_REMOUNTING,
135	/* Filesystem in RO mode */
136	BTRFS_FS_STATE_RO,
137	/* Track if a transaction abort has been reported on this filesystem */
138	BTRFS_FS_STATE_TRANS_ABORTED,
139	/*
140	 * Bio operations should be blocked on this filesystem because a source
141	 * or target device is being destroyed as part of a device replace
142	 */
143	BTRFS_FS_STATE_DEV_REPLACING,
144	/* The btrfs_fs_info created for self-tests */
145	BTRFS_FS_STATE_DUMMY_FS_INFO,
146
147	BTRFS_FS_STATE_NO_CSUMS,
148};
149
150#define BTRFS_BACKREF_REV_MAX		256
151#define BTRFS_BACKREF_REV_SHIFT		56
152#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
153					 BTRFS_BACKREF_REV_SHIFT)
154
155#define BTRFS_OLD_BACKREF_REV		0
156#define BTRFS_MIXED_BACKREF_REV		1
157
158/*
159 * every tree block (leaf or node) starts with this header.
160 */
161struct btrfs_header {
162	/* these first four must match the super block */
163	u8 csum[BTRFS_CSUM_SIZE];
164	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
165	__le64 bytenr; /* which block this node is supposed to live in */
166	__le64 flags;
167
168	/* allowed to be different from the super from here on down */
169	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
170	__le64 generation;
171	__le64 owner;
172	__le32 nritems;
173	u8 level;
174} __attribute__ ((__packed__));
175
176/*
177 * this is a very generous portion of the super block, giving us
178 * room to translate 14 chunks with 3 stripes each.
179 */
180#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
181
182/*
183 * just in case we somehow lose the roots and are not able to mount,
184 * we store an array of the roots from previous transactions
185 * in the super.
186 */
187#define BTRFS_NUM_BACKUP_ROOTS 4
188struct btrfs_root_backup {
189	__le64 tree_root;
190	__le64 tree_root_gen;
191
192	__le64 chunk_root;
193	__le64 chunk_root_gen;
194
195	__le64 extent_root;
196	__le64 extent_root_gen;
197
198	__le64 fs_root;
199	__le64 fs_root_gen;
200
201	__le64 dev_root;
202	__le64 dev_root_gen;
203
204	__le64 csum_root;
205	__le64 csum_root_gen;
206
207	__le64 total_bytes;
208	__le64 bytes_used;
209	__le64 num_devices;
210	/* future */
211	__le64 unused_64[4];
212
213	u8 tree_root_level;
214	u8 chunk_root_level;
215	u8 extent_root_level;
216	u8 fs_root_level;
217	u8 dev_root_level;
218	u8 csum_root_level;
219	/* future and to align */
220	u8 unused_8[10];
221} __attribute__ ((__packed__));
222
223#define BTRFS_SUPER_INFO_OFFSET			SZ_64K
224#define BTRFS_SUPER_INFO_SIZE			4096
225
226/*
227 * the super block basically lists the main trees of the FS
228 * it currently lacks any block count etc etc
229 */
230struct btrfs_super_block {
231	/* the first 4 fields must match struct btrfs_header */
232	u8 csum[BTRFS_CSUM_SIZE];
233	/* FS specific UUID, visible to user */
234	u8 fsid[BTRFS_FSID_SIZE];
235	__le64 bytenr; /* this block number */
236	__le64 flags;
237
238	/* allowed to be different from the btrfs_header from here own down */
239	__le64 magic;
240	__le64 generation;
241	__le64 root;
242	__le64 chunk_root;
243	__le64 log_root;
244
245	/* this will help find the new super based on the log root */
246	__le64 log_root_transid;
247	__le64 total_bytes;
248	__le64 bytes_used;
249	__le64 root_dir_objectid;
250	__le64 num_devices;
251	__le32 sectorsize;
252	__le32 nodesize;
253	__le32 __unused_leafsize;
254	__le32 stripesize;
255	__le32 sys_chunk_array_size;
256	__le64 chunk_root_generation;
257	__le64 compat_flags;
258	__le64 compat_ro_flags;
259	__le64 incompat_flags;
260	__le16 csum_type;
261	u8 root_level;
262	u8 chunk_root_level;
263	u8 log_root_level;
264	struct btrfs_dev_item dev_item;
265
266	char label[BTRFS_LABEL_SIZE];
267
268	__le64 cache_generation;
269	__le64 uuid_tree_generation;
270
271	/* the UUID written into btree blocks */
272	u8 metadata_uuid[BTRFS_FSID_SIZE];
273
274	/* future expansion */
275	__le64 reserved[28];
276	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
277	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
278
279	/* Padded to 4096 bytes */
280	u8 padding[565];
281} __attribute__ ((__packed__));
282static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
283
284/*
285 * Compat flags that we support.  If any incompat flags are set other than the
286 * ones specified below then we will fail to mount
287 */
288#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
289#define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
290#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
291
292#define BTRFS_FEATURE_COMPAT_RO_SUPP			\
293	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
294	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
295	 BTRFS_FEATURE_COMPAT_RO_VERITY)
296
297#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
298#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
299
300#define BTRFS_FEATURE_INCOMPAT_SUPP			\
301	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
302	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
303	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
304	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
305	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
306	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
307	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
308	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
309	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
310	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
311	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
312	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
313	 BTRFS_FEATURE_INCOMPAT_ZONED)
314
315#define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
316	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
317#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
318
319/*
320 * A leaf is full of items. offset and size tell us where to find
321 * the item in the leaf (relative to the start of the data area)
322 */
323struct btrfs_item {
324	struct btrfs_disk_key key;
325	__le32 offset;
326	__le32 size;
327} __attribute__ ((__packed__));
328
329/*
330 * leaves have an item area and a data area:
331 * [item0, item1....itemN] [free space] [dataN...data1, data0]
332 *
333 * The data is separate from the items to get the keys closer together
334 * during searches.
335 */
336struct btrfs_leaf {
337	struct btrfs_header header;
338	struct btrfs_item items[];
339} __attribute__ ((__packed__));
340
341/*
342 * all non-leaf blocks are nodes, they hold only keys and pointers to
343 * other blocks
344 */
345struct btrfs_key_ptr {
346	struct btrfs_disk_key key;
347	__le64 blockptr;
348	__le64 generation;
349} __attribute__ ((__packed__));
350
351struct btrfs_node {
352	struct btrfs_header header;
353	struct btrfs_key_ptr ptrs[];
354} __attribute__ ((__packed__));
355
356/* Read ahead values for struct btrfs_path.reada */
357enum {
358	READA_NONE,
359	READA_BACK,
360	READA_FORWARD,
361	/*
362	 * Similar to READA_FORWARD but unlike it:
363	 *
364	 * 1) It will trigger readahead even for leaves that are not close to
365	 *    each other on disk;
366	 * 2) It also triggers readahead for nodes;
367	 * 3) During a search, even when a node or leaf is already in memory, it
368	 *    will still trigger readahead for other nodes and leaves that follow
369	 *    it.
370	 *
371	 * This is meant to be used only when we know we are iterating over the
372	 * entire tree or a very large part of it.
373	 */
374	READA_FORWARD_ALWAYS,
375};
376
377/*
378 * btrfs_paths remember the path taken from the root down to the leaf.
379 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
380 * to any other levels that are present.
381 *
382 * The slots array records the index of the item or block pointer
383 * used while walking the tree.
384 */
385struct btrfs_path {
386	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
387	int slots[BTRFS_MAX_LEVEL];
388	/* if there is real range locking, this locks field will change */
389	u8 locks[BTRFS_MAX_LEVEL];
390	u8 reada;
391	/* keep some upper locks as we walk down */
392	u8 lowest_level;
393
394	/*
395	 * set by btrfs_split_item, tells search_slot to keep all locks
396	 * and to force calls to keep space in the nodes
397	 */
398	unsigned int search_for_split:1;
399	unsigned int keep_locks:1;
400	unsigned int skip_locking:1;
401	unsigned int search_commit_root:1;
402	unsigned int need_commit_sem:1;
403	unsigned int skip_release_on_error:1;
404	/*
405	 * Indicate that new item (btrfs_search_slot) is extending already
406	 * existing item and ins_len contains only the data size and not item
407	 * header (ie. sizeof(struct btrfs_item) is not included).
408	 */
409	unsigned int search_for_extension:1;
410};
411#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
412					sizeof(struct btrfs_item))
413struct btrfs_dev_replace {
414	u64 replace_state;	/* see #define above */
415	time64_t time_started;	/* seconds since 1-Jan-1970 */
416	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
417	atomic64_t num_write_errors;
418	atomic64_t num_uncorrectable_read_errors;
419
420	u64 cursor_left;
421	u64 committed_cursor_left;
422	u64 cursor_left_last_write_of_item;
423	u64 cursor_right;
424
425	u64 cont_reading_from_srcdev_mode;	/* see #define above */
426
427	int is_valid;
428	int item_needs_writeback;
429	struct btrfs_device *srcdev;
430	struct btrfs_device *tgtdev;
431
432	struct mutex lock_finishing_cancel_unmount;
433	struct rw_semaphore rwsem;
434
435	struct btrfs_scrub_progress scrub_progress;
436
437	struct percpu_counter bio_counter;
438	wait_queue_head_t replace_wait;
439};
440
441/*
442 * free clusters are used to claim free space in relatively large chunks,
443 * allowing us to do less seeky writes. They are used for all metadata
444 * allocations. In ssd_spread mode they are also used for data allocations.
445 */
446struct btrfs_free_cluster {
447	spinlock_t lock;
448	spinlock_t refill_lock;
449	struct rb_root root;
450
451	/* largest extent in this cluster */
452	u64 max_size;
453
454	/* first extent starting offset */
455	u64 window_start;
456
457	/* We did a full search and couldn't create a cluster */
458	bool fragmented;
459
460	struct btrfs_block_group *block_group;
461	/*
462	 * when a cluster is allocated from a block group, we put the
463	 * cluster onto a list in the block group so that it can
464	 * be freed before the block group is freed.
465	 */
466	struct list_head block_group_list;
467};
468
469enum btrfs_caching_type {
470	BTRFS_CACHE_NO,
471	BTRFS_CACHE_STARTED,
472	BTRFS_CACHE_FAST,
473	BTRFS_CACHE_FINISHED,
474	BTRFS_CACHE_ERROR,
475};
476
477/*
478 * Tree to record all locked full stripes of a RAID5/6 block group
479 */
480struct btrfs_full_stripe_locks_tree {
481	struct rb_root root;
482	struct mutex lock;
483};
484
485/* Discard control. */
486/*
487 * Async discard uses multiple lists to differentiate the discard filter
488 * parameters.  Index 0 is for completely free block groups where we need to
489 * ensure the entire block group is trimmed without being lossy.  Indices
490 * afterwards represent monotonically decreasing discard filter sizes to
491 * prioritize what should be discarded next.
492 */
493#define BTRFS_NR_DISCARD_LISTS		3
494#define BTRFS_DISCARD_INDEX_UNUSED	0
495#define BTRFS_DISCARD_INDEX_START	1
496
497struct btrfs_discard_ctl {
498	struct workqueue_struct *discard_workers;
499	struct delayed_work work;
500	spinlock_t lock;
501	struct btrfs_block_group *block_group;
502	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
503	u64 prev_discard;
504	u64 prev_discard_time;
505	atomic_t discardable_extents;
506	atomic64_t discardable_bytes;
507	u64 max_discard_size;
508	u64 delay_ms;
509	u32 iops_limit;
510	u32 kbps_limit;
511	u64 discard_extent_bytes;
512	u64 discard_bitmap_bytes;
513	atomic64_t discard_bytes_saved;
514};
515
516void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
517
518/* fs_info */
519struct reloc_control;
520struct btrfs_device;
521struct btrfs_fs_devices;
522struct btrfs_balance_control;
523struct btrfs_delayed_root;
524
525/*
526 * Block group or device which contains an active swapfile. Used for preventing
527 * unsafe operations while a swapfile is active.
528 *
529 * These are sorted on (ptr, inode) (note that a block group or device can
530 * contain more than one swapfile). We compare the pointer values because we
531 * don't actually care what the object is, we just need a quick check whether
532 * the object exists in the rbtree.
533 */
534struct btrfs_swapfile_pin {
535	struct rb_node node;
536	void *ptr;
537	struct inode *inode;
538	/*
539	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
540	 * points to a struct btrfs_device.
541	 */
542	bool is_block_group;
543	/*
544	 * Only used when 'is_block_group' is true and it is the number of
545	 * extents used by a swapfile for this block group ('ptr' field).
546	 */
547	int bg_extent_count;
548};
549
550bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
551
552enum {
553	BTRFS_FS_CLOSING_START,
554	BTRFS_FS_CLOSING_DONE,
555	BTRFS_FS_LOG_RECOVERING,
556	BTRFS_FS_OPEN,
557	BTRFS_FS_QUOTA_ENABLED,
558	BTRFS_FS_UPDATE_UUID_TREE_GEN,
559	BTRFS_FS_CREATING_FREE_SPACE_TREE,
560	BTRFS_FS_BTREE_ERR,
561	BTRFS_FS_LOG1_ERR,
562	BTRFS_FS_LOG2_ERR,
563	BTRFS_FS_QUOTA_OVERRIDE,
564	/* Used to record internally whether fs has been frozen */
565	BTRFS_FS_FROZEN,
566	/*
567	 * Indicate that balance has been set up from the ioctl and is in the
568	 * main phase. The fs_info::balance_ctl is initialized.
569	 */
570	BTRFS_FS_BALANCE_RUNNING,
571
572	/*
573	 * Indicate that relocation of a chunk has started, it's set per chunk
574	 * and is toggled between chunks.
575	 */
576	BTRFS_FS_RELOC_RUNNING,
577
578	/* Indicate that the cleaner thread is awake and doing something. */
579	BTRFS_FS_CLEANER_RUNNING,
580
581	/*
582	 * The checksumming has an optimized version and is considered fast,
583	 * so we don't need to offload checksums to workqueues.
584	 */
585	BTRFS_FS_CSUM_IMPL_FAST,
586
587	/* Indicate that the discard workqueue can service discards. */
588	BTRFS_FS_DISCARD_RUNNING,
589
590	/* Indicate that we need to cleanup space cache v1 */
591	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
592
593	/* Indicate that we can't trust the free space tree for caching yet */
594	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
595
596	/* Indicate whether there are any tree modification log users */
597	BTRFS_FS_TREE_MOD_LOG_USERS,
598
599	/* Indicate that we want the transaction kthread to commit right now. */
600	BTRFS_FS_COMMIT_TRANS,
601
602#if BITS_PER_LONG == 32
603	/* Indicate if we have error/warn message printed on 32bit systems */
604	BTRFS_FS_32BIT_ERROR,
605	BTRFS_FS_32BIT_WARN,
606#endif
607};
608
609/*
610 * Exclusive operations (device replace, resize, device add/remove, balance)
611 */
612enum btrfs_exclusive_operation {
613	BTRFS_EXCLOP_NONE,
614	BTRFS_EXCLOP_BALANCE_PAUSED,
615	BTRFS_EXCLOP_BALANCE,
616	BTRFS_EXCLOP_DEV_ADD,
617	BTRFS_EXCLOP_DEV_REMOVE,
618	BTRFS_EXCLOP_DEV_REPLACE,
619	BTRFS_EXCLOP_RESIZE,
620	BTRFS_EXCLOP_SWAP_ACTIVATE,
621};
622
623struct btrfs_fs_info {
624	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
625	unsigned long flags;
626	struct btrfs_root *tree_root;
627	struct btrfs_root *chunk_root;
628	struct btrfs_root *dev_root;
629	struct btrfs_root *fs_root;
630	struct btrfs_root *quota_root;
631	struct btrfs_root *uuid_root;
632	struct btrfs_root *data_reloc_root;
633
634	/* the log root tree is a directory of all the other log roots */
635	struct btrfs_root *log_root_tree;
636
637	/* The tree that holds the global roots (csum, extent, etc) */
638	rwlock_t global_root_lock;
639	struct rb_root global_root_tree;
640
641	spinlock_t fs_roots_radix_lock;
642	struct radix_tree_root fs_roots_radix;
643
644	/* block group cache stuff */
645	spinlock_t block_group_cache_lock;
646	u64 first_logical_byte;
647	struct rb_root block_group_cache_tree;
648
649	/* keep track of unallocated space */
650	atomic64_t free_chunk_space;
651
652	/* Track ranges which are used by log trees blocks/logged data extents */
653	struct extent_io_tree excluded_extents;
654
655	/* logical->physical extent mapping */
656	struct extent_map_tree mapping_tree;
657
658	/*
659	 * block reservation for extent, checksum, root tree and
660	 * delayed dir index item
661	 */
662	struct btrfs_block_rsv global_block_rsv;
663	/* block reservation for metadata operations */
664	struct btrfs_block_rsv trans_block_rsv;
665	/* block reservation for chunk tree */
666	struct btrfs_block_rsv chunk_block_rsv;
667	/* block reservation for delayed operations */
668	struct btrfs_block_rsv delayed_block_rsv;
669	/* block reservation for delayed refs */
670	struct btrfs_block_rsv delayed_refs_rsv;
671
672	struct btrfs_block_rsv empty_block_rsv;
673
674	u64 generation;
675	u64 last_trans_committed;
676	/*
677	 * Generation of the last transaction used for block group relocation
678	 * since the filesystem was last mounted (or 0 if none happened yet).
679	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
680	 */
681	u64 last_reloc_trans;
682	u64 avg_delayed_ref_runtime;
683
684	/*
685	 * this is updated to the current trans every time a full commit
686	 * is required instead of the faster short fsync log commits
687	 */
688	u64 last_trans_log_full_commit;
689	unsigned long mount_opt;
690	/*
691	 * Track requests for actions that need to be done during transaction
692	 * commit (like for some mount options).
693	 */
694	unsigned long pending_changes;
695	unsigned long compress_type:4;
696	unsigned int compress_level;
697	u32 commit_interval;
698	/*
699	 * It is a suggestive number, the read side is safe even it gets a
700	 * wrong number because we will write out the data into a regular
701	 * extent. The write side(mount/remount) is under ->s_umount lock,
702	 * so it is also safe.
703	 */
704	u64 max_inline;
705
706	struct btrfs_transaction *running_transaction;
707	wait_queue_head_t transaction_throttle;
708	wait_queue_head_t transaction_wait;
709	wait_queue_head_t transaction_blocked_wait;
710	wait_queue_head_t async_submit_wait;
711
712	/*
713	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
714	 * when they are updated.
715	 *
716	 * Because we do not clear the flags for ever, so we needn't use
717	 * the lock on the read side.
718	 *
719	 * We also needn't use the lock when we mount the fs, because
720	 * there is no other task which will update the flag.
721	 */
722	spinlock_t super_lock;
723	struct btrfs_super_block *super_copy;
724	struct btrfs_super_block *super_for_commit;
725	struct super_block *sb;
726	struct inode *btree_inode;
727	struct mutex tree_log_mutex;
728	struct mutex transaction_kthread_mutex;
729	struct mutex cleaner_mutex;
730	struct mutex chunk_mutex;
731
732	/*
733	 * this is taken to make sure we don't set block groups ro after
734	 * the free space cache has been allocated on them
735	 */
736	struct mutex ro_block_group_mutex;
737
738	/* this is used during read/modify/write to make sure
739	 * no two ios are trying to mod the same stripe at the same
740	 * time
741	 */
742	struct btrfs_stripe_hash_table *stripe_hash_table;
743
744	/*
745	 * this protects the ordered operations list only while we are
746	 * processing all of the entries on it.  This way we make
747	 * sure the commit code doesn't find the list temporarily empty
748	 * because another function happens to be doing non-waiting preflush
749	 * before jumping into the main commit.
750	 */
751	struct mutex ordered_operations_mutex;
752
753	struct rw_semaphore commit_root_sem;
754
755	struct rw_semaphore cleanup_work_sem;
756
757	struct rw_semaphore subvol_sem;
758
759	spinlock_t trans_lock;
760	/*
761	 * the reloc mutex goes with the trans lock, it is taken
762	 * during commit to protect us from the relocation code
763	 */
764	struct mutex reloc_mutex;
765
766	struct list_head trans_list;
767	struct list_head dead_roots;
768	struct list_head caching_block_groups;
769
770	spinlock_t delayed_iput_lock;
771	struct list_head delayed_iputs;
772	atomic_t nr_delayed_iputs;
773	wait_queue_head_t delayed_iputs_wait;
774
775	atomic64_t tree_mod_seq;
776
777	/* this protects tree_mod_log and tree_mod_seq_list */
778	rwlock_t tree_mod_log_lock;
779	struct rb_root tree_mod_log;
780	struct list_head tree_mod_seq_list;
781
782	atomic_t async_delalloc_pages;
783
784	/*
785	 * this is used to protect the following list -- ordered_roots.
786	 */
787	spinlock_t ordered_root_lock;
788
789	/*
790	 * all fs/file tree roots in which there are data=ordered extents
791	 * pending writeback are added into this list.
792	 *
793	 * these can span multiple transactions and basically include
794	 * every dirty data page that isn't from nodatacow
795	 */
796	struct list_head ordered_roots;
797
798	struct mutex delalloc_root_mutex;
799	spinlock_t delalloc_root_lock;
800	/* all fs/file tree roots that have delalloc inodes. */
801	struct list_head delalloc_roots;
802
803	/*
804	 * there is a pool of worker threads for checksumming during writes
805	 * and a pool for checksumming after reads.  This is because readers
806	 * can run with FS locks held, and the writers may be waiting for
807	 * those locks.  We don't want ordering in the pending list to cause
808	 * deadlocks, and so the two are serviced separately.
809	 *
810	 * A third pool does submit_bio to avoid deadlocking with the other
811	 * two
812	 */
813	struct btrfs_workqueue *workers;
814	struct btrfs_workqueue *delalloc_workers;
815	struct btrfs_workqueue *flush_workers;
816	struct btrfs_workqueue *endio_workers;
817	struct btrfs_workqueue *endio_meta_workers;
818	struct btrfs_workqueue *endio_raid56_workers;
819	struct btrfs_workqueue *rmw_workers;
820	struct btrfs_workqueue *endio_meta_write_workers;
821	struct btrfs_workqueue *endio_write_workers;
822	struct btrfs_workqueue *endio_freespace_worker;
823	struct btrfs_workqueue *caching_workers;
824
825	/*
826	 * fixup workers take dirty pages that didn't properly go through
827	 * the cow mechanism and make them safe to write.  It happens
828	 * for the sys_munmap function call path
829	 */
830	struct btrfs_workqueue *fixup_workers;
831	struct btrfs_workqueue *delayed_workers;
832
833	struct task_struct *transaction_kthread;
834	struct task_struct *cleaner_kthread;
835	u32 thread_pool_size;
836
837	struct kobject *space_info_kobj;
838	struct kobject *qgroups_kobj;
839
840	/* used to keep from writing metadata until there is a nice batch */
841	struct percpu_counter dirty_metadata_bytes;
842	struct percpu_counter delalloc_bytes;
843	struct percpu_counter ordered_bytes;
844	s32 dirty_metadata_batch;
845	s32 delalloc_batch;
846
847	struct list_head dirty_cowonly_roots;
848
849	struct btrfs_fs_devices *fs_devices;
850
851	/*
852	 * The space_info list is effectively read only after initial
853	 * setup.  It is populated at mount time and cleaned up after
854	 * all block groups are removed.  RCU is used to protect it.
855	 */
856	struct list_head space_info;
857
858	struct btrfs_space_info *data_sinfo;
859
860	struct reloc_control *reloc_ctl;
861
862	/* data_alloc_cluster is only used in ssd_spread mode */
863	struct btrfs_free_cluster data_alloc_cluster;
864
865	/* all metadata allocations go through this cluster */
866	struct btrfs_free_cluster meta_alloc_cluster;
867
868	/* auto defrag inodes go here */
869	spinlock_t defrag_inodes_lock;
870	struct rb_root defrag_inodes;
871	atomic_t defrag_running;
872
873	/* Used to protect avail_{data, metadata, system}_alloc_bits */
874	seqlock_t profiles_lock;
875	/*
876	 * these three are in extended format (availability of single
877	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
878	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
879	 */
880	u64 avail_data_alloc_bits;
881	u64 avail_metadata_alloc_bits;
882	u64 avail_system_alloc_bits;
883
884	/* restriper state */
885	spinlock_t balance_lock;
886	struct mutex balance_mutex;
887	atomic_t balance_pause_req;
888	atomic_t balance_cancel_req;
889	struct btrfs_balance_control *balance_ctl;
890	wait_queue_head_t balance_wait_q;
891
892	/* Cancellation requests for chunk relocation */
893	atomic_t reloc_cancel_req;
894
895	u32 data_chunk_allocations;
896	u32 metadata_ratio;
897
898	void *bdev_holder;
899
900	/* private scrub information */
901	struct mutex scrub_lock;
902	atomic_t scrubs_running;
903	atomic_t scrub_pause_req;
904	atomic_t scrubs_paused;
905	atomic_t scrub_cancel_req;
906	wait_queue_head_t scrub_pause_wait;
907	/*
908	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
909	 * running.
910	 */
911	refcount_t scrub_workers_refcnt;
912	struct btrfs_workqueue *scrub_workers;
913	struct btrfs_workqueue *scrub_wr_completion_workers;
914	struct btrfs_workqueue *scrub_parity_workers;
915	struct btrfs_subpage_info *subpage_info;
916
917	struct btrfs_discard_ctl discard_ctl;
918
919#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
920	u32 check_integrity_print_mask;
921#endif
922	/* is qgroup tracking in a consistent state? */
923	u64 qgroup_flags;
924
925	/* holds configuration and tracking. Protected by qgroup_lock */
926	struct rb_root qgroup_tree;
927	spinlock_t qgroup_lock;
928
929	/*
930	 * used to avoid frequently calling ulist_alloc()/ulist_free()
931	 * when doing qgroup accounting, it must be protected by qgroup_lock.
932	 */
933	struct ulist *qgroup_ulist;
934
935	/*
936	 * Protect user change for quota operations. If a transaction is needed,
937	 * it must be started before locking this lock.
938	 */
939	struct mutex qgroup_ioctl_lock;
940
941	/* list of dirty qgroups to be written at next commit */
942	struct list_head dirty_qgroups;
943
944	/* used by qgroup for an efficient tree traversal */
945	u64 qgroup_seq;
946
947	/* qgroup rescan items */
948	struct mutex qgroup_rescan_lock; /* protects the progress item */
949	struct btrfs_key qgroup_rescan_progress;
950	struct btrfs_workqueue *qgroup_rescan_workers;
951	struct completion qgroup_rescan_completion;
952	struct btrfs_work qgroup_rescan_work;
953	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
954
955	/* filesystem state */
956	unsigned long fs_state;
957
958	struct btrfs_delayed_root *delayed_root;
959
960	/* Extent buffer radix tree */
961	spinlock_t buffer_lock;
962	/* Entries are eb->start / sectorsize */
963	struct radix_tree_root buffer_radix;
964
965	/* next backup root to be overwritten */
966	int backup_root_index;
967
968	/* device replace state */
969	struct btrfs_dev_replace dev_replace;
970
971	struct semaphore uuid_tree_rescan_sem;
972
973	/* Used to reclaim the metadata space in the background. */
974	struct work_struct async_reclaim_work;
975	struct work_struct async_data_reclaim_work;
976	struct work_struct preempt_reclaim_work;
977
978	/* Reclaim partially filled block groups in the background */
979	struct work_struct reclaim_bgs_work;
980	struct list_head reclaim_bgs;
981	int bg_reclaim_threshold;
982
983	spinlock_t unused_bgs_lock;
984	struct list_head unused_bgs;
985	struct mutex unused_bg_unpin_mutex;
986	/* Protect block groups that are going to be deleted */
987	struct mutex reclaim_bgs_lock;
988
989	/* Cached block sizes */
990	u32 nodesize;
991	u32 sectorsize;
992	/* ilog2 of sectorsize, use to avoid 64bit division */
993	u32 sectorsize_bits;
994	u32 csum_size;
995	u32 csums_per_leaf;
996	u32 stripesize;
997
998	/* Block groups and devices containing active swapfiles. */
999	spinlock_t swapfile_pins_lock;
1000	struct rb_root swapfile_pins;
1001
1002	struct crypto_shash *csum_shash;
1003
1004	/* Type of exclusive operation running, protected by super_lock */
1005	enum btrfs_exclusive_operation exclusive_operation;
1006
1007	/*
1008	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1009	 * if the mode is enabled
1010	 */
1011	union {
1012		u64 zone_size;
1013		u64 zoned;
1014	};
1015
1016	struct mutex zoned_meta_io_lock;
1017	spinlock_t treelog_bg_lock;
1018	u64 treelog_bg;
1019
1020	/*
1021	 * Start of the dedicated data relocation block group, protected by
1022	 * relocation_bg_lock.
1023	 */
1024	spinlock_t relocation_bg_lock;
1025	u64 data_reloc_bg;
1026
1027	spinlock_t zone_active_bgs_lock;
1028	struct list_head zone_active_bgs;
1029
1030#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1031	spinlock_t ref_verify_lock;
1032	struct rb_root block_tree;
1033#endif
1034
1035#ifdef CONFIG_BTRFS_DEBUG
1036	struct kobject *debug_kobj;
1037	struct kobject *discard_debug_kobj;
1038	struct list_head allocated_roots;
1039
1040	spinlock_t eb_leak_lock;
1041	struct list_head allocated_ebs;
1042#endif
1043};
1044
1045static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1046{
1047	return sb->s_fs_info;
1048}
1049
1050/*
1051 * The state of btrfs root
1052 */
1053enum {
1054	/*
1055	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1056	 * with the balancing code.   But the race is very small, and only the
1057	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1058	 * is used to tell us when more checks are required
1059	 */
1060	BTRFS_ROOT_IN_TRANS_SETUP,
1061
1062	/*
1063	 * Set if tree blocks of this root can be shared by other roots.
1064	 * Only subvolume trees and their reloc trees have this bit set.
1065	 * Conflicts with TRACK_DIRTY bit.
1066	 *
1067	 * This affects two things:
1068	 *
1069	 * - How balance works
1070	 *   For shareable roots, we need to use reloc tree and do path
1071	 *   replacement for balance, and need various pre/post hooks for
1072	 *   snapshot creation to handle them.
1073	 *
1074	 *   While for non-shareable trees, we just simply do a tree search
1075	 *   with COW.
1076	 *
1077	 * - How dirty roots are tracked
1078	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1079	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1080	 *   don't need to set this manually.
1081	 */
1082	BTRFS_ROOT_SHAREABLE,
1083	BTRFS_ROOT_TRACK_DIRTY,
1084	BTRFS_ROOT_IN_RADIX,
1085	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1086	BTRFS_ROOT_DEFRAG_RUNNING,
1087	BTRFS_ROOT_FORCE_COW,
1088	BTRFS_ROOT_MULTI_LOG_TASKS,
1089	BTRFS_ROOT_DIRTY,
1090	BTRFS_ROOT_DELETING,
1091
1092	/*
1093	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1094	 *
1095	 * Set for the subvolume tree owning the reloc tree.
1096	 */
1097	BTRFS_ROOT_DEAD_RELOC_TREE,
1098	/* Mark dead root stored on device whose cleanup needs to be resumed */
1099	BTRFS_ROOT_DEAD_TREE,
1100	/* The root has a log tree. Used for subvolume roots and the tree root. */
1101	BTRFS_ROOT_HAS_LOG_TREE,
1102	/* Qgroup flushing is in progress */
1103	BTRFS_ROOT_QGROUP_FLUSHING,
1104	/* We started the orphan cleanup for this root. */
1105	BTRFS_ROOT_ORPHAN_CLEANUP,
1106};
1107
1108/*
1109 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1110 * code. For detail check comment in fs/btrfs/qgroup.c.
1111 */
1112struct btrfs_qgroup_swapped_blocks {
1113	spinlock_t lock;
1114	/* RM_EMPTY_ROOT() of above blocks[] */
1115	bool swapped;
1116	struct rb_root blocks[BTRFS_MAX_LEVEL];
1117};
1118
1119/*
1120 * in ram representation of the tree.  extent_root is used for all allocations
1121 * and for the extent tree extent_root root.
1122 */
1123struct btrfs_root {
1124	struct rb_node rb_node;
1125
1126	struct extent_buffer *node;
1127
1128	struct extent_buffer *commit_root;
1129	struct btrfs_root *log_root;
1130	struct btrfs_root *reloc_root;
1131
1132	unsigned long state;
1133	struct btrfs_root_item root_item;
1134	struct btrfs_key root_key;
1135	struct btrfs_fs_info *fs_info;
1136	struct extent_io_tree dirty_log_pages;
1137
1138	struct mutex objectid_mutex;
1139
1140	spinlock_t accounting_lock;
1141	struct btrfs_block_rsv *block_rsv;
1142
1143	struct mutex log_mutex;
1144	wait_queue_head_t log_writer_wait;
1145	wait_queue_head_t log_commit_wait[2];
1146	struct list_head log_ctxs[2];
1147	/* Used only for log trees of subvolumes, not for the log root tree */
1148	atomic_t log_writers;
1149	atomic_t log_commit[2];
1150	/* Used only for log trees of subvolumes, not for the log root tree */
1151	atomic_t log_batch;
1152	int log_transid;
1153	/* No matter the commit succeeds or not*/
1154	int log_transid_committed;
1155	/* Just be updated when the commit succeeds. */
1156	int last_log_commit;
1157	pid_t log_start_pid;
1158
1159	u64 last_trans;
1160
1161	u32 type;
1162
1163	u64 free_objectid;
1164
1165	struct btrfs_key defrag_progress;
1166	struct btrfs_key defrag_max;
1167
1168	/* The dirty list is only used by non-shareable roots */
1169	struct list_head dirty_list;
1170
1171	struct list_head root_list;
1172
1173	spinlock_t log_extents_lock[2];
1174	struct list_head logged_list[2];
1175
1176	spinlock_t inode_lock;
1177	/* red-black tree that keeps track of in-memory inodes */
1178	struct rb_root inode_tree;
1179
1180	/*
1181	 * radix tree that keeps track of delayed nodes of every inode,
1182	 * protected by inode_lock
1183	 */
1184	struct radix_tree_root delayed_nodes_tree;
1185	/*
1186	 * right now this just gets used so that a root has its own devid
1187	 * for stat.  It may be used for more later
1188	 */
1189	dev_t anon_dev;
1190
1191	spinlock_t root_item_lock;
1192	refcount_t refs;
1193
1194	struct mutex delalloc_mutex;
1195	spinlock_t delalloc_lock;
1196	/*
1197	 * all of the inodes that have delalloc bytes.  It is possible for
1198	 * this list to be empty even when there is still dirty data=ordered
1199	 * extents waiting to finish IO.
1200	 */
1201	struct list_head delalloc_inodes;
1202	struct list_head delalloc_root;
1203	u64 nr_delalloc_inodes;
1204
1205	struct mutex ordered_extent_mutex;
1206	/*
1207	 * this is used by the balancing code to wait for all the pending
1208	 * ordered extents
1209	 */
1210	spinlock_t ordered_extent_lock;
1211
1212	/*
1213	 * all of the data=ordered extents pending writeback
1214	 * these can span multiple transactions and basically include
1215	 * every dirty data page that isn't from nodatacow
1216	 */
1217	struct list_head ordered_extents;
1218	struct list_head ordered_root;
1219	u64 nr_ordered_extents;
1220
1221	/*
1222	 * Not empty if this subvolume root has gone through tree block swap
1223	 * (relocation)
1224	 *
1225	 * Will be used by reloc_control::dirty_subvol_roots.
1226	 */
1227	struct list_head reloc_dirty_list;
1228
1229	/*
1230	 * Number of currently running SEND ioctls to prevent
1231	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1232	 */
1233	int send_in_progress;
1234	/*
1235	 * Number of currently running deduplication operations that have a
1236	 * destination inode belonging to this root. Protected by the lock
1237	 * root_item_lock.
1238	 */
1239	int dedupe_in_progress;
1240	/* For exclusion of snapshot creation and nocow writes */
1241	struct btrfs_drew_lock snapshot_lock;
1242
1243	atomic_t snapshot_force_cow;
1244
1245	/* For qgroup metadata reserved space */
1246	spinlock_t qgroup_meta_rsv_lock;
1247	u64 qgroup_meta_rsv_pertrans;
1248	u64 qgroup_meta_rsv_prealloc;
1249	wait_queue_head_t qgroup_flush_wait;
1250
1251	/* Number of active swapfiles */
1252	atomic_t nr_swapfiles;
1253
1254	/* Record pairs of swapped blocks for qgroup */
1255	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1256
1257	/* Used only by log trees, when logging csum items */
1258	struct extent_io_tree log_csum_range;
1259
1260#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1261	u64 alloc_bytenr;
1262#endif
1263
1264#ifdef CONFIG_BTRFS_DEBUG
1265	struct list_head leak_list;
1266#endif
1267};
1268
1269/*
1270 * Structure that conveys information about an extent that is going to replace
1271 * all the extents in a file range.
1272 */
1273struct btrfs_replace_extent_info {
1274	u64 disk_offset;
1275	u64 disk_len;
1276	u64 data_offset;
1277	u64 data_len;
1278	u64 file_offset;
1279	/* Pointer to a file extent item of type regular or prealloc. */
1280	char *extent_buf;
1281	/*
1282	 * Set to true when attempting to replace a file range with a new extent
1283	 * described by this structure, set to false when attempting to clone an
1284	 * existing extent into a file range.
1285	 */
1286	bool is_new_extent;
1287	/* Meaningful only if is_new_extent is true. */
1288	int qgroup_reserved;
1289	/*
1290	 * Meaningful only if is_new_extent is true.
1291	 * Used to track how many extent items we have already inserted in a
1292	 * subvolume tree that refer to the extent described by this structure,
1293	 * so that we know when to create a new delayed ref or update an existing
1294	 * one.
1295	 */
1296	int insertions;
1297};
1298
1299/* Arguments for btrfs_drop_extents() */
1300struct btrfs_drop_extents_args {
1301	/* Input parameters */
1302
1303	/*
1304	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1305	 * If 'replace_extent' is true, this must not be NULL. Also the path
1306	 * is always released except if 'replace_extent' is true and
1307	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1308	 * the path is kept locked.
1309	 */
1310	struct btrfs_path *path;
1311	/* Start offset of the range to drop extents from */
1312	u64 start;
1313	/* End (exclusive, last byte + 1) of the range to drop extents from */
1314	u64 end;
1315	/* If true drop all the extent maps in the range */
1316	bool drop_cache;
1317	/*
1318	 * If true it means we want to insert a new extent after dropping all
1319	 * the extents in the range. If this is true, the 'extent_item_size'
1320	 * parameter must be set as well and the 'extent_inserted' field will
1321	 * be set to true by btrfs_drop_extents() if it could insert the new
1322	 * extent.
1323	 * Note: when this is set to true the path must not be NULL.
1324	 */
1325	bool replace_extent;
1326	/*
1327	 * Used if 'replace_extent' is true. Size of the file extent item to
1328	 * insert after dropping all existing extents in the range
1329	 */
1330	u32 extent_item_size;
1331
1332	/* Output parameters */
1333
1334	/*
1335	 * Set to the minimum between the input parameter 'end' and the end
1336	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1337	 * set even if btrfs_drop_extents() returns an error.
1338	 */
1339	u64 drop_end;
1340	/*
1341	 * The number of allocated bytes found in the range. This can be smaller
1342	 * than the range's length when there are holes in the range.
1343	 */
1344	u64 bytes_found;
1345	/*
1346	 * Only set if 'replace_extent' is true. Set to true if we were able
1347	 * to insert a replacement extent after dropping all extents in the
1348	 * range, otherwise set to false by btrfs_drop_extents().
1349	 * Also, if btrfs_drop_extents() has set this to true it means it
1350	 * returned with the path locked, otherwise if it has set this to
1351	 * false it has returned with the path released.
1352	 */
1353	bool extent_inserted;
1354};
1355
1356struct btrfs_file_private {
1357	void *filldir_buf;
1358};
1359
1360
1361static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1362{
1363
1364	return info->nodesize - sizeof(struct btrfs_header);
1365}
1366
1367#define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1368
1369static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1370{
1371	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1372}
1373
1374static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1375{
1376	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1377}
1378
1379#define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1380		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1381static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1382{
1383	return BTRFS_MAX_ITEM_SIZE(info) -
1384	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1385}
1386
1387static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1388{
1389	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1390}
1391
1392/*
1393 * Flags for mount options.
1394 *
1395 * Note: don't forget to add new options to btrfs_show_options()
1396 */
1397enum {
1398	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1399	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1400	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1401	BTRFS_MOUNT_SSD				= (1UL << 3),
1402	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1403	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1404	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1405	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1406	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1407	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1408	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1409	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1410	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1411	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1412	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1413	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1414	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1415	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1416	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1417	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1418	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1419	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1420	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1421	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1422	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1423	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1424	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1425	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1426	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1427	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1428	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1429};
1430
1431#define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1432#define BTRFS_DEFAULT_MAX_INLINE	(2048)
1433
1434#define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1435#define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1436#define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1437#define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1438					 BTRFS_MOUNT_##opt)
1439
1440#define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1441do {									\
1442	if (!btrfs_test_opt(fs_info, opt))				\
1443		btrfs_info(fs_info, fmt, ##args);			\
1444	btrfs_set_opt(fs_info->mount_opt, opt);				\
1445} while (0)
1446
1447#define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1448do {									\
1449	if (btrfs_test_opt(fs_info, opt))				\
1450		btrfs_info(fs_info, fmt, ##args);			\
1451	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1452} while (0)
1453
1454/*
1455 * Requests for changes that need to be done during transaction commit.
1456 *
1457 * Internal mount options that are used for special handling of the real
1458 * mount options (eg. cannot be set during remount and have to be set during
1459 * transaction commit)
1460 */
1461
1462#define BTRFS_PENDING_COMMIT			(0)
1463
1464#define btrfs_test_pending(info, opt)	\
1465	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1466#define btrfs_set_pending(info, opt)	\
1467	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1468#define btrfs_clear_pending(info, opt)	\
1469	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1470
1471/*
1472 * Helpers for setting pending mount option changes.
1473 *
1474 * Expects corresponding macros
1475 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1476 */
1477#define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1478do {                                                                   \
1479       if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1480               btrfs_info((info), fmt, ##args);                        \
1481               btrfs_set_pending((info), SET_##opt);                   \
1482               btrfs_clear_pending((info), CLEAR_##opt);               \
1483       }                                                               \
1484} while(0)
1485
1486#define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1487do {                                                                   \
1488       if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1489               btrfs_info((info), fmt, ##args);                        \
1490               btrfs_set_pending((info), CLEAR_##opt);                 \
1491               btrfs_clear_pending((info), SET_##opt);                 \
1492       }                                                               \
1493} while(0)
1494
1495/*
1496 * Inode flags
1497 */
1498#define BTRFS_INODE_NODATASUM		(1U << 0)
1499#define BTRFS_INODE_NODATACOW		(1U << 1)
1500#define BTRFS_INODE_READONLY		(1U << 2)
1501#define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1502#define BTRFS_INODE_PREALLOC		(1U << 4)
1503#define BTRFS_INODE_SYNC		(1U << 5)
1504#define BTRFS_INODE_IMMUTABLE		(1U << 6)
1505#define BTRFS_INODE_APPEND		(1U << 7)
1506#define BTRFS_INODE_NODUMP		(1U << 8)
1507#define BTRFS_INODE_NOATIME		(1U << 9)
1508#define BTRFS_INODE_DIRSYNC		(1U << 10)
1509#define BTRFS_INODE_COMPRESS		(1U << 11)
1510
1511#define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1512
1513#define BTRFS_INODE_FLAG_MASK						\
1514	(BTRFS_INODE_NODATASUM |					\
1515	 BTRFS_INODE_NODATACOW |					\
1516	 BTRFS_INODE_READONLY |						\
1517	 BTRFS_INODE_NOCOMPRESS |					\
1518	 BTRFS_INODE_PREALLOC |						\
1519	 BTRFS_INODE_SYNC |						\
1520	 BTRFS_INODE_IMMUTABLE |					\
1521	 BTRFS_INODE_APPEND |						\
1522	 BTRFS_INODE_NODUMP |						\
1523	 BTRFS_INODE_NOATIME |						\
1524	 BTRFS_INODE_DIRSYNC |						\
1525	 BTRFS_INODE_COMPRESS |						\
1526	 BTRFS_INODE_ROOT_ITEM_INIT)
1527
1528#define BTRFS_INODE_RO_VERITY		(1U << 0)
1529
1530#define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1531
1532struct btrfs_map_token {
1533	struct extent_buffer *eb;
1534	char *kaddr;
1535	unsigned long offset;
1536};
1537
1538#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1539				((bytes) >> (fs_info)->sectorsize_bits)
1540
1541static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1542					struct extent_buffer *eb)
1543{
1544	token->eb = eb;
1545	token->kaddr = page_address(eb->pages[0]);
1546	token->offset = 0;
1547}
1548
1549/* some macros to generate set/get functions for the struct fields.  This
1550 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1551 * one for u8:
1552 */
1553#define le8_to_cpu(v) (v)
1554#define cpu_to_le8(v) (v)
1555#define __le8 u8
1556
1557static inline u8 get_unaligned_le8(const void *p)
1558{
1559       return *(u8 *)p;
1560}
1561
1562static inline void put_unaligned_le8(u8 val, void *p)
1563{
1564       *(u8 *)p = val;
1565}
1566
1567#define read_eb_member(eb, ptr, type, member, result) (\
1568	read_extent_buffer(eb, (char *)(result),			\
1569			   ((unsigned long)(ptr)) +			\
1570			    offsetof(type, member),			\
1571			   sizeof(((type *)0)->member)))
1572
1573#define write_eb_member(eb, ptr, type, member, result) (\
1574	write_extent_buffer(eb, (char *)(result),			\
1575			   ((unsigned long)(ptr)) +			\
1576			    offsetof(type, member),			\
1577			   sizeof(((type *)0)->member)))
1578
1579#define DECLARE_BTRFS_SETGET_BITS(bits)					\
1580u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1581			       const void *ptr, unsigned long off);	\
1582void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1583			    const void *ptr, unsigned long off,		\
1584			    u##bits val);				\
1585u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1586			 const void *ptr, unsigned long off);		\
1587void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1588		      unsigned long off, u##bits val);
1589
1590DECLARE_BTRFS_SETGET_BITS(8)
1591DECLARE_BTRFS_SETGET_BITS(16)
1592DECLARE_BTRFS_SETGET_BITS(32)
1593DECLARE_BTRFS_SETGET_BITS(64)
1594
1595#define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1596static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1597				   const type *s)			\
1598{									\
1599	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1600	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1601}									\
1602static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1603				    u##bits val)			\
1604{									\
1605	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1606	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1607}									\
1608static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1609					 const type *s)			\
1610{									\
1611	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1612	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1613}									\
1614static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1615					  type *s, u##bits val)		\
1616{									\
1617	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1618	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1619}
1620
1621#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1622static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1623{									\
1624	const type *p = page_address(eb->pages[0]) +			\
1625			offset_in_page(eb->start);			\
1626	return get_unaligned_le##bits(&p->member);			\
1627}									\
1628static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1629				    u##bits val)			\
1630{									\
1631	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1632	put_unaligned_le##bits(val, &p->member);			\
1633}
1634
1635#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1636static inline u##bits btrfs_##name(const type *s)			\
1637{									\
1638	return get_unaligned_le##bits(&s->member);			\
1639}									\
1640static inline void btrfs_set_##name(type *s, u##bits val)		\
1641{									\
1642	put_unaligned_le##bits(val, &s->member);			\
1643}
1644
1645static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1646					   struct btrfs_dev_item *s)
1647{
1648	BUILD_BUG_ON(sizeof(u64) !=
1649		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1650	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1651					    total_bytes));
1652}
1653static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1654						struct btrfs_dev_item *s,
1655						u64 val)
1656{
1657	BUILD_BUG_ON(sizeof(u64) !=
1658		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1659	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1660	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1661}
1662
1663
1664BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1665BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1666BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1667BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1668BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1669		   start_offset, 64);
1670BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1671BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1672BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1673BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1674BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1675BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1676
1677BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1678BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1679			 total_bytes, 64);
1680BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1681			 bytes_used, 64);
1682BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1683			 io_align, 32);
1684BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1685			 io_width, 32);
1686BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1687			 sector_size, 32);
1688BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1689BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1690			 dev_group, 32);
1691BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1692			 seek_speed, 8);
1693BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1694			 bandwidth, 8);
1695BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1696			 generation, 64);
1697
1698static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1699{
1700	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1701}
1702
1703static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1704{
1705	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1706}
1707
1708BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1709BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1710BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1711BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1712BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1713BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1714BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1715BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1716BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1717BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1718BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1719
1720static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1721{
1722	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1723}
1724
1725BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1726BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1727BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1728			 stripe_len, 64);
1729BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1730			 io_align, 32);
1731BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1732			 io_width, 32);
1733BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1734			 sector_size, 32);
1735BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1736BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1737			 num_stripes, 16);
1738BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1739			 sub_stripes, 16);
1740BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1741BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1742
1743static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1744						   int nr)
1745{
1746	unsigned long offset = (unsigned long)c;
1747	offset += offsetof(struct btrfs_chunk, stripe);
1748	offset += nr * sizeof(struct btrfs_stripe);
1749	return (struct btrfs_stripe *)offset;
1750}
1751
1752static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1753{
1754	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1755}
1756
1757static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1758					 struct btrfs_chunk *c, int nr)
1759{
1760	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1761}
1762
1763static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1764					 struct btrfs_chunk *c, int nr)
1765{
1766	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1767}
1768
1769/* struct btrfs_block_group_item */
1770BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1771			 used, 64);
1772BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1773			 used, 64);
1774BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1775			struct btrfs_block_group_item, chunk_objectid, 64);
1776
1777BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1778		   struct btrfs_block_group_item, chunk_objectid, 64);
1779BTRFS_SETGET_FUNCS(block_group_flags,
1780		   struct btrfs_block_group_item, flags, 64);
1781BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1782			struct btrfs_block_group_item, flags, 64);
1783
1784/* struct btrfs_free_space_info */
1785BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1786		   extent_count, 32);
1787BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1788
1789/* struct btrfs_inode_ref */
1790BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1791BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1792
1793/* struct btrfs_inode_extref */
1794BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1795		   parent_objectid, 64);
1796BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1797		   name_len, 16);
1798BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1799
1800/* struct btrfs_inode_item */
1801BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1802BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1803BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1804BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1805BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1806BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1807BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1808BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1809BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1810BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1811BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1812BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1813BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1814			 generation, 64);
1815BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1816			 sequence, 64);
1817BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1818			 transid, 64);
1819BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1820BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1821			 nbytes, 64);
1822BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1823			 block_group, 64);
1824BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1825BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1826BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1827BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1828BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1829BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1830BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1831BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1832BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1833BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1834
1835/* struct btrfs_dev_extent */
1836BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1837		   chunk_tree, 64);
1838BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1839		   chunk_objectid, 64);
1840BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1841		   chunk_offset, 64);
1842BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1843BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1844BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1845		   generation, 64);
1846BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1847
1848BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1849
1850static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1851					struct btrfs_tree_block_info *item,
1852					struct btrfs_disk_key *key)
1853{
1854	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1855}
1856
1857static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1858					    struct btrfs_tree_block_info *item,
1859					    struct btrfs_disk_key *key)
1860{
1861	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1862}
1863
1864BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1865		   root, 64);
1866BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1867		   objectid, 64);
1868BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1869		   offset, 64);
1870BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1871		   count, 32);
1872
1873BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1874		   count, 32);
1875
1876BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1877		   type, 8);
1878BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1879		   offset, 64);
1880
1881static inline u32 btrfs_extent_inline_ref_size(int type)
1882{
1883	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1884	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1885		return sizeof(struct btrfs_extent_inline_ref);
1886	if (type == BTRFS_SHARED_DATA_REF_KEY)
1887		return sizeof(struct btrfs_shared_data_ref) +
1888		       sizeof(struct btrfs_extent_inline_ref);
1889	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1890		return sizeof(struct btrfs_extent_data_ref) +
1891		       offsetof(struct btrfs_extent_inline_ref, offset);
1892	return 0;
1893}
1894
1895/* struct btrfs_node */
1896BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1897BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1898BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1899			 blockptr, 64);
1900BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1901			 generation, 64);
1902
1903static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1904{
1905	unsigned long ptr;
1906	ptr = offsetof(struct btrfs_node, ptrs) +
1907		sizeof(struct btrfs_key_ptr) * nr;
1908	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1909}
1910
1911static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1912					   int nr, u64 val)
1913{
1914	unsigned long ptr;
1915	ptr = offsetof(struct btrfs_node, ptrs) +
1916		sizeof(struct btrfs_key_ptr) * nr;
1917	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1918}
1919
1920static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1921{
1922	unsigned long ptr;
1923	ptr = offsetof(struct btrfs_node, ptrs) +
1924		sizeof(struct btrfs_key_ptr) * nr;
1925	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1926}
1927
1928static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1929						 int nr, u64 val)
1930{
1931	unsigned long ptr;
1932	ptr = offsetof(struct btrfs_node, ptrs) +
1933		sizeof(struct btrfs_key_ptr) * nr;
1934	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1935}
1936
1937static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1938{
1939	return offsetof(struct btrfs_node, ptrs) +
1940		sizeof(struct btrfs_key_ptr) * nr;
1941}
1942
1943void btrfs_node_key(const struct extent_buffer *eb,
1944		    struct btrfs_disk_key *disk_key, int nr);
1945
1946static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1947				      struct btrfs_disk_key *disk_key, int nr)
1948{
1949	unsigned long ptr;
1950	ptr = btrfs_node_key_ptr_offset(nr);
1951	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1952		       struct btrfs_key_ptr, key, disk_key);
1953}
1954
1955/* struct btrfs_item */
1956BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
1957BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
1958BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1959BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1960
1961static inline unsigned long btrfs_item_nr_offset(int nr)
1962{
1963	return offsetof(struct btrfs_leaf, items) +
1964		sizeof(struct btrfs_item) * nr;
1965}
1966
1967static inline struct btrfs_item *btrfs_item_nr(int nr)
1968{
1969	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1970}
1971
1972#define BTRFS_ITEM_SETGET_FUNCS(member)						\
1973static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
1974				      int slot)					\
1975{										\
1976	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
1977}										\
1978static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
1979					   int slot, u32 val)			\
1980{										\
1981	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
1982}										\
1983static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
1984					    int slot)				\
1985{										\
1986	struct btrfs_item *item = btrfs_item_nr(slot);				\
1987	return btrfs_token_raw_item_##member(token, item);			\
1988}										\
1989static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
1990						 int slot, u32 val)		\
1991{										\
1992	struct btrfs_item *item = btrfs_item_nr(slot);				\
1993	btrfs_set_token_raw_item_##member(token, item, val);			\
1994}
1995
1996BTRFS_ITEM_SETGET_FUNCS(offset)
1997BTRFS_ITEM_SETGET_FUNCS(size);
1998
1999static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2000{
2001	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2002}
2003
2004static inline void btrfs_item_key(const struct extent_buffer *eb,
2005			   struct btrfs_disk_key *disk_key, int nr)
2006{
2007	struct btrfs_item *item = btrfs_item_nr(nr);
2008	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2009}
2010
2011static inline void btrfs_set_item_key(struct extent_buffer *eb,
2012			       struct btrfs_disk_key *disk_key, int nr)
2013{
2014	struct btrfs_item *item = btrfs_item_nr(nr);
2015	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2016}
2017
2018BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2019
2020/*
2021 * struct btrfs_root_ref
2022 */
2023BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2024BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2025BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2026
2027/* struct btrfs_dir_item */
2028BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2029BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2030BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2031BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2032BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2033BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2034			 data_len, 16);
2035BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2036			 name_len, 16);
2037BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2038			 transid, 64);
2039
2040static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2041				      const struct btrfs_dir_item *item,
2042				      struct btrfs_disk_key *key)
2043{
2044	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2045}
2046
2047static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2048					  struct btrfs_dir_item *item,
2049					  const struct btrfs_disk_key *key)
2050{
2051	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2052}
2053
2054BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2055		   num_entries, 64);
2056BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2057		   num_bitmaps, 64);
2058BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2059		   generation, 64);
2060
2061static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2062					const struct btrfs_free_space_header *h,
2063					struct btrfs_disk_key *key)
2064{
2065	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2066}
2067
2068static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2069					    struct btrfs_free_space_header *h,
2070					    const struct btrfs_disk_key *key)
2071{
2072	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2073}
2074
2075/* struct btrfs_disk_key */
2076BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2077			 objectid, 64);
2078BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2079BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2080
2081#ifdef __LITTLE_ENDIAN
2082
2083/*
2084 * Optimized helpers for little-endian architectures where CPU and on-disk
2085 * structures have the same endianness and we can skip conversions.
2086 */
2087
2088static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2089					 const struct btrfs_disk_key *disk_key)
2090{
2091	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2092}
2093
2094static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2095					 const struct btrfs_key *cpu_key)
2096{
2097	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2098}
2099
2100static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2101					 struct btrfs_key *cpu_key, int nr)
2102{
2103	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2104
2105	btrfs_node_key(eb, disk_key, nr);
2106}
2107
2108static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2109					 struct btrfs_key *cpu_key, int nr)
2110{
2111	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2112
2113	btrfs_item_key(eb, disk_key, nr);
2114}
2115
2116static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2117					     const struct btrfs_dir_item *item,
2118					     struct btrfs_key *cpu_key)
2119{
2120	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2121
2122	btrfs_dir_item_key(eb, item, disk_key);
2123}
2124
2125#else
2126
2127static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2128					 const struct btrfs_disk_key *disk)
2129{
2130	cpu->offset = le64_to_cpu(disk->offset);
2131	cpu->type = disk->type;
2132	cpu->objectid = le64_to_cpu(disk->objectid);
2133}
2134
2135static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2136					 const struct btrfs_key *cpu)
2137{
2138	disk->offset = cpu_to_le64(cpu->offset);
2139	disk->type = cpu->type;
2140	disk->objectid = cpu_to_le64(cpu->objectid);
2141}
2142
2143static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2144					 struct btrfs_key *key, int nr)
2145{
2146	struct btrfs_disk_key disk_key;
2147	btrfs_node_key(eb, &disk_key, nr);
2148	btrfs_disk_key_to_cpu(key, &disk_key);
2149}
2150
2151static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2152					 struct btrfs_key *key, int nr)
2153{
2154	struct btrfs_disk_key disk_key;
2155	btrfs_item_key(eb, &disk_key, nr);
2156	btrfs_disk_key_to_cpu(key, &disk_key);
2157}
2158
2159static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2160					     const struct btrfs_dir_item *item,
2161					     struct btrfs_key *key)
2162{
2163	struct btrfs_disk_key disk_key;
2164	btrfs_dir_item_key(eb, item, &disk_key);
2165	btrfs_disk_key_to_cpu(key, &disk_key);
2166}
2167
2168#endif
2169
2170/* struct btrfs_header */
2171BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2172BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2173			  generation, 64);
2174BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2175BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2176BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2177BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2178BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2179			 generation, 64);
2180BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2181BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2182			 nritems, 32);
2183BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2184
2185static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2186{
2187	return (btrfs_header_flags(eb) & flag) == flag;
2188}
2189
2190static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2191{
2192	u64 flags = btrfs_header_flags(eb);
2193	btrfs_set_header_flags(eb, flags | flag);
2194}
2195
2196static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2197{
2198	u64 flags = btrfs_header_flags(eb);
2199	btrfs_set_header_flags(eb, flags & ~flag);
2200}
2201
2202static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2203{
2204	u64 flags = btrfs_header_flags(eb);
2205	return flags >> BTRFS_BACKREF_REV_SHIFT;
2206}
2207
2208static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2209						int rev)
2210{
2211	u64 flags = btrfs_header_flags(eb);
2212	flags &= ~BTRFS_BACKREF_REV_MASK;
2213	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2214	btrfs_set_header_flags(eb, flags);
2215}
2216
2217static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2218{
2219	return btrfs_header_level(eb) == 0;
2220}
2221
2222/* struct btrfs_root_item */
2223BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2224		   generation, 64);
2225BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2226BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2227BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2228
2229BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2230			 generation, 64);
2231BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2232BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2233BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2234BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2235BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2236BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2237BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2238BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2239BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2240			 last_snapshot, 64);
2241BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2242			 generation_v2, 64);
2243BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2244			 ctransid, 64);
2245BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2246			 otransid, 64);
2247BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2248			 stransid, 64);
2249BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2250			 rtransid, 64);
2251
2252static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2253{
2254	/* Byte-swap the constant at compile time, root_item::flags is LE */
2255	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2256}
2257
2258static inline bool btrfs_root_dead(const struct btrfs_root *root)
2259{
2260	/* Byte-swap the constant at compile time, root_item::flags is LE */
2261	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2262}
2263
2264static inline u64 btrfs_root_id(const struct btrfs_root *root)
2265{
2266	return root->root_key.objectid;
2267}
2268
2269/* struct btrfs_root_backup */
2270BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2271		   tree_root, 64);
2272BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2273		   tree_root_gen, 64);
2274BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2275		   tree_root_level, 8);
2276
2277BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2278		   chunk_root, 64);
2279BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2280		   chunk_root_gen, 64);
2281BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2282		   chunk_root_level, 8);
2283
2284BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2285		   extent_root, 64);
2286BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2287		   extent_root_gen, 64);
2288BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2289		   extent_root_level, 8);
2290
2291BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2292		   fs_root, 64);
2293BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2294		   fs_root_gen, 64);
2295BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2296		   fs_root_level, 8);
2297
2298BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2299		   dev_root, 64);
2300BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2301		   dev_root_gen, 64);
2302BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2303		   dev_root_level, 8);
2304
2305BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2306		   csum_root, 64);
2307BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2308		   csum_root_gen, 64);
2309BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2310		   csum_root_level, 8);
2311BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2312		   total_bytes, 64);
2313BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2314		   bytes_used, 64);
2315BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2316		   num_devices, 64);
2317
2318/* struct btrfs_balance_item */
2319BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2320
2321static inline void btrfs_balance_data(const struct extent_buffer *eb,
2322				      const struct btrfs_balance_item *bi,
2323				      struct btrfs_disk_balance_args *ba)
2324{
2325	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2326}
2327
2328static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2329				  struct btrfs_balance_item *bi,
2330				  const struct btrfs_disk_balance_args *ba)
2331{
2332	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2333}
2334
2335static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2336				      const struct btrfs_balance_item *bi,
2337				      struct btrfs_disk_balance_args *ba)
2338{
2339	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2340}
2341
2342static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2343				  struct btrfs_balance_item *bi,
2344				  const struct btrfs_disk_balance_args *ba)
2345{
2346	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2347}
2348
2349static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2350				     const struct btrfs_balance_item *bi,
2351				     struct btrfs_disk_balance_args *ba)
2352{
2353	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2354}
2355
2356static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2357				 struct btrfs_balance_item *bi,
2358				 const struct btrfs_disk_balance_args *ba)
2359{
2360	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2361}
2362
2363static inline void
2364btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2365			       const struct btrfs_disk_balance_args *disk)
2366{
2367	memset(cpu, 0, sizeof(*cpu));
2368
2369	cpu->profiles = le64_to_cpu(disk->profiles);
2370	cpu->usage = le64_to_cpu(disk->usage);
2371	cpu->devid = le64_to_cpu(disk->devid);
2372	cpu->pstart = le64_to_cpu(disk->pstart);
2373	cpu->pend = le64_to_cpu(disk->pend);
2374	cpu->vstart = le64_to_cpu(disk->vstart);
2375	cpu->vend = le64_to_cpu(disk->vend);
2376	cpu->target = le64_to_cpu(disk->target);
2377	cpu->flags = le64_to_cpu(disk->flags);
2378	cpu->limit = le64_to_cpu(disk->limit);
2379	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2380	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2381}
2382
2383static inline void
2384btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2385			       const struct btrfs_balance_args *cpu)
2386{
2387	memset(disk, 0, sizeof(*disk));
2388
2389	disk->profiles = cpu_to_le64(cpu->profiles);
2390	disk->usage = cpu_to_le64(cpu->usage);
2391	disk->devid = cpu_to_le64(cpu->devid);
2392	disk->pstart = cpu_to_le64(cpu->pstart);
2393	disk->pend = cpu_to_le64(cpu->pend);
2394	disk->vstart = cpu_to_le64(cpu->vstart);
2395	disk->vend = cpu_to_le64(cpu->vend);
2396	disk->target = cpu_to_le64(cpu->target);
2397	disk->flags = cpu_to_le64(cpu->flags);
2398	disk->limit = cpu_to_le64(cpu->limit);
2399	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2400	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2401}
2402
2403/* struct btrfs_super_block */
2404BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2405BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2406BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2407			 generation, 64);
2408BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2409BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2410			 struct btrfs_super_block, sys_chunk_array_size, 32);
2411BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2412			 struct btrfs_super_block, chunk_root_generation, 64);
2413BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2414			 root_level, 8);
2415BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2416			 chunk_root, 64);
2417BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2418			 chunk_root_level, 8);
2419BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2420			 log_root, 64);
2421BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2422			 log_root_transid, 64);
2423BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2424			 log_root_level, 8);
2425BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2426			 total_bytes, 64);
2427BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2428			 bytes_used, 64);
2429BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2430			 sectorsize, 32);
2431BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2432			 nodesize, 32);
2433BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2434			 stripesize, 32);
2435BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2436			 root_dir_objectid, 64);
2437BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2438			 num_devices, 64);
2439BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2440			 compat_flags, 64);
2441BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2442			 compat_ro_flags, 64);
2443BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2444			 incompat_flags, 64);
2445BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2446			 csum_type, 16);
2447BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2448			 cache_generation, 64);
2449BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2450BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2451			 uuid_tree_generation, 64);
2452
2453int btrfs_super_csum_size(const struct btrfs_super_block *s);
2454const char *btrfs_super_csum_name(u16 csum_type);
2455const char *btrfs_super_csum_driver(u16 csum_type);
2456size_t __attribute_const__ btrfs_get_num_csums(void);
2457
2458
2459/*
2460 * The leaf data grows from end-to-front in the node.
2461 * this returns the address of the start of the last item,
2462 * which is the stop of the leaf data stack
2463 */
2464static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2465{
2466	u32 nr = btrfs_header_nritems(leaf);
2467
2468	if (nr == 0)
2469		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2470	return btrfs_item_offset(leaf, nr - 1);
2471}
2472
2473/* struct btrfs_file_extent_item */
2474BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2475			 type, 8);
2476BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2477			 struct btrfs_file_extent_item, disk_bytenr, 64);
2478BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2479			 struct btrfs_file_extent_item, offset, 64);
2480BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2481			 struct btrfs_file_extent_item, generation, 64);
2482BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2483			 struct btrfs_file_extent_item, num_bytes, 64);
2484BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2485			 struct btrfs_file_extent_item, ram_bytes, 64);
2486BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2487			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2488BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2489			 struct btrfs_file_extent_item, compression, 8);
2490
2491static inline unsigned long
2492btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2493{
2494	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2495}
2496
2497static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2498{
2499	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2500}
2501
2502BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2503BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2504		   disk_bytenr, 64);
2505BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2506		   generation, 64);
2507BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2508		   disk_num_bytes, 64);
2509BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2510		  offset, 64);
2511BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2512		   num_bytes, 64);
2513BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2514		   ram_bytes, 64);
2515BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2516		   compression, 8);
2517BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2518		   encryption, 8);
2519BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2520		   other_encoding, 16);
2521
2522/*
2523 * this returns the number of bytes used by the item on disk, minus the
2524 * size of any extent headers.  If a file is compressed on disk, this is
2525 * the compressed size
2526 */
2527static inline u32 btrfs_file_extent_inline_item_len(
2528						const struct extent_buffer *eb,
2529						int nr)
2530{
2531	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2532}
2533
2534/* btrfs_qgroup_status_item */
2535BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2536		   generation, 64);
2537BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2538		   version, 64);
2539BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2540		   flags, 64);
2541BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2542		   rescan, 64);
2543
2544/* btrfs_qgroup_info_item */
2545BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2546		   generation, 64);
2547BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2548BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2549		   rfer_cmpr, 64);
2550BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2551BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2552		   excl_cmpr, 64);
2553
2554BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2555			 struct btrfs_qgroup_info_item, generation, 64);
2556BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2557			 rfer, 64);
2558BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2559			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2560BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2561			 excl, 64);
2562BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2563			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2564
2565/* btrfs_qgroup_limit_item */
2566BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2567		   flags, 64);
2568BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2569		   max_rfer, 64);
2570BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2571		   max_excl, 64);
2572BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2573		   rsv_rfer, 64);
2574BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2575		   rsv_excl, 64);
2576
2577/* btrfs_dev_replace_item */
2578BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2579		   struct btrfs_dev_replace_item, src_devid, 64);
2580BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2581		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2582		   64);
2583BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2584		   replace_state, 64);
2585BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2586		   time_started, 64);
2587BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2588		   time_stopped, 64);
2589BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2590		   num_write_errors, 64);
2591BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2592		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2593		   64);
2594BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2595		   cursor_left, 64);
2596BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2597		   cursor_right, 64);
2598
2599BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2600			 struct btrfs_dev_replace_item, src_devid, 64);
2601BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2602			 struct btrfs_dev_replace_item,
2603			 cont_reading_from_srcdev_mode, 64);
2604BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2605			 struct btrfs_dev_replace_item, replace_state, 64);
2606BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2607			 struct btrfs_dev_replace_item, time_started, 64);
2608BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2609			 struct btrfs_dev_replace_item, time_stopped, 64);
2610BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2611			 struct btrfs_dev_replace_item, num_write_errors, 64);
2612BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2613			 struct btrfs_dev_replace_item,
2614			 num_uncorrectable_read_errors, 64);
2615BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2616			 struct btrfs_dev_replace_item, cursor_left, 64);
2617BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2618			 struct btrfs_dev_replace_item, cursor_right, 64);
2619
2620/* helper function to cast into the data area of the leaf. */
2621#define btrfs_item_ptr(leaf, slot, type) \
2622	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2623	btrfs_item_offset(leaf, slot)))
2624
2625#define btrfs_item_ptr_offset(leaf, slot) \
2626	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2627	btrfs_item_offset(leaf, slot)))
2628
2629static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2630{
2631	return crc32c(crc, address, length);
2632}
2633
2634static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2635{
2636	put_unaligned_le32(~crc, result);
2637}
2638
2639static inline u64 btrfs_name_hash(const char *name, int len)
2640{
2641       return crc32c((u32)~1, name, len);
2642}
2643
2644/*
2645 * Figure the key offset of an extended inode ref
2646 */
2647static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2648                                   int len)
2649{
2650       return (u64) crc32c(parent_objectid, name, len);
2651}
2652
2653static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2654{
2655	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2656}
2657
2658/* extent-tree.c */
2659
2660enum btrfs_inline_ref_type {
2661	BTRFS_REF_TYPE_INVALID,
2662	BTRFS_REF_TYPE_BLOCK,
2663	BTRFS_REF_TYPE_DATA,
2664	BTRFS_REF_TYPE_ANY,
2665};
2666
2667int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2668				     struct btrfs_extent_inline_ref *iref,
2669				     enum btrfs_inline_ref_type is_data);
2670u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2671
2672/*
2673 * Take the number of bytes to be checksummmed and figure out how many leaves
2674 * it would require to store the csums for that many bytes.
2675 */
2676static inline u64 btrfs_csum_bytes_to_leaves(
2677			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2678{
2679	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2680
2681	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2682}
2683
2684/*
2685 * Use this if we would be adding new items, as we could split nodes as we cow
2686 * down the tree.
2687 */
2688static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2689						  unsigned num_items)
2690{
2691	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2692}
2693
2694/*
2695 * Doing a truncate or a modification won't result in new nodes or leaves, just
2696 * what we need for COW.
2697 */
2698static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2699						 unsigned num_items)
2700{
2701	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2702}
2703
2704int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2705			      u64 start, u64 num_bytes);
2706void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2707int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2708			   unsigned long count);
2709void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2710				  struct btrfs_delayed_ref_root *delayed_refs,
2711				  struct btrfs_delayed_ref_head *head);
2712int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2713int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2714			     struct btrfs_fs_info *fs_info, u64 bytenr,
2715			     u64 offset, int metadata, u64 *refs, u64 *flags);
2716int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2717		     int reserved);
2718int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2719				    u64 bytenr, u64 num_bytes);
2720int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2721int btrfs_cross_ref_exist(struct btrfs_root *root,
2722			  u64 objectid, u64 offset, u64 bytenr, bool strict);
2723struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2724					     struct btrfs_root *root,
2725					     u64 parent, u64 root_objectid,
2726					     const struct btrfs_disk_key *key,
2727					     int level, u64 hint,
2728					     u64 empty_size,
2729					     enum btrfs_lock_nesting nest);
2730void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2731			   u64 root_id,
2732			   struct extent_buffer *buf,
2733			   u64 parent, int last_ref);
2734int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2735				     struct btrfs_root *root, u64 owner,
2736				     u64 offset, u64 ram_bytes,
2737				     struct btrfs_key *ins);
2738int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2739				   u64 root_objectid, u64 owner, u64 offset,
2740				   struct btrfs_key *ins);
2741int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2742			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2743			 struct btrfs_key *ins, int is_data, int delalloc);
2744int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2745		  struct extent_buffer *buf, int full_backref);
2746int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2747		  struct extent_buffer *buf, int full_backref);
2748int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2749				struct extent_buffer *eb, u64 flags,
2750				int level, int is_data);
2751int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2752
2753int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2754			       u64 start, u64 len, int delalloc);
2755int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2756			      u64 len);
2757int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2758int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2759			 struct btrfs_ref *generic_ref);
2760
2761void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2762
2763/*
2764 * Different levels for to flush space when doing space reservations.
2765 *
2766 * The higher the level, the more methods we try to reclaim space.
2767 */
2768enum btrfs_reserve_flush_enum {
2769	/* If we are in the transaction, we can't flush anything.*/
2770	BTRFS_RESERVE_NO_FLUSH,
2771
2772	/*
2773	 * Flush space by:
2774	 * - Running delayed inode items
2775	 * - Allocating a new chunk
2776	 */
2777	BTRFS_RESERVE_FLUSH_LIMIT,
2778
2779	/*
2780	 * Flush space by:
2781	 * - Running delayed inode items
2782	 * - Running delayed refs
2783	 * - Running delalloc and waiting for ordered extents
2784	 * - Allocating a new chunk
2785	 */
2786	BTRFS_RESERVE_FLUSH_EVICT,
2787
2788	/*
2789	 * Flush space by above mentioned methods and by:
2790	 * - Running delayed iputs
2791	 * - Committing transaction
2792	 *
2793	 * Can be interrupted by a fatal signal.
2794	 */
2795	BTRFS_RESERVE_FLUSH_DATA,
2796	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2797	BTRFS_RESERVE_FLUSH_ALL,
2798
2799	/*
2800	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2801	 * global rsv.
2802	 *
2803	 * Can be interrupted by a fatal signal.
2804	 */
2805	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2806};
2807
2808enum btrfs_flush_state {
2809	FLUSH_DELAYED_ITEMS_NR	=	1,
2810	FLUSH_DELAYED_ITEMS	=	2,
2811	FLUSH_DELAYED_REFS_NR	=	3,
2812	FLUSH_DELAYED_REFS	=	4,
2813	FLUSH_DELALLOC		=	5,
2814	FLUSH_DELALLOC_WAIT	=	6,
2815	FLUSH_DELALLOC_FULL	=	7,
2816	ALLOC_CHUNK		=	8,
2817	ALLOC_CHUNK_FORCE	=	9,
2818	RUN_DELAYED_IPUTS	=	10,
2819	COMMIT_TRANS		=	11,
2820};
2821
2822int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2823				     struct btrfs_block_rsv *rsv,
2824				     int nitems, bool use_global_rsv);
2825void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2826				      struct btrfs_block_rsv *rsv);
2827void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2828
2829int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2830u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2831int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2832				   u64 start, u64 end);
2833int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2834			 u64 num_bytes, u64 *actual_bytes);
2835int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2836
2837int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2838int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2839					 struct btrfs_fs_info *fs_info);
2840int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2841void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2842void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2843
2844/* ctree.c */
2845int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2846		     int *slot);
2847int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2848int btrfs_previous_item(struct btrfs_root *root,
2849			struct btrfs_path *path, u64 min_objectid,
2850			int type);
2851int btrfs_previous_extent_item(struct btrfs_root *root,
2852			struct btrfs_path *path, u64 min_objectid);
2853void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2854			     struct btrfs_path *path,
2855			     const struct btrfs_key *new_key);
2856struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2857int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2858			struct btrfs_key *key, int lowest_level,
2859			u64 min_trans);
2860int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2861			 struct btrfs_path *path,
2862			 u64 min_trans);
2863struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2864					   int slot);
2865
2866int btrfs_cow_block(struct btrfs_trans_handle *trans,
2867		    struct btrfs_root *root, struct extent_buffer *buf,
2868		    struct extent_buffer *parent, int parent_slot,
2869		    struct extent_buffer **cow_ret,
2870		    enum btrfs_lock_nesting nest);
2871int btrfs_copy_root(struct btrfs_trans_handle *trans,
2872		      struct btrfs_root *root,
2873		      struct extent_buffer *buf,
2874		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2875int btrfs_block_can_be_shared(struct btrfs_root *root,
2876			      struct extent_buffer *buf);
2877void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2878void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2879int btrfs_split_item(struct btrfs_trans_handle *trans,
2880		     struct btrfs_root *root,
2881		     struct btrfs_path *path,
2882		     const struct btrfs_key *new_key,
2883		     unsigned long split_offset);
2884int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2885			 struct btrfs_root *root,
2886			 struct btrfs_path *path,
2887			 const struct btrfs_key *new_key);
2888int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2889		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2890int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2891		      const struct btrfs_key *key, struct btrfs_path *p,
2892		      int ins_len, int cow);
2893int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2894			  struct btrfs_path *p, u64 time_seq);
2895int btrfs_search_slot_for_read(struct btrfs_root *root,
2896			       const struct btrfs_key *key,
2897			       struct btrfs_path *p, int find_higher,
2898			       int return_any);
2899int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2900		       struct btrfs_root *root, struct extent_buffer *parent,
2901		       int start_slot, u64 *last_ret,
2902		       struct btrfs_key *progress);
2903void btrfs_release_path(struct btrfs_path *p);
2904struct btrfs_path *btrfs_alloc_path(void);
2905void btrfs_free_path(struct btrfs_path *p);
2906
2907int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2908		   struct btrfs_path *path, int slot, int nr);
2909static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2910				 struct btrfs_root *root,
2911				 struct btrfs_path *path)
2912{
2913	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2914}
2915
2916/*
2917 * Describes a batch of items to insert in a btree. This is used by
2918 * btrfs_insert_empty_items().
2919 */
2920struct btrfs_item_batch {
2921	/*
2922	 * Pointer to an array containing the keys of the items to insert (in
2923	 * sorted order).
2924	 */
2925	const struct btrfs_key *keys;
2926	/* Pointer to an array containing the data size for each item to insert. */
2927	const u32 *data_sizes;
2928	/*
2929	 * The sum of data sizes for all items. The caller can compute this while
2930	 * setting up the data_sizes array, so it ends up being more efficient
2931	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
2932	 * doing it, as it would avoid an extra loop over a potentially large
2933	 * array, and in the case of setup_item_for_insert(), we would be doing
2934	 * it while holding a write lock on a leaf and often on upper level nodes
2935	 * too, unnecessarily increasing the size of a critical section.
2936	 */
2937	u32 total_data_size;
2938	/* Size of the keys and data_sizes arrays (number of items in the batch). */
2939	int nr;
2940};
2941
2942void btrfs_setup_item_for_insert(struct btrfs_root *root,
2943				 struct btrfs_path *path,
2944				 const struct btrfs_key *key,
2945				 u32 data_size);
2946int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2947		      const struct btrfs_key *key, void *data, u32 data_size);
2948int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2949			     struct btrfs_root *root,
2950			     struct btrfs_path *path,
2951			     const struct btrfs_item_batch *batch);
2952
2953static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2954					  struct btrfs_root *root,
2955					  struct btrfs_path *path,
2956					  const struct btrfs_key *key,
2957					  u32 data_size)
2958{
2959	struct btrfs_item_batch batch;
2960
2961	batch.keys = key;
2962	batch.data_sizes = &data_size;
2963	batch.total_data_size = data_size;
2964	batch.nr = 1;
2965
2966	return btrfs_insert_empty_items(trans, root, path, &batch);
2967}
2968
2969int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2970int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2971			u64 time_seq);
2972
2973int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2974			   struct btrfs_path *path);
2975
2976static inline int btrfs_next_old_item(struct btrfs_root *root,
2977				      struct btrfs_path *p, u64 time_seq)
2978{
2979	++p->slots[0];
2980	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2981		return btrfs_next_old_leaf(root, p, time_seq);
2982	return 0;
2983}
2984
2985/*
2986 * Search the tree again to find a leaf with greater keys.
2987 *
2988 * Returns 0 if it found something or 1 if there are no greater leaves.
2989 * Returns < 0 on error.
2990 */
2991static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2992{
2993	return btrfs_next_old_leaf(root, path, 0);
2994}
2995
2996static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2997{
2998	return btrfs_next_old_item(root, p, 0);
2999}
3000int btrfs_leaf_free_space(struct extent_buffer *leaf);
3001int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3002				     int for_reloc);
3003int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3004			struct btrfs_root *root,
3005			struct extent_buffer *node,
3006			struct extent_buffer *parent);
3007static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3008{
3009	/*
3010	 * Do it this way so we only ever do one test_bit in the normal case.
3011	 */
3012	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3013		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3014			return 2;
3015		return 1;
3016	}
3017	return 0;
3018}
3019
3020/*
3021 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3022 * anything except sleeping. This function is used to check the status of
3023 * the fs.
3024 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3025 * since setting and checking for SB_RDONLY in the superblock's flags is not
3026 * atomic.
3027 */
3028static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3029{
3030	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3031		btrfs_fs_closing(fs_info);
3032}
3033
3034static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3035{
3036	sb->s_flags |= SB_RDONLY;
3037	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3038}
3039
3040static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3041{
3042	sb->s_flags &= ~SB_RDONLY;
3043	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3044}
3045
3046/* root-item.c */
3047int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3048		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3049		       int name_len);
3050int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3051		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3052		       int name_len);
3053int btrfs_del_root(struct btrfs_trans_handle *trans,
3054		   const struct btrfs_key *key);
3055int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3056		      const struct btrfs_key *key,
3057		      struct btrfs_root_item *item);
3058int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3059				   struct btrfs_root *root,
3060				   struct btrfs_key *key,
3061				   struct btrfs_root_item *item);
3062int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3063		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3064		    struct btrfs_key *root_key);
3065int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3066void btrfs_set_root_node(struct btrfs_root_item *item,
3067			 struct extent_buffer *node);
3068void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3069void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3070			     struct btrfs_root *root);
3071
3072/* uuid-tree.c */
3073int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3074			u64 subid);
3075int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3076			u64 subid);
3077int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3078
3079/* dir-item.c */
3080int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3081			  const char *name, int name_len);
3082int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3083			  int name_len, struct btrfs_inode *dir,
3084			  struct btrfs_key *location, u8 type, u64 index);
3085struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3086					     struct btrfs_root *root,
3087					     struct btrfs_path *path, u64 dir,
3088					     const char *name, int name_len,
3089					     int mod);
3090struct btrfs_dir_item *
3091btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3092			    struct btrfs_root *root,
3093			    struct btrfs_path *path, u64 dir,
3094			    u64 index, const char *name, int name_len,
3095			    int mod);
3096struct btrfs_dir_item *
3097btrfs_search_dir_index_item(struct btrfs_root *root,
3098			    struct btrfs_path *path, u64 dirid,
3099			    const char *name, int name_len);
3100int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3101			      struct btrfs_root *root,
3102			      struct btrfs_path *path,
3103			      struct btrfs_dir_item *di);
3104int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3105			    struct btrfs_root *root,
3106			    struct btrfs_path *path, u64 objectid,
3107			    const char *name, u16 name_len,
3108			    const void *data, u16 data_len);
3109struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3110					  struct btrfs_root *root,
3111					  struct btrfs_path *path, u64 dir,
3112					  const char *name, u16 name_len,
3113					  int mod);
3114struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3115						 struct btrfs_path *path,
3116						 const char *name,
3117						 int name_len);
3118
3119/* orphan.c */
3120int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3121			     struct btrfs_root *root, u64 offset);
3122int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3123			  struct btrfs_root *root, u64 offset);
3124int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3125
3126/* file-item.c */
3127struct btrfs_dio_private;
3128int btrfs_del_csums(struct btrfs_trans_handle *trans,
3129		    struct btrfs_root *root, u64 bytenr, u64 len);
3130blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3131int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3132			     struct btrfs_root *root,
3133			     u64 objectid, u64 pos,
3134			     u64 disk_offset, u64 disk_num_bytes,
3135			     u64 num_bytes, u64 offset, u64 ram_bytes,
3136			     u8 compression, u8 encryption, u16 other_encoding);
3137int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3138			     struct btrfs_root *root,
3139			     struct btrfs_path *path, u64 objectid,
3140			     u64 bytenr, int mod);
3141int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3142			   struct btrfs_root *root,
3143			   struct btrfs_ordered_sum *sums);
3144blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3145				u64 file_start, int contig);
3146int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3147			     struct list_head *list, int search_commit);
3148void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3149				     const struct btrfs_path *path,
3150				     struct btrfs_file_extent_item *fi,
3151				     const bool new_inline,
3152				     struct extent_map *em);
3153int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3154					u64 len);
3155int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3156				      u64 len);
3157void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3158u64 btrfs_file_extent_end(const struct btrfs_path *path);
3159
3160/* inode.c */
3161blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3162				   int mirror_num, unsigned long bio_flags);
3163unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3164				    u32 bio_offset, struct page *page,
3165				    u64 start, u64 end);
3166struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3167					   u64 start, u64 len);
3168noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3169			      u64 *orig_start, u64 *orig_block_len,
3170			      u64 *ram_bytes, bool strict);
3171
3172void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3173				struct btrfs_inode *inode);
3174struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3175int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3176int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3177		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3178		       const char *name, int name_len);
3179int btrfs_add_link(struct btrfs_trans_handle *trans,
3180		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3181		   const char *name, int name_len, int add_backref, u64 index);
3182int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3183int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3184			 int front);
3185
3186int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3187int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3188			       bool in_reclaim_context);
3189int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3190			      unsigned int extra_bits,
3191			      struct extent_state **cached_state);
3192int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3193			     struct btrfs_root *new_root,
3194			     struct btrfs_root *parent_root,
3195			     struct user_namespace *mnt_userns);
3196 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3197			       unsigned *bits);
3198void btrfs_clear_delalloc_extent(struct inode *inode,
3199				 struct extent_state *state, unsigned *bits);
3200void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3201				 struct extent_state *other);
3202void btrfs_split_delalloc_extent(struct inode *inode,
3203				 struct extent_state *orig, u64 split);
3204void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3205vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3206int btrfs_readpage(struct file *file, struct page *page);
3207void btrfs_evict_inode(struct inode *inode);
3208int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3209struct inode *btrfs_alloc_inode(struct super_block *sb);
3210void btrfs_destroy_inode(struct inode *inode);
3211void btrfs_free_inode(struct inode *inode);
3212int btrfs_drop_inode(struct inode *inode);
3213int __init btrfs_init_cachep(void);
3214void __cold btrfs_destroy_cachep(void);
3215struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3216			      struct btrfs_root *root, struct btrfs_path *path);
3217struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3218struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3219				    struct page *page, size_t pg_offset,
3220				    u64 start, u64 end);
3221int btrfs_update_inode(struct btrfs_trans_handle *trans,
3222		       struct btrfs_root *root, struct btrfs_inode *inode);
3223int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3224				struct btrfs_root *root, struct btrfs_inode *inode);
3225int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3226		struct btrfs_inode *inode);
3227int btrfs_orphan_cleanup(struct btrfs_root *root);
3228int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3229void btrfs_add_delayed_iput(struct inode *inode);
3230void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3231int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3232int btrfs_prealloc_file_range(struct inode *inode, int mode,
3233			      u64 start, u64 num_bytes, u64 min_size,
3234			      loff_t actual_len, u64 *alloc_hint);
3235int btrfs_prealloc_file_range_trans(struct inode *inode,
3236				    struct btrfs_trans_handle *trans, int mode,
3237				    u64 start, u64 num_bytes, u64 min_size,
3238				    loff_t actual_len, u64 *alloc_hint);
3239int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3240		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3241		struct writeback_control *wbc);
3242int btrfs_writepage_cow_fixup(struct page *page);
3243void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3244					  struct page *page, u64 start,
3245					  u64 end, bool uptodate);
3246extern const struct dentry_operations btrfs_dentry_operations;
3247extern const struct iomap_ops btrfs_dio_iomap_ops;
3248extern const struct iomap_dio_ops btrfs_dio_ops;
3249
3250/* Inode locking type flags, by default the exclusive lock is taken */
3251#define BTRFS_ILOCK_SHARED	(1U << 0)
3252#define BTRFS_ILOCK_TRY 	(1U << 1)
3253#define BTRFS_ILOCK_MMAP	(1U << 2)
3254
3255int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3256void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3257void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3258			      const u64 add_bytes,
3259			      const u64 del_bytes);
3260
3261/* ioctl.c */
3262long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3263long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3264int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3265int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3266		       struct dentry *dentry, struct fileattr *fa);
3267int btrfs_ioctl_get_supported_features(void __user *arg);
3268void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3269int __pure btrfs_is_empty_uuid(u8 *uuid);
3270int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3271		      struct btrfs_ioctl_defrag_range_args *range,
3272		      u64 newer_than, unsigned long max_to_defrag);
3273void btrfs_get_block_group_info(struct list_head *groups_list,
3274				struct btrfs_ioctl_space_info *space);
3275void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3276			       struct btrfs_ioctl_balance_args *bargs);
3277bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3278			enum btrfs_exclusive_operation type);
3279bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3280				 enum btrfs_exclusive_operation type);
3281void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3282void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3283void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3284			  enum btrfs_exclusive_operation op);
3285
3286
3287/* file.c */
3288int __init btrfs_auto_defrag_init(void);
3289void __cold btrfs_auto_defrag_exit(void);
3290int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3291			   struct btrfs_inode *inode);
3292int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3293void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3294int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3295void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3296			     int skip_pinned);
3297extern const struct file_operations btrfs_file_operations;
3298int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3299		       struct btrfs_root *root, struct btrfs_inode *inode,
3300		       struct btrfs_drop_extents_args *args);
3301int btrfs_replace_file_extents(struct btrfs_inode *inode,
3302			   struct btrfs_path *path, const u64 start,
3303			   const u64 end,
3304			   struct btrfs_replace_extent_info *extent_info,
3305			   struct btrfs_trans_handle **trans_out);
3306int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3307			      struct btrfs_inode *inode, u64 start, u64 end);
3308int btrfs_release_file(struct inode *inode, struct file *file);
3309int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3310		      size_t num_pages, loff_t pos, size_t write_bytes,
3311		      struct extent_state **cached, bool noreserve);
3312int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3313int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3314			   size_t *write_bytes);
3315void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3316
3317/* tree-defrag.c */
3318int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3319			struct btrfs_root *root);
3320
3321/* super.c */
3322int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3323			unsigned long new_flags);
3324int btrfs_sync_fs(struct super_block *sb, int wait);
3325char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3326					  u64 subvol_objectid);
3327
3328static inline __printf(2, 3) __cold
3329void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3330{
3331}
3332
3333#ifdef CONFIG_PRINTK
3334__printf(2, 3)
3335__cold
3336void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3337#else
3338#define btrfs_printk(fs_info, fmt, args...) \
3339	btrfs_no_printk(fs_info, fmt, ##args)
3340#endif
3341
3342#define btrfs_emerg(fs_info, fmt, args...) \
3343	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3344#define btrfs_alert(fs_info, fmt, args...) \
3345	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3346#define btrfs_crit(fs_info, fmt, args...) \
3347	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3348#define btrfs_err(fs_info, fmt, args...) \
3349	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3350#define btrfs_warn(fs_info, fmt, args...) \
3351	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3352#define btrfs_notice(fs_info, fmt, args...) \
3353	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3354#define btrfs_info(fs_info, fmt, args...) \
3355	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3356
3357/*
3358 * Wrappers that use printk_in_rcu
3359 */
3360#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3361	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3362#define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3363	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3364#define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3365	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3366#define btrfs_err_in_rcu(fs_info, fmt, args...) \
3367	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3368#define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3369	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3370#define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3371	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3372#define btrfs_info_in_rcu(fs_info, fmt, args...) \
3373	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3374
3375/*
3376 * Wrappers that use a ratelimited printk_in_rcu
3377 */
3378#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3379	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3380#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3381	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3382#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3383	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3384#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3385	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3386#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3387	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3388#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3389	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3390#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3391	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3392
3393/*
3394 * Wrappers that use a ratelimited printk
3395 */
3396#define btrfs_emerg_rl(fs_info, fmt, args...) \
3397	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3398#define btrfs_alert_rl(fs_info, fmt, args...) \
3399	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3400#define btrfs_crit_rl(fs_info, fmt, args...) \
3401	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3402#define btrfs_err_rl(fs_info, fmt, args...) \
3403	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3404#define btrfs_warn_rl(fs_info, fmt, args...) \
3405	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3406#define btrfs_notice_rl(fs_info, fmt, args...) \
3407	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3408#define btrfs_info_rl(fs_info, fmt, args...) \
3409	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3410
3411#if defined(CONFIG_DYNAMIC_DEBUG)
3412#define btrfs_debug(fs_info, fmt, args...)				\
3413	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3414				   fs_info, KERN_DEBUG fmt, ##args)
3415#define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3416	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3417				   fs_info, KERN_DEBUG fmt, ##args)
3418#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3419	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3420				   fs_info, KERN_DEBUG fmt, ##args)
3421#define btrfs_debug_rl(fs_info, fmt, args...)				\
3422	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3423				   fs_info, KERN_DEBUG fmt, ##args)
3424#elif defined(DEBUG)
3425#define btrfs_debug(fs_info, fmt, args...) \
3426	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3427#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3428	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3429#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3430	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3431#define btrfs_debug_rl(fs_info, fmt, args...) \
3432	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3433#else
3434#define btrfs_debug(fs_info, fmt, args...) \
3435	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3436#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3437	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3438#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3439	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3440#define btrfs_debug_rl(fs_info, fmt, args...) \
3441	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3442#endif
3443
3444#define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3445do {							\
3446	rcu_read_lock();				\
3447	btrfs_printk(fs_info, fmt, ##args);		\
3448	rcu_read_unlock();				\
3449} while (0)
3450
3451#define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3452do {							\
3453	rcu_read_lock();				\
3454	btrfs_no_printk(fs_info, fmt, ##args);		\
3455	rcu_read_unlock();				\
3456} while (0)
3457
3458#define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3459do {								\
3460	static DEFINE_RATELIMIT_STATE(_rs,			\
3461		DEFAULT_RATELIMIT_INTERVAL,			\
3462		DEFAULT_RATELIMIT_BURST);       		\
3463	if (__ratelimit(&_rs))					\
3464		btrfs_printk(fs_info, fmt, ##args);		\
3465} while (0)
3466
3467#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3468do {								\
3469	rcu_read_lock();					\
3470	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3471	rcu_read_unlock();					\
3472} while (0)
3473
3474#ifdef CONFIG_BTRFS_ASSERT
3475__cold __noreturn
3476static inline void assertfail(const char *expr, const char *file, int line)
3477{
3478	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3479	BUG();
3480}
3481
3482#define ASSERT(expr)						\
3483	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3484
3485#else
3486static inline void assertfail(const char *expr, const char* file, int line) { }
3487#define ASSERT(expr)	(void)(expr)
3488#endif
3489
3490#if BITS_PER_LONG == 32
3491#define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3492/*
3493 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3494 * addresses of extents.
3495 *
3496 * For 4K page size it's about 10T, for 64K it's 160T.
3497 */
3498#define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3499void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3500void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3501#endif
3502
3503/*
3504 * Get the correct offset inside the page of extent buffer.
3505 *
3506 * @eb:		target extent buffer
3507 * @start:	offset inside the extent buffer
3508 *
3509 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3510 */
3511static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3512					   unsigned long offset)
3513{
3514	/*
3515	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3516	 * to PAGE_SIZE, thus adding it won't cause any difference.
3517	 *
3518	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3519	 * to the eb, thus we have to take the eb->start into consideration.
3520	 */
3521	return offset_in_page(offset + eb->start);
3522}
3523
3524static inline unsigned long get_eb_page_index(unsigned long offset)
3525{
3526	/*
3527	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3528	 *
3529	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3530	 * and have ensured that all tree blocks are contained in one page,
3531	 * thus we always get index == 0.
3532	 */
3533	return offset >> PAGE_SHIFT;
3534}
3535
3536/*
3537 * Use that for functions that are conditionally exported for sanity tests but
3538 * otherwise static
3539 */
3540#ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3541#define EXPORT_FOR_TESTS static
3542#else
3543#define EXPORT_FOR_TESTS
3544#endif
3545
3546__cold
3547static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3548{
3549	btrfs_err(fs_info,
3550"Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3551}
3552
3553__printf(5, 6)
3554__cold
3555void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3556		     unsigned int line, int errno, const char *fmt, ...);
3557
3558const char * __attribute_const__ btrfs_decode_error(int errno);
3559
3560__cold
3561void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3562			       const char *function,
3563			       unsigned int line, int errno);
3564
3565/*
3566 * Call btrfs_abort_transaction as early as possible when an error condition is
3567 * detected, that way the exact line number is reported.
3568 */
3569#define btrfs_abort_transaction(trans, errno)		\
3570do {								\
3571	/* Report first abort since mount */			\
3572	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3573			&((trans)->fs_info->fs_state))) {	\
3574		if ((errno) != -EIO && (errno) != -EROFS) {		\
3575			WARN(1, KERN_DEBUG				\
3576			"BTRFS: Transaction aborted (error %d)\n",	\
3577			(errno));					\
3578		} else {						\
3579			btrfs_debug((trans)->fs_info,			\
3580				    "Transaction aborted (error %d)", \
3581				  (errno));			\
3582		}						\
3583	}							\
3584	__btrfs_abort_transaction((trans), __func__,		\
3585				  __LINE__, (errno));		\
3586} while (0)
3587
3588#define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3589do {								\
3590	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,	\
3591			  (errno), fmt, ##args);		\
3592} while (0)
3593
3594#define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3595						   &(fs_info)->fs_state)))
3596
3597__printf(5, 6)
3598__cold
3599void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3600		   unsigned int line, int errno, const char *fmt, ...);
3601/*
3602 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3603 * will panic().  Otherwise we BUG() here.
3604 */
3605#define btrfs_panic(fs_info, errno, fmt, args...)			\
3606do {									\
3607	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3608	BUG();								\
3609} while (0)
3610
3611
3612/* compatibility and incompatibility defines */
3613
3614#define btrfs_set_fs_incompat(__fs_info, opt) \
3615	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3616				#opt)
3617
3618static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3619					   u64 flag, const char* name)
3620{
3621	struct btrfs_super_block *disk_super;
3622	u64 features;
3623
3624	disk_super = fs_info->super_copy;
3625	features = btrfs_super_incompat_flags(disk_super);
3626	if (!(features & flag)) {
3627		spin_lock(&fs_info->super_lock);
3628		features = btrfs_super_incompat_flags(disk_super);
3629		if (!(features & flag)) {
3630			features |= flag;
3631			btrfs_set_super_incompat_flags(disk_super, features);
3632			btrfs_info(fs_info,
3633				"setting incompat feature flag for %s (0x%llx)",
3634				name, flag);
3635		}
3636		spin_unlock(&fs_info->super_lock);
3637	}
3638}
3639
3640#define btrfs_clear_fs_incompat(__fs_info, opt) \
3641	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3642				  #opt)
3643
3644static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3645					     u64 flag, const char* name)
3646{
3647	struct btrfs_super_block *disk_super;
3648	u64 features;
3649
3650	disk_super = fs_info->super_copy;
3651	features = btrfs_super_incompat_flags(disk_super);
3652	if (features & flag) {
3653		spin_lock(&fs_info->super_lock);
3654		features = btrfs_super_incompat_flags(disk_super);
3655		if (features & flag) {
3656			features &= ~flag;
3657			btrfs_set_super_incompat_flags(disk_super, features);
3658			btrfs_info(fs_info,
3659				"clearing incompat feature flag for %s (0x%llx)",
3660				name, flag);
3661		}
3662		spin_unlock(&fs_info->super_lock);
3663	}
3664}
3665
3666#define btrfs_fs_incompat(fs_info, opt) \
3667	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3668
3669static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3670{
3671	struct btrfs_super_block *disk_super;
3672	disk_super = fs_info->super_copy;
3673	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3674}
3675
3676#define btrfs_set_fs_compat_ro(__fs_info, opt) \
3677	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3678				 #opt)
3679
3680static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3681					    u64 flag, const char *name)
3682{
3683	struct btrfs_super_block *disk_super;
3684	u64 features;
3685
3686	disk_super = fs_info->super_copy;
3687	features = btrfs_super_compat_ro_flags(disk_super);
3688	if (!(features & flag)) {
3689		spin_lock(&fs_info->super_lock);
3690		features = btrfs_super_compat_ro_flags(disk_super);
3691		if (!(features & flag)) {
3692			features |= flag;
3693			btrfs_set_super_compat_ro_flags(disk_super, features);
3694			btrfs_info(fs_info,
3695				"setting compat-ro feature flag for %s (0x%llx)",
3696				name, flag);
3697		}
3698		spin_unlock(&fs_info->super_lock);
3699	}
3700}
3701
3702#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3703	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3704				   #opt)
3705
3706static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3707					      u64 flag, const char *name)
3708{
3709	struct btrfs_super_block *disk_super;
3710	u64 features;
3711
3712	disk_super = fs_info->super_copy;
3713	features = btrfs_super_compat_ro_flags(disk_super);
3714	if (features & flag) {
3715		spin_lock(&fs_info->super_lock);
3716		features = btrfs_super_compat_ro_flags(disk_super);
3717		if (features & flag) {
3718			features &= ~flag;
3719			btrfs_set_super_compat_ro_flags(disk_super, features);
3720			btrfs_info(fs_info,
3721				"clearing compat-ro feature flag for %s (0x%llx)",
3722				name, flag);
3723		}
3724		spin_unlock(&fs_info->super_lock);
3725	}
3726}
3727
3728#define btrfs_fs_compat_ro(fs_info, opt) \
3729	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3730
3731static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3732{
3733	struct btrfs_super_block *disk_super;
3734	disk_super = fs_info->super_copy;
3735	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3736}
3737
3738/* acl.c */
3739#ifdef CONFIG_BTRFS_FS_POSIX_ACL
3740struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3741int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3742		  struct posix_acl *acl, int type);
3743int btrfs_init_acl(struct btrfs_trans_handle *trans,
3744		   struct inode *inode, struct inode *dir);
3745#else
3746#define btrfs_get_acl NULL
3747#define btrfs_set_acl NULL
3748static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3749				 struct inode *inode, struct inode *dir)
3750{
3751	return 0;
3752}
3753#endif
3754
3755/* relocation.c */
3756int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3757int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3758			  struct btrfs_root *root);
3759int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3760			    struct btrfs_root *root);
3761int btrfs_recover_relocation(struct btrfs_root *root);
3762int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3763int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3764			  struct btrfs_root *root, struct extent_buffer *buf,
3765			  struct extent_buffer *cow);
3766void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3767			      u64 *bytes_to_reserve);
3768int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3769			      struct btrfs_pending_snapshot *pending);
3770int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3771struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3772				   u64 bytenr);
3773int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3774
3775/* scrub.c */
3776int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3777		    u64 end, struct btrfs_scrub_progress *progress,
3778		    int readonly, int is_dev_replace);
3779void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3780void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3781int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3782int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3783int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3784			 struct btrfs_scrub_progress *progress);
3785static inline void btrfs_init_full_stripe_locks_tree(
3786			struct btrfs_full_stripe_locks_tree *locks_root)
3787{
3788	locks_root->root = RB_ROOT;
3789	mutex_init(&locks_root->lock);
3790}
3791
3792/* dev-replace.c */
3793void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3794void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3795void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3796
3797static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3798{
3799	btrfs_bio_counter_sub(fs_info, 1);
3800}
3801
3802static inline int is_fstree(u64 rootid)
3803{
3804	if (rootid == BTRFS_FS_TREE_OBJECTID ||
3805	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3806	      !btrfs_qgroup_level(rootid)))
3807		return 1;
3808	return 0;
3809}
3810
3811static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3812{
3813	return signal_pending(current);
3814}
3815
3816/* verity.c */
3817#ifdef CONFIG_FS_VERITY
3818
3819extern const struct fsverity_operations btrfs_verityops;
3820int btrfs_drop_verity_items(struct btrfs_inode *inode);
3821
3822BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
3823		   encryption, 8);
3824BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
3825		   size, 64);
3826BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
3827			 struct btrfs_verity_descriptor_item, encryption, 8);
3828BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
3829			 struct btrfs_verity_descriptor_item, size, 64);
3830
3831#else
3832
3833static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
3834{
3835	return 0;
3836}
3837
3838#endif
3839
3840/* Sanity test specific functions */
3841#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3842void btrfs_test_destroy_inode(struct inode *inode);
3843static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3844{
3845	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3846}
3847#else
3848static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3849{
3850	return 0;
3851}
3852#endif
3853
3854static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
3855{
3856	return fs_info->zoned != 0;
3857}
3858
3859static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
3860{
3861	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
3862}
3863
3864/*
3865 * We use page status Private2 to indicate there is an ordered extent with
3866 * unfinished IO.
3867 *
3868 * Rename the Private2 accessors to Ordered, to improve readability.
3869 */
3870#define PageOrdered(page)		PagePrivate2(page)
3871#define SetPageOrdered(page)		SetPagePrivate2(page)
3872#define ClearPageOrdered(page)		ClearPagePrivate2(page)
3873
3874#endif
3875