1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/binfmt_elf.c
4 *
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines.  Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8 * Tools".
9 *
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11 */
12
13#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/fs.h>
16#include <linux/log2.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/errno.h>
20#include <linux/signal.h>
21#include <linux/binfmts.h>
22#include <linux/string.h>
23#include <linux/file.h>
24#include <linux/slab.h>
25#include <linux/personality.h>
26#include <linux/elfcore.h>
27#include <linux/init.h>
28#include <linux/highuid.h>
29#include <linux/compiler.h>
30#include <linux/highmem.h>
31#include <linux/hugetlb.h>
32#include <linux/pagemap.h>
33#include <linux/vmalloc.h>
34#include <linux/security.h>
35#include <linux/random.h>
36#include <linux/elf.h>
37#include <linux/elf-randomize.h>
38#include <linux/utsname.h>
39#include <linux/coredump.h>
40#include <linux/sched.h>
41#include <linux/sched/coredump.h>
42#include <linux/sched/task_stack.h>
43#include <linux/sched/cputime.h>
44#include <linux/sizes.h>
45#include <linux/types.h>
46#include <linux/cred.h>
47#include <linux/dax.h>
48#include <linux/uaccess.h>
49#include <linux/rseq.h>
50#include <asm/param.h>
51#include <asm/page.h>
52
53#ifndef ELF_COMPAT
54#define ELF_COMPAT 0
55#endif
56
57#ifndef user_long_t
58#define user_long_t long
59#endif
60#ifndef user_siginfo_t
61#define user_siginfo_t siginfo_t
62#endif
63
64/* That's for binfmt_elf_fdpic to deal with */
65#ifndef elf_check_fdpic
66#define elf_check_fdpic(ex) false
67#endif
68
69static int load_elf_binary(struct linux_binprm *bprm);
70
71#ifdef CONFIG_USELIB
72static int load_elf_library(struct file *);
73#else
74#define load_elf_library NULL
75#endif
76
77/*
78 * If we don't support core dumping, then supply a NULL so we
79 * don't even try.
80 */
81#ifdef CONFIG_ELF_CORE
82static int elf_core_dump(struct coredump_params *cprm);
83#else
84#define elf_core_dump	NULL
85#endif
86
87#if ELF_EXEC_PAGESIZE > PAGE_SIZE
88#define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
89#else
90#define ELF_MIN_ALIGN	PAGE_SIZE
91#endif
92
93#ifndef ELF_CORE_EFLAGS
94#define ELF_CORE_EFLAGS	0
95#endif
96
97#define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
98#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
99#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
100
101static struct linux_binfmt elf_format = {
102	.module		= THIS_MODULE,
103	.load_binary	= load_elf_binary,
104	.load_shlib	= load_elf_library,
105#ifdef CONFIG_COREDUMP
106	.core_dump	= elf_core_dump,
107	.min_coredump	= ELF_EXEC_PAGESIZE,
108#endif
109};
110
111#define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
112
113/*
114 * We need to explicitly zero any trailing portion of the page that follows
115 * p_filesz when it ends before the page ends (e.g. bss), otherwise this
116 * memory will contain the junk from the file that should not be present.
117 */
118static int padzero(unsigned long address)
119{
120	unsigned long nbyte;
121
122	nbyte = ELF_PAGEOFFSET(address);
123	if (nbyte) {
124		nbyte = ELF_MIN_ALIGN - nbyte;
125		if (clear_user((void __user *)address, nbyte))
126			return -EFAULT;
127	}
128	return 0;
129}
130
131/* Let's use some macros to make this stack manipulation a little clearer */
132#ifdef CONFIG_STACK_GROWSUP
133#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
134#define STACK_ROUND(sp, items) \
135	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
136#define STACK_ALLOC(sp, len) ({ \
137	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
138	old_sp; })
139#else
140#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
141#define STACK_ROUND(sp, items) \
142	(((unsigned long) (sp - items)) &~ 15UL)
143#define STACK_ALLOC(sp, len) (sp -= len)
144#endif
145
146#ifndef ELF_BASE_PLATFORM
147/*
148 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
149 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
150 * will be copied to the user stack in the same manner as AT_PLATFORM.
151 */
152#define ELF_BASE_PLATFORM NULL
153#endif
154
155static int
156create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
157		unsigned long interp_load_addr,
158		unsigned long e_entry, unsigned long phdr_addr)
159{
160	struct mm_struct *mm = current->mm;
161	unsigned long p = bprm->p;
162	int argc = bprm->argc;
163	int envc = bprm->envc;
164	elf_addr_t __user *sp;
165	elf_addr_t __user *u_platform;
166	elf_addr_t __user *u_base_platform;
167	elf_addr_t __user *u_rand_bytes;
168	const char *k_platform = ELF_PLATFORM;
169	const char *k_base_platform = ELF_BASE_PLATFORM;
170	unsigned char k_rand_bytes[16];
171	int items;
172	elf_addr_t *elf_info;
173	elf_addr_t flags = 0;
174	int ei_index;
175	const struct cred *cred = current_cred();
176	struct vm_area_struct *vma;
177
178	/*
179	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
180	 * evictions by the processes running on the same package. One
181	 * thing we can do is to shuffle the initial stack for them.
182	 */
183
184	p = arch_align_stack(p);
185
186	/*
187	 * If this architecture has a platform capability string, copy it
188	 * to userspace.  In some cases (Sparc), this info is impossible
189	 * for userspace to get any other way, in others (i386) it is
190	 * merely difficult.
191	 */
192	u_platform = NULL;
193	if (k_platform) {
194		size_t len = strlen(k_platform) + 1;
195
196		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197		if (copy_to_user(u_platform, k_platform, len))
198			return -EFAULT;
199	}
200
201	/*
202	 * If this architecture has a "base" platform capability
203	 * string, copy it to userspace.
204	 */
205	u_base_platform = NULL;
206	if (k_base_platform) {
207		size_t len = strlen(k_base_platform) + 1;
208
209		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
210		if (copy_to_user(u_base_platform, k_base_platform, len))
211			return -EFAULT;
212	}
213
214	/*
215	 * Generate 16 random bytes for userspace PRNG seeding.
216	 */
217	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
218	u_rand_bytes = (elf_addr_t __user *)
219		       STACK_ALLOC(p, sizeof(k_rand_bytes));
220	if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
221		return -EFAULT;
222
223	/* Create the ELF interpreter info */
224	elf_info = (elf_addr_t *)mm->saved_auxv;
225	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
226#define NEW_AUX_ENT(id, val) \
227	do { \
228		*elf_info++ = id; \
229		*elf_info++ = val; \
230	} while (0)
231
232#ifdef ARCH_DLINFO
233	/*
234	 * ARCH_DLINFO must come first so PPC can do its special alignment of
235	 * AUXV.
236	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
237	 * ARCH_DLINFO changes
238	 */
239	ARCH_DLINFO;
240#endif
241	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
242	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
243	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
244	NEW_AUX_ENT(AT_PHDR, phdr_addr);
245	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
246	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
247	NEW_AUX_ENT(AT_BASE, interp_load_addr);
248	if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
249		flags |= AT_FLAGS_PRESERVE_ARGV0;
250	NEW_AUX_ENT(AT_FLAGS, flags);
251	NEW_AUX_ENT(AT_ENTRY, e_entry);
252	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
253	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
254	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
255	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
256	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
257	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
258#ifdef ELF_HWCAP2
259	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
260#endif
261	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
262	if (k_platform) {
263		NEW_AUX_ENT(AT_PLATFORM,
264			    (elf_addr_t)(unsigned long)u_platform);
265	}
266	if (k_base_platform) {
267		NEW_AUX_ENT(AT_BASE_PLATFORM,
268			    (elf_addr_t)(unsigned long)u_base_platform);
269	}
270	if (bprm->have_execfd) {
271		NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
272	}
273#ifdef CONFIG_RSEQ
274	NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end));
275	NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq));
276#endif
277#undef NEW_AUX_ENT
278	/* AT_NULL is zero; clear the rest too */
279	memset(elf_info, 0, (char *)mm->saved_auxv +
280			sizeof(mm->saved_auxv) - (char *)elf_info);
281
282	/* And advance past the AT_NULL entry.  */
283	elf_info += 2;
284
285	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
286	sp = STACK_ADD(p, ei_index);
287
288	items = (argc + 1) + (envc + 1) + 1;
289	bprm->p = STACK_ROUND(sp, items);
290
291	/* Point sp at the lowest address on the stack */
292#ifdef CONFIG_STACK_GROWSUP
293	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
294	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
295#else
296	sp = (elf_addr_t __user *)bprm->p;
297#endif
298
299
300	/*
301	 * Grow the stack manually; some architectures have a limit on how
302	 * far ahead a user-space access may be in order to grow the stack.
303	 */
304	if (mmap_write_lock_killable(mm))
305		return -EINTR;
306	vma = find_extend_vma_locked(mm, bprm->p);
307	mmap_write_unlock(mm);
308	if (!vma)
309		return -EFAULT;
310
311	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
312	if (put_user(argc, sp++))
313		return -EFAULT;
314
315	/* Populate list of argv pointers back to argv strings. */
316	p = mm->arg_end = mm->arg_start;
317	while (argc-- > 0) {
318		size_t len;
319		if (put_user((elf_addr_t)p, sp++))
320			return -EFAULT;
321		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
322		if (!len || len > MAX_ARG_STRLEN)
323			return -EINVAL;
324		p += len;
325	}
326	if (put_user(0, sp++))
327		return -EFAULT;
328	mm->arg_end = p;
329
330	/* Populate list of envp pointers back to envp strings. */
331	mm->env_end = mm->env_start = p;
332	while (envc-- > 0) {
333		size_t len;
334		if (put_user((elf_addr_t)p, sp++))
335			return -EFAULT;
336		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
337		if (!len || len > MAX_ARG_STRLEN)
338			return -EINVAL;
339		p += len;
340	}
341	if (put_user(0, sp++))
342		return -EFAULT;
343	mm->env_end = p;
344
345	/* Put the elf_info on the stack in the right place.  */
346	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
347		return -EFAULT;
348	return 0;
349}
350
351/*
352 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
353 * into memory at "addr". (Note that p_filesz is rounded up to the
354 * next page, so any extra bytes from the file must be wiped.)
355 */
356static unsigned long elf_map(struct file *filep, unsigned long addr,
357		const struct elf_phdr *eppnt, int prot, int type,
358		unsigned long total_size)
359{
360	unsigned long map_addr;
361	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
362	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
363	addr = ELF_PAGESTART(addr);
364	size = ELF_PAGEALIGN(size);
365
366	/* mmap() will return -EINVAL if given a zero size, but a
367	 * segment with zero filesize is perfectly valid */
368	if (!size)
369		return addr;
370
371	/*
372	* total_size is the size of the ELF (interpreter) image.
373	* The _first_ mmap needs to know the full size, otherwise
374	* randomization might put this image into an overlapping
375	* position with the ELF binary image. (since size < total_size)
376	* So we first map the 'big' image - and unmap the remainder at
377	* the end. (which unmap is needed for ELF images with holes.)
378	*/
379	if (total_size) {
380		total_size = ELF_PAGEALIGN(total_size);
381		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
382		if (!BAD_ADDR(map_addr))
383			vm_munmap(map_addr+size, total_size-size);
384	} else
385		map_addr = vm_mmap(filep, addr, size, prot, type, off);
386
387	if ((type & MAP_FIXED_NOREPLACE) &&
388	    PTR_ERR((void *)map_addr) == -EEXIST)
389		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
390			task_pid_nr(current), current->comm, (void *)addr);
391
392	return(map_addr);
393}
394
395/*
396 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
397 * into memory at "addr". Memory from "p_filesz" through "p_memsz"
398 * rounded up to the next page is zeroed.
399 */
400static unsigned long elf_load(struct file *filep, unsigned long addr,
401		const struct elf_phdr *eppnt, int prot, int type,
402		unsigned long total_size)
403{
404	unsigned long zero_start, zero_end;
405	unsigned long map_addr;
406
407	if (eppnt->p_filesz) {
408		map_addr = elf_map(filep, addr, eppnt, prot, type, total_size);
409		if (BAD_ADDR(map_addr))
410			return map_addr;
411		if (eppnt->p_memsz > eppnt->p_filesz) {
412			zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
413				eppnt->p_filesz;
414			zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
415				eppnt->p_memsz;
416
417			/*
418			 * Zero the end of the last mapped page but ignore
419			 * any errors if the segment isn't writable.
420			 */
421			if (padzero(zero_start) && (prot & PROT_WRITE))
422				return -EFAULT;
423		}
424	} else {
425		map_addr = zero_start = ELF_PAGESTART(addr);
426		zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) +
427			eppnt->p_memsz;
428	}
429	if (eppnt->p_memsz > eppnt->p_filesz) {
430		/*
431		 * Map the last of the segment.
432		 * If the header is requesting these pages to be
433		 * executable, honour that (ppc32 needs this).
434		 */
435		int error;
436
437		zero_start = ELF_PAGEALIGN(zero_start);
438		zero_end = ELF_PAGEALIGN(zero_end);
439
440		error = vm_brk_flags(zero_start, zero_end - zero_start,
441				     prot & PROT_EXEC ? VM_EXEC : 0);
442		if (error)
443			map_addr = error;
444	}
445	return map_addr;
446}
447
448
449static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
450{
451	elf_addr_t min_addr = -1;
452	elf_addr_t max_addr = 0;
453	bool pt_load = false;
454	int i;
455
456	for (i = 0; i < nr; i++) {
457		if (phdr[i].p_type == PT_LOAD) {
458			min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
459			max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
460			pt_load = true;
461		}
462	}
463	return pt_load ? (max_addr - min_addr) : 0;
464}
465
466static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
467{
468	ssize_t rv;
469
470	rv = kernel_read(file, buf, len, &pos);
471	if (unlikely(rv != len)) {
472		return (rv < 0) ? rv : -EIO;
473	}
474	return 0;
475}
476
477static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
478{
479	unsigned long alignment = 0;
480	int i;
481
482	for (i = 0; i < nr; i++) {
483		if (cmds[i].p_type == PT_LOAD) {
484			unsigned long p_align = cmds[i].p_align;
485
486			/* skip non-power of two alignments as invalid */
487			if (!is_power_of_2(p_align))
488				continue;
489			alignment = max(alignment, p_align);
490		}
491	}
492
493	/* ensure we align to at least one page */
494	return ELF_PAGEALIGN(alignment);
495}
496
497/**
498 * load_elf_phdrs() - load ELF program headers
499 * @elf_ex:   ELF header of the binary whose program headers should be loaded
500 * @elf_file: the opened ELF binary file
501 *
502 * Loads ELF program headers from the binary file elf_file, which has the ELF
503 * header pointed to by elf_ex, into a newly allocated array. The caller is
504 * responsible for freeing the allocated data. Returns NULL upon failure.
505 */
506static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
507				       struct file *elf_file)
508{
509	struct elf_phdr *elf_phdata = NULL;
510	int retval = -1;
511	unsigned int size;
512
513	/*
514	 * If the size of this structure has changed, then punt, since
515	 * we will be doing the wrong thing.
516	 */
517	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
518		goto out;
519
520	/* Sanity check the number of program headers... */
521	/* ...and their total size. */
522	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
523	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
524		goto out;
525
526	elf_phdata = kmalloc(size, GFP_KERNEL);
527	if (!elf_phdata)
528		goto out;
529
530	/* Read in the program headers */
531	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
532
533out:
534	if (retval) {
535		kfree(elf_phdata);
536		elf_phdata = NULL;
537	}
538	return elf_phdata;
539}
540
541#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
542
543/**
544 * struct arch_elf_state - arch-specific ELF loading state
545 *
546 * This structure is used to preserve architecture specific data during
547 * the loading of an ELF file, throughout the checking of architecture
548 * specific ELF headers & through to the point where the ELF load is
549 * known to be proceeding (ie. SET_PERSONALITY).
550 *
551 * This implementation is a dummy for architectures which require no
552 * specific state.
553 */
554struct arch_elf_state {
555};
556
557#define INIT_ARCH_ELF_STATE {}
558
559/**
560 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
561 * @ehdr:	The main ELF header
562 * @phdr:	The program header to check
563 * @elf:	The open ELF file
564 * @is_interp:	True if the phdr is from the interpreter of the ELF being
565 *		loaded, else false.
566 * @state:	Architecture-specific state preserved throughout the process
567 *		of loading the ELF.
568 *
569 * Inspects the program header phdr to validate its correctness and/or
570 * suitability for the system. Called once per ELF program header in the
571 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
572 * interpreter.
573 *
574 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
575 *         with that return code.
576 */
577static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
578				   struct elf_phdr *phdr,
579				   struct file *elf, bool is_interp,
580				   struct arch_elf_state *state)
581{
582	/* Dummy implementation, always proceed */
583	return 0;
584}
585
586/**
587 * arch_check_elf() - check an ELF executable
588 * @ehdr:	The main ELF header
589 * @has_interp:	True if the ELF has an interpreter, else false.
590 * @interp_ehdr: The interpreter's ELF header
591 * @state:	Architecture-specific state preserved throughout the process
592 *		of loading the ELF.
593 *
594 * Provides a final opportunity for architecture code to reject the loading
595 * of the ELF & cause an exec syscall to return an error. This is called after
596 * all program headers to be checked by arch_elf_pt_proc have been.
597 *
598 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
599 *         with that return code.
600 */
601static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
602				 struct elfhdr *interp_ehdr,
603				 struct arch_elf_state *state)
604{
605	/* Dummy implementation, always proceed */
606	return 0;
607}
608
609#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
610
611static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
612			    bool has_interp, bool is_interp)
613{
614	int prot = 0;
615
616	if (p_flags & PF_R)
617		prot |= PROT_READ;
618	if (p_flags & PF_W)
619		prot |= PROT_WRITE;
620	if (p_flags & PF_X)
621		prot |= PROT_EXEC;
622
623	return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
624}
625
626/* This is much more generalized than the library routine read function,
627   so we keep this separate.  Technically the library read function
628   is only provided so that we can read a.out libraries that have
629   an ELF header */
630
631static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
632		struct file *interpreter,
633		unsigned long no_base, struct elf_phdr *interp_elf_phdata,
634		struct arch_elf_state *arch_state)
635{
636	struct elf_phdr *eppnt;
637	unsigned long load_addr = 0;
638	int load_addr_set = 0;
639	unsigned long error = ~0UL;
640	unsigned long total_size;
641	int i;
642
643	/* First of all, some simple consistency checks */
644	if (interp_elf_ex->e_type != ET_EXEC &&
645	    interp_elf_ex->e_type != ET_DYN)
646		goto out;
647	if (!elf_check_arch(interp_elf_ex) ||
648	    elf_check_fdpic(interp_elf_ex))
649		goto out;
650	if (!interpreter->f_op->mmap)
651		goto out;
652
653	total_size = total_mapping_size(interp_elf_phdata,
654					interp_elf_ex->e_phnum);
655	if (!total_size) {
656		error = -EINVAL;
657		goto out;
658	}
659
660	eppnt = interp_elf_phdata;
661	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
662		if (eppnt->p_type == PT_LOAD) {
663			int elf_type = MAP_PRIVATE;
664			int elf_prot = make_prot(eppnt->p_flags, arch_state,
665						 true, true);
666			unsigned long vaddr = 0;
667			unsigned long k, map_addr;
668
669			vaddr = eppnt->p_vaddr;
670			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
671				elf_type |= MAP_FIXED;
672			else if (no_base && interp_elf_ex->e_type == ET_DYN)
673				load_addr = -vaddr;
674
675			map_addr = elf_load(interpreter, load_addr + vaddr,
676					eppnt, elf_prot, elf_type, total_size);
677			total_size = 0;
678			error = map_addr;
679			if (BAD_ADDR(map_addr))
680				goto out;
681
682			if (!load_addr_set &&
683			    interp_elf_ex->e_type == ET_DYN) {
684				load_addr = map_addr - ELF_PAGESTART(vaddr);
685				load_addr_set = 1;
686			}
687
688			/*
689			 * Check to see if the section's size will overflow the
690			 * allowed task size. Note that p_filesz must always be
691			 * <= p_memsize so it's only necessary to check p_memsz.
692			 */
693			k = load_addr + eppnt->p_vaddr;
694			if (BAD_ADDR(k) ||
695			    eppnt->p_filesz > eppnt->p_memsz ||
696			    eppnt->p_memsz > TASK_SIZE ||
697			    TASK_SIZE - eppnt->p_memsz < k) {
698				error = -ENOMEM;
699				goto out;
700			}
701		}
702	}
703
704	error = load_addr;
705out:
706	return error;
707}
708
709/*
710 * These are the functions used to load ELF style executables and shared
711 * libraries.  There is no binary dependent code anywhere else.
712 */
713
714static int parse_elf_property(const char *data, size_t *off, size_t datasz,
715			      struct arch_elf_state *arch,
716			      bool have_prev_type, u32 *prev_type)
717{
718	size_t o, step;
719	const struct gnu_property *pr;
720	int ret;
721
722	if (*off == datasz)
723		return -ENOENT;
724
725	if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
726		return -EIO;
727	o = *off;
728	datasz -= *off;
729
730	if (datasz < sizeof(*pr))
731		return -ENOEXEC;
732	pr = (const struct gnu_property *)(data + o);
733	o += sizeof(*pr);
734	datasz -= sizeof(*pr);
735
736	if (pr->pr_datasz > datasz)
737		return -ENOEXEC;
738
739	WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
740	step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
741	if (step > datasz)
742		return -ENOEXEC;
743
744	/* Properties are supposed to be unique and sorted on pr_type: */
745	if (have_prev_type && pr->pr_type <= *prev_type)
746		return -ENOEXEC;
747	*prev_type = pr->pr_type;
748
749	ret = arch_parse_elf_property(pr->pr_type, data + o,
750				      pr->pr_datasz, ELF_COMPAT, arch);
751	if (ret)
752		return ret;
753
754	*off = o + step;
755	return 0;
756}
757
758#define NOTE_DATA_SZ SZ_1K
759#define GNU_PROPERTY_TYPE_0_NAME "GNU"
760#define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
761
762static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
763				struct arch_elf_state *arch)
764{
765	union {
766		struct elf_note nhdr;
767		char data[NOTE_DATA_SZ];
768	} note;
769	loff_t pos;
770	ssize_t n;
771	size_t off, datasz;
772	int ret;
773	bool have_prev_type;
774	u32 prev_type;
775
776	if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
777		return 0;
778
779	/* load_elf_binary() shouldn't call us unless this is true... */
780	if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
781		return -ENOEXEC;
782
783	/* If the properties are crazy large, that's too bad (for now): */
784	if (phdr->p_filesz > sizeof(note))
785		return -ENOEXEC;
786
787	pos = phdr->p_offset;
788	n = kernel_read(f, &note, phdr->p_filesz, &pos);
789
790	BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
791	if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
792		return -EIO;
793
794	if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
795	    note.nhdr.n_namesz != NOTE_NAME_SZ ||
796	    strncmp(note.data + sizeof(note.nhdr),
797		    GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
798		return -ENOEXEC;
799
800	off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
801		       ELF_GNU_PROPERTY_ALIGN);
802	if (off > n)
803		return -ENOEXEC;
804
805	if (note.nhdr.n_descsz > n - off)
806		return -ENOEXEC;
807	datasz = off + note.nhdr.n_descsz;
808
809	have_prev_type = false;
810	do {
811		ret = parse_elf_property(note.data, &off, datasz, arch,
812					 have_prev_type, &prev_type);
813		have_prev_type = true;
814	} while (!ret);
815
816	return ret == -ENOENT ? 0 : ret;
817}
818
819static int load_elf_binary(struct linux_binprm *bprm)
820{
821	struct file *interpreter = NULL; /* to shut gcc up */
822	unsigned long load_bias = 0, phdr_addr = 0;
823	int first_pt_load = 1;
824	unsigned long error;
825	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
826	struct elf_phdr *elf_property_phdata = NULL;
827	unsigned long elf_brk;
828	int retval, i;
829	unsigned long elf_entry;
830	unsigned long e_entry;
831	unsigned long interp_load_addr = 0;
832	unsigned long start_code, end_code, start_data, end_data;
833	unsigned long reloc_func_desc __maybe_unused = 0;
834	int executable_stack = EXSTACK_DEFAULT;
835	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
836	struct elfhdr *interp_elf_ex = NULL;
837	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
838	struct mm_struct *mm;
839	struct pt_regs *regs;
840
841	retval = -ENOEXEC;
842	/* First of all, some simple consistency checks */
843	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
844		goto out;
845
846	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
847		goto out;
848	if (!elf_check_arch(elf_ex))
849		goto out;
850	if (elf_check_fdpic(elf_ex))
851		goto out;
852	if (!bprm->file->f_op->mmap)
853		goto out;
854
855	elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
856	if (!elf_phdata)
857		goto out;
858
859	elf_ppnt = elf_phdata;
860	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
861		char *elf_interpreter;
862
863		if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
864			elf_property_phdata = elf_ppnt;
865			continue;
866		}
867
868		if (elf_ppnt->p_type != PT_INTERP)
869			continue;
870
871		/*
872		 * This is the program interpreter used for shared libraries -
873		 * for now assume that this is an a.out format binary.
874		 */
875		retval = -ENOEXEC;
876		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
877			goto out_free_ph;
878
879		retval = -ENOMEM;
880		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
881		if (!elf_interpreter)
882			goto out_free_ph;
883
884		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
885				  elf_ppnt->p_offset);
886		if (retval < 0)
887			goto out_free_interp;
888		/* make sure path is NULL terminated */
889		retval = -ENOEXEC;
890		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
891			goto out_free_interp;
892
893		interpreter = open_exec(elf_interpreter);
894		kfree(elf_interpreter);
895		retval = PTR_ERR(interpreter);
896		if (IS_ERR(interpreter))
897			goto out_free_ph;
898
899		/*
900		 * If the binary is not readable then enforce mm->dumpable = 0
901		 * regardless of the interpreter's permissions.
902		 */
903		would_dump(bprm, interpreter);
904
905		interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
906		if (!interp_elf_ex) {
907			retval = -ENOMEM;
908			goto out_free_file;
909		}
910
911		/* Get the exec headers */
912		retval = elf_read(interpreter, interp_elf_ex,
913				  sizeof(*interp_elf_ex), 0);
914		if (retval < 0)
915			goto out_free_dentry;
916
917		break;
918
919out_free_interp:
920		kfree(elf_interpreter);
921		goto out_free_ph;
922	}
923
924	elf_ppnt = elf_phdata;
925	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
926		switch (elf_ppnt->p_type) {
927		case PT_GNU_STACK:
928			if (elf_ppnt->p_flags & PF_X)
929				executable_stack = EXSTACK_ENABLE_X;
930			else
931				executable_stack = EXSTACK_DISABLE_X;
932			break;
933
934		case PT_LOPROC ... PT_HIPROC:
935			retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
936						  bprm->file, false,
937						  &arch_state);
938			if (retval)
939				goto out_free_dentry;
940			break;
941		}
942
943	/* Some simple consistency checks for the interpreter */
944	if (interpreter) {
945		retval = -ELIBBAD;
946		/* Not an ELF interpreter */
947		if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
948			goto out_free_dentry;
949		/* Verify the interpreter has a valid arch */
950		if (!elf_check_arch(interp_elf_ex) ||
951		    elf_check_fdpic(interp_elf_ex))
952			goto out_free_dentry;
953
954		/* Load the interpreter program headers */
955		interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
956						   interpreter);
957		if (!interp_elf_phdata)
958			goto out_free_dentry;
959
960		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
961		elf_property_phdata = NULL;
962		elf_ppnt = interp_elf_phdata;
963		for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
964			switch (elf_ppnt->p_type) {
965			case PT_GNU_PROPERTY:
966				elf_property_phdata = elf_ppnt;
967				break;
968
969			case PT_LOPROC ... PT_HIPROC:
970				retval = arch_elf_pt_proc(interp_elf_ex,
971							  elf_ppnt, interpreter,
972							  true, &arch_state);
973				if (retval)
974					goto out_free_dentry;
975				break;
976			}
977	}
978
979	retval = parse_elf_properties(interpreter ?: bprm->file,
980				      elf_property_phdata, &arch_state);
981	if (retval)
982		goto out_free_dentry;
983
984	/*
985	 * Allow arch code to reject the ELF at this point, whilst it's
986	 * still possible to return an error to the code that invoked
987	 * the exec syscall.
988	 */
989	retval = arch_check_elf(elf_ex,
990				!!interpreter, interp_elf_ex,
991				&arch_state);
992	if (retval)
993		goto out_free_dentry;
994
995	/* Flush all traces of the currently running executable */
996	retval = begin_new_exec(bprm);
997	if (retval)
998		goto out_free_dentry;
999
1000	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
1001	   may depend on the personality.  */
1002	SET_PERSONALITY2(*elf_ex, &arch_state);
1003	if (elf_read_implies_exec(*elf_ex, executable_stack))
1004		current->personality |= READ_IMPLIES_EXEC;
1005
1006	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1007		current->flags |= PF_RANDOMIZE;
1008
1009	setup_new_exec(bprm);
1010
1011	/* Do this so that we can load the interpreter, if need be.  We will
1012	   change some of these later */
1013	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1014				 executable_stack);
1015	if (retval < 0)
1016		goto out_free_dentry;
1017
1018	elf_brk = 0;
1019
1020	start_code = ~0UL;
1021	end_code = 0;
1022	start_data = 0;
1023	end_data = 0;
1024
1025	/* Now we do a little grungy work by mmapping the ELF image into
1026	   the correct location in memory. */
1027	for(i = 0, elf_ppnt = elf_phdata;
1028	    i < elf_ex->e_phnum; i++, elf_ppnt++) {
1029		int elf_prot, elf_flags;
1030		unsigned long k, vaddr;
1031		unsigned long total_size = 0;
1032		unsigned long alignment;
1033
1034		if (elf_ppnt->p_type != PT_LOAD)
1035			continue;
1036
1037		elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1038				     !!interpreter, false);
1039
1040		elf_flags = MAP_PRIVATE;
1041
1042		vaddr = elf_ppnt->p_vaddr;
1043		/*
1044		 * The first time through the loop, first_pt_load is true:
1045		 * layout will be calculated. Once set, use MAP_FIXED since
1046		 * we know we've already safely mapped the entire region with
1047		 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1048		 */
1049		if (!first_pt_load) {
1050			elf_flags |= MAP_FIXED;
1051		} else if (elf_ex->e_type == ET_EXEC) {
1052			/*
1053			 * This logic is run once for the first LOAD Program
1054			 * Header for ET_EXEC binaries. No special handling
1055			 * is needed.
1056			 */
1057			elf_flags |= MAP_FIXED_NOREPLACE;
1058		} else if (elf_ex->e_type == ET_DYN) {
1059			/*
1060			 * This logic is run once for the first LOAD Program
1061			 * Header for ET_DYN binaries to calculate the
1062			 * randomization (load_bias) for all the LOAD
1063			 * Program Headers.
1064			 *
1065			 * There are effectively two types of ET_DYN
1066			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1067			 * and loaders (ET_DYN without INTERP, since they
1068			 * _are_ the ELF interpreter). The loaders must
1069			 * be loaded away from programs since the program
1070			 * may otherwise collide with the loader (especially
1071			 * for ET_EXEC which does not have a randomized
1072			 * position). For example to handle invocations of
1073			 * "./ld.so someprog" to test out a new version of
1074			 * the loader, the subsequent program that the
1075			 * loader loads must avoid the loader itself, so
1076			 * they cannot share the same load range. Sufficient
1077			 * room for the brk must be allocated with the
1078			 * loader as well, since brk must be available with
1079			 * the loader.
1080			 *
1081			 * Therefore, programs are loaded offset from
1082			 * ELF_ET_DYN_BASE and loaders are loaded into the
1083			 * independently randomized mmap region (0 load_bias
1084			 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1085			 */
1086			if (interpreter) {
1087				load_bias = ELF_ET_DYN_BASE;
1088				if (current->flags & PF_RANDOMIZE)
1089					load_bias += arch_mmap_rnd();
1090				alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1091				if (alignment)
1092					load_bias &= ~(alignment - 1);
1093				elf_flags |= MAP_FIXED_NOREPLACE;
1094			} else
1095				load_bias = 0;
1096
1097			/*
1098			 * Since load_bias is used for all subsequent loading
1099			 * calculations, we must lower it by the first vaddr
1100			 * so that the remaining calculations based on the
1101			 * ELF vaddrs will be correctly offset. The result
1102			 * is then page aligned.
1103			 */
1104			load_bias = ELF_PAGESTART(load_bias - vaddr);
1105
1106			/*
1107			 * Calculate the entire size of the ELF mapping
1108			 * (total_size), used for the initial mapping,
1109			 * due to load_addr_set which is set to true later
1110			 * once the initial mapping is performed.
1111			 *
1112			 * Note that this is only sensible when the LOAD
1113			 * segments are contiguous (or overlapping). If
1114			 * used for LOADs that are far apart, this would
1115			 * cause the holes between LOADs to be mapped,
1116			 * running the risk of having the mapping fail,
1117			 * as it would be larger than the ELF file itself.
1118			 *
1119			 * As a result, only ET_DYN does this, since
1120			 * some ET_EXEC (e.g. ia64) may have large virtual
1121			 * memory holes between LOADs.
1122			 *
1123			 */
1124			total_size = total_mapping_size(elf_phdata,
1125							elf_ex->e_phnum);
1126			if (!total_size) {
1127				retval = -EINVAL;
1128				goto out_free_dentry;
1129			}
1130		}
1131
1132		error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt,
1133				elf_prot, elf_flags, total_size);
1134		if (BAD_ADDR(error)) {
1135			retval = IS_ERR_VALUE(error) ?
1136				PTR_ERR((void*)error) : -EINVAL;
1137			goto out_free_dentry;
1138		}
1139
1140		if (first_pt_load) {
1141			first_pt_load = 0;
1142			if (elf_ex->e_type == ET_DYN) {
1143				load_bias += error -
1144				             ELF_PAGESTART(load_bias + vaddr);
1145				reloc_func_desc = load_bias;
1146			}
1147		}
1148
1149		/*
1150		 * Figure out which segment in the file contains the Program
1151		 * Header table, and map to the associated memory address.
1152		 */
1153		if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1154		    elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1155			phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1156				    elf_ppnt->p_vaddr;
1157		}
1158
1159		k = elf_ppnt->p_vaddr;
1160		if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1161			start_code = k;
1162		if (start_data < k)
1163			start_data = k;
1164
1165		/*
1166		 * Check to see if the section's size will overflow the
1167		 * allowed task size. Note that p_filesz must always be
1168		 * <= p_memsz so it is only necessary to check p_memsz.
1169		 */
1170		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1171		    elf_ppnt->p_memsz > TASK_SIZE ||
1172		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1173			/* set_brk can never work. Avoid overflows. */
1174			retval = -EINVAL;
1175			goto out_free_dentry;
1176		}
1177
1178		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1179
1180		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1181			end_code = k;
1182		if (end_data < k)
1183			end_data = k;
1184		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1185		if (k > elf_brk)
1186			elf_brk = k;
1187	}
1188
1189	e_entry = elf_ex->e_entry + load_bias;
1190	phdr_addr += load_bias;
1191	elf_brk += load_bias;
1192	start_code += load_bias;
1193	end_code += load_bias;
1194	start_data += load_bias;
1195	end_data += load_bias;
1196
1197	current->mm->start_brk = current->mm->brk = ELF_PAGEALIGN(elf_brk);
1198
1199	if (interpreter) {
1200		elf_entry = load_elf_interp(interp_elf_ex,
1201					    interpreter,
1202					    load_bias, interp_elf_phdata,
1203					    &arch_state);
1204		if (!IS_ERR_VALUE(elf_entry)) {
1205			/*
1206			 * load_elf_interp() returns relocation
1207			 * adjustment
1208			 */
1209			interp_load_addr = elf_entry;
1210			elf_entry += interp_elf_ex->e_entry;
1211		}
1212		if (BAD_ADDR(elf_entry)) {
1213			retval = IS_ERR_VALUE(elf_entry) ?
1214					(int)elf_entry : -EINVAL;
1215			goto out_free_dentry;
1216		}
1217		reloc_func_desc = interp_load_addr;
1218
1219		allow_write_access(interpreter);
1220		fput(interpreter);
1221
1222		kfree(interp_elf_ex);
1223		kfree(interp_elf_phdata);
1224	} else {
1225		elf_entry = e_entry;
1226		if (BAD_ADDR(elf_entry)) {
1227			retval = -EINVAL;
1228			goto out_free_dentry;
1229		}
1230	}
1231
1232	kfree(elf_phdata);
1233
1234	set_binfmt(&elf_format);
1235
1236#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1237	retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1238	if (retval < 0)
1239		goto out;
1240#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1241
1242	retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1243				   e_entry, phdr_addr);
1244	if (retval < 0)
1245		goto out;
1246
1247	mm = current->mm;
1248	mm->end_code = end_code;
1249	mm->start_code = start_code;
1250	mm->start_data = start_data;
1251	mm->end_data = end_data;
1252	mm->start_stack = bprm->p;
1253
1254	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1255		/*
1256		 * For architectures with ELF randomization, when executing
1257		 * a loader directly (i.e. no interpreter listed in ELF
1258		 * headers), move the brk area out of the mmap region
1259		 * (since it grows up, and may collide early with the stack
1260		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1261		 */
1262		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1263		    elf_ex->e_type == ET_DYN && !interpreter) {
1264			mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1265		}
1266
1267		mm->brk = mm->start_brk = arch_randomize_brk(mm);
1268#ifdef compat_brk_randomized
1269		current->brk_randomized = 1;
1270#endif
1271	}
1272
1273	if (current->personality & MMAP_PAGE_ZERO) {
1274		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1275		   and some applications "depend" upon this behavior.
1276		   Since we do not have the power to recompile these, we
1277		   emulate the SVr4 behavior. Sigh. */
1278		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1279				MAP_FIXED | MAP_PRIVATE, 0);
1280	}
1281
1282	regs = current_pt_regs();
1283#ifdef ELF_PLAT_INIT
1284	/*
1285	 * The ABI may specify that certain registers be set up in special
1286	 * ways (on i386 %edx is the address of a DT_FINI function, for
1287	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1288	 * that the e_entry field is the address of the function descriptor
1289	 * for the startup routine, rather than the address of the startup
1290	 * routine itself.  This macro performs whatever initialization to
1291	 * the regs structure is required as well as any relocations to the
1292	 * function descriptor entries when executing dynamically links apps.
1293	 */
1294	ELF_PLAT_INIT(regs, reloc_func_desc);
1295#endif
1296
1297	finalize_exec(bprm);
1298	START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1299	retval = 0;
1300out:
1301	return retval;
1302
1303	/* error cleanup */
1304out_free_dentry:
1305	kfree(interp_elf_ex);
1306	kfree(interp_elf_phdata);
1307out_free_file:
1308	allow_write_access(interpreter);
1309	if (interpreter)
1310		fput(interpreter);
1311out_free_ph:
1312	kfree(elf_phdata);
1313	goto out;
1314}
1315
1316#ifdef CONFIG_USELIB
1317/* This is really simpleminded and specialized - we are loading an
1318   a.out library that is given an ELF header. */
1319static int load_elf_library(struct file *file)
1320{
1321	struct elf_phdr *elf_phdata;
1322	struct elf_phdr *eppnt;
1323	int retval, error, i, j;
1324	struct elfhdr elf_ex;
1325
1326	error = -ENOEXEC;
1327	retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1328	if (retval < 0)
1329		goto out;
1330
1331	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1332		goto out;
1333
1334	/* First of all, some simple consistency checks */
1335	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1336	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1337		goto out;
1338	if (elf_check_fdpic(&elf_ex))
1339		goto out;
1340
1341	/* Now read in all of the header information */
1342
1343	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1344	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1345
1346	error = -ENOMEM;
1347	elf_phdata = kmalloc(j, GFP_KERNEL);
1348	if (!elf_phdata)
1349		goto out;
1350
1351	eppnt = elf_phdata;
1352	error = -ENOEXEC;
1353	retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1354	if (retval < 0)
1355		goto out_free_ph;
1356
1357	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1358		if ((eppnt + i)->p_type == PT_LOAD)
1359			j++;
1360	if (j != 1)
1361		goto out_free_ph;
1362
1363	while (eppnt->p_type != PT_LOAD)
1364		eppnt++;
1365
1366	/* Now use mmap to map the library into memory. */
1367	error = elf_load(file, ELF_PAGESTART(eppnt->p_vaddr),
1368			eppnt,
1369			PROT_READ | PROT_WRITE | PROT_EXEC,
1370			MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1371			0);
1372
1373	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1374		goto out_free_ph;
1375
1376	error = 0;
1377
1378out_free_ph:
1379	kfree(elf_phdata);
1380out:
1381	return error;
1382}
1383#endif /* #ifdef CONFIG_USELIB */
1384
1385#ifdef CONFIG_ELF_CORE
1386/*
1387 * ELF core dumper
1388 *
1389 * Modelled on fs/exec.c:aout_core_dump()
1390 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1391 */
1392
1393/* An ELF note in memory */
1394struct memelfnote
1395{
1396	const char *name;
1397	int type;
1398	unsigned int datasz;
1399	void *data;
1400};
1401
1402static int notesize(struct memelfnote *en)
1403{
1404	int sz;
1405
1406	sz = sizeof(struct elf_note);
1407	sz += roundup(strlen(en->name) + 1, 4);
1408	sz += roundup(en->datasz, 4);
1409
1410	return sz;
1411}
1412
1413static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1414{
1415	struct elf_note en;
1416	en.n_namesz = strlen(men->name) + 1;
1417	en.n_descsz = men->datasz;
1418	en.n_type = men->type;
1419
1420	return dump_emit(cprm, &en, sizeof(en)) &&
1421	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1422	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1423}
1424
1425static void fill_elf_header(struct elfhdr *elf, int segs,
1426			    u16 machine, u32 flags)
1427{
1428	memset(elf, 0, sizeof(*elf));
1429
1430	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1431	elf->e_ident[EI_CLASS] = ELF_CLASS;
1432	elf->e_ident[EI_DATA] = ELF_DATA;
1433	elf->e_ident[EI_VERSION] = EV_CURRENT;
1434	elf->e_ident[EI_OSABI] = ELF_OSABI;
1435
1436	elf->e_type = ET_CORE;
1437	elf->e_machine = machine;
1438	elf->e_version = EV_CURRENT;
1439	elf->e_phoff = sizeof(struct elfhdr);
1440	elf->e_flags = flags;
1441	elf->e_ehsize = sizeof(struct elfhdr);
1442	elf->e_phentsize = sizeof(struct elf_phdr);
1443	elf->e_phnum = segs;
1444}
1445
1446static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1447{
1448	phdr->p_type = PT_NOTE;
1449	phdr->p_offset = offset;
1450	phdr->p_vaddr = 0;
1451	phdr->p_paddr = 0;
1452	phdr->p_filesz = sz;
1453	phdr->p_memsz = 0;
1454	phdr->p_flags = 0;
1455	phdr->p_align = 4;
1456}
1457
1458static void fill_note(struct memelfnote *note, const char *name, int type,
1459		unsigned int sz, void *data)
1460{
1461	note->name = name;
1462	note->type = type;
1463	note->datasz = sz;
1464	note->data = data;
1465}
1466
1467/*
1468 * fill up all the fields in prstatus from the given task struct, except
1469 * registers which need to be filled up separately.
1470 */
1471static void fill_prstatus(struct elf_prstatus_common *prstatus,
1472		struct task_struct *p, long signr)
1473{
1474	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1475	prstatus->pr_sigpend = p->pending.signal.sig[0];
1476	prstatus->pr_sighold = p->blocked.sig[0];
1477	rcu_read_lock();
1478	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1479	rcu_read_unlock();
1480	prstatus->pr_pid = task_pid_vnr(p);
1481	prstatus->pr_pgrp = task_pgrp_vnr(p);
1482	prstatus->pr_sid = task_session_vnr(p);
1483	if (thread_group_leader(p)) {
1484		struct task_cputime cputime;
1485
1486		/*
1487		 * This is the record for the group leader.  It shows the
1488		 * group-wide total, not its individual thread total.
1489		 */
1490		thread_group_cputime(p, &cputime);
1491		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1492		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1493	} else {
1494		u64 utime, stime;
1495
1496		task_cputime(p, &utime, &stime);
1497		prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1498		prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1499	}
1500
1501	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1502	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1503}
1504
1505static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1506		       struct mm_struct *mm)
1507{
1508	const struct cred *cred;
1509	unsigned int i, len;
1510	unsigned int state;
1511
1512	/* first copy the parameters from user space */
1513	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1514
1515	len = mm->arg_end - mm->arg_start;
1516	if (len >= ELF_PRARGSZ)
1517		len = ELF_PRARGSZ-1;
1518	if (copy_from_user(&psinfo->pr_psargs,
1519		           (const char __user *)mm->arg_start, len))
1520		return -EFAULT;
1521	for(i = 0; i < len; i++)
1522		if (psinfo->pr_psargs[i] == 0)
1523			psinfo->pr_psargs[i] = ' ';
1524	psinfo->pr_psargs[len] = 0;
1525
1526	rcu_read_lock();
1527	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1528	rcu_read_unlock();
1529	psinfo->pr_pid = task_pid_vnr(p);
1530	psinfo->pr_pgrp = task_pgrp_vnr(p);
1531	psinfo->pr_sid = task_session_vnr(p);
1532
1533	state = READ_ONCE(p->__state);
1534	i = state ? ffz(~state) + 1 : 0;
1535	psinfo->pr_state = i;
1536	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1537	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1538	psinfo->pr_nice = task_nice(p);
1539	psinfo->pr_flag = p->flags;
1540	rcu_read_lock();
1541	cred = __task_cred(p);
1542	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1543	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1544	rcu_read_unlock();
1545	get_task_comm(psinfo->pr_fname, p);
1546
1547	return 0;
1548}
1549
1550static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1551{
1552	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1553	int i = 0;
1554	do
1555		i += 2;
1556	while (auxv[i - 2] != AT_NULL);
1557	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1558}
1559
1560static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1561		const kernel_siginfo_t *siginfo)
1562{
1563	copy_siginfo_to_external(csigdata, siginfo);
1564	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1565}
1566
1567#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1568/*
1569 * Format of NT_FILE note:
1570 *
1571 * long count     -- how many files are mapped
1572 * long page_size -- units for file_ofs
1573 * array of [COUNT] elements of
1574 *   long start
1575 *   long end
1576 *   long file_ofs
1577 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1578 */
1579static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1580{
1581	unsigned count, size, names_ofs, remaining, n;
1582	user_long_t *data;
1583	user_long_t *start_end_ofs;
1584	char *name_base, *name_curpos;
1585	int i;
1586
1587	/* *Estimated* file count and total data size needed */
1588	count = cprm->vma_count;
1589	if (count > UINT_MAX / 64)
1590		return -EINVAL;
1591	size = count * 64;
1592
1593	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1594 alloc:
1595	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1596		return -EINVAL;
1597	size = round_up(size, PAGE_SIZE);
1598	/*
1599	 * "size" can be 0 here legitimately.
1600	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1601	 */
1602	data = kvmalloc(size, GFP_KERNEL);
1603	if (ZERO_OR_NULL_PTR(data))
1604		return -ENOMEM;
1605
1606	start_end_ofs = data + 2;
1607	name_base = name_curpos = ((char *)data) + names_ofs;
1608	remaining = size - names_ofs;
1609	count = 0;
1610	for (i = 0; i < cprm->vma_count; i++) {
1611		struct core_vma_metadata *m = &cprm->vma_meta[i];
1612		struct file *file;
1613		const char *filename;
1614
1615		file = m->file;
1616		if (!file)
1617			continue;
1618		filename = file_path(file, name_curpos, remaining);
1619		if (IS_ERR(filename)) {
1620			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1621				kvfree(data);
1622				size = size * 5 / 4;
1623				goto alloc;
1624			}
1625			continue;
1626		}
1627
1628		/* file_path() fills at the end, move name down */
1629		/* n = strlen(filename) + 1: */
1630		n = (name_curpos + remaining) - filename;
1631		remaining = filename - name_curpos;
1632		memmove(name_curpos, filename, n);
1633		name_curpos += n;
1634
1635		*start_end_ofs++ = m->start;
1636		*start_end_ofs++ = m->end;
1637		*start_end_ofs++ = m->pgoff;
1638		count++;
1639	}
1640
1641	/* Now we know exact count of files, can store it */
1642	data[0] = count;
1643	data[1] = PAGE_SIZE;
1644	/*
1645	 * Count usually is less than mm->map_count,
1646	 * we need to move filenames down.
1647	 */
1648	n = cprm->vma_count - count;
1649	if (n != 0) {
1650		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1651		memmove(name_base - shift_bytes, name_base,
1652			name_curpos - name_base);
1653		name_curpos -= shift_bytes;
1654	}
1655
1656	size = name_curpos - (char *)data;
1657	fill_note(note, "CORE", NT_FILE, size, data);
1658	return 0;
1659}
1660
1661#include <linux/regset.h>
1662
1663struct elf_thread_core_info {
1664	struct elf_thread_core_info *next;
1665	struct task_struct *task;
1666	struct elf_prstatus prstatus;
1667	struct memelfnote notes[];
1668};
1669
1670struct elf_note_info {
1671	struct elf_thread_core_info *thread;
1672	struct memelfnote psinfo;
1673	struct memelfnote signote;
1674	struct memelfnote auxv;
1675	struct memelfnote files;
1676	user_siginfo_t csigdata;
1677	size_t size;
1678	int thread_notes;
1679};
1680
1681#ifdef CORE_DUMP_USE_REGSET
1682/*
1683 * When a regset has a writeback hook, we call it on each thread before
1684 * dumping user memory.  On register window machines, this makes sure the
1685 * user memory backing the register data is up to date before we read it.
1686 */
1687static void do_thread_regset_writeback(struct task_struct *task,
1688				       const struct user_regset *regset)
1689{
1690	if (regset->writeback)
1691		regset->writeback(task, regset, 1);
1692}
1693
1694#ifndef PRSTATUS_SIZE
1695#define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1696#endif
1697
1698#ifndef SET_PR_FPVALID
1699#define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1700#endif
1701
1702static int fill_thread_core_info(struct elf_thread_core_info *t,
1703				 const struct user_regset_view *view,
1704				 long signr, struct elf_note_info *info)
1705{
1706	unsigned int note_iter, view_iter;
1707
1708	/*
1709	 * NT_PRSTATUS is the one special case, because the regset data
1710	 * goes into the pr_reg field inside the note contents, rather
1711	 * than being the whole note contents.  We fill the regset in here.
1712	 * We assume that regset 0 is NT_PRSTATUS.
1713	 */
1714	fill_prstatus(&t->prstatus.common, t->task, signr);
1715	regset_get(t->task, &view->regsets[0],
1716		   sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1717
1718	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1719		  PRSTATUS_SIZE, &t->prstatus);
1720	info->size += notesize(&t->notes[0]);
1721
1722	do_thread_regset_writeback(t->task, &view->regsets[0]);
1723
1724	/*
1725	 * Each other regset might generate a note too.  For each regset
1726	 * that has no core_note_type or is inactive, skip it.
1727	 */
1728	note_iter = 1;
1729	for (view_iter = 1; view_iter < view->n; ++view_iter) {
1730		const struct user_regset *regset = &view->regsets[view_iter];
1731		int note_type = regset->core_note_type;
1732		bool is_fpreg = note_type == NT_PRFPREG;
1733		void *data;
1734		int ret;
1735
1736		do_thread_regset_writeback(t->task, regset);
1737		if (!note_type) // not for coredumps
1738			continue;
1739		if (regset->active && regset->active(t->task, regset) <= 0)
1740			continue;
1741
1742		ret = regset_get_alloc(t->task, regset, ~0U, &data);
1743		if (ret < 0)
1744			continue;
1745
1746		if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1747			break;
1748
1749		if (is_fpreg)
1750			SET_PR_FPVALID(&t->prstatus);
1751
1752		fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX",
1753			  note_type, ret, data);
1754
1755		info->size += notesize(&t->notes[note_iter]);
1756		note_iter++;
1757	}
1758
1759	return 1;
1760}
1761#else
1762static int fill_thread_core_info(struct elf_thread_core_info *t,
1763				 const struct user_regset_view *view,
1764				 long signr, struct elf_note_info *info)
1765{
1766	struct task_struct *p = t->task;
1767	elf_fpregset_t *fpu;
1768
1769	fill_prstatus(&t->prstatus.common, p, signr);
1770	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1771
1772	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1773		  &(t->prstatus));
1774	info->size += notesize(&t->notes[0]);
1775
1776	fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1777	if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1778		kfree(fpu);
1779		return 1;
1780	}
1781
1782	t->prstatus.pr_fpvalid = 1;
1783	fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
1784	info->size += notesize(&t->notes[1]);
1785
1786	return 1;
1787}
1788#endif
1789
1790static int fill_note_info(struct elfhdr *elf, int phdrs,
1791			  struct elf_note_info *info,
1792			  struct coredump_params *cprm)
1793{
1794	struct task_struct *dump_task = current;
1795	const struct user_regset_view *view;
1796	struct elf_thread_core_info *t;
1797	struct elf_prpsinfo *psinfo;
1798	struct core_thread *ct;
1799
1800	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1801	if (!psinfo)
1802		return 0;
1803	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1804
1805#ifdef CORE_DUMP_USE_REGSET
1806	view = task_user_regset_view(dump_task);
1807
1808	/*
1809	 * Figure out how many notes we're going to need for each thread.
1810	 */
1811	info->thread_notes = 0;
1812	for (int i = 0; i < view->n; ++i)
1813		if (view->regsets[i].core_note_type != 0)
1814			++info->thread_notes;
1815
1816	/*
1817	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1818	 * since it is our one special case.
1819	 */
1820	if (unlikely(info->thread_notes == 0) ||
1821	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1822		WARN_ON(1);
1823		return 0;
1824	}
1825
1826	/*
1827	 * Initialize the ELF file header.
1828	 */
1829	fill_elf_header(elf, phdrs,
1830			view->e_machine, view->e_flags);
1831#else
1832	view = NULL;
1833	info->thread_notes = 2;
1834	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1835#endif
1836
1837	/*
1838	 * Allocate a structure for each thread.
1839	 */
1840	info->thread = kzalloc(offsetof(struct elf_thread_core_info,
1841				     notes[info->thread_notes]),
1842			    GFP_KERNEL);
1843	if (unlikely(!info->thread))
1844		return 0;
1845
1846	info->thread->task = dump_task;
1847	for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1848		t = kzalloc(offsetof(struct elf_thread_core_info,
1849				     notes[info->thread_notes]),
1850			    GFP_KERNEL);
1851		if (unlikely(!t))
1852			return 0;
1853
1854		t->task = ct->task;
1855		t->next = info->thread->next;
1856		info->thread->next = t;
1857	}
1858
1859	/*
1860	 * Now fill in each thread's information.
1861	 */
1862	for (t = info->thread; t != NULL; t = t->next)
1863		if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
1864			return 0;
1865
1866	/*
1867	 * Fill in the two process-wide notes.
1868	 */
1869	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1870	info->size += notesize(&info->psinfo);
1871
1872	fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1873	info->size += notesize(&info->signote);
1874
1875	fill_auxv_note(&info->auxv, current->mm);
1876	info->size += notesize(&info->auxv);
1877
1878	if (fill_files_note(&info->files, cprm) == 0)
1879		info->size += notesize(&info->files);
1880
1881	return 1;
1882}
1883
1884/*
1885 * Write all the notes for each thread.  When writing the first thread, the
1886 * process-wide notes are interleaved after the first thread-specific note.
1887 */
1888static int write_note_info(struct elf_note_info *info,
1889			   struct coredump_params *cprm)
1890{
1891	bool first = true;
1892	struct elf_thread_core_info *t = info->thread;
1893
1894	do {
1895		int i;
1896
1897		if (!writenote(&t->notes[0], cprm))
1898			return 0;
1899
1900		if (first && !writenote(&info->psinfo, cprm))
1901			return 0;
1902		if (first && !writenote(&info->signote, cprm))
1903			return 0;
1904		if (first && !writenote(&info->auxv, cprm))
1905			return 0;
1906		if (first && info->files.data &&
1907				!writenote(&info->files, cprm))
1908			return 0;
1909
1910		for (i = 1; i < info->thread_notes; ++i)
1911			if (t->notes[i].data &&
1912			    !writenote(&t->notes[i], cprm))
1913				return 0;
1914
1915		first = false;
1916		t = t->next;
1917	} while (t);
1918
1919	return 1;
1920}
1921
1922static void free_note_info(struct elf_note_info *info)
1923{
1924	struct elf_thread_core_info *threads = info->thread;
1925	while (threads) {
1926		unsigned int i;
1927		struct elf_thread_core_info *t = threads;
1928		threads = t->next;
1929		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1930		for (i = 1; i < info->thread_notes; ++i)
1931			kfree(t->notes[i].data);
1932		kfree(t);
1933	}
1934	kfree(info->psinfo.data);
1935	kvfree(info->files.data);
1936}
1937
1938static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1939			     elf_addr_t e_shoff, int segs)
1940{
1941	elf->e_shoff = e_shoff;
1942	elf->e_shentsize = sizeof(*shdr4extnum);
1943	elf->e_shnum = 1;
1944	elf->e_shstrndx = SHN_UNDEF;
1945
1946	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1947
1948	shdr4extnum->sh_type = SHT_NULL;
1949	shdr4extnum->sh_size = elf->e_shnum;
1950	shdr4extnum->sh_link = elf->e_shstrndx;
1951	shdr4extnum->sh_info = segs;
1952}
1953
1954/*
1955 * Actual dumper
1956 *
1957 * This is a two-pass process; first we find the offsets of the bits,
1958 * and then they are actually written out.  If we run out of core limit
1959 * we just truncate.
1960 */
1961static int elf_core_dump(struct coredump_params *cprm)
1962{
1963	int has_dumped = 0;
1964	int segs, i;
1965	struct elfhdr elf;
1966	loff_t offset = 0, dataoff;
1967	struct elf_note_info info = { };
1968	struct elf_phdr *phdr4note = NULL;
1969	struct elf_shdr *shdr4extnum = NULL;
1970	Elf_Half e_phnum;
1971	elf_addr_t e_shoff;
1972
1973	/*
1974	 * The number of segs are recored into ELF header as 16bit value.
1975	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1976	 */
1977	segs = cprm->vma_count + elf_core_extra_phdrs(cprm);
1978
1979	/* for notes section */
1980	segs++;
1981
1982	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1983	 * this, kernel supports extended numbering. Have a look at
1984	 * include/linux/elf.h for further information. */
1985	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1986
1987	/*
1988	 * Collect all the non-memory information about the process for the
1989	 * notes.  This also sets up the file header.
1990	 */
1991	if (!fill_note_info(&elf, e_phnum, &info, cprm))
1992		goto end_coredump;
1993
1994	has_dumped = 1;
1995
1996	offset += sizeof(elf);				/* ELF header */
1997	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
1998
1999	/* Write notes phdr entry */
2000	{
2001		size_t sz = info.size;
2002
2003		/* For cell spufs */
2004		sz += elf_coredump_extra_notes_size();
2005
2006		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2007		if (!phdr4note)
2008			goto end_coredump;
2009
2010		fill_elf_note_phdr(phdr4note, sz, offset);
2011		offset += sz;
2012	}
2013
2014	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2015
2016	offset += cprm->vma_data_size;
2017	offset += elf_core_extra_data_size(cprm);
2018	e_shoff = offset;
2019
2020	if (e_phnum == PN_XNUM) {
2021		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2022		if (!shdr4extnum)
2023			goto end_coredump;
2024		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2025	}
2026
2027	offset = dataoff;
2028
2029	if (!dump_emit(cprm, &elf, sizeof(elf)))
2030		goto end_coredump;
2031
2032	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2033		goto end_coredump;
2034
2035	/* Write program headers for segments dump */
2036	for (i = 0; i < cprm->vma_count; i++) {
2037		struct core_vma_metadata *meta = cprm->vma_meta + i;
2038		struct elf_phdr phdr;
2039
2040		phdr.p_type = PT_LOAD;
2041		phdr.p_offset = offset;
2042		phdr.p_vaddr = meta->start;
2043		phdr.p_paddr = 0;
2044		phdr.p_filesz = meta->dump_size;
2045		phdr.p_memsz = meta->end - meta->start;
2046		offset += phdr.p_filesz;
2047		phdr.p_flags = 0;
2048		if (meta->flags & VM_READ)
2049			phdr.p_flags |= PF_R;
2050		if (meta->flags & VM_WRITE)
2051			phdr.p_flags |= PF_W;
2052		if (meta->flags & VM_EXEC)
2053			phdr.p_flags |= PF_X;
2054		phdr.p_align = ELF_EXEC_PAGESIZE;
2055
2056		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2057			goto end_coredump;
2058	}
2059
2060	if (!elf_core_write_extra_phdrs(cprm, offset))
2061		goto end_coredump;
2062
2063	/* write out the notes section */
2064	if (!write_note_info(&info, cprm))
2065		goto end_coredump;
2066
2067	/* For cell spufs */
2068	if (elf_coredump_extra_notes_write(cprm))
2069		goto end_coredump;
2070
2071	/* Align to page */
2072	dump_skip_to(cprm, dataoff);
2073
2074	for (i = 0; i < cprm->vma_count; i++) {
2075		struct core_vma_metadata *meta = cprm->vma_meta + i;
2076
2077		if (!dump_user_range(cprm, meta->start, meta->dump_size))
2078			goto end_coredump;
2079	}
2080
2081	if (!elf_core_write_extra_data(cprm))
2082		goto end_coredump;
2083
2084	if (e_phnum == PN_XNUM) {
2085		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2086			goto end_coredump;
2087	}
2088
2089end_coredump:
2090	free_note_info(&info);
2091	kfree(shdr4extnum);
2092	kfree(phdr4note);
2093	return has_dumped;
2094}
2095
2096#endif		/* CONFIG_ELF_CORE */
2097
2098static int __init init_elf_binfmt(void)
2099{
2100	register_binfmt(&elf_format);
2101	return 0;
2102}
2103
2104static void __exit exit_elf_binfmt(void)
2105{
2106	/* Remove the COFF and ELF loaders. */
2107	unregister_binfmt(&elf_format);
2108}
2109
2110core_initcall(init_elf_binfmt);
2111module_exit(exit_elf_binfmt);
2112
2113#ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2114#include "binfmt_elf_test.c"
2115#endif
2116