1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _BCACHEFS_UTIL_H
3#define _BCACHEFS_UTIL_H
4
5#include <linux/bio.h>
6#include <linux/blkdev.h>
7#include <linux/closure.h>
8#include <linux/errno.h>
9#include <linux/freezer.h>
10#include <linux/kernel.h>
11#include <linux/sched/clock.h>
12#include <linux/llist.h>
13#include <linux/log2.h>
14#include <linux/percpu.h>
15#include <linux/preempt.h>
16#include <linux/ratelimit.h>
17#include <linux/slab.h>
18#include <linux/vmalloc.h>
19#include <linux/workqueue.h>
20
21#include "mean_and_variance.h"
22
23#include "darray.h"
24#include "time_stats.h"
25
26struct closure;
27
28#ifdef CONFIG_BCACHEFS_DEBUG
29#define EBUG_ON(cond)		BUG_ON(cond)
30#else
31#define EBUG_ON(cond)
32#endif
33
34#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
35#define CPU_BIG_ENDIAN		0
36#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
37#define CPU_BIG_ENDIAN		1
38#endif
39
40/* type hackery */
41
42#define type_is_exact(_val, _type)					\
43	__builtin_types_compatible_p(typeof(_val), _type)
44
45#define type_is(_val, _type)						\
46	(__builtin_types_compatible_p(typeof(_val), _type) ||		\
47	 __builtin_types_compatible_p(typeof(_val), const _type))
48
49/* Userspace doesn't align allocations as nicely as the kernel allocators: */
50static inline size_t buf_pages(void *p, size_t len)
51{
52	return DIV_ROUND_UP(len +
53			    ((unsigned long) p & (PAGE_SIZE - 1)),
54			    PAGE_SIZE);
55}
56
57#define HEAP(type)							\
58struct {								\
59	size_t size, used;						\
60	type *data;							\
61}
62
63#define DECLARE_HEAP(type, name) HEAP(type) name
64
65#define init_heap(heap, _size, gfp)					\
66({									\
67	(heap)->used = 0;						\
68	(heap)->size = (_size);						\
69	(heap)->data = kvmalloc((heap)->size * sizeof((heap)->data[0]),\
70				 (gfp));				\
71})
72
73#define free_heap(heap)							\
74do {									\
75	kvfree((heap)->data);						\
76	(heap)->data = NULL;						\
77} while (0)
78
79#define heap_set_backpointer(h, i, _fn)					\
80do {									\
81	void (*fn)(typeof(h), size_t) = _fn;				\
82	if (fn)								\
83		fn(h, i);						\
84} while (0)
85
86#define heap_swap(h, i, j, set_backpointer)				\
87do {									\
88	swap((h)->data[i], (h)->data[j]);				\
89	heap_set_backpointer(h, i, set_backpointer);			\
90	heap_set_backpointer(h, j, set_backpointer);			\
91} while (0)
92
93#define heap_peek(h)							\
94({									\
95	EBUG_ON(!(h)->used);						\
96	(h)->data[0];							\
97})
98
99#define heap_full(h)	((h)->used == (h)->size)
100
101#define heap_sift_down(h, i, cmp, set_backpointer)			\
102do {									\
103	size_t _c, _j = i;						\
104									\
105	for (; _j * 2 + 1 < (h)->used; _j = _c) {			\
106		_c = _j * 2 + 1;					\
107		if (_c + 1 < (h)->used &&				\
108		    cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0)	\
109			_c++;						\
110									\
111		if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0)		\
112			break;						\
113		heap_swap(h, _c, _j, set_backpointer);			\
114	}								\
115} while (0)
116
117#define heap_sift_up(h, i, cmp, set_backpointer)			\
118do {									\
119	while (i) {							\
120		size_t p = (i - 1) / 2;					\
121		if (cmp(h, (h)->data[i], (h)->data[p]) >= 0)		\
122			break;						\
123		heap_swap(h, i, p, set_backpointer);			\
124		i = p;							\
125	}								\
126} while (0)
127
128#define __heap_add(h, d, cmp, set_backpointer)				\
129({									\
130	size_t _i = (h)->used++;					\
131	(h)->data[_i] = d;						\
132	heap_set_backpointer(h, _i, set_backpointer);			\
133									\
134	heap_sift_up(h, _i, cmp, set_backpointer);			\
135	_i;								\
136})
137
138#define heap_add(h, d, cmp, set_backpointer)				\
139({									\
140	bool _r = !heap_full(h);					\
141	if (_r)								\
142		__heap_add(h, d, cmp, set_backpointer);			\
143	_r;								\
144})
145
146#define heap_add_or_replace(h, new, cmp, set_backpointer)		\
147do {									\
148	if (!heap_add(h, new, cmp, set_backpointer) &&			\
149	    cmp(h, new, heap_peek(h)) >= 0) {				\
150		(h)->data[0] = new;					\
151		heap_set_backpointer(h, 0, set_backpointer);		\
152		heap_sift_down(h, 0, cmp, set_backpointer);		\
153	}								\
154} while (0)
155
156#define heap_del(h, i, cmp, set_backpointer)				\
157do {									\
158	size_t _i = (i);						\
159									\
160	BUG_ON(_i >= (h)->used);					\
161	(h)->used--;							\
162	if ((_i) < (h)->used) {						\
163		heap_swap(h, _i, (h)->used, set_backpointer);		\
164		heap_sift_up(h, _i, cmp, set_backpointer);		\
165		heap_sift_down(h, _i, cmp, set_backpointer);		\
166	}								\
167} while (0)
168
169#define heap_pop(h, d, cmp, set_backpointer)				\
170({									\
171	bool _r = (h)->used;						\
172	if (_r) {							\
173		(d) = (h)->data[0];					\
174		heap_del(h, 0, cmp, set_backpointer);			\
175	}								\
176	_r;								\
177})
178
179#define heap_resort(heap, cmp, set_backpointer)				\
180do {									\
181	ssize_t _i;							\
182	for (_i = (ssize_t) (heap)->used / 2 -  1; _i >= 0; --_i)	\
183		heap_sift_down(heap, _i, cmp, set_backpointer);		\
184} while (0)
185
186#define ANYSINT_MAX(t)							\
187	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
188
189#include "printbuf.h"
190
191#define prt_vprintf(_out, ...)		bch2_prt_vprintf(_out, __VA_ARGS__)
192#define prt_printf(_out, ...)		bch2_prt_printf(_out, __VA_ARGS__)
193#define printbuf_str(_buf)		bch2_printbuf_str(_buf)
194#define printbuf_exit(_buf)		bch2_printbuf_exit(_buf)
195
196#define printbuf_tabstops_reset(_buf)	bch2_printbuf_tabstops_reset(_buf)
197#define printbuf_tabstop_pop(_buf)	bch2_printbuf_tabstop_pop(_buf)
198#define printbuf_tabstop_push(_buf, _n)	bch2_printbuf_tabstop_push(_buf, _n)
199
200#define printbuf_indent_add(_out, _n)	bch2_printbuf_indent_add(_out, _n)
201#define printbuf_indent_sub(_out, _n)	bch2_printbuf_indent_sub(_out, _n)
202
203#define prt_newline(_out)		bch2_prt_newline(_out)
204#define prt_tab(_out)			bch2_prt_tab(_out)
205#define prt_tab_rjust(_out)		bch2_prt_tab_rjust(_out)
206
207#define prt_bytes_indented(...)		bch2_prt_bytes_indented(__VA_ARGS__)
208#define prt_u64(_out, _v)		prt_printf(_out, "%llu", (u64) (_v))
209#define prt_human_readable_u64(...)	bch2_prt_human_readable_u64(__VA_ARGS__)
210#define prt_human_readable_s64(...)	bch2_prt_human_readable_s64(__VA_ARGS__)
211#define prt_units_u64(...)		bch2_prt_units_u64(__VA_ARGS__)
212#define prt_units_s64(...)		bch2_prt_units_s64(__VA_ARGS__)
213#define prt_string_option(...)		bch2_prt_string_option(__VA_ARGS__)
214#define prt_bitflags(...)		bch2_prt_bitflags(__VA_ARGS__)
215#define prt_bitflags_vector(...)	bch2_prt_bitflags_vector(__VA_ARGS__)
216
217void bch2_pr_time_units(struct printbuf *, u64);
218void bch2_prt_datetime(struct printbuf *, time64_t);
219
220#ifdef __KERNEL__
221static inline void uuid_unparse_lower(u8 *uuid, char *out)
222{
223	sprintf(out, "%pUb", uuid);
224}
225#else
226#include <uuid/uuid.h>
227#endif
228
229static inline void pr_uuid(struct printbuf *out, u8 *uuid)
230{
231	char uuid_str[40];
232
233	uuid_unparse_lower(uuid, uuid_str);
234	prt_printf(out, "%s", uuid_str);
235}
236
237int bch2_strtoint_h(const char *, int *);
238int bch2_strtouint_h(const char *, unsigned int *);
239int bch2_strtoll_h(const char *, long long *);
240int bch2_strtoull_h(const char *, unsigned long long *);
241int bch2_strtou64_h(const char *, u64 *);
242
243static inline int bch2_strtol_h(const char *cp, long *res)
244{
245#if BITS_PER_LONG == 32
246	return bch2_strtoint_h(cp, (int *) res);
247#else
248	return bch2_strtoll_h(cp, (long long *) res);
249#endif
250}
251
252static inline int bch2_strtoul_h(const char *cp, long *res)
253{
254#if BITS_PER_LONG == 32
255	return bch2_strtouint_h(cp, (unsigned int *) res);
256#else
257	return bch2_strtoull_h(cp, (unsigned long long *) res);
258#endif
259}
260
261#define strtoi_h(cp, res)						\
262	( type_is(*res, int)		? bch2_strtoint_h(cp, (void *) res)\
263	: type_is(*res, long)		? bch2_strtol_h(cp, (void *) res)\
264	: type_is(*res, long long)	? bch2_strtoll_h(cp, (void *) res)\
265	: type_is(*res, unsigned)	? bch2_strtouint_h(cp, (void *) res)\
266	: type_is(*res, unsigned long)	? bch2_strtoul_h(cp, (void *) res)\
267	: type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\
268	: -EINVAL)
269
270#define strtoul_safe(cp, var)						\
271({									\
272	unsigned long _v;						\
273	int _r = kstrtoul(cp, 10, &_v);					\
274	if (!_r)							\
275		var = _v;						\
276	_r;								\
277})
278
279#define strtoul_safe_clamp(cp, var, min, max)				\
280({									\
281	unsigned long _v;						\
282	int _r = kstrtoul(cp, 10, &_v);					\
283	if (!_r)							\
284		var = clamp_t(typeof(var), _v, min, max);		\
285	_r;								\
286})
287
288#define strtoul_safe_restrict(cp, var, min, max)			\
289({									\
290	unsigned long _v;						\
291	int _r = kstrtoul(cp, 10, &_v);					\
292	if (!_r && _v >= min && _v <= max)				\
293		var = _v;						\
294	else								\
295		_r = -EINVAL;						\
296	_r;								\
297})
298
299#define snprint(out, var)						\
300	prt_printf(out,							\
301		   type_is(var, int)		? "%i\n"		\
302		 : type_is(var, unsigned)	? "%u\n"		\
303		 : type_is(var, long)		? "%li\n"		\
304		 : type_is(var, unsigned long)	? "%lu\n"		\
305		 : type_is(var, s64)		? "%lli\n"		\
306		 : type_is(var, u64)		? "%llu\n"		\
307		 : type_is(var, char *)		? "%s\n"		\
308		 : "%i\n", var)
309
310bool bch2_is_zero(const void *, size_t);
311
312u64 bch2_read_flag_list(char *, const char * const[]);
313
314void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned);
315void bch2_prt_u64_base2(struct printbuf *, u64);
316
317void bch2_print_string_as_lines(const char *prefix, const char *lines);
318
319typedef DARRAY(unsigned long) bch_stacktrace;
320int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned, gfp_t);
321void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *);
322int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned, gfp_t);
323
324static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev)
325{
326#ifdef __KERNEL__
327	prt_printf(out, "%pg", bdev);
328#else
329	prt_str(out, bdev->name);
330#endif
331}
332
333void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *);
334
335#define ewma_add(ewma, val, weight)					\
336({									\
337	typeof(ewma) _ewma = (ewma);					\
338	typeof(weight) _weight = (weight);				\
339									\
340	(((_ewma << _weight) - _ewma) + (val)) >> _weight;		\
341})
342
343struct bch_ratelimit {
344	/* Next time we want to do some work, in nanoseconds */
345	u64			next;
346
347	/*
348	 * Rate at which we want to do work, in units per nanosecond
349	 * The units here correspond to the units passed to
350	 * bch2_ratelimit_increment()
351	 */
352	unsigned		rate;
353};
354
355static inline void bch2_ratelimit_reset(struct bch_ratelimit *d)
356{
357	d->next = local_clock();
358}
359
360u64 bch2_ratelimit_delay(struct bch_ratelimit *);
361void bch2_ratelimit_increment(struct bch_ratelimit *, u64);
362
363struct bch_pd_controller {
364	struct bch_ratelimit	rate;
365	unsigned long		last_update;
366
367	s64			last_actual;
368	s64			smoothed_derivative;
369
370	unsigned		p_term_inverse;
371	unsigned		d_smooth;
372	unsigned		d_term;
373
374	/* for exporting to sysfs (no effect on behavior) */
375	s64			last_derivative;
376	s64			last_proportional;
377	s64			last_change;
378	s64			last_target;
379
380	/*
381	 * If true, the rate will not increase if bch2_ratelimit_delay()
382	 * is not being called often enough.
383	 */
384	bool			backpressure;
385};
386
387void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int);
388void bch2_pd_controller_init(struct bch_pd_controller *);
389void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *);
390
391#define sysfs_pd_controller_attribute(name)				\
392	rw_attribute(name##_rate);					\
393	rw_attribute(name##_rate_bytes);				\
394	rw_attribute(name##_rate_d_term);				\
395	rw_attribute(name##_rate_p_term_inverse);			\
396	read_attribute(name##_rate_debug)
397
398#define sysfs_pd_controller_files(name)					\
399	&sysfs_##name##_rate,						\
400	&sysfs_##name##_rate_bytes,					\
401	&sysfs_##name##_rate_d_term,					\
402	&sysfs_##name##_rate_p_term_inverse,				\
403	&sysfs_##name##_rate_debug
404
405#define sysfs_pd_controller_show(name, var)				\
406do {									\
407	sysfs_hprint(name##_rate,		(var)->rate.rate);	\
408	sysfs_print(name##_rate_bytes,		(var)->rate.rate);	\
409	sysfs_print(name##_rate_d_term,		(var)->d_term);		\
410	sysfs_print(name##_rate_p_term_inverse,	(var)->p_term_inverse);	\
411									\
412	if (attr == &sysfs_##name##_rate_debug)				\
413		bch2_pd_controller_debug_to_text(out, var);		\
414} while (0)
415
416#define sysfs_pd_controller_store(name, var)				\
417do {									\
418	sysfs_strtoul_clamp(name##_rate,				\
419			    (var)->rate.rate, 1, UINT_MAX);		\
420	sysfs_strtoul_clamp(name##_rate_bytes,				\
421			    (var)->rate.rate, 1, UINT_MAX);		\
422	sysfs_strtoul(name##_rate_d_term,	(var)->d_term);		\
423	sysfs_strtoul_clamp(name##_rate_p_term_inverse,			\
424			    (var)->p_term_inverse, 1, INT_MAX);		\
425} while (0)
426
427#define container_of_or_null(ptr, type, member)				\
428({									\
429	typeof(ptr) _ptr = ptr;						\
430	_ptr ? container_of(_ptr, type, member) : NULL;			\
431})
432
433/* Does linear interpolation between powers of two */
434static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
435{
436	unsigned fract = x & ~(~0 << fract_bits);
437
438	x >>= fract_bits;
439	x   = 1 << x;
440	x  += (x * fract) >> fract_bits;
441
442	return x;
443}
444
445void bch2_bio_map(struct bio *bio, void *base, size_t);
446int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t);
447
448static inline sector_t bdev_sectors(struct block_device *bdev)
449{
450	return bdev->bd_inode->i_size >> 9;
451}
452
453#define closure_bio_submit(bio, cl)					\
454do {									\
455	closure_get(cl);						\
456	submit_bio(bio);						\
457} while (0)
458
459#define kthread_wait(cond)						\
460({									\
461	int _ret = 0;							\
462									\
463	while (1) {							\
464		set_current_state(TASK_INTERRUPTIBLE);			\
465		if (kthread_should_stop()) {				\
466			_ret = -1;					\
467			break;						\
468		}							\
469									\
470		if (cond)						\
471			break;						\
472									\
473		schedule();						\
474	}								\
475	set_current_state(TASK_RUNNING);				\
476	_ret;								\
477})
478
479#define kthread_wait_freezable(cond)					\
480({									\
481	int _ret = 0;							\
482	while (1) {							\
483		set_current_state(TASK_INTERRUPTIBLE);			\
484		if (kthread_should_stop()) {				\
485			_ret = -1;					\
486			break;						\
487		}							\
488									\
489		if (cond)						\
490			break;						\
491									\
492		schedule();						\
493		try_to_freeze();					\
494	}								\
495	set_current_state(TASK_RUNNING);				\
496	_ret;								\
497})
498
499size_t bch2_rand_range(size_t);
500
501void memcpy_to_bio(struct bio *, struct bvec_iter, const void *);
502void memcpy_from_bio(void *, struct bio *, struct bvec_iter);
503
504static inline void memcpy_u64s_small(void *dst, const void *src,
505				     unsigned u64s)
506{
507	u64 *d = dst;
508	const u64 *s = src;
509
510	while (u64s--)
511		*d++ = *s++;
512}
513
514static inline void __memcpy_u64s(void *dst, const void *src,
515				 unsigned u64s)
516{
517#ifdef CONFIG_X86_64
518	long d0, d1, d2;
519
520	asm volatile("rep ; movsq"
521		     : "=&c" (d0), "=&D" (d1), "=&S" (d2)
522		     : "0" (u64s), "1" (dst), "2" (src)
523		     : "memory");
524#else
525	u64 *d = dst;
526	const u64 *s = src;
527
528	while (u64s--)
529		*d++ = *s++;
530#endif
531}
532
533static inline void memcpy_u64s(void *dst, const void *src,
534			       unsigned u64s)
535{
536	EBUG_ON(!(dst >= src + u64s * sizeof(u64) ||
537		 dst + u64s * sizeof(u64) <= src));
538
539	__memcpy_u64s(dst, src, u64s);
540}
541
542static inline void __memmove_u64s_down(void *dst, const void *src,
543				       unsigned u64s)
544{
545	__memcpy_u64s(dst, src, u64s);
546}
547
548static inline void memmove_u64s_down(void *dst, const void *src,
549				     unsigned u64s)
550{
551	EBUG_ON(dst > src);
552
553	__memmove_u64s_down(dst, src, u64s);
554}
555
556static inline void __memmove_u64s_down_small(void *dst, const void *src,
557				       unsigned u64s)
558{
559	memcpy_u64s_small(dst, src, u64s);
560}
561
562static inline void memmove_u64s_down_small(void *dst, const void *src,
563				     unsigned u64s)
564{
565	EBUG_ON(dst > src);
566
567	__memmove_u64s_down_small(dst, src, u64s);
568}
569
570static inline void __memmove_u64s_up_small(void *_dst, const void *_src,
571					   unsigned u64s)
572{
573	u64 *dst = (u64 *) _dst + u64s;
574	u64 *src = (u64 *) _src + u64s;
575
576	while (u64s--)
577		*--dst = *--src;
578}
579
580static inline void memmove_u64s_up_small(void *dst, const void *src,
581					 unsigned u64s)
582{
583	EBUG_ON(dst < src);
584
585	__memmove_u64s_up_small(dst, src, u64s);
586}
587
588static inline void __memmove_u64s_up(void *_dst, const void *_src,
589				     unsigned u64s)
590{
591	u64 *dst = (u64 *) _dst + u64s - 1;
592	u64 *src = (u64 *) _src + u64s - 1;
593
594#ifdef CONFIG_X86_64
595	long d0, d1, d2;
596
597	asm volatile("std ;\n"
598		     "rep ; movsq\n"
599		     "cld ;\n"
600		     : "=&c" (d0), "=&D" (d1), "=&S" (d2)
601		     : "0" (u64s), "1" (dst), "2" (src)
602		     : "memory");
603#else
604	while (u64s--)
605		*dst-- = *src--;
606#endif
607}
608
609static inline void memmove_u64s_up(void *dst, const void *src,
610				   unsigned u64s)
611{
612	EBUG_ON(dst < src);
613
614	__memmove_u64s_up(dst, src, u64s);
615}
616
617static inline void memmove_u64s(void *dst, const void *src,
618				unsigned u64s)
619{
620	if (dst < src)
621		__memmove_u64s_down(dst, src, u64s);
622	else
623		__memmove_u64s_up(dst, src, u64s);
624}
625
626/* Set the last few bytes up to a u64 boundary given an offset into a buffer. */
627static inline void memset_u64s_tail(void *s, int c, unsigned bytes)
628{
629	unsigned rem = round_up(bytes, sizeof(u64)) - bytes;
630
631	memset(s + bytes, c, rem);
632}
633
634/* just the memmove, doesn't update @_nr */
635#define __array_insert_item(_array, _nr, _pos)				\
636	memmove(&(_array)[(_pos) + 1],					\
637		&(_array)[(_pos)],					\
638		sizeof((_array)[0]) * ((_nr) - (_pos)))
639
640#define array_insert_item(_array, _nr, _pos, _new_item)			\
641do {									\
642	__array_insert_item(_array, _nr, _pos);				\
643	(_nr)++;							\
644	(_array)[(_pos)] = (_new_item);					\
645} while (0)
646
647#define array_remove_items(_array, _nr, _pos, _nr_to_remove)		\
648do {									\
649	(_nr) -= (_nr_to_remove);					\
650	memmove(&(_array)[(_pos)],					\
651		&(_array)[(_pos) + (_nr_to_remove)],			\
652		sizeof((_array)[0]) * ((_nr) - (_pos)));		\
653} while (0)
654
655#define array_remove_item(_array, _nr, _pos)				\
656	array_remove_items(_array, _nr, _pos, 1)
657
658static inline void __move_gap(void *array, size_t element_size,
659			      size_t nr, size_t size,
660			      size_t old_gap, size_t new_gap)
661{
662	size_t gap_end = old_gap + size - nr;
663
664	if (new_gap < old_gap) {
665		size_t move = old_gap - new_gap;
666
667		memmove(array + element_size * (gap_end - move),
668			array + element_size * (old_gap - move),
669				element_size * move);
670	} else if (new_gap > old_gap) {
671		size_t move = new_gap - old_gap;
672
673		memmove(array + element_size * old_gap,
674			array + element_size * gap_end,
675				element_size * move);
676	}
677}
678
679/* Move the gap in a gap buffer: */
680#define move_gap(_d, _new_gap)						\
681do {									\
682	BUG_ON(_new_gap > (_d)->nr);					\
683	BUG_ON((_d)->gap > (_d)->nr);					\
684									\
685	__move_gap((_d)->data, sizeof((_d)->data[0]),			\
686		   (_d)->nr, (_d)->size, (_d)->gap, _new_gap);		\
687	(_d)->gap = _new_gap;						\
688} while (0)
689
690#define bubble_sort(_base, _nr, _cmp)					\
691do {									\
692	ssize_t _i, _last;						\
693	bool _swapped = true;						\
694									\
695	for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\
696		_swapped = false;					\
697		for (_i = 0; _i < _last; _i++)				\
698			if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) {	\
699				swap((_base)[_i], (_base)[_i + 1]);	\
700				_swapped = true;			\
701			}						\
702	}								\
703} while (0)
704
705static inline u64 percpu_u64_get(u64 __percpu *src)
706{
707	u64 ret = 0;
708	int cpu;
709
710	for_each_possible_cpu(cpu)
711		ret += *per_cpu_ptr(src, cpu);
712	return ret;
713}
714
715static inline void percpu_u64_set(u64 __percpu *dst, u64 src)
716{
717	int cpu;
718
719	for_each_possible_cpu(cpu)
720		*per_cpu_ptr(dst, cpu) = 0;
721	this_cpu_write(*dst, src);
722}
723
724static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr)
725{
726	unsigned i;
727
728	for (i = 0; i < nr; i++)
729		acc[i] += src[i];
730}
731
732static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src,
733				   unsigned nr)
734{
735	int cpu;
736
737	for_each_possible_cpu(cpu)
738		acc_u64s(acc, per_cpu_ptr(src, cpu), nr);
739}
740
741static inline void percpu_memset(void __percpu *p, int c, size_t bytes)
742{
743	int cpu;
744
745	for_each_possible_cpu(cpu)
746		memset(per_cpu_ptr(p, cpu), c, bytes);
747}
748
749u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned);
750
751#define cmp_int(l, r)		((l > r) - (l < r))
752
753static inline int u8_cmp(u8 l, u8 r)
754{
755	return cmp_int(l, r);
756}
757
758static inline int cmp_le32(__le32 l, __le32 r)
759{
760	return cmp_int(le32_to_cpu(l), le32_to_cpu(r));
761}
762
763#include <linux/uuid.h>
764
765#define QSTR(n) { { { .len = strlen(n) } }, .name = n }
766
767static inline bool qstr_eq(const struct qstr l, const struct qstr r)
768{
769	return l.len == r.len && !memcmp(l.name, r.name, l.len);
770}
771
772void bch2_darray_str_exit(darray_str *);
773int bch2_split_devs(const char *, darray_str *);
774
775#ifdef __KERNEL__
776
777__must_check
778static inline int copy_to_user_errcode(void __user *to, const void *from, unsigned long n)
779{
780	return copy_to_user(to, from, n) ? -EFAULT : 0;
781}
782
783__must_check
784static inline int copy_from_user_errcode(void *to, const void __user *from, unsigned long n)
785{
786	return copy_from_user(to, from, n) ? -EFAULT : 0;
787}
788
789#endif
790
791static inline void mod_bit(long nr, volatile unsigned long *addr, bool v)
792{
793	if (v)
794		set_bit(nr, addr);
795	else
796		clear_bit(nr, addr);
797}
798
799static inline void __set_bit_le64(size_t bit, __le64 *addr)
800{
801	addr[bit / 64] |= cpu_to_le64(BIT_ULL(bit % 64));
802}
803
804static inline void __clear_bit_le64(size_t bit, __le64 *addr)
805{
806	addr[bit / 64] &= ~cpu_to_le64(BIT_ULL(bit % 64));
807}
808
809static inline bool test_bit_le64(size_t bit, __le64 *addr)
810{
811	return (addr[bit / 64] & cpu_to_le64(BIT_ULL(bit % 64))) != 0;
812}
813
814#endif /* _BCACHEFS_UTIL_H */
815