1/*
2 * linux/fs/befs/btree.c
3 *
4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
5 *
6 * Licensed under the GNU GPL. See the file COPYING for details.
7 *
8 * 2002-02-05: Sergey S. Kostyliov added binary search within
9 * 		btree nodes.
10 *
11 * Many thanks to:
12 *
13 * Dominic Giampaolo, author of "Practical File System
14 * Design with the Be File System", for such a helpful book.
15 *
16 * Marcus J. Ranum, author of the b+tree package in
17 * comp.sources.misc volume 10. This code is not copied from that
18 * work, but it is partially based on it.
19 *
20 * Makoto Kato, author of the original BeFS for linux filesystem
21 * driver.
22 */
23
24#include <linux/kernel.h>
25#include <linux/string.h>
26#include <linux/slab.h>
27#include <linux/mm.h>
28#include <linux/buffer_head.h>
29
30#include "befs.h"
31#include "btree.h"
32#include "datastream.h"
33
34/*
35 * The btree functions in this file are built on top of the
36 * datastream.c interface, which is in turn built on top of the
37 * io.c interface.
38 */
39
40/* Befs B+tree structure:
41 *
42 * The first thing in the tree is the tree superblock. It tells you
43 * all kinds of useful things about the tree, like where the rootnode
44 * is located, and the size of the nodes (always 1024 with current version
45 * of BeOS).
46 *
47 * The rest of the tree consists of a series of nodes. Nodes contain a header
48 * (struct befs_btree_nodehead), the packed key data, an array of shorts
49 * containing the ending offsets for each of the keys, and an array of
50 * befs_off_t values. In interior nodes, the keys are the ending keys for
51 * the childnode they point to, and the values are offsets into the
52 * datastream containing the tree.
53 */
54
55/* Note:
56 *
57 * The book states 2 confusing things about befs b+trees. First,
58 * it states that the overflow field of node headers is used by internal nodes
59 * to point to another node that "effectively continues this one". Here is what
60 * I believe that means. Each key in internal nodes points to another node that
61 * contains key values less than itself. Inspection reveals that the last key
62 * in the internal node is not the last key in the index. Keys that are
63 * greater than the last key in the internal node go into the overflow node.
64 * I imagine there is a performance reason for this.
65 *
66 * Second, it states that the header of a btree node is sufficient to
67 * distinguish internal nodes from leaf nodes. Without saying exactly how.
68 * After figuring out the first, it becomes obvious that internal nodes have
69 * overflow nodes and leafnodes do not.
70 */
71
72/*
73 * Currently, this code is only good for directory B+trees.
74 * In order to be used for other BFS indexes, it needs to be extended to handle
75 * duplicate keys and non-string keytypes (int32, int64, float, double).
76 */
77
78/*
79 * In memory structure of each btree node
80 */
81struct befs_btree_node {
82	befs_host_btree_nodehead head;	/* head of node converted to cpu byteorder */
83	struct buffer_head *bh;
84	befs_btree_nodehead *od_node;	/* on disk node */
85};
86
87/* local constants */
88static const befs_off_t BEFS_BT_INVAL = 0xffffffffffffffffULL;
89
90/* local functions */
91static int befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
92			       befs_btree_super * bt_super,
93			       struct befs_btree_node *this_node,
94			       befs_off_t * node_off);
95
96static int befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
97			      befs_btree_super * sup);
98
99static int befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
100			     struct befs_btree_node *node,
101			     befs_off_t node_off);
102
103static int befs_leafnode(struct befs_btree_node *node);
104
105static fs16 *befs_bt_keylen_index(struct befs_btree_node *node);
106
107static fs64 *befs_bt_valarray(struct befs_btree_node *node);
108
109static char *befs_bt_keydata(struct befs_btree_node *node);
110
111static int befs_find_key(struct super_block *sb,
112			 struct befs_btree_node *node,
113			 const char *findkey, befs_off_t * value);
114
115static char *befs_bt_get_key(struct super_block *sb,
116			     struct befs_btree_node *node,
117			     int index, u16 * keylen);
118
119static int befs_compare_strings(const void *key1, int keylen1,
120				const void *key2, int keylen2);
121
122/**
123 * befs_bt_read_super() - read in btree superblock convert to cpu byteorder
124 * @sb:        Filesystem superblock
125 * @ds:        Datastream to read from
126 * @sup:       Buffer in which to place the btree superblock
127 *
128 * Calls befs_read_datastream to read in the btree superblock and
129 * makes sure it is in cpu byteorder, byteswapping if necessary.
130 * Return: BEFS_OK on success and if *@sup contains the btree superblock in cpu
131 * byte order. Otherwise return BEFS_ERR on error.
132 */
133static int
134befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
135		   befs_btree_super * sup)
136{
137	struct buffer_head *bh;
138	befs_disk_btree_super *od_sup;
139
140	befs_debug(sb, "---> %s", __func__);
141
142	bh = befs_read_datastream(sb, ds, 0, NULL);
143
144	if (!bh) {
145		befs_error(sb, "Couldn't read index header.");
146		goto error;
147	}
148	od_sup = (befs_disk_btree_super *) bh->b_data;
149	befs_dump_index_entry(sb, od_sup);
150
151	sup->magic = fs32_to_cpu(sb, od_sup->magic);
152	sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
153	sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
154	sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
155	sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
156
157	brelse(bh);
158	if (sup->magic != BEFS_BTREE_MAGIC) {
159		befs_error(sb, "Index header has bad magic.");
160		goto error;
161	}
162
163	befs_debug(sb, "<--- %s", __func__);
164	return BEFS_OK;
165
166      error:
167	befs_debug(sb, "<--- %s ERROR", __func__);
168	return BEFS_ERR;
169}
170
171/**
172 * befs_bt_read_node - read in btree node and convert to cpu byteorder
173 * @sb: Filesystem superblock
174 * @ds: Datastream to read from
175 * @node: Buffer in which to place the btree node
176 * @node_off: Starting offset (in bytes) of the node in @ds
177 *
178 * Calls befs_read_datastream to read in the indicated btree node and
179 * makes sure its header fields are in cpu byteorder, byteswapping if
180 * necessary.
181 * Note: node->bh must be NULL when this function is called the first time.
182 * Don't forget brelse(node->bh) after last call.
183 *
184 * On success, returns BEFS_OK and *@node contains the btree node that
185 * starts at @node_off, with the node->head fields in cpu byte order.
186 *
187 * On failure, BEFS_ERR is returned.
188 */
189
190static int
191befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
192		  struct befs_btree_node *node, befs_off_t node_off)
193{
194	uint off = 0;
195
196	befs_debug(sb, "---> %s", __func__);
197
198	if (node->bh)
199		brelse(node->bh);
200
201	node->bh = befs_read_datastream(sb, ds, node_off, &off);
202	if (!node->bh) {
203		befs_error(sb, "%s failed to read "
204			   "node at %llu", __func__, node_off);
205		befs_debug(sb, "<--- %s ERROR", __func__);
206
207		return BEFS_ERR;
208	}
209	node->od_node =
210	    (befs_btree_nodehead *) ((void *) node->bh->b_data + off);
211
212	befs_dump_index_node(sb, node->od_node);
213
214	node->head.left = fs64_to_cpu(sb, node->od_node->left);
215	node->head.right = fs64_to_cpu(sb, node->od_node->right);
216	node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
217	node->head.all_key_count =
218	    fs16_to_cpu(sb, node->od_node->all_key_count);
219	node->head.all_key_length =
220	    fs16_to_cpu(sb, node->od_node->all_key_length);
221
222	befs_debug(sb, "<--- %s", __func__);
223	return BEFS_OK;
224}
225
226/**
227 * befs_btree_find - Find a key in a befs B+tree
228 * @sb: Filesystem superblock
229 * @ds: Datastream containing btree
230 * @key: Key string to lookup in btree
231 * @value: Value stored with @key
232 *
233 * On success, returns BEFS_OK and sets *@value to the value stored
234 * with @key (usually the disk block number of an inode).
235 *
236 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
237 *
238 * Algorithm:
239 *   Read the superblock and rootnode of the b+tree.
240 *   Drill down through the interior nodes using befs_find_key().
241 *   Once at the correct leaf node, use befs_find_key() again to get the
242 *   actual value stored with the key.
243 */
244int
245befs_btree_find(struct super_block *sb, const befs_data_stream *ds,
246		const char *key, befs_off_t * value)
247{
248	struct befs_btree_node *this_node;
249	befs_btree_super bt_super;
250	befs_off_t node_off;
251	int res;
252
253	befs_debug(sb, "---> %s Key: %s", __func__, key);
254
255	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
256		befs_error(sb,
257			   "befs_btree_find() failed to read index superblock");
258		goto error;
259	}
260
261	this_node = kmalloc(sizeof(struct befs_btree_node),
262						GFP_NOFS);
263	if (!this_node) {
264		befs_error(sb, "befs_btree_find() failed to allocate %zu "
265			   "bytes of memory", sizeof(struct befs_btree_node));
266		goto error;
267	}
268
269	this_node->bh = NULL;
270
271	/* read in root node */
272	node_off = bt_super.root_node_ptr;
273	if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
274		befs_error(sb, "befs_btree_find() failed to read "
275			   "node at %llu", node_off);
276		goto error_alloc;
277	}
278
279	while (!befs_leafnode(this_node)) {
280		res = befs_find_key(sb, this_node, key, &node_off);
281		/* if no key set, try the overflow node */
282		if (res == BEFS_BT_OVERFLOW)
283			node_off = this_node->head.overflow;
284		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
285			befs_error(sb, "befs_btree_find() failed to read "
286				   "node at %llu", node_off);
287			goto error_alloc;
288		}
289	}
290
291	/* at a leaf node now, check if it is correct */
292	res = befs_find_key(sb, this_node, key, value);
293
294	brelse(this_node->bh);
295	kfree(this_node);
296
297	if (res != BEFS_BT_MATCH) {
298		befs_error(sb, "<--- %s Key %s not found", __func__, key);
299		befs_debug(sb, "<--- %s ERROR", __func__);
300		*value = 0;
301		return BEFS_BT_NOT_FOUND;
302	}
303	befs_debug(sb, "<--- %s Found key %s, value %llu", __func__,
304		   key, *value);
305	return BEFS_OK;
306
307      error_alloc:
308	kfree(this_node);
309      error:
310	*value = 0;
311	befs_debug(sb, "<--- %s ERROR", __func__);
312	return BEFS_ERR;
313}
314
315/**
316 * befs_find_key - Search for a key within a node
317 * @sb: Filesystem superblock
318 * @node: Node to find the key within
319 * @findkey: Keystring to search for
320 * @value: If key is found, the value stored with the key is put here
321 *
322 * Finds exact match if one exists, and returns BEFS_BT_MATCH.
323 * If there is no match and node's value array is too small for key, return
324 * BEFS_BT_OVERFLOW.
325 * If no match and node should countain this key, return BEFS_BT_NOT_FOUND.
326 *
327 * Uses binary search instead of a linear.
328 */
329static int
330befs_find_key(struct super_block *sb, struct befs_btree_node *node,
331	      const char *findkey, befs_off_t * value)
332{
333	int first, last, mid;
334	int eq;
335	u16 keylen;
336	int findkey_len;
337	char *thiskey;
338	fs64 *valarray;
339
340	befs_debug(sb, "---> %s %s", __func__, findkey);
341
342	findkey_len = strlen(findkey);
343
344	/* if node can not contain key, just skip this node */
345	last = node->head.all_key_count - 1;
346	thiskey = befs_bt_get_key(sb, node, last, &keylen);
347
348	eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
349	if (eq < 0) {
350		befs_debug(sb, "<--- node can't contain %s", findkey);
351		return BEFS_BT_OVERFLOW;
352	}
353
354	valarray = befs_bt_valarray(node);
355
356	/* simple binary search */
357	first = 0;
358	mid = 0;
359	while (last >= first) {
360		mid = (last + first) / 2;
361		befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
362			   mid);
363		thiskey = befs_bt_get_key(sb, node, mid, &keylen);
364		eq = befs_compare_strings(thiskey, keylen, findkey,
365					  findkey_len);
366
367		if (eq == 0) {
368			befs_debug(sb, "<--- %s found %s at %d",
369				   __func__, thiskey, mid);
370
371			*value = fs64_to_cpu(sb, valarray[mid]);
372			return BEFS_BT_MATCH;
373		}
374		if (eq > 0)
375			last = mid - 1;
376		else
377			first = mid + 1;
378	}
379
380	/* return an existing value so caller can arrive to a leaf node */
381	if (eq < 0)
382		*value = fs64_to_cpu(sb, valarray[mid + 1]);
383	else
384		*value = fs64_to_cpu(sb, valarray[mid]);
385	befs_error(sb, "<--- %s %s not found", __func__, findkey);
386	befs_debug(sb, "<--- %s ERROR", __func__);
387	return BEFS_BT_NOT_FOUND;
388}
389
390/**
391 * befs_btree_read - Traverse leafnodes of a btree
392 * @sb: Filesystem superblock
393 * @ds: Datastream containing btree
394 * @key_no: Key number (alphabetical order) of key to read
395 * @bufsize: Size of the buffer to return key in
396 * @keybuf: Pointer to a buffer to put the key in
397 * @keysize: Length of the returned key
398 * @value: Value stored with the returned key
399 *
400 * Here's how it works: Key_no is the index of the key/value pair to
401 * return in keybuf/value.
402 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
403 * the number of characters in the key (just a convenience).
404 *
405 * Algorithm:
406 *   Get the first leafnode of the tree. See if the requested key is in that
407 *   node. If not, follow the node->right link to the next leafnode. Repeat
408 *   until the (key_no)th key is found or the tree is out of keys.
409 */
410int
411befs_btree_read(struct super_block *sb, const befs_data_stream *ds,
412		loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
413		befs_off_t * value)
414{
415	struct befs_btree_node *this_node;
416	befs_btree_super bt_super;
417	befs_off_t node_off;
418	int cur_key;
419	fs64 *valarray;
420	char *keystart;
421	u16 keylen;
422	int res;
423
424	uint key_sum = 0;
425
426	befs_debug(sb, "---> %s", __func__);
427
428	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
429		befs_error(sb,
430			   "befs_btree_read() failed to read index superblock");
431		goto error;
432	}
433
434	this_node = kmalloc(sizeof(struct befs_btree_node), GFP_NOFS);
435	if (this_node == NULL) {
436		befs_error(sb, "befs_btree_read() failed to allocate %zu "
437			   "bytes of memory", sizeof(struct befs_btree_node));
438		goto error;
439	}
440
441	node_off = bt_super.root_node_ptr;
442	this_node->bh = NULL;
443
444	/* seeks down to first leafnode, reads it into this_node */
445	res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
446	if (res == BEFS_BT_EMPTY) {
447		brelse(this_node->bh);
448		kfree(this_node);
449		*value = 0;
450		*keysize = 0;
451		befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
452		return BEFS_BT_EMPTY;
453	} else if (res == BEFS_ERR) {
454		goto error_alloc;
455	}
456
457	/* find the leaf node containing the key_no key */
458
459	while (key_sum + this_node->head.all_key_count <= key_no) {
460
461		/* no more nodes to look in: key_no is too large */
462		if (this_node->head.right == BEFS_BT_INVAL) {
463			*keysize = 0;
464			*value = 0;
465			befs_debug(sb,
466				   "<--- %s END of keys at %llu", __func__,
467				   (unsigned long long)
468				   key_sum + this_node->head.all_key_count);
469			brelse(this_node->bh);
470			kfree(this_node);
471			return BEFS_BT_END;
472		}
473
474		key_sum += this_node->head.all_key_count;
475		node_off = this_node->head.right;
476
477		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
478			befs_error(sb, "%s failed to read node at %llu",
479				  __func__, (unsigned long long)node_off);
480			goto error_alloc;
481		}
482	}
483
484	/* how many keys into this_node is key_no */
485	cur_key = key_no - key_sum;
486
487	/* get pointers to datastructures within the node body */
488	valarray = befs_bt_valarray(this_node);
489
490	keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
491
492	befs_debug(sb, "Read [%llu,%d]: keysize %d",
493		   (long long unsigned int)node_off, (int)cur_key,
494		   (int)keylen);
495
496	if (bufsize < keylen + 1) {
497		befs_error(sb, "%s keybuf too small (%zu) "
498			   "for key of size %d", __func__, bufsize, keylen);
499		brelse(this_node->bh);
500		goto error_alloc;
501	}
502
503	strscpy(keybuf, keystart, keylen + 1);
504	*value = fs64_to_cpu(sb, valarray[cur_key]);
505	*keysize = keylen;
506
507	befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off,
508		   cur_key, keylen, keybuf, *value);
509
510	brelse(this_node->bh);
511	kfree(this_node);
512
513	befs_debug(sb, "<--- %s", __func__);
514
515	return BEFS_OK;
516
517      error_alloc:
518	kfree(this_node);
519
520      error:
521	*keysize = 0;
522	*value = 0;
523	befs_debug(sb, "<--- %s ERROR", __func__);
524	return BEFS_ERR;
525}
526
527/**
528 * befs_btree_seekleaf - Find the first leafnode in the btree
529 * @sb: Filesystem superblock
530 * @ds: Datastream containing btree
531 * @bt_super: Pointer to the superblock of the btree
532 * @this_node: Buffer to return the leafnode in
533 * @node_off: Pointer to offset of current node within datastream. Modified
534 * 		by the function.
535 *
536 * Helper function for btree traverse. Moves the current position to the
537 * start of the first leaf node.
538 *
539 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
540 */
541static int
542befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
543		    befs_btree_super *bt_super,
544		    struct befs_btree_node *this_node,
545		    befs_off_t * node_off)
546{
547
548	befs_debug(sb, "---> %s", __func__);
549
550	if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
551		befs_error(sb, "%s failed to read "
552			   "node at %llu", __func__, *node_off);
553		goto error;
554	}
555	befs_debug(sb, "Seekleaf to root node %llu", *node_off);
556
557	if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
558		befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
559		return BEFS_BT_EMPTY;
560	}
561
562	while (!befs_leafnode(this_node)) {
563
564		if (this_node->head.all_key_count == 0) {
565			befs_debug(sb, "%s encountered "
566				   "an empty interior node: %llu. Using Overflow "
567				   "node: %llu", __func__, *node_off,
568				   this_node->head.overflow);
569			*node_off = this_node->head.overflow;
570		} else {
571			fs64 *valarray = befs_bt_valarray(this_node);
572			*node_off = fs64_to_cpu(sb, valarray[0]);
573		}
574		if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
575			befs_error(sb, "%s failed to read "
576				   "node at %llu", __func__, *node_off);
577			goto error;
578		}
579
580		befs_debug(sb, "Seekleaf to child node %llu", *node_off);
581	}
582	befs_debug(sb, "Node %llu is a leaf node", *node_off);
583
584	return BEFS_OK;
585
586      error:
587	befs_debug(sb, "<--- %s ERROR", __func__);
588	return BEFS_ERR;
589}
590
591/**
592 * befs_leafnode - Determine if the btree node is a leaf node or an
593 * interior node
594 * @node: Pointer to node structure to test
595 *
596 * Return 1 if leaf, 0 if interior
597 */
598static int
599befs_leafnode(struct befs_btree_node *node)
600{
601	/* all interior nodes (and only interior nodes) have an overflow node */
602	if (node->head.overflow == BEFS_BT_INVAL)
603		return 1;
604	else
605		return 0;
606}
607
608/**
609 * befs_bt_keylen_index - Finds start of keylen index in a node
610 * @node: Pointer to the node structure to find the keylen index within
611 *
612 * Returns a pointer to the start of the key length index array
613 * of the B+tree node *@node
614 *
615 * "The length of all the keys in the node is added to the size of the
616 * header and then rounded up to a multiple of four to get the beginning
617 * of the key length index" (p.88, practical filesystem design).
618 *
619 * Except that rounding up to 8 works, and rounding up to 4 doesn't.
620 */
621static fs16 *
622befs_bt_keylen_index(struct befs_btree_node *node)
623{
624	const int keylen_align = 8;
625	unsigned long int off =
626	    (sizeof (befs_btree_nodehead) + node->head.all_key_length);
627	ulong tmp = off % keylen_align;
628
629	if (tmp)
630		off += keylen_align - tmp;
631
632	return (fs16 *) ((void *) node->od_node + off);
633}
634
635/**
636 * befs_bt_valarray - Finds the start of value array in a node
637 * @node: Pointer to the node structure to find the value array within
638 *
639 * Returns a pointer to the start of the value array
640 * of the node pointed to by the node header
641 */
642static fs64 *
643befs_bt_valarray(struct befs_btree_node *node)
644{
645	void *keylen_index_start = (void *) befs_bt_keylen_index(node);
646	size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
647
648	return (fs64 *) (keylen_index_start + keylen_index_size);
649}
650
651/**
652 * befs_bt_keydata - Finds start of keydata array in a node
653 * @node: Pointer to the node structure to find the keydata array within
654 *
655 * Returns a pointer to the start of the keydata array
656 * of the node pointed to by the node header
657 */
658static char *
659befs_bt_keydata(struct befs_btree_node *node)
660{
661	return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
662}
663
664/**
665 * befs_bt_get_key - returns a pointer to the start of a key
666 * @sb: filesystem superblock
667 * @node: node in which to look for the key
668 * @index: the index of the key to get
669 * @keylen: modified to be the length of the key at @index
670 *
671 * Returns a valid pointer into @node on success.
672 * Returns NULL on failure (bad input) and sets *@keylen = 0
673 */
674static char *
675befs_bt_get_key(struct super_block *sb, struct befs_btree_node *node,
676		int index, u16 * keylen)
677{
678	int prev_key_end;
679	char *keystart;
680	fs16 *keylen_index;
681
682	if (index < 0 || index > node->head.all_key_count) {
683		*keylen = 0;
684		return NULL;
685	}
686
687	keystart = befs_bt_keydata(node);
688	keylen_index = befs_bt_keylen_index(node);
689
690	if (index == 0)
691		prev_key_end = 0;
692	else
693		prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
694
695	*keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
696
697	return keystart + prev_key_end;
698}
699
700/**
701 * befs_compare_strings - compare two strings
702 * @key1: pointer to the first key to be compared
703 * @keylen1: length in bytes of key1
704 * @key2: pointer to the second key to be compared
705 * @keylen2: length in bytes of key2
706 *
707 * Returns 0 if @key1 and @key2 are equal.
708 * Returns >0 if @key1 is greater.
709 * Returns <0 if @key2 is greater.
710 */
711static int
712befs_compare_strings(const void *key1, int keylen1,
713		     const void *key2, int keylen2)
714{
715	int len = min_t(int, keylen1, keylen2);
716	int result = strncmp(key1, key2, len);
717	if (result == 0)
718		result = keylen1 - keylen2;
719	return result;
720}
721
722/* These will be used for non-string keyed btrees */
723#if 0
724static int
725btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
726{
727	return *(int32_t *) key1 - *(int32_t *) key2;
728}
729
730static int
731btree_compare_uint32(cont void *key1, int keylen1,
732		     const void *key2, int keylen2)
733{
734	if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
735		return 0;
736	else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
737		return 1;
738
739	return -1;
740}
741static int
742btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
743{
744	if (*(int64_t *) key1 == *(int64_t *) key2)
745		return 0;
746	else if (*(int64_t *) key1 > *(int64_t *) key2)
747		return 1;
748
749	return -1;
750}
751
752static int
753btree_compare_uint64(cont void *key1, int keylen1,
754		     const void *key2, int keylen2)
755{
756	if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
757		return 0;
758	else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
759		return 1;
760
761	return -1;
762}
763
764static int
765btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
766{
767	float result = *(float *) key1 - *(float *) key2;
768	if (result == 0.0f)
769		return 0;
770
771	return (result < 0.0f) ? -1 : 1;
772}
773
774static int
775btree_compare_double(cont void *key1, int keylen1,
776		     const void *key2, int keylen2)
777{
778	double result = *(double *) key1 - *(double *) key2;
779	if (result == 0.0)
780		return 0;
781
782	return (result < 0.0) ? -1 : 1;
783}
784#endif				//0
785