1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Code for managing the extent btree and dynamically updating the writeback
6 * dirty sector count.
7 */
8
9#include "bcachefs.h"
10#include "bkey_methods.h"
11#include "btree_cache.h"
12#include "btree_gc.h"
13#include "btree_io.h"
14#include "btree_iter.h"
15#include "buckets.h"
16#include "checksum.h"
17#include "compress.h"
18#include "debug.h"
19#include "disk_groups.h"
20#include "error.h"
21#include "extents.h"
22#include "inode.h"
23#include "journal.h"
24#include "replicas.h"
25#include "super.h"
26#include "super-io.h"
27#include "trace.h"
28#include "util.h"
29
30static unsigned bch2_crc_field_size_max[] = {
31	[BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX,
32	[BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX,
33	[BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX,
34};
35
36static void bch2_extent_crc_pack(union bch_extent_crc *,
37				 struct bch_extent_crc_unpacked,
38				 enum bch_extent_entry_type);
39
40static struct bch_dev_io_failures *dev_io_failures(struct bch_io_failures *f,
41						   unsigned dev)
42{
43	struct bch_dev_io_failures *i;
44
45	for (i = f->devs; i < f->devs + f->nr; i++)
46		if (i->dev == dev)
47			return i;
48
49	return NULL;
50}
51
52void bch2_mark_io_failure(struct bch_io_failures *failed,
53			  struct extent_ptr_decoded *p)
54{
55	struct bch_dev_io_failures *f = dev_io_failures(failed, p->ptr.dev);
56
57	if (!f) {
58		BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs));
59
60		f = &failed->devs[failed->nr++];
61		f->dev		= p->ptr.dev;
62		f->idx		= p->idx;
63		f->nr_failed	= 1;
64		f->nr_retries	= 0;
65	} else if (p->idx != f->idx) {
66		f->idx		= p->idx;
67		f->nr_failed	= 1;
68		f->nr_retries	= 0;
69	} else {
70		f->nr_failed++;
71	}
72}
73
74/*
75 * returns true if p1 is better than p2:
76 */
77static inline bool ptr_better(struct bch_fs *c,
78			      const struct extent_ptr_decoded p1,
79			      const struct extent_ptr_decoded p2)
80{
81	if (likely(!p1.idx && !p2.idx)) {
82		struct bch_dev *dev1 = bch_dev_bkey_exists(c, p1.ptr.dev);
83		struct bch_dev *dev2 = bch_dev_bkey_exists(c, p2.ptr.dev);
84
85		u64 l1 = atomic64_read(&dev1->cur_latency[READ]);
86		u64 l2 = atomic64_read(&dev2->cur_latency[READ]);
87
88		/* Pick at random, biased in favor of the faster device: */
89
90		return bch2_rand_range(l1 + l2) > l1;
91	}
92
93	if (bch2_force_reconstruct_read)
94		return p1.idx > p2.idx;
95
96	return p1.idx < p2.idx;
97}
98
99/*
100 * This picks a non-stale pointer, preferably from a device other than @avoid.
101 * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to
102 * other devices, it will still pick a pointer from avoid.
103 */
104int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k,
105			       struct bch_io_failures *failed,
106			       struct extent_ptr_decoded *pick)
107{
108	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
109	const union bch_extent_entry *entry;
110	struct extent_ptr_decoded p;
111	struct bch_dev_io_failures *f;
112	struct bch_dev *ca;
113	int ret = 0;
114
115	if (k.k->type == KEY_TYPE_error)
116		return -EIO;
117
118	bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
119		/*
120		 * Unwritten extent: no need to actually read, treat it as a
121		 * hole and return 0s:
122		 */
123		if (p.ptr.unwritten)
124			return 0;
125
126		ca = bch_dev_bkey_exists(c, p.ptr.dev);
127
128		/*
129		 * If there are any dirty pointers it's an error if we can't
130		 * read:
131		 */
132		if (!ret && !p.ptr.cached)
133			ret = -EIO;
134
135		if (p.ptr.cached && ptr_stale(ca, &p.ptr))
136			continue;
137
138		f = failed ? dev_io_failures(failed, p.ptr.dev) : NULL;
139		if (f)
140			p.idx = f->nr_failed < f->nr_retries
141				? f->idx
142				: f->idx + 1;
143
144		if (!p.idx &&
145		    !bch2_dev_is_readable(ca))
146			p.idx++;
147
148		if (bch2_force_reconstruct_read &&
149		    !p.idx && p.has_ec)
150			p.idx++;
151
152		if (p.idx >= (unsigned) p.has_ec + 1)
153			continue;
154
155		if (ret > 0 && !ptr_better(c, p, *pick))
156			continue;
157
158		*pick = p;
159		ret = 1;
160	}
161
162	return ret;
163}
164
165/* KEY_TYPE_btree_ptr: */
166
167int bch2_btree_ptr_invalid(struct bch_fs *c, struct bkey_s_c k,
168			   enum bkey_invalid_flags flags,
169			   struct printbuf *err)
170{
171	int ret = 0;
172
173	bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX, c, err,
174			 btree_ptr_val_too_big,
175			 "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX);
176
177	ret = bch2_bkey_ptrs_invalid(c, k, flags, err);
178fsck_err:
179	return ret;
180}
181
182void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c,
183			    struct bkey_s_c k)
184{
185	bch2_bkey_ptrs_to_text(out, c, k);
186}
187
188int bch2_btree_ptr_v2_invalid(struct bch_fs *c, struct bkey_s_c k,
189			      enum bkey_invalid_flags flags,
190			      struct printbuf *err)
191{
192	struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
193	int ret = 0;
194
195	bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX,
196			 c, err, btree_ptr_v2_val_too_big,
197			 "value too big (%zu > %zu)",
198			 bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX);
199
200	bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p),
201			 c, err, btree_ptr_v2_min_key_bad,
202			 "min_key > key");
203
204	ret = bch2_bkey_ptrs_invalid(c, k, flags, err);
205fsck_err:
206	return ret;
207}
208
209void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c,
210			       struct bkey_s_c k)
211{
212	struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
213
214	prt_printf(out, "seq %llx written %u min_key %s",
215	       le64_to_cpu(bp.v->seq),
216	       le16_to_cpu(bp.v->sectors_written),
217	       BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : "");
218
219	bch2_bpos_to_text(out, bp.v->min_key);
220	prt_printf(out, " ");
221	bch2_bkey_ptrs_to_text(out, c, k);
222}
223
224void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version,
225			      unsigned big_endian, int write,
226			      struct bkey_s k)
227{
228	struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k);
229
230	compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key);
231
232	if (version < bcachefs_metadata_version_inode_btree_change &&
233	    btree_id_is_extents(btree_id) &&
234	    !bkey_eq(bp.v->min_key, POS_MIN))
235		bp.v->min_key = write
236			? bpos_nosnap_predecessor(bp.v->min_key)
237			: bpos_nosnap_successor(bp.v->min_key);
238}
239
240/* KEY_TYPE_extent: */
241
242bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r)
243{
244	struct bkey_ptrs   l_ptrs = bch2_bkey_ptrs(l);
245	struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r);
246	union bch_extent_entry *en_l;
247	const union bch_extent_entry *en_r;
248	struct extent_ptr_decoded lp, rp;
249	bool use_right_ptr;
250	struct bch_dev *ca;
251
252	en_l = l_ptrs.start;
253	en_r = r_ptrs.start;
254	while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
255		if (extent_entry_type(en_l) != extent_entry_type(en_r))
256			return false;
257
258		en_l = extent_entry_next(en_l);
259		en_r = extent_entry_next(en_r);
260	}
261
262	if (en_l < l_ptrs.end || en_r < r_ptrs.end)
263		return false;
264
265	en_l = l_ptrs.start;
266	en_r = r_ptrs.start;
267	lp.crc = bch2_extent_crc_unpack(l.k, NULL);
268	rp.crc = bch2_extent_crc_unpack(r.k, NULL);
269
270	while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) &&
271	       __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) {
272		if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size !=
273		    rp.ptr.offset + rp.crc.offset ||
274		    lp.ptr.dev			!= rp.ptr.dev ||
275		    lp.ptr.gen			!= rp.ptr.gen ||
276		    lp.ptr.unwritten		!= rp.ptr.unwritten ||
277		    lp.has_ec			!= rp.has_ec)
278			return false;
279
280		/* Extents may not straddle buckets: */
281		ca = bch_dev_bkey_exists(c, lp.ptr.dev);
282		if (PTR_BUCKET_NR(ca, &lp.ptr) != PTR_BUCKET_NR(ca, &rp.ptr))
283			return false;
284
285		if (lp.has_ec			!= rp.has_ec ||
286		    (lp.has_ec &&
287		     (lp.ec.block		!= rp.ec.block ||
288		      lp.ec.redundancy		!= rp.ec.redundancy ||
289		      lp.ec.idx			!= rp.ec.idx)))
290			return false;
291
292		if (lp.crc.compression_type	!= rp.crc.compression_type ||
293		    lp.crc.nonce		!= rp.crc.nonce)
294			return false;
295
296		if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <=
297		    lp.crc.uncompressed_size) {
298			/* can use left extent's crc entry */
299		} else if (lp.crc.live_size <= rp.crc.offset) {
300			/* can use right extent's crc entry */
301		} else {
302			/* check if checksums can be merged: */
303			if (lp.crc.csum_type		!= rp.crc.csum_type ||
304			    lp.crc.nonce		!= rp.crc.nonce ||
305			    crc_is_compressed(lp.crc) ||
306			    !bch2_checksum_mergeable(lp.crc.csum_type))
307				return false;
308
309			if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size ||
310			    rp.crc.offset)
311				return false;
312
313			if (lp.crc.csum_type &&
314			    lp.crc.uncompressed_size +
315			    rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9))
316				return false;
317		}
318
319		en_l = extent_entry_next(en_l);
320		en_r = extent_entry_next(en_r);
321	}
322
323	en_l = l_ptrs.start;
324	en_r = r_ptrs.start;
325	while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
326		if (extent_entry_is_crc(en_l)) {
327			struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
328			struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
329
330			if (crc_l.uncompressed_size + crc_r.uncompressed_size >
331			    bch2_crc_field_size_max[extent_entry_type(en_l)])
332				return false;
333		}
334
335		en_l = extent_entry_next(en_l);
336		en_r = extent_entry_next(en_r);
337	}
338
339	use_right_ptr = false;
340	en_l = l_ptrs.start;
341	en_r = r_ptrs.start;
342	while (en_l < l_ptrs.end) {
343		if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr &&
344		    use_right_ptr)
345			en_l->ptr = en_r->ptr;
346
347		if (extent_entry_is_crc(en_l)) {
348			struct bch_extent_crc_unpacked crc_l =
349				bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
350			struct bch_extent_crc_unpacked crc_r =
351				bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
352
353			use_right_ptr = false;
354
355			if (crc_l.offset + crc_l.live_size + crc_r.live_size <=
356			    crc_l.uncompressed_size) {
357				/* can use left extent's crc entry */
358			} else if (crc_l.live_size <= crc_r.offset) {
359				/* can use right extent's crc entry */
360				crc_r.offset -= crc_l.live_size;
361				bch2_extent_crc_pack(entry_to_crc(en_l), crc_r,
362						     extent_entry_type(en_l));
363				use_right_ptr = true;
364			} else {
365				crc_l.csum = bch2_checksum_merge(crc_l.csum_type,
366								 crc_l.csum,
367								 crc_r.csum,
368								 crc_r.uncompressed_size << 9);
369
370				crc_l.uncompressed_size	+= crc_r.uncompressed_size;
371				crc_l.compressed_size	+= crc_r.compressed_size;
372				bch2_extent_crc_pack(entry_to_crc(en_l), crc_l,
373						     extent_entry_type(en_l));
374			}
375		}
376
377		en_l = extent_entry_next(en_l);
378		en_r = extent_entry_next(en_r);
379	}
380
381	bch2_key_resize(l.k, l.k->size + r.k->size);
382	return true;
383}
384
385/* KEY_TYPE_reservation: */
386
387int bch2_reservation_invalid(struct bch_fs *c, struct bkey_s_c k,
388			     enum bkey_invalid_flags flags,
389			     struct printbuf *err)
390{
391	struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
392	int ret = 0;
393
394	bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX, c, err,
395			 reservation_key_nr_replicas_invalid,
396			 "invalid nr_replicas (%u)", r.v->nr_replicas);
397fsck_err:
398	return ret;
399}
400
401void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c,
402			      struct bkey_s_c k)
403{
404	struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
405
406	prt_printf(out, "generation %u replicas %u",
407	       le32_to_cpu(r.v->generation),
408	       r.v->nr_replicas);
409}
410
411bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r)
412{
413	struct bkey_s_reservation l = bkey_s_to_reservation(_l);
414	struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r);
415
416	if (l.v->generation != r.v->generation ||
417	    l.v->nr_replicas != r.v->nr_replicas)
418		return false;
419
420	bch2_key_resize(l.k, l.k->size + r.k->size);
421	return true;
422}
423
424/* Extent checksum entries: */
425
426/* returns true if not equal */
427static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,
428					 struct bch_extent_crc_unpacked r)
429{
430	return (l.csum_type		!= r.csum_type ||
431		l.compression_type	!= r.compression_type ||
432		l.compressed_size	!= r.compressed_size ||
433		l.uncompressed_size	!= r.uncompressed_size ||
434		l.offset		!= r.offset ||
435		l.live_size		!= r.live_size ||
436		l.nonce			!= r.nonce ||
437		bch2_crc_cmp(l.csum, r.csum));
438}
439
440static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u,
441				  struct bch_extent_crc_unpacked n)
442{
443	return !crc_is_compressed(u) &&
444		u.csum_type &&
445		u.uncompressed_size > u.live_size &&
446		bch2_csum_type_is_encryption(u.csum_type) ==
447		bch2_csum_type_is_encryption(n.csum_type);
448}
449
450bool bch2_can_narrow_extent_crcs(struct bkey_s_c k,
451				 struct bch_extent_crc_unpacked n)
452{
453	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
454	struct bch_extent_crc_unpacked crc;
455	const union bch_extent_entry *i;
456
457	if (!n.csum_type)
458		return false;
459
460	bkey_for_each_crc(k.k, ptrs, crc, i)
461		if (can_narrow_crc(crc, n))
462			return true;
463
464	return false;
465}
466
467/*
468 * We're writing another replica for this extent, so while we've got the data in
469 * memory we'll be computing a new checksum for the currently live data.
470 *
471 * If there are other replicas we aren't moving, and they are checksummed but
472 * not compressed, we can modify them to point to only the data that is
473 * currently live (so that readers won't have to bounce) while we've got the
474 * checksum we need:
475 */
476bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n)
477{
478	struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
479	struct bch_extent_crc_unpacked u;
480	struct extent_ptr_decoded p;
481	union bch_extent_entry *i;
482	bool ret = false;
483
484	/* Find a checksum entry that covers only live data: */
485	if (!n.csum_type) {
486		bkey_for_each_crc(&k->k, ptrs, u, i)
487			if (!crc_is_compressed(u) &&
488			    u.csum_type &&
489			    u.live_size == u.uncompressed_size) {
490				n = u;
491				goto found;
492			}
493		return false;
494	}
495found:
496	BUG_ON(crc_is_compressed(n));
497	BUG_ON(n.offset);
498	BUG_ON(n.live_size != k->k.size);
499
500restart_narrow_pointers:
501	ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
502
503	bkey_for_each_ptr_decode(&k->k, ptrs, p, i)
504		if (can_narrow_crc(p.crc, n)) {
505			bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr);
506			p.ptr.offset += p.crc.offset;
507			p.crc = n;
508			bch2_extent_ptr_decoded_append(k, &p);
509			ret = true;
510			goto restart_narrow_pointers;
511		}
512
513	return ret;
514}
515
516static void bch2_extent_crc_pack(union bch_extent_crc *dst,
517				 struct bch_extent_crc_unpacked src,
518				 enum bch_extent_entry_type type)
519{
520#define set_common_fields(_dst, _src)					\
521		_dst.type		= 1 << type;			\
522		_dst.csum_type		= _src.csum_type,		\
523		_dst.compression_type	= _src.compression_type,	\
524		_dst._compressed_size	= _src.compressed_size - 1,	\
525		_dst._uncompressed_size	= _src.uncompressed_size - 1,	\
526		_dst.offset		= _src.offset
527
528	switch (type) {
529	case BCH_EXTENT_ENTRY_crc32:
530		set_common_fields(dst->crc32, src);
531		dst->crc32.csum		= (u32 __force) *((__le32 *) &src.csum.lo);
532		break;
533	case BCH_EXTENT_ENTRY_crc64:
534		set_common_fields(dst->crc64, src);
535		dst->crc64.nonce	= src.nonce;
536		dst->crc64.csum_lo	= (u64 __force) src.csum.lo;
537		dst->crc64.csum_hi	= (u64 __force) *((__le16 *) &src.csum.hi);
538		break;
539	case BCH_EXTENT_ENTRY_crc128:
540		set_common_fields(dst->crc128, src);
541		dst->crc128.nonce	= src.nonce;
542		dst->crc128.csum	= src.csum;
543		break;
544	default:
545		BUG();
546	}
547#undef set_common_fields
548}
549
550void bch2_extent_crc_append(struct bkey_i *k,
551			    struct bch_extent_crc_unpacked new)
552{
553	struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
554	union bch_extent_crc *crc = (void *) ptrs.end;
555	enum bch_extent_entry_type type;
556
557	if (bch_crc_bytes[new.csum_type]	<= 4 &&
558	    new.uncompressed_size		<= CRC32_SIZE_MAX &&
559	    new.nonce				<= CRC32_NONCE_MAX)
560		type = BCH_EXTENT_ENTRY_crc32;
561	else if (bch_crc_bytes[new.csum_type]	<= 10 &&
562		   new.uncompressed_size	<= CRC64_SIZE_MAX &&
563		   new.nonce			<= CRC64_NONCE_MAX)
564		type = BCH_EXTENT_ENTRY_crc64;
565	else if (bch_crc_bytes[new.csum_type]	<= 16 &&
566		   new.uncompressed_size	<= CRC128_SIZE_MAX &&
567		   new.nonce			<= CRC128_NONCE_MAX)
568		type = BCH_EXTENT_ENTRY_crc128;
569	else
570		BUG();
571
572	bch2_extent_crc_pack(crc, new, type);
573
574	k->k.u64s += extent_entry_u64s(ptrs.end);
575
576	EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX);
577}
578
579/* Generic code for keys with pointers: */
580
581unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k)
582{
583	return bch2_bkey_devs(k).nr;
584}
585
586unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k)
587{
588	return k.k->type == KEY_TYPE_reservation
589		? bkey_s_c_to_reservation(k).v->nr_replicas
590		: bch2_bkey_dirty_devs(k).nr;
591}
592
593unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k)
594{
595	unsigned ret = 0;
596
597	if (k.k->type == KEY_TYPE_reservation) {
598		ret = bkey_s_c_to_reservation(k).v->nr_replicas;
599	} else {
600		struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
601		const union bch_extent_entry *entry;
602		struct extent_ptr_decoded p;
603
604		bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
605			ret += !p.ptr.cached && !crc_is_compressed(p.crc);
606	}
607
608	return ret;
609}
610
611unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k)
612{
613	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
614	const union bch_extent_entry *entry;
615	struct extent_ptr_decoded p;
616	unsigned ret = 0;
617
618	bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
619		if (!p.ptr.cached && crc_is_compressed(p.crc))
620			ret += p.crc.compressed_size;
621
622	return ret;
623}
624
625bool bch2_bkey_is_incompressible(struct bkey_s_c k)
626{
627	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
628	const union bch_extent_entry *entry;
629	struct bch_extent_crc_unpacked crc;
630
631	bkey_for_each_crc(k.k, ptrs, crc, entry)
632		if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible)
633			return true;
634	return false;
635}
636
637unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k)
638{
639	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
640	const union bch_extent_entry *entry;
641	struct extent_ptr_decoded p = { 0 };
642	unsigned replicas = 0;
643
644	bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
645		if (p.ptr.cached)
646			continue;
647
648		if (p.has_ec)
649			replicas += p.ec.redundancy;
650
651		replicas++;
652
653	}
654
655	return replicas;
656}
657
658static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p)
659{
660	if (p->ptr.cached)
661		return 0;
662
663	return p->has_ec
664		? p->ec.redundancy + 1
665		: ca->mi.durability;
666}
667
668unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
669{
670	struct bch_dev *ca = bch_dev_bkey_exists(c, p->ptr.dev);
671
672	return __extent_ptr_durability(ca, p);
673}
674
675unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
676{
677	struct bch_dev *ca = bch_dev_bkey_exists(c, p->ptr.dev);
678
679	if (ca->mi.state == BCH_MEMBER_STATE_failed)
680		return 0;
681
682	return __extent_ptr_durability(ca, p);
683}
684
685unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k)
686{
687	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
688	const union bch_extent_entry *entry;
689	struct extent_ptr_decoded p;
690	unsigned durability = 0;
691
692	bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
693		durability += bch2_extent_ptr_durability(c, &p);
694
695	return durability;
696}
697
698static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k)
699{
700	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
701	const union bch_extent_entry *entry;
702	struct extent_ptr_decoded p;
703	unsigned durability = 0;
704
705	bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
706		if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev])
707			durability += bch2_extent_ptr_durability(c, &p);
708
709	return durability;
710}
711
712void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry)
713{
714	union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k));
715	union bch_extent_entry *next = extent_entry_next(entry);
716
717	memmove_u64s(entry, next, (u64 *) end - (u64 *) next);
718	k->k.u64s -= extent_entry_u64s(entry);
719}
720
721void bch2_extent_ptr_decoded_append(struct bkey_i *k,
722				    struct extent_ptr_decoded *p)
723{
724	struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
725	struct bch_extent_crc_unpacked crc =
726		bch2_extent_crc_unpack(&k->k, NULL);
727	union bch_extent_entry *pos;
728
729	if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
730		pos = ptrs.start;
731		goto found;
732	}
733
734	bkey_for_each_crc(&k->k, ptrs, crc, pos)
735		if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
736			pos = extent_entry_next(pos);
737			goto found;
738		}
739
740	bch2_extent_crc_append(k, p->crc);
741	pos = bkey_val_end(bkey_i_to_s(k));
742found:
743	p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr;
744	__extent_entry_insert(k, pos, to_entry(&p->ptr));
745
746	if (p->has_ec) {
747		p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr;
748		__extent_entry_insert(k, pos, to_entry(&p->ec));
749	}
750}
751
752static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs,
753					  union bch_extent_entry *entry)
754{
755	union bch_extent_entry *i = ptrs.start;
756
757	if (i == entry)
758		return NULL;
759
760	while (extent_entry_next(i) != entry)
761		i = extent_entry_next(i);
762	return i;
763}
764
765/*
766 * Returns pointer to the next entry after the one being dropped:
767 */
768union bch_extent_entry *bch2_bkey_drop_ptr_noerror(struct bkey_s k,
769						   struct bch_extent_ptr *ptr)
770{
771	struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
772	union bch_extent_entry *entry = to_entry(ptr), *next;
773	union bch_extent_entry *ret = entry;
774	bool drop_crc = true;
775
776	EBUG_ON(ptr < &ptrs.start->ptr ||
777		ptr >= &ptrs.end->ptr);
778	EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr);
779
780	for (next = extent_entry_next(entry);
781	     next != ptrs.end;
782	     next = extent_entry_next(next)) {
783		if (extent_entry_is_crc(next)) {
784			break;
785		} else if (extent_entry_is_ptr(next)) {
786			drop_crc = false;
787			break;
788		}
789	}
790
791	extent_entry_drop(k, entry);
792
793	while ((entry = extent_entry_prev(ptrs, entry))) {
794		if (extent_entry_is_ptr(entry))
795			break;
796
797		if ((extent_entry_is_crc(entry) && drop_crc) ||
798		    extent_entry_is_stripe_ptr(entry)) {
799			ret = (void *) ret - extent_entry_bytes(entry);
800			extent_entry_drop(k, entry);
801		}
802	}
803
804	return ret;
805}
806
807union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s k,
808					   struct bch_extent_ptr *ptr)
809{
810	bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr;
811	union bch_extent_entry *ret =
812		bch2_bkey_drop_ptr_noerror(k, ptr);
813
814	/*
815	 * If we deleted all the dirty pointers and there's still cached
816	 * pointers, we could set the cached pointers to dirty if they're not
817	 * stale - but to do that correctly we'd need to grab an open_bucket
818	 * reference so that we don't race with bucket reuse:
819	 */
820	if (have_dirty &&
821	    !bch2_bkey_dirty_devs(k.s_c).nr) {
822		k.k->type = KEY_TYPE_error;
823		set_bkey_val_u64s(k.k, 0);
824		ret = NULL;
825	} else if (!bch2_bkey_nr_ptrs(k.s_c)) {
826		k.k->type = KEY_TYPE_deleted;
827		set_bkey_val_u64s(k.k, 0);
828		ret = NULL;
829	}
830
831	return ret;
832}
833
834void bch2_bkey_drop_device(struct bkey_s k, unsigned dev)
835{
836	struct bch_extent_ptr *ptr;
837
838	bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev);
839}
840
841void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev)
842{
843	struct bch_extent_ptr *ptr = bch2_bkey_has_device(k, dev);
844
845	if (ptr)
846		bch2_bkey_drop_ptr_noerror(k, ptr);
847}
848
849const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev)
850{
851	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
852
853	bkey_for_each_ptr(ptrs, ptr)
854		if (ptr->dev == dev)
855			return ptr;
856
857	return NULL;
858}
859
860bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target)
861{
862	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
863
864	bkey_for_each_ptr(ptrs, ptr)
865		if (bch2_dev_in_target(c, ptr->dev, target) &&
866		    (!ptr->cached ||
867		     !ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr)))
868			return true;
869
870	return false;
871}
872
873bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k,
874			   struct bch_extent_ptr m, u64 offset)
875{
876	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
877	const union bch_extent_entry *entry;
878	struct extent_ptr_decoded p;
879
880	bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
881		if (p.ptr.dev	== m.dev &&
882		    p.ptr.gen	== m.gen &&
883		    (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) ==
884		    (s64) m.offset  - offset)
885			return true;
886
887	return false;
888}
889
890/*
891 * Returns true if two extents refer to the same data:
892 */
893bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2)
894{
895	if (k1.k->type != k2.k->type)
896		return false;
897
898	if (bkey_extent_is_direct_data(k1.k)) {
899		struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1);
900		struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2);
901		const union bch_extent_entry *entry1, *entry2;
902		struct extent_ptr_decoded p1, p2;
903
904		if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2))
905			return false;
906
907		bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1)
908			bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
909				if (p1.ptr.dev		== p2.ptr.dev &&
910				    p1.ptr.gen		== p2.ptr.gen &&
911				    (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
912				    (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k))
913					return true;
914
915		return false;
916	} else {
917		/* KEY_TYPE_deleted, etc. */
918		return true;
919	}
920}
921
922struct bch_extent_ptr *
923bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2)
924{
925	struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2);
926	union bch_extent_entry *entry2;
927	struct extent_ptr_decoded p2;
928
929	bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
930		if (p1.ptr.dev		== p2.ptr.dev &&
931		    p1.ptr.gen		== p2.ptr.gen &&
932		    (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
933		    (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k))
934			return &entry2->ptr;
935
936	return NULL;
937}
938
939void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr)
940{
941	struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
942	union bch_extent_entry *entry;
943	union bch_extent_entry *ec = NULL;
944
945	bkey_extent_entry_for_each(ptrs, entry) {
946		if (&entry->ptr == ptr) {
947			ptr->cached = true;
948			if (ec)
949				extent_entry_drop(k, ec);
950			return;
951		}
952
953		if (extent_entry_is_stripe_ptr(entry))
954			ec = entry;
955		else if (extent_entry_is_ptr(entry))
956			ec = NULL;
957	}
958
959	BUG();
960}
961
962/*
963 * bch_extent_normalize - clean up an extent, dropping stale pointers etc.
964 *
965 * Returns true if @k should be dropped entirely
966 *
967 * For existing keys, only called when btree nodes are being rewritten, not when
968 * they're merely being compacted/resorted in memory.
969 */
970bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k)
971{
972	struct bch_extent_ptr *ptr;
973
974	bch2_bkey_drop_ptrs(k, ptr,
975		ptr->cached &&
976		ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr));
977
978	return bkey_deleted(k.k);
979}
980
981void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr)
982{
983	struct bch_dev *ca = c && ptr->dev < c->sb.nr_devices && c->devs[ptr->dev]
984		? bch_dev_bkey_exists(c, ptr->dev)
985		: NULL;
986
987	if (!ca) {
988		prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev,
989			   (u64) ptr->offset, ptr->gen,
990			   ptr->cached ? " cached" : "");
991	} else {
992		u32 offset;
993		u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset);
994
995		prt_printf(out, "ptr: %u:%llu:%u gen %u",
996			   ptr->dev, b, offset, ptr->gen);
997		if (ptr->cached)
998			prt_str(out, " cached");
999		if (ptr->unwritten)
1000			prt_str(out, " unwritten");
1001		if (b >= ca->mi.first_bucket &&
1002		    b <  ca->mi.nbuckets &&
1003		    ptr_stale(ca, ptr))
1004			prt_printf(out, " stale");
1005	}
1006}
1007
1008void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c,
1009			    struct bkey_s_c k)
1010{
1011	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1012	const union bch_extent_entry *entry;
1013	bool first = true;
1014
1015	if (c)
1016		prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k));
1017
1018	bkey_extent_entry_for_each(ptrs, entry) {
1019		if (!first)
1020			prt_printf(out, " ");
1021
1022		switch (__extent_entry_type(entry)) {
1023		case BCH_EXTENT_ENTRY_ptr:
1024			bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry));
1025			break;
1026
1027		case BCH_EXTENT_ENTRY_crc32:
1028		case BCH_EXTENT_ENTRY_crc64:
1029		case BCH_EXTENT_ENTRY_crc128: {
1030			struct bch_extent_crc_unpacked crc =
1031				bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
1032
1033			prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ",
1034			       crc.compressed_size,
1035			       crc.uncompressed_size,
1036			       crc.offset, crc.nonce);
1037			bch2_prt_csum_type(out, crc.csum_type);
1038			prt_str(out, " compress ");
1039			bch2_prt_compression_type(out, crc.compression_type);
1040			break;
1041		}
1042		case BCH_EXTENT_ENTRY_stripe_ptr: {
1043			const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr;
1044
1045			prt_printf(out, "ec: idx %llu block %u",
1046			       (u64) ec->idx, ec->block);
1047			break;
1048		}
1049		case BCH_EXTENT_ENTRY_rebalance: {
1050			const struct bch_extent_rebalance *r = &entry->rebalance;
1051
1052			prt_str(out, "rebalance: target ");
1053			if (c)
1054				bch2_target_to_text(out, c, r->target);
1055			else
1056				prt_printf(out, "%u", r->target);
1057			prt_str(out, " compression ");
1058			bch2_compression_opt_to_text(out, r->compression);
1059			break;
1060		}
1061		default:
1062			prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry));
1063			return;
1064		}
1065
1066		first = false;
1067	}
1068}
1069
1070static int extent_ptr_invalid(struct bch_fs *c,
1071			      struct bkey_s_c k,
1072			      enum bkey_invalid_flags flags,
1073			      const struct bch_extent_ptr *ptr,
1074			      unsigned size_ondisk,
1075			      bool metadata,
1076			      struct printbuf *err)
1077{
1078	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1079	u64 bucket;
1080	u32 bucket_offset;
1081	struct bch_dev *ca;
1082	int ret = 0;
1083
1084	if (!bch2_dev_exists2(c, ptr->dev)) {
1085		/*
1086		 * If we're in the write path this key might have already been
1087		 * overwritten, and we could be seeing a device that doesn't
1088		 * exist anymore due to racing with device removal:
1089		 */
1090		if (flags & BKEY_INVALID_WRITE)
1091			return 0;
1092
1093		bkey_fsck_err(c, err, ptr_to_invalid_device,
1094			   "pointer to invalid device (%u)", ptr->dev);
1095	}
1096
1097	ca = bch_dev_bkey_exists(c, ptr->dev);
1098	bkey_for_each_ptr(ptrs, ptr2)
1099		bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev, c, err,
1100				 ptr_to_duplicate_device,
1101				 "multiple pointers to same device (%u)", ptr->dev);
1102
1103	bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset);
1104
1105	bkey_fsck_err_on(bucket >= ca->mi.nbuckets, c, err,
1106			 ptr_after_last_bucket,
1107			 "pointer past last bucket (%llu > %llu)", bucket, ca->mi.nbuckets);
1108	bkey_fsck_err_on(ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket), c, err,
1109			 ptr_before_first_bucket,
1110			 "pointer before first bucket (%llu < %u)", bucket, ca->mi.first_bucket);
1111	bkey_fsck_err_on(bucket_offset + size_ondisk > ca->mi.bucket_size, c, err,
1112			 ptr_spans_multiple_buckets,
1113			 "pointer spans multiple buckets (%u + %u > %u)",
1114		       bucket_offset, size_ondisk, ca->mi.bucket_size);
1115fsck_err:
1116	return ret;
1117}
1118
1119int bch2_bkey_ptrs_invalid(struct bch_fs *c, struct bkey_s_c k,
1120			   enum bkey_invalid_flags flags,
1121			   struct printbuf *err)
1122{
1123	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1124	const union bch_extent_entry *entry;
1125	struct bch_extent_crc_unpacked crc;
1126	unsigned size_ondisk = k.k->size;
1127	unsigned nonce = UINT_MAX;
1128	unsigned nr_ptrs = 0;
1129	bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false;
1130	int ret = 0;
1131
1132	if (bkey_is_btree_ptr(k.k))
1133		size_ondisk = btree_sectors(c);
1134
1135	bkey_extent_entry_for_each(ptrs, entry) {
1136		bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX, c, err,
1137			extent_ptrs_invalid_entry,
1138			"invalid extent entry type (got %u, max %u)",
1139			__extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX);
1140
1141		bkey_fsck_err_on(bkey_is_btree_ptr(k.k) &&
1142				 !extent_entry_is_ptr(entry), c, err,
1143				 btree_ptr_has_non_ptr,
1144				 "has non ptr field");
1145
1146		switch (extent_entry_type(entry)) {
1147		case BCH_EXTENT_ENTRY_ptr:
1148			ret = extent_ptr_invalid(c, k, flags, &entry->ptr,
1149						 size_ondisk, false, err);
1150			if (ret)
1151				return ret;
1152
1153			bkey_fsck_err_on(entry->ptr.cached && have_ec, c, err,
1154					 ptr_cached_and_erasure_coded,
1155					 "cached, erasure coded ptr");
1156
1157			if (!entry->ptr.unwritten)
1158				have_written = true;
1159			else
1160				have_unwritten = true;
1161
1162			have_ec = false;
1163			crc_since_last_ptr = false;
1164			nr_ptrs++;
1165			break;
1166		case BCH_EXTENT_ENTRY_crc32:
1167		case BCH_EXTENT_ENTRY_crc64:
1168		case BCH_EXTENT_ENTRY_crc128:
1169			crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
1170
1171			bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size, c, err,
1172					 ptr_crc_uncompressed_size_too_small,
1173					 "checksum offset + key size > uncompressed size");
1174			bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type), c, err,
1175					 ptr_crc_csum_type_unknown,
1176					 "invalid checksum type");
1177			bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR, c, err,
1178					 ptr_crc_compression_type_unknown,
1179					 "invalid compression type");
1180
1181			if (bch2_csum_type_is_encryption(crc.csum_type)) {
1182				if (nonce == UINT_MAX)
1183					nonce = crc.offset + crc.nonce;
1184				else if (nonce != crc.offset + crc.nonce)
1185					bkey_fsck_err(c, err, ptr_crc_nonce_mismatch,
1186						      "incorrect nonce");
1187			}
1188
1189			bkey_fsck_err_on(crc_since_last_ptr, c, err,
1190					 ptr_crc_redundant,
1191					 "redundant crc entry");
1192			crc_since_last_ptr = true;
1193
1194			bkey_fsck_err_on(crc_is_encoded(crc) &&
1195					 (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) &&
1196					 (flags & (BKEY_INVALID_WRITE|BKEY_INVALID_COMMIT)), c, err,
1197					 ptr_crc_uncompressed_size_too_big,
1198					 "too large encoded extent");
1199
1200			size_ondisk = crc.compressed_size;
1201			break;
1202		case BCH_EXTENT_ENTRY_stripe_ptr:
1203			bkey_fsck_err_on(have_ec, c, err,
1204					 ptr_stripe_redundant,
1205					 "redundant stripe entry");
1206			have_ec = true;
1207			break;
1208		case BCH_EXTENT_ENTRY_rebalance: {
1209			const struct bch_extent_rebalance *r = &entry->rebalance;
1210
1211			if (!bch2_compression_opt_valid(r->compression)) {
1212				struct bch_compression_opt opt = __bch2_compression_decode(r->compression);
1213				prt_printf(err, "invalid compression opt %u:%u",
1214					   opt.type, opt.level);
1215				return -BCH_ERR_invalid_bkey;
1216			}
1217			break;
1218		}
1219		}
1220	}
1221
1222	bkey_fsck_err_on(!nr_ptrs, c, err,
1223			 extent_ptrs_no_ptrs,
1224			 "no ptrs");
1225	bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX, c, err,
1226			 extent_ptrs_too_many_ptrs,
1227			 "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX);
1228	bkey_fsck_err_on(have_written && have_unwritten, c, err,
1229			 extent_ptrs_written_and_unwritten,
1230			 "extent with unwritten and written ptrs");
1231	bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten, c, err,
1232			 extent_ptrs_unwritten,
1233			 "has unwritten ptrs");
1234	bkey_fsck_err_on(crc_since_last_ptr, c, err,
1235			 extent_ptrs_redundant_crc,
1236			 "redundant crc entry");
1237	bkey_fsck_err_on(have_ec, c, err,
1238			 extent_ptrs_redundant_stripe,
1239			 "redundant stripe entry");
1240fsck_err:
1241	return ret;
1242}
1243
1244void bch2_ptr_swab(struct bkey_s k)
1245{
1246	struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1247	union bch_extent_entry *entry;
1248	u64 *d;
1249
1250	for (d =  (u64 *) ptrs.start;
1251	     d != (u64 *) ptrs.end;
1252	     d++)
1253		*d = swab64(*d);
1254
1255	for (entry = ptrs.start;
1256	     entry < ptrs.end;
1257	     entry = extent_entry_next(entry)) {
1258		switch (extent_entry_type(entry)) {
1259		case BCH_EXTENT_ENTRY_ptr:
1260			break;
1261		case BCH_EXTENT_ENTRY_crc32:
1262			entry->crc32.csum = swab32(entry->crc32.csum);
1263			break;
1264		case BCH_EXTENT_ENTRY_crc64:
1265			entry->crc64.csum_hi = swab16(entry->crc64.csum_hi);
1266			entry->crc64.csum_lo = swab64(entry->crc64.csum_lo);
1267			break;
1268		case BCH_EXTENT_ENTRY_crc128:
1269			entry->crc128.csum.hi = (__force __le64)
1270				swab64((__force u64) entry->crc128.csum.hi);
1271			entry->crc128.csum.lo = (__force __le64)
1272				swab64((__force u64) entry->crc128.csum.lo);
1273			break;
1274		case BCH_EXTENT_ENTRY_stripe_ptr:
1275			break;
1276		case BCH_EXTENT_ENTRY_rebalance:
1277			break;
1278		}
1279	}
1280}
1281
1282const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k)
1283{
1284	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1285	const union bch_extent_entry *entry;
1286
1287	bkey_extent_entry_for_each(ptrs, entry)
1288		if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance)
1289			return &entry->rebalance;
1290
1291	return NULL;
1292}
1293
1294unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k,
1295				       unsigned target, unsigned compression)
1296{
1297	struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1298	unsigned rewrite_ptrs = 0;
1299
1300	if (compression) {
1301		unsigned compression_type = bch2_compression_opt_to_type(compression);
1302		const union bch_extent_entry *entry;
1303		struct extent_ptr_decoded p;
1304		unsigned i = 0;
1305
1306		bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
1307			if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible ||
1308			    p.ptr.unwritten) {
1309				rewrite_ptrs = 0;
1310				goto incompressible;
1311			}
1312
1313			if (!p.ptr.cached && p.crc.compression_type != compression_type)
1314				rewrite_ptrs |= 1U << i;
1315			i++;
1316		}
1317	}
1318incompressible:
1319	if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) {
1320		unsigned i = 0;
1321
1322		bkey_for_each_ptr(ptrs, ptr) {
1323			if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target))
1324				rewrite_ptrs |= 1U << i;
1325			i++;
1326		}
1327	}
1328
1329	return rewrite_ptrs;
1330}
1331
1332bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k)
1333{
1334	const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k);
1335
1336	/*
1337	 * If it's an indirect extent, we don't delete the rebalance entry when
1338	 * done so that we know what options were applied - check if it still
1339	 * needs work done:
1340	 */
1341	if (r &&
1342	    k.k->type == KEY_TYPE_reflink_v &&
1343	    !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression))
1344		r = NULL;
1345
1346	return r != NULL;
1347}
1348
1349int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k,
1350				  struct bch_io_opts *opts)
1351{
1352	struct bkey_s k = bkey_i_to_s(_k);
1353	struct bch_extent_rebalance *r;
1354	unsigned target = opts->background_target;
1355	unsigned compression = background_compression(*opts);
1356	bool needs_rebalance;
1357
1358	if (!bkey_extent_is_direct_data(k.k))
1359		return 0;
1360
1361	/* get existing rebalance entry: */
1362	r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c);
1363	if (r) {
1364		if (k.k->type == KEY_TYPE_reflink_v) {
1365			/*
1366			 * indirect extents: existing options take precedence,
1367			 * so that we don't move extents back and forth if
1368			 * they're referenced by different inodes with different
1369			 * options:
1370			 */
1371			if (r->target)
1372				target = r->target;
1373			if (r->compression)
1374				compression = r->compression;
1375		}
1376
1377		r->target	= target;
1378		r->compression	= compression;
1379	}
1380
1381	needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression);
1382
1383	if (needs_rebalance && !r) {
1384		union bch_extent_entry *new = bkey_val_end(k);
1385
1386		new->rebalance.type		= 1U << BCH_EXTENT_ENTRY_rebalance;
1387		new->rebalance.compression	= compression;
1388		new->rebalance.target		= target;
1389		new->rebalance.unused		= 0;
1390		k.k->u64s += extent_entry_u64s(new);
1391	} else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) {
1392		/*
1393		 * For indirect extents, don't delete the rebalance entry when
1394		 * we're finished so that we know we specifically moved it or
1395		 * compressed it to its current location/compression type
1396		 */
1397		extent_entry_drop(k, (union bch_extent_entry *) r);
1398	}
1399
1400	return 0;
1401}
1402
1403/* Generic extent code: */
1404
1405int bch2_cut_front_s(struct bpos where, struct bkey_s k)
1406{
1407	unsigned new_val_u64s = bkey_val_u64s(k.k);
1408	int val_u64s_delta;
1409	u64 sub;
1410
1411	if (bkey_le(where, bkey_start_pos(k.k)))
1412		return 0;
1413
1414	EBUG_ON(bkey_gt(where, k.k->p));
1415
1416	sub = where.offset - bkey_start_offset(k.k);
1417
1418	k.k->size -= sub;
1419
1420	if (!k.k->size) {
1421		k.k->type = KEY_TYPE_deleted;
1422		new_val_u64s = 0;
1423	}
1424
1425	switch (k.k->type) {
1426	case KEY_TYPE_extent:
1427	case KEY_TYPE_reflink_v: {
1428		struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1429		union bch_extent_entry *entry;
1430		bool seen_crc = false;
1431
1432		bkey_extent_entry_for_each(ptrs, entry) {
1433			switch (extent_entry_type(entry)) {
1434			case BCH_EXTENT_ENTRY_ptr:
1435				if (!seen_crc)
1436					entry->ptr.offset += sub;
1437				break;
1438			case BCH_EXTENT_ENTRY_crc32:
1439				entry->crc32.offset += sub;
1440				break;
1441			case BCH_EXTENT_ENTRY_crc64:
1442				entry->crc64.offset += sub;
1443				break;
1444			case BCH_EXTENT_ENTRY_crc128:
1445				entry->crc128.offset += sub;
1446				break;
1447			case BCH_EXTENT_ENTRY_stripe_ptr:
1448				break;
1449			case BCH_EXTENT_ENTRY_rebalance:
1450				break;
1451			}
1452
1453			if (extent_entry_is_crc(entry))
1454				seen_crc = true;
1455		}
1456
1457		break;
1458	}
1459	case KEY_TYPE_reflink_p: {
1460		struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k);
1461
1462		le64_add_cpu(&p.v->idx, sub);
1463		break;
1464	}
1465	case KEY_TYPE_inline_data:
1466	case KEY_TYPE_indirect_inline_data: {
1467		void *p = bkey_inline_data_p(k);
1468		unsigned bytes = bkey_inline_data_bytes(k.k);
1469
1470		sub = min_t(u64, sub << 9, bytes);
1471
1472		memmove(p, p + sub, bytes - sub);
1473
1474		new_val_u64s -= sub >> 3;
1475		break;
1476	}
1477	}
1478
1479	val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1480	BUG_ON(val_u64s_delta < 0);
1481
1482	set_bkey_val_u64s(k.k, new_val_u64s);
1483	memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1484	return -val_u64s_delta;
1485}
1486
1487int bch2_cut_back_s(struct bpos where, struct bkey_s k)
1488{
1489	unsigned new_val_u64s = bkey_val_u64s(k.k);
1490	int val_u64s_delta;
1491	u64 len = 0;
1492
1493	if (bkey_ge(where, k.k->p))
1494		return 0;
1495
1496	EBUG_ON(bkey_lt(where, bkey_start_pos(k.k)));
1497
1498	len = where.offset - bkey_start_offset(k.k);
1499
1500	k.k->p.offset = where.offset;
1501	k.k->size = len;
1502
1503	if (!len) {
1504		k.k->type = KEY_TYPE_deleted;
1505		new_val_u64s = 0;
1506	}
1507
1508	switch (k.k->type) {
1509	case KEY_TYPE_inline_data:
1510	case KEY_TYPE_indirect_inline_data:
1511		new_val_u64s = (bkey_inline_data_offset(k.k) +
1512				min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3;
1513		break;
1514	}
1515
1516	val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1517	BUG_ON(val_u64s_delta < 0);
1518
1519	set_bkey_val_u64s(k.k, new_val_u64s);
1520	memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1521	return -val_u64s_delta;
1522}
1523