1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle.  All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/pagevec.h>
12#include <linux/highmem.h>
13#include <linux/kthread.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
17#include <linux/backing-dev.h>
18#include <linux/writeback.h>
19#include <linux/psi.h>
20#include <linux/slab.h>
21#include <linux/sched/mm.h>
22#include <linux/log2.h>
23#include <linux/shrinker.h>
24#include <crypto/hash.h>
25#include "misc.h"
26#include "ctree.h"
27#include "fs.h"
28#include "btrfs_inode.h"
29#include "bio.h"
30#include "ordered-data.h"
31#include "compression.h"
32#include "extent_io.h"
33#include "extent_map.h"
34#include "subpage.h"
35#include "messages.h"
36#include "super.h"
37
38static struct bio_set btrfs_compressed_bioset;
39
40static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
41
42const char* btrfs_compress_type2str(enum btrfs_compression_type type)
43{
44	switch (type) {
45	case BTRFS_COMPRESS_ZLIB:
46	case BTRFS_COMPRESS_LZO:
47	case BTRFS_COMPRESS_ZSTD:
48	case BTRFS_COMPRESS_NONE:
49		return btrfs_compress_types[type];
50	default:
51		break;
52	}
53
54	return NULL;
55}
56
57static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
58{
59	return container_of(bbio, struct compressed_bio, bbio);
60}
61
62static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
63						   u64 start, blk_opf_t op,
64						   btrfs_bio_end_io_t end_io)
65{
66	struct btrfs_bio *bbio;
67
68	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
69					  GFP_NOFS, &btrfs_compressed_bioset));
70	btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
71	bbio->inode = inode;
72	bbio->file_offset = start;
73	return to_compressed_bio(bbio);
74}
75
76bool btrfs_compress_is_valid_type(const char *str, size_t len)
77{
78	int i;
79
80	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
81		size_t comp_len = strlen(btrfs_compress_types[i]);
82
83		if (len < comp_len)
84			continue;
85
86		if (!strncmp(btrfs_compress_types[i], str, comp_len))
87			return true;
88	}
89	return false;
90}
91
92static int compression_compress_pages(int type, struct list_head *ws,
93               struct address_space *mapping, u64 start, struct page **pages,
94               unsigned long *out_pages, unsigned long *total_in,
95               unsigned long *total_out)
96{
97	switch (type) {
98	case BTRFS_COMPRESS_ZLIB:
99		return zlib_compress_pages(ws, mapping, start, pages,
100				out_pages, total_in, total_out);
101	case BTRFS_COMPRESS_LZO:
102		return lzo_compress_pages(ws, mapping, start, pages,
103				out_pages, total_in, total_out);
104	case BTRFS_COMPRESS_ZSTD:
105		return zstd_compress_pages(ws, mapping, start, pages,
106				out_pages, total_in, total_out);
107	case BTRFS_COMPRESS_NONE:
108	default:
109		/*
110		 * This can happen when compression races with remount setting
111		 * it to 'no compress', while caller doesn't call
112		 * inode_need_compress() to check if we really need to
113		 * compress.
114		 *
115		 * Not a big deal, just need to inform caller that we
116		 * haven't allocated any pages yet.
117		 */
118		*out_pages = 0;
119		return -E2BIG;
120	}
121}
122
123static int compression_decompress_bio(struct list_head *ws,
124				      struct compressed_bio *cb)
125{
126	switch (cb->compress_type) {
127	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
128	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
129	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
130	case BTRFS_COMPRESS_NONE:
131	default:
132		/*
133		 * This can't happen, the type is validated several times
134		 * before we get here.
135		 */
136		BUG();
137	}
138}
139
140static int compression_decompress(int type, struct list_head *ws,
141		const u8 *data_in, struct page *dest_page,
142		unsigned long dest_pgoff, size_t srclen, size_t destlen)
143{
144	switch (type) {
145	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
146						dest_pgoff, srclen, destlen);
147	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
148						dest_pgoff, srclen, destlen);
149	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
150						dest_pgoff, srclen, destlen);
151	case BTRFS_COMPRESS_NONE:
152	default:
153		/*
154		 * This can't happen, the type is validated several times
155		 * before we get here.
156		 */
157		BUG();
158	}
159}
160
161static void btrfs_free_compressed_pages(struct compressed_bio *cb)
162{
163	for (unsigned int i = 0; i < cb->nr_pages; i++)
164		btrfs_free_compr_page(cb->compressed_pages[i]);
165	kfree(cb->compressed_pages);
166}
167
168static int btrfs_decompress_bio(struct compressed_bio *cb);
169
170/*
171 * Global cache of last unused pages for compression/decompression.
172 */
173static struct btrfs_compr_pool {
174	struct shrinker *shrinker;
175	spinlock_t lock;
176	struct list_head list;
177	int count;
178	int thresh;
179} compr_pool;
180
181static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
182{
183	int ret;
184
185	/*
186	 * We must not read the values more than once if 'ret' gets expanded in
187	 * the return statement so we don't accidentally return a negative
188	 * number, even if the first condition finds it positive.
189	 */
190	ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
191
192	return ret > 0 ? ret : 0;
193}
194
195static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
196{
197	struct list_head remove;
198	struct list_head *tmp, *next;
199	int freed;
200
201	if (compr_pool.count == 0)
202		return SHRINK_STOP;
203
204	INIT_LIST_HEAD(&remove);
205
206	/* For now, just simply drain the whole list. */
207	spin_lock(&compr_pool.lock);
208	list_splice_init(&compr_pool.list, &remove);
209	freed = compr_pool.count;
210	compr_pool.count = 0;
211	spin_unlock(&compr_pool.lock);
212
213	list_for_each_safe(tmp, next, &remove) {
214		struct page *page = list_entry(tmp, struct page, lru);
215
216		ASSERT(page_ref_count(page) == 1);
217		put_page(page);
218	}
219
220	return freed;
221}
222
223/*
224 * Common wrappers for page allocation from compression wrappers
225 */
226struct page *btrfs_alloc_compr_page(void)
227{
228	struct page *page = NULL;
229
230	spin_lock(&compr_pool.lock);
231	if (compr_pool.count > 0) {
232		page = list_first_entry(&compr_pool.list, struct page, lru);
233		list_del_init(&page->lru);
234		compr_pool.count--;
235	}
236	spin_unlock(&compr_pool.lock);
237
238	if (page)
239		return page;
240
241	return alloc_page(GFP_NOFS);
242}
243
244void btrfs_free_compr_page(struct page *page)
245{
246	bool do_free = false;
247
248	spin_lock(&compr_pool.lock);
249	if (compr_pool.count > compr_pool.thresh) {
250		do_free = true;
251	} else {
252		list_add(&page->lru, &compr_pool.list);
253		compr_pool.count++;
254	}
255	spin_unlock(&compr_pool.lock);
256
257	if (!do_free)
258		return;
259
260	ASSERT(page_ref_count(page) == 1);
261	put_page(page);
262}
263
264static void end_bbio_comprssed_read(struct btrfs_bio *bbio)
265{
266	struct compressed_bio *cb = to_compressed_bio(bbio);
267	blk_status_t status = bbio->bio.bi_status;
268
269	if (!status)
270		status = errno_to_blk_status(btrfs_decompress_bio(cb));
271
272	btrfs_free_compressed_pages(cb);
273	btrfs_bio_end_io(cb->orig_bbio, status);
274	bio_put(&bbio->bio);
275}
276
277/*
278 * Clear the writeback bits on all of the file
279 * pages for a compressed write
280 */
281static noinline void end_compressed_writeback(const struct compressed_bio *cb)
282{
283	struct inode *inode = &cb->bbio.inode->vfs_inode;
284	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
285	unsigned long index = cb->start >> PAGE_SHIFT;
286	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
287	struct folio_batch fbatch;
288	const int error = blk_status_to_errno(cb->bbio.bio.bi_status);
289	int i;
290	int ret;
291
292	if (error)
293		mapping_set_error(inode->i_mapping, error);
294
295	folio_batch_init(&fbatch);
296	while (index <= end_index) {
297		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
298				&fbatch);
299
300		if (ret == 0)
301			return;
302
303		for (i = 0; i < ret; i++) {
304			struct folio *folio = fbatch.folios[i];
305
306			btrfs_folio_clamp_clear_writeback(fs_info, folio,
307							  cb->start, cb->len);
308		}
309		folio_batch_release(&fbatch);
310	}
311	/* the inode may be gone now */
312}
313
314static void btrfs_finish_compressed_write_work(struct work_struct *work)
315{
316	struct compressed_bio *cb =
317		container_of(work, struct compressed_bio, write_end_work);
318
319	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
320				    cb->bbio.bio.bi_status == BLK_STS_OK);
321
322	if (cb->writeback)
323		end_compressed_writeback(cb);
324	/* Note, our inode could be gone now */
325
326	btrfs_free_compressed_pages(cb);
327	bio_put(&cb->bbio.bio);
328}
329
330/*
331 * Do the cleanup once all the compressed pages hit the disk.  This will clear
332 * writeback on the file pages and free the compressed pages.
333 *
334 * This also calls the writeback end hooks for the file pages so that metadata
335 * and checksums can be updated in the file.
336 */
337static void end_bbio_comprssed_write(struct btrfs_bio *bbio)
338{
339	struct compressed_bio *cb = to_compressed_bio(bbio);
340	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
341
342	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
343}
344
345static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb)
346{
347	struct bio *bio = &cb->bbio.bio;
348	u32 offset = 0;
349
350	while (offset < cb->compressed_len) {
351		u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
352
353		/* Maximum compressed extent is smaller than bio size limit. */
354		__bio_add_page(bio, cb->compressed_pages[offset >> PAGE_SHIFT],
355			       len, 0);
356		offset += len;
357	}
358}
359
360/*
361 * worker function to build and submit bios for previously compressed pages.
362 * The corresponding pages in the inode should be marked for writeback
363 * and the compressed pages should have a reference on them for dropping
364 * when the IO is complete.
365 *
366 * This also checksums the file bytes and gets things ready for
367 * the end io hooks.
368 */
369void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
370				   struct page **compressed_pages,
371				   unsigned int nr_pages,
372				   blk_opf_t write_flags,
373				   bool writeback)
374{
375	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
376	struct btrfs_fs_info *fs_info = inode->root->fs_info;
377	struct compressed_bio *cb;
378
379	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
380	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
381
382	cb = alloc_compressed_bio(inode, ordered->file_offset,
383				  REQ_OP_WRITE | write_flags,
384				  end_bbio_comprssed_write);
385	cb->start = ordered->file_offset;
386	cb->len = ordered->num_bytes;
387	cb->compressed_pages = compressed_pages;
388	cb->compressed_len = ordered->disk_num_bytes;
389	cb->writeback = writeback;
390	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
391	cb->nr_pages = nr_pages;
392	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
393	cb->bbio.ordered = ordered;
394	btrfs_add_compressed_bio_pages(cb);
395
396	btrfs_submit_bio(&cb->bbio, 0);
397}
398
399/*
400 * Add extra pages in the same compressed file extent so that we don't need to
401 * re-read the same extent again and again.
402 *
403 * NOTE: this won't work well for subpage, as for subpage read, we lock the
404 * full page then submit bio for each compressed/regular extents.
405 *
406 * This means, if we have several sectors in the same page points to the same
407 * on-disk compressed data, we will re-read the same extent many times and
408 * this function can only help for the next page.
409 */
410static noinline int add_ra_bio_pages(struct inode *inode,
411				     u64 compressed_end,
412				     struct compressed_bio *cb,
413				     int *memstall, unsigned long *pflags)
414{
415	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
416	unsigned long end_index;
417	struct bio *orig_bio = &cb->orig_bbio->bio;
418	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
419	u64 isize = i_size_read(inode);
420	int ret;
421	struct page *page;
422	struct extent_map *em;
423	struct address_space *mapping = inode->i_mapping;
424	struct extent_map_tree *em_tree;
425	struct extent_io_tree *tree;
426	int sectors_missed = 0;
427
428	em_tree = &BTRFS_I(inode)->extent_tree;
429	tree = &BTRFS_I(inode)->io_tree;
430
431	if (isize == 0)
432		return 0;
433
434	/*
435	 * For current subpage support, we only support 64K page size,
436	 * which means maximum compressed extent size (128K) is just 2x page
437	 * size.
438	 * This makes readahead less effective, so here disable readahead for
439	 * subpage for now, until full compressed write is supported.
440	 */
441	if (fs_info->sectorsize < PAGE_SIZE)
442		return 0;
443
444	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
445
446	while (cur < compressed_end) {
447		u64 page_end;
448		u64 pg_index = cur >> PAGE_SHIFT;
449		u32 add_size;
450
451		if (pg_index > end_index)
452			break;
453
454		page = xa_load(&mapping->i_pages, pg_index);
455		if (page && !xa_is_value(page)) {
456			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
457					  fs_info->sectorsize_bits;
458
459			/* Beyond threshold, no need to continue */
460			if (sectors_missed > 4)
461				break;
462
463			/*
464			 * Jump to next page start as we already have page for
465			 * current offset.
466			 */
467			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
468			continue;
469		}
470
471		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
472								 ~__GFP_FS));
473		if (!page)
474			break;
475
476		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
477			put_page(page);
478			/* There is already a page, skip to page end */
479			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
480			continue;
481		}
482
483		if (!*memstall && PageWorkingset(page)) {
484			psi_memstall_enter(pflags);
485			*memstall = 1;
486		}
487
488		ret = set_page_extent_mapped(page);
489		if (ret < 0) {
490			unlock_page(page);
491			put_page(page);
492			break;
493		}
494
495		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
496		lock_extent(tree, cur, page_end, NULL);
497		read_lock(&em_tree->lock);
498		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
499		read_unlock(&em_tree->lock);
500
501		/*
502		 * At this point, we have a locked page in the page cache for
503		 * these bytes in the file.  But, we have to make sure they map
504		 * to this compressed extent on disk.
505		 */
506		if (!em || cur < em->start ||
507		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
508		    (em->block_start >> SECTOR_SHIFT) != orig_bio->bi_iter.bi_sector) {
509			free_extent_map(em);
510			unlock_extent(tree, cur, page_end, NULL);
511			unlock_page(page);
512			put_page(page);
513			break;
514		}
515		free_extent_map(em);
516
517		if (page->index == end_index) {
518			size_t zero_offset = offset_in_page(isize);
519
520			if (zero_offset) {
521				int zeros;
522				zeros = PAGE_SIZE - zero_offset;
523				memzero_page(page, zero_offset, zeros);
524			}
525		}
526
527		add_size = min(em->start + em->len, page_end + 1) - cur;
528		ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur));
529		if (ret != add_size) {
530			unlock_extent(tree, cur, page_end, NULL);
531			unlock_page(page);
532			put_page(page);
533			break;
534		}
535		/*
536		 * If it's subpage, we also need to increase its
537		 * subpage::readers number, as at endio we will decrease
538		 * subpage::readers and to unlock the page.
539		 */
540		if (fs_info->sectorsize < PAGE_SIZE)
541			btrfs_subpage_start_reader(fs_info, page_folio(page),
542						   cur, add_size);
543		put_page(page);
544		cur += add_size;
545	}
546	return 0;
547}
548
549/*
550 * for a compressed read, the bio we get passed has all the inode pages
551 * in it.  We don't actually do IO on those pages but allocate new ones
552 * to hold the compressed pages on disk.
553 *
554 * bio->bi_iter.bi_sector points to the compressed extent on disk
555 * bio->bi_io_vec points to all of the inode pages
556 *
557 * After the compressed pages are read, we copy the bytes into the
558 * bio we were passed and then call the bio end_io calls
559 */
560void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
561{
562	struct btrfs_inode *inode = bbio->inode;
563	struct btrfs_fs_info *fs_info = inode->root->fs_info;
564	struct extent_map_tree *em_tree = &inode->extent_tree;
565	struct compressed_bio *cb;
566	unsigned int compressed_len;
567	u64 file_offset = bbio->file_offset;
568	u64 em_len;
569	u64 em_start;
570	struct extent_map *em;
571	unsigned long pflags;
572	int memstall = 0;
573	blk_status_t ret;
574	int ret2;
575
576	/* we need the actual starting offset of this extent in the file */
577	read_lock(&em_tree->lock);
578	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
579	read_unlock(&em_tree->lock);
580	if (!em) {
581		ret = BLK_STS_IOERR;
582		goto out;
583	}
584
585	ASSERT(extent_map_is_compressed(em));
586	compressed_len = em->block_len;
587
588	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
589				  end_bbio_comprssed_read);
590
591	cb->start = em->orig_start;
592	em_len = em->len;
593	em_start = em->start;
594
595	cb->len = bbio->bio.bi_iter.bi_size;
596	cb->compressed_len = compressed_len;
597	cb->compress_type = extent_map_compression(em);
598	cb->orig_bbio = bbio;
599
600	free_extent_map(em);
601
602	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
603	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
604	if (!cb->compressed_pages) {
605		ret = BLK_STS_RESOURCE;
606		goto out_free_bio;
607	}
608
609	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages, 0);
610	if (ret2) {
611		ret = BLK_STS_RESOURCE;
612		goto out_free_compressed_pages;
613	}
614
615	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
616			 &pflags);
617
618	/* include any pages we added in add_ra-bio_pages */
619	cb->len = bbio->bio.bi_iter.bi_size;
620	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
621	btrfs_add_compressed_bio_pages(cb);
622
623	if (memstall)
624		psi_memstall_leave(&pflags);
625
626	btrfs_submit_bio(&cb->bbio, 0);
627	return;
628
629out_free_compressed_pages:
630	kfree(cb->compressed_pages);
631out_free_bio:
632	bio_put(&cb->bbio.bio);
633out:
634	btrfs_bio_end_io(bbio, ret);
635}
636
637/*
638 * Heuristic uses systematic sampling to collect data from the input data
639 * range, the logic can be tuned by the following constants:
640 *
641 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
642 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
643 */
644#define SAMPLING_READ_SIZE	(16)
645#define SAMPLING_INTERVAL	(256)
646
647/*
648 * For statistical analysis of the input data we consider bytes that form a
649 * Galois Field of 256 objects. Each object has an attribute count, ie. how
650 * many times the object appeared in the sample.
651 */
652#define BUCKET_SIZE		(256)
653
654/*
655 * The size of the sample is based on a statistical sampling rule of thumb.
656 * The common way is to perform sampling tests as long as the number of
657 * elements in each cell is at least 5.
658 *
659 * Instead of 5, we choose 32 to obtain more accurate results.
660 * If the data contain the maximum number of symbols, which is 256, we obtain a
661 * sample size bound by 8192.
662 *
663 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
664 * from up to 512 locations.
665 */
666#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
667				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
668
669struct bucket_item {
670	u32 count;
671};
672
673struct heuristic_ws {
674	/* Partial copy of input data */
675	u8 *sample;
676	u32 sample_size;
677	/* Buckets store counters for each byte value */
678	struct bucket_item *bucket;
679	/* Sorting buffer */
680	struct bucket_item *bucket_b;
681	struct list_head list;
682};
683
684static struct workspace_manager heuristic_wsm;
685
686static void free_heuristic_ws(struct list_head *ws)
687{
688	struct heuristic_ws *workspace;
689
690	workspace = list_entry(ws, struct heuristic_ws, list);
691
692	kvfree(workspace->sample);
693	kfree(workspace->bucket);
694	kfree(workspace->bucket_b);
695	kfree(workspace);
696}
697
698static struct list_head *alloc_heuristic_ws(unsigned int level)
699{
700	struct heuristic_ws *ws;
701
702	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
703	if (!ws)
704		return ERR_PTR(-ENOMEM);
705
706	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
707	if (!ws->sample)
708		goto fail;
709
710	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
711	if (!ws->bucket)
712		goto fail;
713
714	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
715	if (!ws->bucket_b)
716		goto fail;
717
718	INIT_LIST_HEAD(&ws->list);
719	return &ws->list;
720fail:
721	free_heuristic_ws(&ws->list);
722	return ERR_PTR(-ENOMEM);
723}
724
725const struct btrfs_compress_op btrfs_heuristic_compress = {
726	.workspace_manager = &heuristic_wsm,
727};
728
729static const struct btrfs_compress_op * const btrfs_compress_op[] = {
730	/* The heuristic is represented as compression type 0 */
731	&btrfs_heuristic_compress,
732	&btrfs_zlib_compress,
733	&btrfs_lzo_compress,
734	&btrfs_zstd_compress,
735};
736
737static struct list_head *alloc_workspace(int type, unsigned int level)
738{
739	switch (type) {
740	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
741	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
742	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
743	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
744	default:
745		/*
746		 * This can't happen, the type is validated several times
747		 * before we get here.
748		 */
749		BUG();
750	}
751}
752
753static void free_workspace(int type, struct list_head *ws)
754{
755	switch (type) {
756	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
757	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
758	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
759	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
760	default:
761		/*
762		 * This can't happen, the type is validated several times
763		 * before we get here.
764		 */
765		BUG();
766	}
767}
768
769static void btrfs_init_workspace_manager(int type)
770{
771	struct workspace_manager *wsm;
772	struct list_head *workspace;
773
774	wsm = btrfs_compress_op[type]->workspace_manager;
775	INIT_LIST_HEAD(&wsm->idle_ws);
776	spin_lock_init(&wsm->ws_lock);
777	atomic_set(&wsm->total_ws, 0);
778	init_waitqueue_head(&wsm->ws_wait);
779
780	/*
781	 * Preallocate one workspace for each compression type so we can
782	 * guarantee forward progress in the worst case
783	 */
784	workspace = alloc_workspace(type, 0);
785	if (IS_ERR(workspace)) {
786		pr_warn(
787	"BTRFS: cannot preallocate compression workspace, will try later\n");
788	} else {
789		atomic_set(&wsm->total_ws, 1);
790		wsm->free_ws = 1;
791		list_add(workspace, &wsm->idle_ws);
792	}
793}
794
795static void btrfs_cleanup_workspace_manager(int type)
796{
797	struct workspace_manager *wsman;
798	struct list_head *ws;
799
800	wsman = btrfs_compress_op[type]->workspace_manager;
801	while (!list_empty(&wsman->idle_ws)) {
802		ws = wsman->idle_ws.next;
803		list_del(ws);
804		free_workspace(type, ws);
805		atomic_dec(&wsman->total_ws);
806	}
807}
808
809/*
810 * This finds an available workspace or allocates a new one.
811 * If it's not possible to allocate a new one, waits until there's one.
812 * Preallocation makes a forward progress guarantees and we do not return
813 * errors.
814 */
815struct list_head *btrfs_get_workspace(int type, unsigned int level)
816{
817	struct workspace_manager *wsm;
818	struct list_head *workspace;
819	int cpus = num_online_cpus();
820	unsigned nofs_flag;
821	struct list_head *idle_ws;
822	spinlock_t *ws_lock;
823	atomic_t *total_ws;
824	wait_queue_head_t *ws_wait;
825	int *free_ws;
826
827	wsm = btrfs_compress_op[type]->workspace_manager;
828	idle_ws	 = &wsm->idle_ws;
829	ws_lock	 = &wsm->ws_lock;
830	total_ws = &wsm->total_ws;
831	ws_wait	 = &wsm->ws_wait;
832	free_ws	 = &wsm->free_ws;
833
834again:
835	spin_lock(ws_lock);
836	if (!list_empty(idle_ws)) {
837		workspace = idle_ws->next;
838		list_del(workspace);
839		(*free_ws)--;
840		spin_unlock(ws_lock);
841		return workspace;
842
843	}
844	if (atomic_read(total_ws) > cpus) {
845		DEFINE_WAIT(wait);
846
847		spin_unlock(ws_lock);
848		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
849		if (atomic_read(total_ws) > cpus && !*free_ws)
850			schedule();
851		finish_wait(ws_wait, &wait);
852		goto again;
853	}
854	atomic_inc(total_ws);
855	spin_unlock(ws_lock);
856
857	/*
858	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
859	 * to turn it off here because we might get called from the restricted
860	 * context of btrfs_compress_bio/btrfs_compress_pages
861	 */
862	nofs_flag = memalloc_nofs_save();
863	workspace = alloc_workspace(type, level);
864	memalloc_nofs_restore(nofs_flag);
865
866	if (IS_ERR(workspace)) {
867		atomic_dec(total_ws);
868		wake_up(ws_wait);
869
870		/*
871		 * Do not return the error but go back to waiting. There's a
872		 * workspace preallocated for each type and the compression
873		 * time is bounded so we get to a workspace eventually. This
874		 * makes our caller's life easier.
875		 *
876		 * To prevent silent and low-probability deadlocks (when the
877		 * initial preallocation fails), check if there are any
878		 * workspaces at all.
879		 */
880		if (atomic_read(total_ws) == 0) {
881			static DEFINE_RATELIMIT_STATE(_rs,
882					/* once per minute */ 60 * HZ,
883					/* no burst */ 1);
884
885			if (__ratelimit(&_rs)) {
886				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
887			}
888		}
889		goto again;
890	}
891	return workspace;
892}
893
894static struct list_head *get_workspace(int type, int level)
895{
896	switch (type) {
897	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
898	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
899	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
900	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
901	default:
902		/*
903		 * This can't happen, the type is validated several times
904		 * before we get here.
905		 */
906		BUG();
907	}
908}
909
910/*
911 * put a workspace struct back on the list or free it if we have enough
912 * idle ones sitting around
913 */
914void btrfs_put_workspace(int type, struct list_head *ws)
915{
916	struct workspace_manager *wsm;
917	struct list_head *idle_ws;
918	spinlock_t *ws_lock;
919	atomic_t *total_ws;
920	wait_queue_head_t *ws_wait;
921	int *free_ws;
922
923	wsm = btrfs_compress_op[type]->workspace_manager;
924	idle_ws	 = &wsm->idle_ws;
925	ws_lock	 = &wsm->ws_lock;
926	total_ws = &wsm->total_ws;
927	ws_wait	 = &wsm->ws_wait;
928	free_ws	 = &wsm->free_ws;
929
930	spin_lock(ws_lock);
931	if (*free_ws <= num_online_cpus()) {
932		list_add(ws, idle_ws);
933		(*free_ws)++;
934		spin_unlock(ws_lock);
935		goto wake;
936	}
937	spin_unlock(ws_lock);
938
939	free_workspace(type, ws);
940	atomic_dec(total_ws);
941wake:
942	cond_wake_up(ws_wait);
943}
944
945static void put_workspace(int type, struct list_head *ws)
946{
947	switch (type) {
948	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
949	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
950	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
951	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
952	default:
953		/*
954		 * This can't happen, the type is validated several times
955		 * before we get here.
956		 */
957		BUG();
958	}
959}
960
961/*
962 * Adjust @level according to the limits of the compression algorithm or
963 * fallback to default
964 */
965static unsigned int btrfs_compress_set_level(int type, unsigned level)
966{
967	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
968
969	if (level == 0)
970		level = ops->default_level;
971	else
972		level = min(level, ops->max_level);
973
974	return level;
975}
976
977/*
978 * Given an address space and start and length, compress the bytes into @pages
979 * that are allocated on demand.
980 *
981 * @type_level is encoded algorithm and level, where level 0 means whatever
982 * default the algorithm chooses and is opaque here;
983 * - compression algo are 0-3
984 * - the level are bits 4-7
985 *
986 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
987 * and returns number of actually allocated pages
988 *
989 * @total_in is used to return the number of bytes actually read.  It
990 * may be smaller than the input length if we had to exit early because we
991 * ran out of room in the pages array or because we cross the
992 * max_out threshold.
993 *
994 * @total_out is an in/out parameter, must be set to the input length and will
995 * be also used to return the total number of compressed bytes
996 */
997int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
998			 u64 start, struct page **pages,
999			 unsigned long *out_pages,
1000			 unsigned long *total_in,
1001			 unsigned long *total_out)
1002{
1003	int type = btrfs_compress_type(type_level);
1004	int level = btrfs_compress_level(type_level);
1005	struct list_head *workspace;
1006	int ret;
1007
1008	level = btrfs_compress_set_level(type, level);
1009	workspace = get_workspace(type, level);
1010	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1011					 out_pages, total_in, total_out);
1012	put_workspace(type, workspace);
1013	return ret;
1014}
1015
1016static int btrfs_decompress_bio(struct compressed_bio *cb)
1017{
1018	struct list_head *workspace;
1019	int ret;
1020	int type = cb->compress_type;
1021
1022	workspace = get_workspace(type, 0);
1023	ret = compression_decompress_bio(workspace, cb);
1024	put_workspace(type, workspace);
1025
1026	if (!ret)
1027		zero_fill_bio(&cb->orig_bbio->bio);
1028	return ret;
1029}
1030
1031/*
1032 * a less complex decompression routine.  Our compressed data fits in a
1033 * single page, and we want to read a single page out of it.
1034 * start_byte tells us the offset into the compressed data we're interested in
1035 */
1036int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
1037		     unsigned long dest_pgoff, size_t srclen, size_t destlen)
1038{
1039	struct btrfs_fs_info *fs_info = page_to_fs_info(dest_page);
1040	struct list_head *workspace;
1041	const u32 sectorsize = fs_info->sectorsize;
1042	int ret;
1043
1044	/*
1045	 * The full destination page range should not exceed the page size.
1046	 * And the @destlen should not exceed sectorsize, as this is only called for
1047	 * inline file extents, which should not exceed sectorsize.
1048	 */
1049	ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize);
1050
1051	workspace = get_workspace(type, 0);
1052	ret = compression_decompress(type, workspace, data_in, dest_page,
1053				     dest_pgoff, srclen, destlen);
1054	put_workspace(type, workspace);
1055
1056	return ret;
1057}
1058
1059int __init btrfs_init_compress(void)
1060{
1061	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1062			offsetof(struct compressed_bio, bbio.bio),
1063			BIOSET_NEED_BVECS))
1064		return -ENOMEM;
1065
1066	compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1067	if (!compr_pool.shrinker)
1068		return -ENOMEM;
1069
1070	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1071	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1072	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1073	zstd_init_workspace_manager();
1074
1075	spin_lock_init(&compr_pool.lock);
1076	INIT_LIST_HEAD(&compr_pool.list);
1077	compr_pool.count = 0;
1078	/* 128K / 4K = 32, for 8 threads is 256 pages. */
1079	compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1080	compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1081	compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1082	compr_pool.shrinker->batch = 32;
1083	compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1084	shrinker_register(compr_pool.shrinker);
1085
1086	return 0;
1087}
1088
1089void __cold btrfs_exit_compress(void)
1090{
1091	/* For now scan drains all pages and does not touch the parameters. */
1092	btrfs_compr_pool_scan(NULL, NULL);
1093	shrinker_free(compr_pool.shrinker);
1094
1095	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1096	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1097	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1098	zstd_cleanup_workspace_manager();
1099	bioset_exit(&btrfs_compressed_bioset);
1100}
1101
1102/*
1103 * Copy decompressed data from working buffer to pages.
1104 *
1105 * @buf:		The decompressed data buffer
1106 * @buf_len:		The decompressed data length
1107 * @decompressed:	Number of bytes that are already decompressed inside the
1108 * 			compressed extent
1109 * @cb:			The compressed extent descriptor
1110 * @orig_bio:		The original bio that the caller wants to read for
1111 *
1112 * An easier to understand graph is like below:
1113 *
1114 * 		|<- orig_bio ->|     |<- orig_bio->|
1115 * 	|<-------      full decompressed extent      ----->|
1116 * 	|<-----------    @cb range   ---->|
1117 * 	|			|<-- @buf_len -->|
1118 * 	|<--- @decompressed --->|
1119 *
1120 * Note that, @cb can be a subpage of the full decompressed extent, but
1121 * @cb->start always has the same as the orig_file_offset value of the full
1122 * decompressed extent.
1123 *
1124 * When reading compressed extent, we have to read the full compressed extent,
1125 * while @orig_bio may only want part of the range.
1126 * Thus this function will ensure only data covered by @orig_bio will be copied
1127 * to.
1128 *
1129 * Return 0 if we have copied all needed contents for @orig_bio.
1130 * Return >0 if we need continue decompress.
1131 */
1132int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1133			      struct compressed_bio *cb, u32 decompressed)
1134{
1135	struct bio *orig_bio = &cb->orig_bbio->bio;
1136	/* Offset inside the full decompressed extent */
1137	u32 cur_offset;
1138
1139	cur_offset = decompressed;
1140	/* The main loop to do the copy */
1141	while (cur_offset < decompressed + buf_len) {
1142		struct bio_vec bvec;
1143		size_t copy_len;
1144		u32 copy_start;
1145		/* Offset inside the full decompressed extent */
1146		u32 bvec_offset;
1147
1148		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1149		/*
1150		 * cb->start may underflow, but subtracting that value can still
1151		 * give us correct offset inside the full decompressed extent.
1152		 */
1153		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1154
1155		/* Haven't reached the bvec range, exit */
1156		if (decompressed + buf_len <= bvec_offset)
1157			return 1;
1158
1159		copy_start = max(cur_offset, bvec_offset);
1160		copy_len = min(bvec_offset + bvec.bv_len,
1161			       decompressed + buf_len) - copy_start;
1162		ASSERT(copy_len);
1163
1164		/*
1165		 * Extra range check to ensure we didn't go beyond
1166		 * @buf + @buf_len.
1167		 */
1168		ASSERT(copy_start - decompressed < buf_len);
1169		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1170			       buf + copy_start - decompressed, copy_len);
1171		cur_offset += copy_len;
1172
1173		bio_advance(orig_bio, copy_len);
1174		/* Finished the bio */
1175		if (!orig_bio->bi_iter.bi_size)
1176			return 0;
1177	}
1178	return 1;
1179}
1180
1181/*
1182 * Shannon Entropy calculation
1183 *
1184 * Pure byte distribution analysis fails to determine compressibility of data.
1185 * Try calculating entropy to estimate the average minimum number of bits
1186 * needed to encode the sampled data.
1187 *
1188 * For convenience, return the percentage of needed bits, instead of amount of
1189 * bits directly.
1190 *
1191 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1192 *			    and can be compressible with high probability
1193 *
1194 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1195 *
1196 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1197 */
1198#define ENTROPY_LVL_ACEPTABLE		(65)
1199#define ENTROPY_LVL_HIGH		(80)
1200
1201/*
1202 * For increasead precision in shannon_entropy calculation,
1203 * let's do pow(n, M) to save more digits after comma:
1204 *
1205 * - maximum int bit length is 64
1206 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1207 * - 13 * 4 = 52 < 64		-> M = 4
1208 *
1209 * So use pow(n, 4).
1210 */
1211static inline u32 ilog2_w(u64 n)
1212{
1213	return ilog2(n * n * n * n);
1214}
1215
1216static u32 shannon_entropy(struct heuristic_ws *ws)
1217{
1218	const u32 entropy_max = 8 * ilog2_w(2);
1219	u32 entropy_sum = 0;
1220	u32 p, p_base, sz_base;
1221	u32 i;
1222
1223	sz_base = ilog2_w(ws->sample_size);
1224	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1225		p = ws->bucket[i].count;
1226		p_base = ilog2_w(p);
1227		entropy_sum += p * (sz_base - p_base);
1228	}
1229
1230	entropy_sum /= ws->sample_size;
1231	return entropy_sum * 100 / entropy_max;
1232}
1233
1234#define RADIX_BASE		4U
1235#define COUNTERS_SIZE		(1U << RADIX_BASE)
1236
1237static u8 get4bits(u64 num, int shift) {
1238	u8 low4bits;
1239
1240	num >>= shift;
1241	/* Reverse order */
1242	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1243	return low4bits;
1244}
1245
1246/*
1247 * Use 4 bits as radix base
1248 * Use 16 u32 counters for calculating new position in buf array
1249 *
1250 * @array     - array that will be sorted
1251 * @array_buf - buffer array to store sorting results
1252 *              must be equal in size to @array
1253 * @num       - array size
1254 */
1255static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1256		       int num)
1257{
1258	u64 max_num;
1259	u64 buf_num;
1260	u32 counters[COUNTERS_SIZE];
1261	u32 new_addr;
1262	u32 addr;
1263	int bitlen;
1264	int shift;
1265	int i;
1266
1267	/*
1268	 * Try avoid useless loop iterations for small numbers stored in big
1269	 * counters.  Example: 48 33 4 ... in 64bit array
1270	 */
1271	max_num = array[0].count;
1272	for (i = 1; i < num; i++) {
1273		buf_num = array[i].count;
1274		if (buf_num > max_num)
1275			max_num = buf_num;
1276	}
1277
1278	buf_num = ilog2(max_num);
1279	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1280
1281	shift = 0;
1282	while (shift < bitlen) {
1283		memset(counters, 0, sizeof(counters));
1284
1285		for (i = 0; i < num; i++) {
1286			buf_num = array[i].count;
1287			addr = get4bits(buf_num, shift);
1288			counters[addr]++;
1289		}
1290
1291		for (i = 1; i < COUNTERS_SIZE; i++)
1292			counters[i] += counters[i - 1];
1293
1294		for (i = num - 1; i >= 0; i--) {
1295			buf_num = array[i].count;
1296			addr = get4bits(buf_num, shift);
1297			counters[addr]--;
1298			new_addr = counters[addr];
1299			array_buf[new_addr] = array[i];
1300		}
1301
1302		shift += RADIX_BASE;
1303
1304		/*
1305		 * Normal radix expects to move data from a temporary array, to
1306		 * the main one.  But that requires some CPU time. Avoid that
1307		 * by doing another sort iteration to original array instead of
1308		 * memcpy()
1309		 */
1310		memset(counters, 0, sizeof(counters));
1311
1312		for (i = 0; i < num; i ++) {
1313			buf_num = array_buf[i].count;
1314			addr = get4bits(buf_num, shift);
1315			counters[addr]++;
1316		}
1317
1318		for (i = 1; i < COUNTERS_SIZE; i++)
1319			counters[i] += counters[i - 1];
1320
1321		for (i = num - 1; i >= 0; i--) {
1322			buf_num = array_buf[i].count;
1323			addr = get4bits(buf_num, shift);
1324			counters[addr]--;
1325			new_addr = counters[addr];
1326			array[new_addr] = array_buf[i];
1327		}
1328
1329		shift += RADIX_BASE;
1330	}
1331}
1332
1333/*
1334 * Size of the core byte set - how many bytes cover 90% of the sample
1335 *
1336 * There are several types of structured binary data that use nearly all byte
1337 * values. The distribution can be uniform and counts in all buckets will be
1338 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1339 *
1340 * Other possibility is normal (Gaussian) distribution, where the data could
1341 * be potentially compressible, but we have to take a few more steps to decide
1342 * how much.
1343 *
1344 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1345 *                       compression algo can easy fix that
1346 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1347 *                       probability is not compressible
1348 */
1349#define BYTE_CORE_SET_LOW		(64)
1350#define BYTE_CORE_SET_HIGH		(200)
1351
1352static int byte_core_set_size(struct heuristic_ws *ws)
1353{
1354	u32 i;
1355	u32 coreset_sum = 0;
1356	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1357	struct bucket_item *bucket = ws->bucket;
1358
1359	/* Sort in reverse order */
1360	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1361
1362	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1363		coreset_sum += bucket[i].count;
1364
1365	if (coreset_sum > core_set_threshold)
1366		return i;
1367
1368	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1369		coreset_sum += bucket[i].count;
1370		if (coreset_sum > core_set_threshold)
1371			break;
1372	}
1373
1374	return i;
1375}
1376
1377/*
1378 * Count byte values in buckets.
1379 * This heuristic can detect textual data (configs, xml, json, html, etc).
1380 * Because in most text-like data byte set is restricted to limited number of
1381 * possible characters, and that restriction in most cases makes data easy to
1382 * compress.
1383 *
1384 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1385 *	less - compressible
1386 *	more - need additional analysis
1387 */
1388#define BYTE_SET_THRESHOLD		(64)
1389
1390static u32 byte_set_size(const struct heuristic_ws *ws)
1391{
1392	u32 i;
1393	u32 byte_set_size = 0;
1394
1395	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1396		if (ws->bucket[i].count > 0)
1397			byte_set_size++;
1398	}
1399
1400	/*
1401	 * Continue collecting count of byte values in buckets.  If the byte
1402	 * set size is bigger then the threshold, it's pointless to continue,
1403	 * the detection technique would fail for this type of data.
1404	 */
1405	for (; i < BUCKET_SIZE; i++) {
1406		if (ws->bucket[i].count > 0) {
1407			byte_set_size++;
1408			if (byte_set_size > BYTE_SET_THRESHOLD)
1409				return byte_set_size;
1410		}
1411	}
1412
1413	return byte_set_size;
1414}
1415
1416static bool sample_repeated_patterns(struct heuristic_ws *ws)
1417{
1418	const u32 half_of_sample = ws->sample_size / 2;
1419	const u8 *data = ws->sample;
1420
1421	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1422}
1423
1424static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1425				     struct heuristic_ws *ws)
1426{
1427	struct page *page;
1428	u64 index, index_end;
1429	u32 i, curr_sample_pos;
1430	u8 *in_data;
1431
1432	/*
1433	 * Compression handles the input data by chunks of 128KiB
1434	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1435	 *
1436	 * We do the same for the heuristic and loop over the whole range.
1437	 *
1438	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1439	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1440	 */
1441	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1442		end = start + BTRFS_MAX_UNCOMPRESSED;
1443
1444	index = start >> PAGE_SHIFT;
1445	index_end = end >> PAGE_SHIFT;
1446
1447	/* Don't miss unaligned end */
1448	if (!PAGE_ALIGNED(end))
1449		index_end++;
1450
1451	curr_sample_pos = 0;
1452	while (index < index_end) {
1453		page = find_get_page(inode->i_mapping, index);
1454		in_data = kmap_local_page(page);
1455		/* Handle case where the start is not aligned to PAGE_SIZE */
1456		i = start % PAGE_SIZE;
1457		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1458			/* Don't sample any garbage from the last page */
1459			if (start > end - SAMPLING_READ_SIZE)
1460				break;
1461			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1462					SAMPLING_READ_SIZE);
1463			i += SAMPLING_INTERVAL;
1464			start += SAMPLING_INTERVAL;
1465			curr_sample_pos += SAMPLING_READ_SIZE;
1466		}
1467		kunmap_local(in_data);
1468		put_page(page);
1469
1470		index++;
1471	}
1472
1473	ws->sample_size = curr_sample_pos;
1474}
1475
1476/*
1477 * Compression heuristic.
1478 *
1479 * The following types of analysis can be performed:
1480 * - detect mostly zero data
1481 * - detect data with low "byte set" size (text, etc)
1482 * - detect data with low/high "core byte" set
1483 *
1484 * Return non-zero if the compression should be done, 0 otherwise.
1485 */
1486int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1487{
1488	struct list_head *ws_list = get_workspace(0, 0);
1489	struct heuristic_ws *ws;
1490	u32 i;
1491	u8 byte;
1492	int ret = 0;
1493
1494	ws = list_entry(ws_list, struct heuristic_ws, list);
1495
1496	heuristic_collect_sample(inode, start, end, ws);
1497
1498	if (sample_repeated_patterns(ws)) {
1499		ret = 1;
1500		goto out;
1501	}
1502
1503	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1504
1505	for (i = 0; i < ws->sample_size; i++) {
1506		byte = ws->sample[i];
1507		ws->bucket[byte].count++;
1508	}
1509
1510	i = byte_set_size(ws);
1511	if (i < BYTE_SET_THRESHOLD) {
1512		ret = 2;
1513		goto out;
1514	}
1515
1516	i = byte_core_set_size(ws);
1517	if (i <= BYTE_CORE_SET_LOW) {
1518		ret = 3;
1519		goto out;
1520	}
1521
1522	if (i >= BYTE_CORE_SET_HIGH) {
1523		ret = 0;
1524		goto out;
1525	}
1526
1527	i = shannon_entropy(ws);
1528	if (i <= ENTROPY_LVL_ACEPTABLE) {
1529		ret = 4;
1530		goto out;
1531	}
1532
1533	/*
1534	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1535	 * needed to give green light to compression.
1536	 *
1537	 * For now just assume that compression at that level is not worth the
1538	 * resources because:
1539	 *
1540	 * 1. it is possible to defrag the data later
1541	 *
1542	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1543	 * values, every bucket has counter at level ~54. The heuristic would
1544	 * be confused. This can happen when data have some internal repeated
1545	 * patterns like "abbacbbc...". This can be detected by analyzing
1546	 * pairs of bytes, which is too costly.
1547	 */
1548	if (i < ENTROPY_LVL_HIGH) {
1549		ret = 5;
1550		goto out;
1551	} else {
1552		ret = 0;
1553		goto out;
1554	}
1555
1556out:
1557	put_workspace(0, ws_list);
1558	return ret;
1559}
1560
1561/*
1562 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1563 * level, unrecognized string will set the default level
1564 */
1565unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1566{
1567	unsigned int level = 0;
1568	int ret;
1569
1570	if (!type)
1571		return 0;
1572
1573	if (str[0] == ':') {
1574		ret = kstrtouint(str + 1, 10, &level);
1575		if (ret)
1576			level = 0;
1577	}
1578
1579	level = btrfs_compress_set_level(type, level);
1580
1581	return level;
1582}
1583