1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "block-rsv.h"
6#include "space-info.h"
7#include "transaction.h"
8#include "block-group.h"
9#include "fs.h"
10#include "accessors.h"
11
12/*
13 * HOW DO BLOCK RESERVES WORK
14 *
15 *   Think of block_rsv's as buckets for logically grouped metadata
16 *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
17 *   how large we want our block rsv to be, ->reserved is how much space is
18 *   currently reserved for this block reserve.
19 *
20 *   ->failfast exists for the truncate case, and is described below.
21 *
22 * NORMAL OPERATION
23 *
24 *   -> Reserve
25 *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
26 *
27 *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
28 *     accounted for in space_info->bytes_may_use, and then add the bytes to
29 *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
30 *
31 *     ->size is an over-estimation of how much we may use for a particular
32 *     operation.
33 *
34 *   -> Use
35 *     Entrance: btrfs_use_block_rsv
36 *
37 *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
38 *     to determine the appropriate block_rsv to use, and then verify that
39 *     ->reserved has enough space for our tree block allocation.  Once
40 *     successful we subtract fs_info->nodesize from ->reserved.
41 *
42 *   -> Finish
43 *     Entrance: btrfs_block_rsv_release
44 *
45 *     We are finished with our operation, subtract our individual reservation
46 *     from ->size, and then subtract ->size from ->reserved and free up the
47 *     excess if there is any.
48 *
49 *     There is some logic here to refill the delayed refs rsv or the global rsv
50 *     as needed, otherwise the excess is subtracted from
51 *     space_info->bytes_may_use.
52 *
53 * TYPES OF BLOCK RESERVES
54 *
55 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
56 *   These behave normally, as described above, just within the confines of the
57 *   lifetime of their particular operation (transaction for the whole trans
58 *   handle lifetime, for example).
59 *
60 * BLOCK_RSV_GLOBAL
61 *   It is impossible to properly account for all the space that may be required
62 *   to make our extent tree updates.  This block reserve acts as an overflow
63 *   buffer in case our delayed refs reserve does not reserve enough space to
64 *   update the extent tree.
65 *
66 *   We can steal from this in some cases as well, notably on evict() or
67 *   truncate() in order to help users recover from ENOSPC conditions.
68 *
69 * BLOCK_RSV_DELALLOC
70 *   The individual item sizes are determined by the per-inode size
71 *   calculations, which are described with the delalloc code.  This is pretty
72 *   straightforward, it's just the calculation of ->size encodes a lot of
73 *   different items, and thus it gets used when updating inodes, inserting file
74 *   extents, and inserting checksums.
75 *
76 * BLOCK_RSV_DELREFS
77 *   We keep a running tally of how many delayed refs we have on the system.
78 *   We assume each one of these delayed refs are going to use a full
79 *   reservation.  We use the transaction items and pre-reserve space for every
80 *   operation, and use this reservation to refill any gap between ->size and
81 *   ->reserved that may exist.
82 *
83 *   From there it's straightforward, removing a delayed ref means we remove its
84 *   count from ->size and free up reservations as necessary.  Since this is
85 *   the most dynamic block reserve in the system, we will try to refill this
86 *   block reserve first with any excess returned by any other block reserve.
87 *
88 * BLOCK_RSV_EMPTY
89 *   This is the fallback block reserve to make us try to reserve space if we
90 *   don't have a specific bucket for this allocation.  It is mostly used for
91 *   updating the device tree and such, since that is a separate pool we're
92 *   content to just reserve space from the space_info on demand.
93 *
94 * BLOCK_RSV_TEMP
95 *   This is used by things like truncate and iput.  We will temporarily
96 *   allocate a block reserve, set it to some size, and then truncate bytes
97 *   until we have no space left.  With ->failfast set we'll simply return
98 *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
99 *   to make a new reservation.  This is because these operations are
100 *   unbounded, so we want to do as much work as we can, and then back off and
101 *   re-reserve.
102 */
103
104static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
105				    struct btrfs_block_rsv *block_rsv,
106				    struct btrfs_block_rsv *dest, u64 num_bytes,
107				    u64 *qgroup_to_release_ret)
108{
109	struct btrfs_space_info *space_info = block_rsv->space_info;
110	u64 qgroup_to_release = 0;
111	u64 ret;
112
113	spin_lock(&block_rsv->lock);
114	if (num_bytes == (u64)-1) {
115		num_bytes = block_rsv->size;
116		qgroup_to_release = block_rsv->qgroup_rsv_size;
117	}
118	block_rsv->size -= num_bytes;
119	if (block_rsv->reserved >= block_rsv->size) {
120		num_bytes = block_rsv->reserved - block_rsv->size;
121		block_rsv->reserved = block_rsv->size;
122		block_rsv->full = true;
123	} else {
124		num_bytes = 0;
125	}
126	if (qgroup_to_release_ret &&
127	    block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
128		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
129				    block_rsv->qgroup_rsv_size;
130		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
131	} else {
132		qgroup_to_release = 0;
133	}
134	spin_unlock(&block_rsv->lock);
135
136	ret = num_bytes;
137	if (num_bytes > 0) {
138		if (dest) {
139			spin_lock(&dest->lock);
140			if (!dest->full) {
141				u64 bytes_to_add;
142
143				bytes_to_add = dest->size - dest->reserved;
144				bytes_to_add = min(num_bytes, bytes_to_add);
145				dest->reserved += bytes_to_add;
146				if (dest->reserved >= dest->size)
147					dest->full = true;
148				num_bytes -= bytes_to_add;
149			}
150			spin_unlock(&dest->lock);
151		}
152		if (num_bytes)
153			btrfs_space_info_free_bytes_may_use(fs_info,
154							    space_info,
155							    num_bytes);
156	}
157	if (qgroup_to_release_ret)
158		*qgroup_to_release_ret = qgroup_to_release;
159	return ret;
160}
161
162int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
163			    struct btrfs_block_rsv *dst, u64 num_bytes,
164			    bool update_size)
165{
166	int ret;
167
168	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
169	if (ret)
170		return ret;
171
172	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
173	return 0;
174}
175
176void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
177{
178	memset(rsv, 0, sizeof(*rsv));
179	spin_lock_init(&rsv->lock);
180	rsv->type = type;
181}
182
183void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
184				   struct btrfs_block_rsv *rsv,
185				   enum btrfs_rsv_type type)
186{
187	btrfs_init_block_rsv(rsv, type);
188	rsv->space_info = btrfs_find_space_info(fs_info,
189					    BTRFS_BLOCK_GROUP_METADATA);
190}
191
192struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
193					      enum btrfs_rsv_type type)
194{
195	struct btrfs_block_rsv *block_rsv;
196
197	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
198	if (!block_rsv)
199		return NULL;
200
201	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
202	return block_rsv;
203}
204
205void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
206			  struct btrfs_block_rsv *rsv)
207{
208	if (!rsv)
209		return;
210	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
211	kfree(rsv);
212}
213
214int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
215			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
216			enum btrfs_reserve_flush_enum flush)
217{
218	int ret;
219
220	if (num_bytes == 0)
221		return 0;
222
223	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
224					   num_bytes, flush);
225	if (!ret)
226		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
227
228	return ret;
229}
230
231int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
232{
233	u64 num_bytes = 0;
234	int ret = -ENOSPC;
235
236	spin_lock(&block_rsv->lock);
237	num_bytes = mult_perc(block_rsv->size, min_percent);
238	if (block_rsv->reserved >= num_bytes)
239		ret = 0;
240	spin_unlock(&block_rsv->lock);
241
242	return ret;
243}
244
245int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
246			   struct btrfs_block_rsv *block_rsv, u64 num_bytes,
247			   enum btrfs_reserve_flush_enum flush)
248{
249	int ret = -ENOSPC;
250
251	if (!block_rsv)
252		return 0;
253
254	spin_lock(&block_rsv->lock);
255	if (block_rsv->reserved >= num_bytes)
256		ret = 0;
257	else
258		num_bytes -= block_rsv->reserved;
259	spin_unlock(&block_rsv->lock);
260
261	if (!ret)
262		return 0;
263
264	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
265					   num_bytes, flush);
266	if (!ret) {
267		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
268		return 0;
269	}
270
271	return ret;
272}
273
274u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
275			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
276			    u64 *qgroup_to_release)
277{
278	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
279	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
280	struct btrfs_block_rsv *target = NULL;
281
282	/*
283	 * If we are a delayed block reserve then push to the global rsv,
284	 * otherwise dump into the global delayed reserve if it is not full.
285	 */
286	if (block_rsv->type == BTRFS_BLOCK_RSV_DELOPS)
287		target = global_rsv;
288	else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
289		target = delayed_rsv;
290
291	if (target && block_rsv->space_info != target->space_info)
292		target = NULL;
293
294	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
295				       qgroup_to_release);
296}
297
298int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
299{
300	int ret = -ENOSPC;
301
302	spin_lock(&block_rsv->lock);
303	if (block_rsv->reserved >= num_bytes) {
304		block_rsv->reserved -= num_bytes;
305		if (block_rsv->reserved < block_rsv->size)
306			block_rsv->full = false;
307		ret = 0;
308	}
309	spin_unlock(&block_rsv->lock);
310	return ret;
311}
312
313void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
314			       u64 num_bytes, bool update_size)
315{
316	spin_lock(&block_rsv->lock);
317	block_rsv->reserved += num_bytes;
318	if (update_size)
319		block_rsv->size += num_bytes;
320	else if (block_rsv->reserved >= block_rsv->size)
321		block_rsv->full = true;
322	spin_unlock(&block_rsv->lock);
323}
324
325void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
326{
327	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
328	struct btrfs_space_info *sinfo = block_rsv->space_info;
329	struct btrfs_root *root, *tmp;
330	u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
331	unsigned int min_items = 1;
332
333	/*
334	 * The global block rsv is based on the size of the extent tree, the
335	 * checksum tree and the root tree.  If the fs is empty we want to set
336	 * it to a minimal amount for safety.
337	 *
338	 * We also are going to need to modify the minimum of the tree root and
339	 * any global roots we could touch.
340	 */
341	read_lock(&fs_info->global_root_lock);
342	rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
343					     rb_node) {
344		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
345		    root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
346		    root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
347			num_bytes += btrfs_root_used(&root->root_item);
348			min_items++;
349		}
350	}
351	read_unlock(&fs_info->global_root_lock);
352
353	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
354		num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item);
355		min_items++;
356	}
357
358	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
359		num_bytes += btrfs_root_used(&fs_info->stripe_root->root_item);
360		min_items++;
361	}
362
363	/*
364	 * But we also want to reserve enough space so we can do the fallback
365	 * global reserve for an unlink, which is an additional
366	 * BTRFS_UNLINK_METADATA_UNITS items.
367	 *
368	 * But we also need space for the delayed ref updates from the unlink,
369	 * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for
370	 * each unlink metadata item.
371	 */
372	min_items += BTRFS_UNLINK_METADATA_UNITS;
373
374	num_bytes = max_t(u64, num_bytes,
375			  btrfs_calc_insert_metadata_size(fs_info, min_items) +
376			  btrfs_calc_delayed_ref_bytes(fs_info,
377					       BTRFS_UNLINK_METADATA_UNITS));
378
379	spin_lock(&sinfo->lock);
380	spin_lock(&block_rsv->lock);
381
382	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
383
384	if (block_rsv->reserved < block_rsv->size) {
385		num_bytes = block_rsv->size - block_rsv->reserved;
386		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
387						      num_bytes);
388		block_rsv->reserved = block_rsv->size;
389	} else if (block_rsv->reserved > block_rsv->size) {
390		num_bytes = block_rsv->reserved - block_rsv->size;
391		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
392						      -num_bytes);
393		block_rsv->reserved = block_rsv->size;
394		btrfs_try_granting_tickets(fs_info, sinfo);
395	}
396
397	block_rsv->full = (block_rsv->reserved == block_rsv->size);
398
399	if (block_rsv->size >= sinfo->total_bytes)
400		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
401	spin_unlock(&block_rsv->lock);
402	spin_unlock(&sinfo->lock);
403}
404
405void btrfs_init_root_block_rsv(struct btrfs_root *root)
406{
407	struct btrfs_fs_info *fs_info = root->fs_info;
408
409	switch (root->root_key.objectid) {
410	case BTRFS_CSUM_TREE_OBJECTID:
411	case BTRFS_EXTENT_TREE_OBJECTID:
412	case BTRFS_FREE_SPACE_TREE_OBJECTID:
413	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
414	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
415		root->block_rsv = &fs_info->delayed_refs_rsv;
416		break;
417	case BTRFS_ROOT_TREE_OBJECTID:
418	case BTRFS_DEV_TREE_OBJECTID:
419	case BTRFS_QUOTA_TREE_OBJECTID:
420		root->block_rsv = &fs_info->global_block_rsv;
421		break;
422	case BTRFS_CHUNK_TREE_OBJECTID:
423		root->block_rsv = &fs_info->chunk_block_rsv;
424		break;
425	default:
426		root->block_rsv = NULL;
427		break;
428	}
429}
430
431void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
432{
433	struct btrfs_space_info *space_info;
434
435	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
436	fs_info->chunk_block_rsv.space_info = space_info;
437
438	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
439	fs_info->global_block_rsv.space_info = space_info;
440	fs_info->trans_block_rsv.space_info = space_info;
441	fs_info->empty_block_rsv.space_info = space_info;
442	fs_info->delayed_block_rsv.space_info = space_info;
443	fs_info->delayed_refs_rsv.space_info = space_info;
444
445	btrfs_update_global_block_rsv(fs_info);
446}
447
448void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
449{
450	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
451				NULL);
452	WARN_ON(fs_info->trans_block_rsv.size > 0);
453	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
454	WARN_ON(fs_info->chunk_block_rsv.size > 0);
455	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
456	WARN_ON(fs_info->delayed_block_rsv.size > 0);
457	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
458	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
459	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
460}
461
462static struct btrfs_block_rsv *get_block_rsv(
463					const struct btrfs_trans_handle *trans,
464					const struct btrfs_root *root)
465{
466	struct btrfs_fs_info *fs_info = root->fs_info;
467	struct btrfs_block_rsv *block_rsv = NULL;
468
469	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
470	    (root == fs_info->uuid_root) ||
471	    (trans->adding_csums &&
472	     root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
473		block_rsv = trans->block_rsv;
474
475	if (!block_rsv)
476		block_rsv = root->block_rsv;
477
478	if (!block_rsv)
479		block_rsv = &fs_info->empty_block_rsv;
480
481	return block_rsv;
482}
483
484struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
485					    struct btrfs_root *root,
486					    u32 blocksize)
487{
488	struct btrfs_fs_info *fs_info = root->fs_info;
489	struct btrfs_block_rsv *block_rsv;
490	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
491	int ret;
492	bool global_updated = false;
493
494	block_rsv = get_block_rsv(trans, root);
495
496	if (unlikely(btrfs_block_rsv_size(block_rsv) == 0))
497		goto try_reserve;
498again:
499	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
500	if (!ret)
501		return block_rsv;
502
503	if (block_rsv->failfast)
504		return ERR_PTR(ret);
505
506	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
507		global_updated = true;
508		btrfs_update_global_block_rsv(fs_info);
509		goto again;
510	}
511
512	/*
513	 * The global reserve still exists to save us from ourselves, so don't
514	 * warn_on if we are short on our delayed refs reserve.
515	 */
516	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
517	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
518		static DEFINE_RATELIMIT_STATE(_rs,
519				DEFAULT_RATELIMIT_INTERVAL * 10,
520				/*DEFAULT_RATELIMIT_BURST*/ 1);
521		if (__ratelimit(&_rs))
522			WARN(1, KERN_DEBUG
523				"BTRFS: block rsv %d returned %d\n",
524				block_rsv->type, ret);
525	}
526try_reserve:
527	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
528					   blocksize, BTRFS_RESERVE_NO_FLUSH);
529	if (!ret)
530		return block_rsv;
531	/*
532	 * If we couldn't reserve metadata bytes try and use some from
533	 * the global reserve if its space type is the same as the global
534	 * reservation.
535	 */
536	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
537	    block_rsv->space_info == global_rsv->space_info) {
538		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
539		if (!ret)
540			return global_rsv;
541	}
542
543	/*
544	 * All hope is lost, but of course our reservations are overly
545	 * pessimistic, so instead of possibly having an ENOSPC abort here, try
546	 * one last time to force a reservation if there's enough actual space
547	 * on disk to make the reservation.
548	 */
549	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, blocksize,
550					   BTRFS_RESERVE_FLUSH_EMERGENCY);
551	if (!ret)
552		return block_rsv;
553
554	return ERR_PTR(ret);
555}
556
557int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
558				       struct btrfs_block_rsv *rsv)
559{
560	u64 needed_bytes;
561	int ret;
562
563	/* 1 for slack space, 1 for updating the inode */
564	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
565		btrfs_calc_metadata_size(fs_info, 1);
566
567	spin_lock(&rsv->lock);
568	if (rsv->reserved < needed_bytes)
569		ret = -ENOSPC;
570	else
571		ret = 0;
572	spin_unlock(&rsv->lock);
573	return ret;
574}
575