1// SPDX-License-Identifier: GPL-2.0
2#ifndef NO_BCACHEFS_FS
3
4#include "bcachefs.h"
5#include "alloc_foreground.h"
6#include "bkey_buf.h"
7#include "fs-io.h"
8#include "fs-io-buffered.h"
9#include "fs-io-direct.h"
10#include "fs-io-pagecache.h"
11#include "io_read.h"
12#include "io_write.h"
13
14#include <linux/backing-dev.h>
15#include <linux/pagemap.h>
16#include <linux/writeback.h>
17
18static inline bool bio_full(struct bio *bio, unsigned len)
19{
20	if (bio->bi_vcnt >= bio->bi_max_vecs)
21		return true;
22	if (bio->bi_iter.bi_size > UINT_MAX - len)
23		return true;
24	return false;
25}
26
27/* readpage(s): */
28
29static void bch2_readpages_end_io(struct bio *bio)
30{
31	struct folio_iter fi;
32
33	bio_for_each_folio_all(fi, bio) {
34		if (!bio->bi_status) {
35			folio_mark_uptodate(fi.folio);
36		} else {
37			folio_clear_uptodate(fi.folio);
38			folio_set_error(fi.folio);
39		}
40		folio_unlock(fi.folio);
41	}
42
43	bio_put(bio);
44}
45
46struct readpages_iter {
47	struct address_space	*mapping;
48	unsigned		idx;
49	folios			folios;
50};
51
52static int readpages_iter_init(struct readpages_iter *iter,
53			       struct readahead_control *ractl)
54{
55	struct folio *folio;
56
57	*iter = (struct readpages_iter) { ractl->mapping };
58
59	while ((folio = __readahead_folio(ractl))) {
60		if (!bch2_folio_create(folio, GFP_KERNEL) ||
61		    darray_push(&iter->folios, folio)) {
62			bch2_folio_release(folio);
63			ractl->_nr_pages += folio_nr_pages(folio);
64			ractl->_index -= folio_nr_pages(folio);
65			return iter->folios.nr ? 0 : -ENOMEM;
66		}
67
68		folio_put(folio);
69	}
70
71	return 0;
72}
73
74static inline struct folio *readpage_iter_peek(struct readpages_iter *iter)
75{
76	if (iter->idx >= iter->folios.nr)
77		return NULL;
78	return iter->folios.data[iter->idx];
79}
80
81static inline void readpage_iter_advance(struct readpages_iter *iter)
82{
83	iter->idx++;
84}
85
86static bool extent_partial_reads_expensive(struct bkey_s_c k)
87{
88	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
89	struct bch_extent_crc_unpacked crc;
90	const union bch_extent_entry *i;
91
92	bkey_for_each_crc(k.k, ptrs, crc, i)
93		if (crc.csum_type || crc.compression_type)
94			return true;
95	return false;
96}
97
98static int readpage_bio_extend(struct btree_trans *trans,
99			       struct readpages_iter *iter,
100			       struct bio *bio,
101			       unsigned sectors_this_extent,
102			       bool get_more)
103{
104	/* Don't hold btree locks while allocating memory: */
105	bch2_trans_unlock(trans);
106
107	while (bio_sectors(bio) < sectors_this_extent &&
108	       bio->bi_vcnt < bio->bi_max_vecs) {
109		struct folio *folio = readpage_iter_peek(iter);
110		int ret;
111
112		if (folio) {
113			readpage_iter_advance(iter);
114		} else {
115			pgoff_t folio_offset = bio_end_sector(bio) >> PAGE_SECTORS_SHIFT;
116
117			if (!get_more)
118				break;
119
120			folio = xa_load(&iter->mapping->i_pages, folio_offset);
121			if (folio && !xa_is_value(folio))
122				break;
123
124			folio = filemap_alloc_folio(readahead_gfp_mask(iter->mapping), 0);
125			if (!folio)
126				break;
127
128			if (!__bch2_folio_create(folio, GFP_KERNEL)) {
129				folio_put(folio);
130				break;
131			}
132
133			ret = filemap_add_folio(iter->mapping, folio, folio_offset, GFP_KERNEL);
134			if (ret) {
135				__bch2_folio_release(folio);
136				folio_put(folio);
137				break;
138			}
139
140			folio_put(folio);
141		}
142
143		BUG_ON(folio_sector(folio) != bio_end_sector(bio));
144
145		BUG_ON(!bio_add_folio(bio, folio, folio_size(folio), 0));
146	}
147
148	return bch2_trans_relock(trans);
149}
150
151static void bchfs_read(struct btree_trans *trans,
152		       struct bch_read_bio *rbio,
153		       subvol_inum inum,
154		       struct readpages_iter *readpages_iter)
155{
156	struct bch_fs *c = trans->c;
157	struct btree_iter iter;
158	struct bkey_buf sk;
159	int flags = BCH_READ_RETRY_IF_STALE|
160		BCH_READ_MAY_PROMOTE;
161	u32 snapshot;
162	int ret = 0;
163
164	rbio->c = c;
165	rbio->start_time = local_clock();
166	rbio->subvol = inum.subvol;
167
168	bch2_bkey_buf_init(&sk);
169retry:
170	bch2_trans_begin(trans);
171	iter = (struct btree_iter) { NULL };
172
173	ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot);
174	if (ret)
175		goto err;
176
177	bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
178			     SPOS(inum.inum, rbio->bio.bi_iter.bi_sector, snapshot),
179			     BTREE_ITER_SLOTS);
180	while (1) {
181		struct bkey_s_c k;
182		unsigned bytes, sectors, offset_into_extent;
183		enum btree_id data_btree = BTREE_ID_extents;
184
185		/*
186		 * read_extent -> io_time_reset may cause a transaction restart
187		 * without returning an error, we need to check for that here:
188		 */
189		ret = bch2_trans_relock(trans);
190		if (ret)
191			break;
192
193		bch2_btree_iter_set_pos(&iter,
194				POS(inum.inum, rbio->bio.bi_iter.bi_sector));
195
196		k = bch2_btree_iter_peek_slot(&iter);
197		ret = bkey_err(k);
198		if (ret)
199			break;
200
201		offset_into_extent = iter.pos.offset -
202			bkey_start_offset(k.k);
203		sectors = k.k->size - offset_into_extent;
204
205		bch2_bkey_buf_reassemble(&sk, c, k);
206
207		ret = bch2_read_indirect_extent(trans, &data_btree,
208					&offset_into_extent, &sk);
209		if (ret)
210			break;
211
212		k = bkey_i_to_s_c(sk.k);
213
214		sectors = min(sectors, k.k->size - offset_into_extent);
215
216		if (readpages_iter) {
217			ret = readpage_bio_extend(trans, readpages_iter, &rbio->bio, sectors,
218						  extent_partial_reads_expensive(k));
219			if (ret)
220				break;
221		}
222
223		bytes = min(sectors, bio_sectors(&rbio->bio)) << 9;
224		swap(rbio->bio.bi_iter.bi_size, bytes);
225
226		if (rbio->bio.bi_iter.bi_size == bytes)
227			flags |= BCH_READ_LAST_FRAGMENT;
228
229		bch2_bio_page_state_set(&rbio->bio, k);
230
231		bch2_read_extent(trans, rbio, iter.pos,
232				 data_btree, k, offset_into_extent, flags);
233
234		if (flags & BCH_READ_LAST_FRAGMENT)
235			break;
236
237		swap(rbio->bio.bi_iter.bi_size, bytes);
238		bio_advance(&rbio->bio, bytes);
239
240		ret = btree_trans_too_many_iters(trans);
241		if (ret)
242			break;
243	}
244err:
245	bch2_trans_iter_exit(trans, &iter);
246
247	if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
248		goto retry;
249
250	if (ret) {
251		bch_err_inum_offset_ratelimited(c,
252				iter.pos.inode,
253				iter.pos.offset << 9,
254				"read error %i from btree lookup", ret);
255		rbio->bio.bi_status = BLK_STS_IOERR;
256		bio_endio(&rbio->bio);
257	}
258
259	bch2_bkey_buf_exit(&sk, c);
260}
261
262void bch2_readahead(struct readahead_control *ractl)
263{
264	struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host);
265	struct bch_fs *c = inode->v.i_sb->s_fs_info;
266	struct bch_io_opts opts;
267	struct btree_trans *trans = bch2_trans_get(c);
268	struct folio *folio;
269	struct readpages_iter readpages_iter;
270
271	bch2_inode_opts_get(&opts, c, &inode->ei_inode);
272
273	int ret = readpages_iter_init(&readpages_iter, ractl);
274	if (ret)
275		return;
276
277	bch2_pagecache_add_get(inode);
278
279	while ((folio = readpage_iter_peek(&readpages_iter))) {
280		unsigned n = min_t(unsigned,
281				   readpages_iter.folios.nr -
282				   readpages_iter.idx,
283				   BIO_MAX_VECS);
284		struct bch_read_bio *rbio =
285			rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ,
286						   GFP_KERNEL, &c->bio_read),
287				  opts);
288
289		readpage_iter_advance(&readpages_iter);
290
291		rbio->bio.bi_iter.bi_sector = folio_sector(folio);
292		rbio->bio.bi_end_io = bch2_readpages_end_io;
293		BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0));
294
295		bchfs_read(trans, rbio, inode_inum(inode),
296			   &readpages_iter);
297		bch2_trans_unlock(trans);
298	}
299
300	bch2_pagecache_add_put(inode);
301
302	bch2_trans_put(trans);
303	darray_exit(&readpages_iter.folios);
304}
305
306static void bch2_read_single_folio_end_io(struct bio *bio)
307{
308	complete(bio->bi_private);
309}
310
311int bch2_read_single_folio(struct folio *folio, struct address_space *mapping)
312{
313	struct bch_inode_info *inode = to_bch_ei(mapping->host);
314	struct bch_fs *c = inode->v.i_sb->s_fs_info;
315	struct bch_read_bio *rbio;
316	struct bch_io_opts opts;
317	int ret;
318	DECLARE_COMPLETION_ONSTACK(done);
319
320	if (!bch2_folio_create(folio, GFP_KERNEL))
321		return -ENOMEM;
322
323	bch2_inode_opts_get(&opts, c, &inode->ei_inode);
324
325	rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_KERNEL, &c->bio_read),
326			 opts);
327	rbio->bio.bi_private = &done;
328	rbio->bio.bi_end_io = bch2_read_single_folio_end_io;
329
330	rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC;
331	rbio->bio.bi_iter.bi_sector = folio_sector(folio);
332	BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0));
333
334	bch2_trans_run(c, (bchfs_read(trans, rbio, inode_inum(inode), NULL), 0));
335	wait_for_completion(&done);
336
337	ret = blk_status_to_errno(rbio->bio.bi_status);
338	bio_put(&rbio->bio);
339
340	if (ret < 0)
341		return ret;
342
343	folio_mark_uptodate(folio);
344	return 0;
345}
346
347int bch2_read_folio(struct file *file, struct folio *folio)
348{
349	int ret;
350
351	ret = bch2_read_single_folio(folio, folio->mapping);
352	folio_unlock(folio);
353	return bch2_err_class(ret);
354}
355
356/* writepages: */
357
358struct bch_writepage_io {
359	struct bch_inode_info		*inode;
360
361	/* must be last: */
362	struct bch_write_op		op;
363};
364
365struct bch_writepage_state {
366	struct bch_writepage_io	*io;
367	struct bch_io_opts	opts;
368	struct bch_folio_sector	*tmp;
369	unsigned		tmp_sectors;
370};
371
372static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c,
373								  struct bch_inode_info *inode)
374{
375	struct bch_writepage_state ret = { 0 };
376
377	bch2_inode_opts_get(&ret.opts, c, &inode->ei_inode);
378	return ret;
379}
380
381/*
382 * Determine when a writepage io is full. We have to limit writepage bios to a
383 * single page per bvec (i.e. 1MB with 4k pages) because that is the limit to
384 * what the bounce path in bch2_write_extent() can handle. In theory we could
385 * loosen this restriction for non-bounce I/O, but we don't have that context
386 * here. Ideally, we can up this limit and make it configurable in the future
387 * when the bounce path can be enhanced to accommodate larger source bios.
388 */
389static inline bool bch_io_full(struct bch_writepage_io *io, unsigned len)
390{
391	struct bio *bio = &io->op.wbio.bio;
392	return bio_full(bio, len) ||
393		(bio->bi_iter.bi_size + len > BIO_MAX_VECS * PAGE_SIZE);
394}
395
396static void bch2_writepage_io_done(struct bch_write_op *op)
397{
398	struct bch_writepage_io *io =
399		container_of(op, struct bch_writepage_io, op);
400	struct bch_fs *c = io->op.c;
401	struct bio *bio = &io->op.wbio.bio;
402	struct folio_iter fi;
403	unsigned i;
404
405	if (io->op.error) {
406		set_bit(EI_INODE_ERROR, &io->inode->ei_flags);
407
408		bio_for_each_folio_all(fi, bio) {
409			struct bch_folio *s;
410
411			folio_set_error(fi.folio);
412			mapping_set_error(fi.folio->mapping, -EIO);
413
414			s = __bch2_folio(fi.folio);
415			spin_lock(&s->lock);
416			for (i = 0; i < folio_sectors(fi.folio); i++)
417				s->s[i].nr_replicas = 0;
418			spin_unlock(&s->lock);
419		}
420	}
421
422	if (io->op.flags & BCH_WRITE_WROTE_DATA_INLINE) {
423		bio_for_each_folio_all(fi, bio) {
424			struct bch_folio *s;
425
426			s = __bch2_folio(fi.folio);
427			spin_lock(&s->lock);
428			for (i = 0; i < folio_sectors(fi.folio); i++)
429				s->s[i].nr_replicas = 0;
430			spin_unlock(&s->lock);
431		}
432	}
433
434	/*
435	 * racing with fallocate can cause us to add fewer sectors than
436	 * expected - but we shouldn't add more sectors than expected:
437	 */
438	WARN_ON_ONCE(io->op.i_sectors_delta > 0);
439
440	/*
441	 * (error (due to going RO) halfway through a page can screw that up
442	 * slightly)
443	 * XXX wtf?
444	   BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS);
445	 */
446
447	/*
448	 * PageWriteback is effectively our ref on the inode - fixup i_blocks
449	 * before calling end_page_writeback:
450	 */
451	bch2_i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta);
452
453	bio_for_each_folio_all(fi, bio) {
454		struct bch_folio *s = __bch2_folio(fi.folio);
455
456		if (atomic_dec_and_test(&s->write_count))
457			folio_end_writeback(fi.folio);
458	}
459
460	bio_put(&io->op.wbio.bio);
461}
462
463static void bch2_writepage_do_io(struct bch_writepage_state *w)
464{
465	struct bch_writepage_io *io = w->io;
466
467	w->io = NULL;
468	closure_call(&io->op.cl, bch2_write, NULL, NULL);
469}
470
471/*
472 * Get a bch_writepage_io and add @page to it - appending to an existing one if
473 * possible, else allocating a new one:
474 */
475static void bch2_writepage_io_alloc(struct bch_fs *c,
476				    struct writeback_control *wbc,
477				    struct bch_writepage_state *w,
478				    struct bch_inode_info *inode,
479				    u64 sector,
480				    unsigned nr_replicas)
481{
482	struct bch_write_op *op;
483
484	w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS,
485					      REQ_OP_WRITE,
486					      GFP_KERNEL,
487					      &c->writepage_bioset),
488			     struct bch_writepage_io, op.wbio.bio);
489
490	w->io->inode		= inode;
491	op			= &w->io->op;
492	bch2_write_op_init(op, c, w->opts);
493	op->target		= w->opts.foreground_target;
494	op->nr_replicas		= nr_replicas;
495	op->res.nr_replicas	= nr_replicas;
496	op->write_point		= writepoint_hashed(inode->ei_last_dirtied);
497	op->subvol		= inode->ei_subvol;
498	op->pos			= POS(inode->v.i_ino, sector);
499	op->end_io		= bch2_writepage_io_done;
500	op->devs_need_flush	= &inode->ei_devs_need_flush;
501	op->wbio.bio.bi_iter.bi_sector = sector;
502	op->wbio.bio.bi_opf	= wbc_to_write_flags(wbc);
503}
504
505static int __bch2_writepage(struct folio *folio,
506			    struct writeback_control *wbc,
507			    void *data)
508{
509	struct bch_inode_info *inode = to_bch_ei(folio->mapping->host);
510	struct bch_fs *c = inode->v.i_sb->s_fs_info;
511	struct bch_writepage_state *w = data;
512	struct bch_folio *s;
513	unsigned i, offset, f_sectors, nr_replicas_this_write = U32_MAX;
514	loff_t i_size = i_size_read(&inode->v);
515	int ret;
516
517	EBUG_ON(!folio_test_uptodate(folio));
518
519	/* Is the folio fully inside i_size? */
520	if (folio_end_pos(folio) <= i_size)
521		goto do_io;
522
523	/* Is the folio fully outside i_size? (truncate in progress) */
524	if (folio_pos(folio) >= i_size) {
525		folio_unlock(folio);
526		return 0;
527	}
528
529	/*
530	 * The folio straddles i_size.  It must be zeroed out on each and every
531	 * writepage invocation because it may be mmapped.  "A file is mapped
532	 * in multiples of the folio size.  For a file that is not a multiple of
533	 * the  folio size, the remaining memory is zeroed when mapped, and
534	 * writes to that region are not written out to the file."
535	 */
536	folio_zero_segment(folio,
537			   i_size - folio_pos(folio),
538			   folio_size(folio));
539do_io:
540	f_sectors = folio_sectors(folio);
541	s = bch2_folio(folio);
542
543	if (f_sectors > w->tmp_sectors) {
544		kfree(w->tmp);
545		w->tmp = kcalloc(f_sectors, sizeof(struct bch_folio_sector), __GFP_NOFAIL);
546		w->tmp_sectors = f_sectors;
547	}
548
549	/*
550	 * Things get really hairy with errors during writeback:
551	 */
552	ret = bch2_get_folio_disk_reservation(c, inode, folio, false);
553	BUG_ON(ret);
554
555	/* Before unlocking the page, get copy of reservations: */
556	spin_lock(&s->lock);
557	memcpy(w->tmp, s->s, sizeof(struct bch_folio_sector) * f_sectors);
558
559	for (i = 0; i < f_sectors; i++) {
560		if (s->s[i].state < SECTOR_dirty)
561			continue;
562
563		nr_replicas_this_write =
564			min_t(unsigned, nr_replicas_this_write,
565			      s->s[i].nr_replicas +
566			      s->s[i].replicas_reserved);
567	}
568
569	for (i = 0; i < f_sectors; i++) {
570		if (s->s[i].state < SECTOR_dirty)
571			continue;
572
573		s->s[i].nr_replicas = w->opts.compression
574			? 0 : nr_replicas_this_write;
575
576		s->s[i].replicas_reserved = 0;
577		bch2_folio_sector_set(folio, s, i, SECTOR_allocated);
578	}
579	spin_unlock(&s->lock);
580
581	BUG_ON(atomic_read(&s->write_count));
582	atomic_set(&s->write_count, 1);
583
584	BUG_ON(folio_test_writeback(folio));
585	folio_start_writeback(folio);
586
587	folio_unlock(folio);
588
589	offset = 0;
590	while (1) {
591		unsigned sectors = 0, dirty_sectors = 0, reserved_sectors = 0;
592		u64 sector;
593
594		while (offset < f_sectors &&
595		       w->tmp[offset].state < SECTOR_dirty)
596			offset++;
597
598		if (offset == f_sectors)
599			break;
600
601		while (offset + sectors < f_sectors &&
602		       w->tmp[offset + sectors].state >= SECTOR_dirty) {
603			reserved_sectors += w->tmp[offset + sectors].replicas_reserved;
604			dirty_sectors += w->tmp[offset + sectors].state == SECTOR_dirty;
605			sectors++;
606		}
607		BUG_ON(!sectors);
608
609		sector = folio_sector(folio) + offset;
610
611		if (w->io &&
612		    (w->io->op.res.nr_replicas != nr_replicas_this_write ||
613		     bch_io_full(w->io, sectors << 9) ||
614		     bio_end_sector(&w->io->op.wbio.bio) != sector))
615			bch2_writepage_do_io(w);
616
617		if (!w->io)
618			bch2_writepage_io_alloc(c, wbc, w, inode, sector,
619						nr_replicas_this_write);
620
621		atomic_inc(&s->write_count);
622
623		BUG_ON(inode != w->io->inode);
624		BUG_ON(!bio_add_folio(&w->io->op.wbio.bio, folio,
625				     sectors << 9, offset << 9));
626
627		/* Check for writing past i_size: */
628		WARN_ONCE((bio_end_sector(&w->io->op.wbio.bio) << 9) >
629			  round_up(i_size, block_bytes(c)) &&
630			  !test_bit(BCH_FS_emergency_ro, &c->flags),
631			  "writing past i_size: %llu > %llu (unrounded %llu)\n",
632			  bio_end_sector(&w->io->op.wbio.bio) << 9,
633			  round_up(i_size, block_bytes(c)),
634			  i_size);
635
636		w->io->op.res.sectors += reserved_sectors;
637		w->io->op.i_sectors_delta -= dirty_sectors;
638		w->io->op.new_i_size = i_size;
639
640		offset += sectors;
641	}
642
643	if (atomic_dec_and_test(&s->write_count))
644		folio_end_writeback(folio);
645
646	return 0;
647}
648
649int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc)
650{
651	struct bch_fs *c = mapping->host->i_sb->s_fs_info;
652	struct bch_writepage_state w =
653		bch_writepage_state_init(c, to_bch_ei(mapping->host));
654	struct blk_plug plug;
655	int ret;
656
657	blk_start_plug(&plug);
658	ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w);
659	if (w.io)
660		bch2_writepage_do_io(&w);
661	blk_finish_plug(&plug);
662	kfree(w.tmp);
663	return bch2_err_class(ret);
664}
665
666/* buffered writes: */
667
668int bch2_write_begin(struct file *file, struct address_space *mapping,
669		     loff_t pos, unsigned len,
670		     struct page **pagep, void **fsdata)
671{
672	struct bch_inode_info *inode = to_bch_ei(mapping->host);
673	struct bch_fs *c = inode->v.i_sb->s_fs_info;
674	struct bch2_folio_reservation *res;
675	struct folio *folio;
676	unsigned offset;
677	int ret = -ENOMEM;
678
679	res = kmalloc(sizeof(*res), GFP_KERNEL);
680	if (!res)
681		return -ENOMEM;
682
683	bch2_folio_reservation_init(c, inode, res);
684	*fsdata = res;
685
686	bch2_pagecache_add_get(inode);
687
688	folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT,
689				FGP_LOCK|FGP_WRITE|FGP_CREAT|FGP_STABLE,
690				mapping_gfp_mask(mapping));
691	if (IS_ERR_OR_NULL(folio))
692		goto err_unlock;
693
694	offset = pos - folio_pos(folio);
695	len = min_t(size_t, len, folio_end_pos(folio) - pos);
696
697	if (folio_test_uptodate(folio))
698		goto out;
699
700	/* If we're writing entire folio, don't need to read it in first: */
701	if (!offset && len == folio_size(folio))
702		goto out;
703
704	if (!offset && pos + len >= inode->v.i_size) {
705		folio_zero_segment(folio, len, folio_size(folio));
706		flush_dcache_folio(folio);
707		goto out;
708	}
709
710	if (folio_pos(folio) >= inode->v.i_size) {
711		folio_zero_segments(folio, 0, offset, offset + len, folio_size(folio));
712		flush_dcache_folio(folio);
713		goto out;
714	}
715readpage:
716	ret = bch2_read_single_folio(folio, mapping);
717	if (ret)
718		goto err;
719out:
720	ret = bch2_folio_set(c, inode_inum(inode), &folio, 1);
721	if (ret)
722		goto err;
723
724	ret = bch2_folio_reservation_get(c, inode, folio, res, offset, len);
725	if (ret) {
726		if (!folio_test_uptodate(folio)) {
727			/*
728			 * If the folio hasn't been read in, we won't know if we
729			 * actually need a reservation - we don't actually need
730			 * to read here, we just need to check if the folio is
731			 * fully backed by uncompressed data:
732			 */
733			goto readpage;
734		}
735
736		goto err;
737	}
738
739	*pagep = &folio->page;
740	return 0;
741err:
742	folio_unlock(folio);
743	folio_put(folio);
744	*pagep = NULL;
745err_unlock:
746	bch2_pagecache_add_put(inode);
747	kfree(res);
748	*fsdata = NULL;
749	return bch2_err_class(ret);
750}
751
752int bch2_write_end(struct file *file, struct address_space *mapping,
753		   loff_t pos, unsigned len, unsigned copied,
754		   struct page *page, void *fsdata)
755{
756	struct bch_inode_info *inode = to_bch_ei(mapping->host);
757	struct bch_fs *c = inode->v.i_sb->s_fs_info;
758	struct bch2_folio_reservation *res = fsdata;
759	struct folio *folio = page_folio(page);
760	unsigned offset = pos - folio_pos(folio);
761
762	lockdep_assert_held(&inode->v.i_rwsem);
763	BUG_ON(offset + copied > folio_size(folio));
764
765	if (unlikely(copied < len && !folio_test_uptodate(folio))) {
766		/*
767		 * The folio needs to be read in, but that would destroy
768		 * our partial write - simplest thing is to just force
769		 * userspace to redo the write:
770		 */
771		folio_zero_range(folio, 0, folio_size(folio));
772		flush_dcache_folio(folio);
773		copied = 0;
774	}
775
776	spin_lock(&inode->v.i_lock);
777	if (pos + copied > inode->v.i_size)
778		i_size_write(&inode->v, pos + copied);
779	spin_unlock(&inode->v.i_lock);
780
781	if (copied) {
782		if (!folio_test_uptodate(folio))
783			folio_mark_uptodate(folio);
784
785		bch2_set_folio_dirty(c, inode, folio, res, offset, copied);
786
787		inode->ei_last_dirtied = (unsigned long) current;
788	}
789
790	folio_unlock(folio);
791	folio_put(folio);
792	bch2_pagecache_add_put(inode);
793
794	bch2_folio_reservation_put(c, inode, res);
795	kfree(res);
796
797	return copied;
798}
799
800static noinline void folios_trunc(folios *fs, struct folio **fi)
801{
802	while (fs->data + fs->nr > fi) {
803		struct folio *f = darray_pop(fs);
804
805		folio_unlock(f);
806		folio_put(f);
807	}
808}
809
810static int __bch2_buffered_write(struct bch_inode_info *inode,
811				 struct address_space *mapping,
812				 struct iov_iter *iter,
813				 loff_t pos, unsigned len,
814				 bool inode_locked)
815{
816	struct bch_fs *c = inode->v.i_sb->s_fs_info;
817	struct bch2_folio_reservation res;
818	folios fs;
819	struct folio *f;
820	unsigned copied = 0, f_offset, f_copied;
821	u64 end = pos + len, f_pos, f_len;
822	loff_t last_folio_pos = inode->v.i_size;
823	int ret = 0;
824
825	BUG_ON(!len);
826
827	bch2_folio_reservation_init(c, inode, &res);
828	darray_init(&fs);
829
830	ret = bch2_filemap_get_contig_folios_d(mapping, pos, end,
831				   FGP_LOCK|FGP_WRITE|FGP_STABLE|FGP_CREAT,
832				   mapping_gfp_mask(mapping),
833				   &fs);
834	if (ret)
835		goto out;
836
837	BUG_ON(!fs.nr);
838
839	/*
840	 * If we're not using the inode lock, we need to lock all the folios for
841	 * atomiticity of writes vs. other writes:
842	 */
843	if (!inode_locked && folio_end_pos(darray_last(fs)) < end) {
844		ret = -BCH_ERR_need_inode_lock;
845		goto out;
846	}
847
848	f = darray_first(fs);
849	if (pos != folio_pos(f) && !folio_test_uptodate(f)) {
850		ret = bch2_read_single_folio(f, mapping);
851		if (ret)
852			goto out;
853	}
854
855	f = darray_last(fs);
856	end = min(end, folio_end_pos(f));
857	last_folio_pos = folio_pos(f);
858	if (end != folio_end_pos(f) && !folio_test_uptodate(f)) {
859		if (end >= inode->v.i_size) {
860			folio_zero_range(f, 0, folio_size(f));
861		} else {
862			ret = bch2_read_single_folio(f, mapping);
863			if (ret)
864				goto out;
865		}
866	}
867
868	ret = bch2_folio_set(c, inode_inum(inode), fs.data, fs.nr);
869	if (ret)
870		goto out;
871
872	f_pos = pos;
873	f_offset = pos - folio_pos(darray_first(fs));
874	darray_for_each(fs, fi) {
875		f = *fi;
876		f_len = min(end, folio_end_pos(f)) - f_pos;
877
878		/*
879		 * XXX: per POSIX and fstests generic/275, on -ENOSPC we're
880		 * supposed to write as much as we have disk space for.
881		 *
882		 * On failure here we should still write out a partial page if
883		 * we aren't completely out of disk space - we don't do that
884		 * yet:
885		 */
886		ret = bch2_folio_reservation_get(c, inode, f, &res, f_offset, f_len);
887		if (unlikely(ret)) {
888			folios_trunc(&fs, fi);
889			if (!fs.nr)
890				goto out;
891
892			end = min(end, folio_end_pos(darray_last(fs)));
893			break;
894		}
895
896		f_pos = folio_end_pos(f);
897		f_offset = 0;
898	}
899
900	if (mapping_writably_mapped(mapping))
901		darray_for_each(fs, fi)
902			flush_dcache_folio(*fi);
903
904	f_pos = pos;
905	f_offset = pos - folio_pos(darray_first(fs));
906	darray_for_each(fs, fi) {
907		f = *fi;
908		f_len = min(end, folio_end_pos(f)) - f_pos;
909		f_copied = copy_page_from_iter_atomic(&f->page, f_offset, f_len, iter);
910		if (!f_copied) {
911			folios_trunc(&fs, fi);
912			break;
913		}
914
915		if (!folio_test_uptodate(f) &&
916		    f_copied != folio_size(f) &&
917		    pos + copied + f_copied < inode->v.i_size) {
918			iov_iter_revert(iter, f_copied);
919			folio_zero_range(f, 0, folio_size(f));
920			folios_trunc(&fs, fi);
921			break;
922		}
923
924		flush_dcache_folio(f);
925		copied += f_copied;
926
927		if (f_copied != f_len) {
928			folios_trunc(&fs, fi + 1);
929			break;
930		}
931
932		f_pos = folio_end_pos(f);
933		f_offset = 0;
934	}
935
936	if (!copied)
937		goto out;
938
939	end = pos + copied;
940
941	spin_lock(&inode->v.i_lock);
942	if (end > inode->v.i_size) {
943		BUG_ON(!inode_locked);
944		i_size_write(&inode->v, end);
945	}
946	spin_unlock(&inode->v.i_lock);
947
948	f_pos = pos;
949	f_offset = pos - folio_pos(darray_first(fs));
950	darray_for_each(fs, fi) {
951		f = *fi;
952		f_len = min(end, folio_end_pos(f)) - f_pos;
953
954		if (!folio_test_uptodate(f))
955			folio_mark_uptodate(f);
956
957		bch2_set_folio_dirty(c, inode, f, &res, f_offset, f_len);
958
959		f_pos = folio_end_pos(f);
960		f_offset = 0;
961	}
962
963	inode->ei_last_dirtied = (unsigned long) current;
964out:
965	darray_for_each(fs, fi) {
966		folio_unlock(*fi);
967		folio_put(*fi);
968	}
969
970	/*
971	 * If the last folio added to the mapping starts beyond current EOF, we
972	 * performed a short write but left around at least one post-EOF folio.
973	 * Clean up the mapping before we return.
974	 */
975	if (last_folio_pos >= inode->v.i_size)
976		truncate_pagecache(&inode->v, inode->v.i_size);
977
978	darray_exit(&fs);
979	bch2_folio_reservation_put(c, inode, &res);
980
981	return copied ?: ret;
982}
983
984static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
985{
986	struct file *file = iocb->ki_filp;
987	struct address_space *mapping = file->f_mapping;
988	struct bch_inode_info *inode = file_bch_inode(file);
989	loff_t pos;
990	bool inode_locked = false;
991	ssize_t written = 0, written2 = 0, ret = 0;
992
993	/*
994	 * We don't take the inode lock unless i_size will be changing. Folio
995	 * locks provide exclusion with other writes, and the pagecache add lock
996	 * provides exclusion with truncate and hole punching.
997	 *
998	 * There is one nasty corner case where atomicity would be broken
999	 * without great care: when copying data from userspace to the page
1000	 * cache, we do that with faults disable - a page fault would recurse
1001	 * back into the filesystem, taking filesystem locks again, and
1002	 * deadlock; so it's done with faults disabled, and we fault in the user
1003	 * buffer when we aren't holding locks.
1004	 *
1005	 * If we do part of the write, but we then race and in the userspace
1006	 * buffer have been evicted and are no longer resident, then we have to
1007	 * drop our folio locks to re-fault them in, breaking write atomicity.
1008	 *
1009	 * To fix this, we restart the write from the start, if we weren't
1010	 * holding the inode lock.
1011	 *
1012	 * There is another wrinkle after that; if we restart the write from the
1013	 * start, and then get an unrecoverable error, we _cannot_ claim to
1014	 * userspace that we did not write data we actually did - so we must
1015	 * track (written2) the most we ever wrote.
1016	 */
1017
1018	if ((iocb->ki_flags & IOCB_APPEND) ||
1019	    (iocb->ki_pos + iov_iter_count(iter) > i_size_read(&inode->v))) {
1020		inode_lock(&inode->v);
1021		inode_locked = true;
1022	}
1023
1024	ret = generic_write_checks(iocb, iter);
1025	if (ret <= 0)
1026		goto unlock;
1027
1028	ret = file_remove_privs_flags(file, !inode_locked ? IOCB_NOWAIT : 0);
1029	if (ret) {
1030		if (!inode_locked) {
1031			inode_lock(&inode->v);
1032			inode_locked = true;
1033			ret = file_remove_privs_flags(file, 0);
1034		}
1035		if (ret)
1036			goto unlock;
1037	}
1038
1039	ret = file_update_time(file);
1040	if (ret)
1041		goto unlock;
1042
1043	pos = iocb->ki_pos;
1044
1045	bch2_pagecache_add_get(inode);
1046
1047	if (!inode_locked &&
1048	    (iocb->ki_pos + iov_iter_count(iter) > i_size_read(&inode->v)))
1049		goto get_inode_lock;
1050
1051	do {
1052		unsigned offset = pos & (PAGE_SIZE - 1);
1053		unsigned bytes = iov_iter_count(iter);
1054again:
1055		/*
1056		 * Bring in the user page that we will copy from _first_.
1057		 * Otherwise there's a nasty deadlock on copying from the
1058		 * same page as we're writing to, without it being marked
1059		 * up-to-date.
1060		 *
1061		 * Not only is this an optimisation, but it is also required
1062		 * to check that the address is actually valid, when atomic
1063		 * usercopies are used, below.
1064		 */
1065		if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
1066			bytes = min_t(unsigned long, iov_iter_count(iter),
1067				      PAGE_SIZE - offset);
1068
1069			if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
1070				ret = -EFAULT;
1071				break;
1072			}
1073		}
1074
1075		if (unlikely(bytes != iov_iter_count(iter) && !inode_locked))
1076			goto get_inode_lock;
1077
1078		if (unlikely(fatal_signal_pending(current))) {
1079			ret = -EINTR;
1080			break;
1081		}
1082
1083		ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes, inode_locked);
1084		if (ret == -BCH_ERR_need_inode_lock)
1085			goto get_inode_lock;
1086		if (unlikely(ret < 0))
1087			break;
1088
1089		cond_resched();
1090
1091		if (unlikely(ret == 0)) {
1092			/*
1093			 * If we were unable to copy any data at all, we must
1094			 * fall back to a single segment length write.
1095			 *
1096			 * If we didn't fallback here, we could livelock
1097			 * because not all segments in the iov can be copied at
1098			 * once without a pagefault.
1099			 */
1100			bytes = min_t(unsigned long, PAGE_SIZE - offset,
1101				      iov_iter_single_seg_count(iter));
1102			goto again;
1103		}
1104		pos += ret;
1105		written += ret;
1106		written2 = max(written, written2);
1107
1108		if (ret != bytes && !inode_locked)
1109			goto get_inode_lock;
1110		ret = 0;
1111
1112		balance_dirty_pages_ratelimited(mapping);
1113
1114		if (0) {
1115get_inode_lock:
1116			bch2_pagecache_add_put(inode);
1117			inode_lock(&inode->v);
1118			inode_locked = true;
1119			bch2_pagecache_add_get(inode);
1120
1121			iov_iter_revert(iter, written);
1122			pos -= written;
1123			written = 0;
1124			ret = 0;
1125		}
1126	} while (iov_iter_count(iter));
1127	bch2_pagecache_add_put(inode);
1128unlock:
1129	if (inode_locked)
1130		inode_unlock(&inode->v);
1131
1132	iocb->ki_pos += written;
1133
1134	ret = max(written, written2) ?: ret;
1135	if (ret > 0)
1136		ret = generic_write_sync(iocb, ret);
1137	return ret;
1138}
1139
1140ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *iter)
1141{
1142	ssize_t ret = iocb->ki_flags & IOCB_DIRECT
1143		? bch2_direct_write(iocb, iter)
1144		: bch2_buffered_write(iocb, iter);
1145
1146	return bch2_err_class(ret);
1147}
1148
1149void bch2_fs_fs_io_buffered_exit(struct bch_fs *c)
1150{
1151	bioset_exit(&c->writepage_bioset);
1152}
1153
1154int bch2_fs_fs_io_buffered_init(struct bch_fs *c)
1155{
1156	if (bioset_init(&c->writepage_bioset,
1157			4, offsetof(struct bch_writepage_io, op.wbio.bio),
1158			BIOSET_NEED_BVECS))
1159		return -BCH_ERR_ENOMEM_writepage_bioset_init;
1160
1161	return 0;
1162}
1163
1164#endif /* NO_BCACHEFS_FS */
1165