1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Code for working with individual keys, and sorted sets of keys with in a
4 * btree node
5 *
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcachefs.h"
10#include "btree_cache.h"
11#include "bset.h"
12#include "eytzinger.h"
13#include "trace.h"
14#include "util.h"
15
16#include <asm/unaligned.h>
17#include <linux/console.h>
18#include <linux/random.h>
19#include <linux/prefetch.h>
20
21static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *,
22						  struct btree *);
23
24static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
25{
26	unsigned n = ARRAY_SIZE(iter->data);
27
28	while (n && __btree_node_iter_set_end(iter, n - 1))
29		--n;
30
31	return n;
32}
33
34struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
35{
36	return bch2_bkey_to_bset_inlined(b, k);
37}
38
39/*
40 * There are never duplicate live keys in the btree - but including keys that
41 * have been flagged as deleted (and will be cleaned up later) we _will_ see
42 * duplicates.
43 *
44 * Thus the sort order is: usual key comparison first, but for keys that compare
45 * equal the deleted key(s) come first, and the (at most one) live version comes
46 * last.
47 *
48 * The main reason for this is insertion: to handle overwrites, we first iterate
49 * over keys that compare equal to our insert key, and then insert immediately
50 * prior to the first key greater than the key we're inserting - our insert
51 * position will be after all keys that compare equal to our insert key, which
52 * by the time we actually do the insert will all be deleted.
53 */
54
55void bch2_dump_bset(struct bch_fs *c, struct btree *b,
56		    struct bset *i, unsigned set)
57{
58	struct bkey_packed *_k, *_n;
59	struct bkey uk, n;
60	struct bkey_s_c k;
61	struct printbuf buf = PRINTBUF;
62
63	if (!i->u64s)
64		return;
65
66	for (_k = i->start;
67	     _k < vstruct_last(i);
68	     _k = _n) {
69		_n = bkey_p_next(_k);
70
71		if (!_k->u64s) {
72			printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set,
73			       _k->_data - i->_data);
74			break;
75		}
76
77		k = bkey_disassemble(b, _k, &uk);
78
79		printbuf_reset(&buf);
80		if (c)
81			bch2_bkey_val_to_text(&buf, c, k);
82		else
83			bch2_bkey_to_text(&buf, k.k);
84		printk(KERN_ERR "block %u key %5zu: %s\n", set,
85		       _k->_data - i->_data, buf.buf);
86
87		if (_n == vstruct_last(i))
88			continue;
89
90		n = bkey_unpack_key(b, _n);
91
92		if (bpos_lt(n.p, k.k->p)) {
93			printk(KERN_ERR "Key skipped backwards\n");
94			continue;
95		}
96
97		if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p))
98			printk(KERN_ERR "Duplicate keys\n");
99	}
100
101	printbuf_exit(&buf);
102}
103
104void bch2_dump_btree_node(struct bch_fs *c, struct btree *b)
105{
106	struct bset_tree *t;
107
108	console_lock();
109	for_each_bset(b, t)
110		bch2_dump_bset(c, b, bset(b, t), t - b->set);
111	console_unlock();
112}
113
114void bch2_dump_btree_node_iter(struct btree *b,
115			      struct btree_node_iter *iter)
116{
117	struct btree_node_iter_set *set;
118	struct printbuf buf = PRINTBUF;
119
120	printk(KERN_ERR "btree node iter with %u/%u sets:\n",
121	       __btree_node_iter_used(iter), b->nsets);
122
123	btree_node_iter_for_each(iter, set) {
124		struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
125		struct bset_tree *t = bch2_bkey_to_bset(b, k);
126		struct bkey uk = bkey_unpack_key(b, k);
127
128		printbuf_reset(&buf);
129		bch2_bkey_to_text(&buf, &uk);
130		printk(KERN_ERR "set %zu key %u: %s\n",
131		       t - b->set, set->k, buf.buf);
132	}
133
134	printbuf_exit(&buf);
135}
136
137struct btree_nr_keys bch2_btree_node_count_keys(struct btree *b)
138{
139	struct bset_tree *t;
140	struct bkey_packed *k;
141	struct btree_nr_keys nr = {};
142
143	for_each_bset(b, t)
144		bset_tree_for_each_key(b, t, k)
145			if (!bkey_deleted(k))
146				btree_keys_account_key_add(&nr, t - b->set, k);
147	return nr;
148}
149
150#ifdef CONFIG_BCACHEFS_DEBUG
151
152void __bch2_verify_btree_nr_keys(struct btree *b)
153{
154	struct btree_nr_keys nr = bch2_btree_node_count_keys(b);
155
156	BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
157}
158
159static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter,
160					    struct btree *b)
161{
162	struct btree_node_iter iter = *_iter;
163	const struct bkey_packed *k, *n;
164
165	k = bch2_btree_node_iter_peek_all(&iter, b);
166	__bch2_btree_node_iter_advance(&iter, b);
167	n = bch2_btree_node_iter_peek_all(&iter, b);
168
169	bkey_unpack_key(b, k);
170
171	if (n &&
172	    bkey_iter_cmp(b, k, n) > 0) {
173		struct btree_node_iter_set *set;
174		struct bkey ku = bkey_unpack_key(b, k);
175		struct bkey nu = bkey_unpack_key(b, n);
176		struct printbuf buf1 = PRINTBUF;
177		struct printbuf buf2 = PRINTBUF;
178
179		bch2_dump_btree_node(NULL, b);
180		bch2_bkey_to_text(&buf1, &ku);
181		bch2_bkey_to_text(&buf2, &nu);
182		printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n",
183		       buf1.buf, buf2.buf);
184		printk(KERN_ERR "iter was:");
185
186		btree_node_iter_for_each(_iter, set) {
187			struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k);
188			struct bset_tree *t = bch2_bkey_to_bset(b, k2);
189			printk(" [%zi %zi]", t - b->set,
190			       k2->_data - bset(b, t)->_data);
191		}
192		panic("\n");
193	}
194}
195
196void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
197				 struct btree *b)
198{
199	struct btree_node_iter_set *set, *s2;
200	struct bkey_packed *k, *p;
201	struct bset_tree *t;
202
203	if (bch2_btree_node_iter_end(iter))
204		return;
205
206	/* Verify no duplicates: */
207	btree_node_iter_for_each(iter, set) {
208		BUG_ON(set->k > set->end);
209		btree_node_iter_for_each(iter, s2)
210			BUG_ON(set != s2 && set->end == s2->end);
211	}
212
213	/* Verify that set->end is correct: */
214	btree_node_iter_for_each(iter, set) {
215		for_each_bset(b, t)
216			if (set->end == t->end_offset)
217				goto found;
218		BUG();
219found:
220		BUG_ON(set->k < btree_bkey_first_offset(t) ||
221		       set->k >= t->end_offset);
222	}
223
224	/* Verify iterator is sorted: */
225	btree_node_iter_for_each(iter, set)
226		BUG_ON(set != iter->data &&
227		       btree_node_iter_cmp(b, set[-1], set[0]) > 0);
228
229	k = bch2_btree_node_iter_peek_all(iter, b);
230
231	for_each_bset(b, t) {
232		if (iter->data[0].end == t->end_offset)
233			continue;
234
235		p = bch2_bkey_prev_all(b, t,
236			bch2_btree_node_iter_bset_pos(iter, b, t));
237
238		BUG_ON(p && bkey_iter_cmp(b, k, p) < 0);
239	}
240}
241
242void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where,
243			    struct bkey_packed *insert, unsigned clobber_u64s)
244{
245	struct bset_tree *t = bch2_bkey_to_bset(b, where);
246	struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where);
247	struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s);
248	struct printbuf buf1 = PRINTBUF;
249	struct printbuf buf2 = PRINTBUF;
250#if 0
251	BUG_ON(prev &&
252	       bkey_iter_cmp(b, prev, insert) > 0);
253#else
254	if (prev &&
255	    bkey_iter_cmp(b, prev, insert) > 0) {
256		struct bkey k1 = bkey_unpack_key(b, prev);
257		struct bkey k2 = bkey_unpack_key(b, insert);
258
259		bch2_dump_btree_node(NULL, b);
260		bch2_bkey_to_text(&buf1, &k1);
261		bch2_bkey_to_text(&buf2, &k2);
262
263		panic("prev > insert:\n"
264		      "prev    key %s\n"
265		      "insert  key %s\n",
266		      buf1.buf, buf2.buf);
267	}
268#endif
269#if 0
270	BUG_ON(next != btree_bkey_last(b, t) &&
271	       bkey_iter_cmp(b, insert, next) > 0);
272#else
273	if (next != btree_bkey_last(b, t) &&
274	    bkey_iter_cmp(b, insert, next) > 0) {
275		struct bkey k1 = bkey_unpack_key(b, insert);
276		struct bkey k2 = bkey_unpack_key(b, next);
277
278		bch2_dump_btree_node(NULL, b);
279		bch2_bkey_to_text(&buf1, &k1);
280		bch2_bkey_to_text(&buf2, &k2);
281
282		panic("insert > next:\n"
283		      "insert  key %s\n"
284		      "next    key %s\n",
285		      buf1.buf, buf2.buf);
286	}
287#endif
288}
289
290#else
291
292static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
293						   struct btree *b) {}
294
295#endif
296
297/* Auxiliary search trees */
298
299#define BFLOAT_FAILED_UNPACKED	U8_MAX
300#define BFLOAT_FAILED		U8_MAX
301
302struct bkey_float {
303	u8		exponent;
304	u8		key_offset;
305	u16		mantissa;
306};
307#define BKEY_MANTISSA_BITS	16
308
309static unsigned bkey_float_byte_offset(unsigned idx)
310{
311	return idx * sizeof(struct bkey_float);
312}
313
314struct ro_aux_tree {
315	u8			nothing[0];
316	struct bkey_float	f[];
317};
318
319struct rw_aux_tree {
320	u16		offset;
321	struct bpos	k;
322};
323
324static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
325{
326	BUG_ON(t->aux_data_offset == U16_MAX);
327
328	switch (bset_aux_tree_type(t)) {
329	case BSET_NO_AUX_TREE:
330		return t->aux_data_offset;
331	case BSET_RO_AUX_TREE:
332		return t->aux_data_offset +
333			DIV_ROUND_UP(t->size * sizeof(struct bkey_float) +
334				     t->size * sizeof(u8), 8);
335	case BSET_RW_AUX_TREE:
336		return t->aux_data_offset +
337			DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
338	default:
339		BUG();
340	}
341}
342
343static unsigned bset_aux_tree_buf_start(const struct btree *b,
344					const struct bset_tree *t)
345{
346	return t == b->set
347		? DIV_ROUND_UP(b->unpack_fn_len, 8)
348		: bset_aux_tree_buf_end(t - 1);
349}
350
351static void *__aux_tree_base(const struct btree *b,
352			     const struct bset_tree *t)
353{
354	return b->aux_data + t->aux_data_offset * 8;
355}
356
357static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
358					    const struct bset_tree *t)
359{
360	EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
361
362	return __aux_tree_base(b, t);
363}
364
365static u8 *ro_aux_tree_prev(const struct btree *b,
366			    const struct bset_tree *t)
367{
368	EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
369
370	return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size);
371}
372
373static struct bkey_float *bkey_float(const struct btree *b,
374				     const struct bset_tree *t,
375				     unsigned idx)
376{
377	return ro_aux_tree_base(b, t)->f + idx;
378}
379
380static void bset_aux_tree_verify(const struct btree *b)
381{
382#ifdef CONFIG_BCACHEFS_DEBUG
383	const struct bset_tree *t;
384
385	for_each_bset(b, t) {
386		if (t->aux_data_offset == U16_MAX)
387			continue;
388
389		BUG_ON(t != b->set &&
390		       t[-1].aux_data_offset == U16_MAX);
391
392		BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
393		BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
394		BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
395	}
396#endif
397}
398
399void bch2_btree_keys_init(struct btree *b)
400{
401	unsigned i;
402
403	b->nsets		= 0;
404	memset(&b->nr, 0, sizeof(b->nr));
405
406	for (i = 0; i < MAX_BSETS; i++)
407		b->set[i].data_offset = U16_MAX;
408
409	bch2_bset_set_no_aux_tree(b, b->set);
410}
411
412/* Binary tree stuff for auxiliary search trees */
413
414/*
415 * Cacheline/offset <-> bkey pointer arithmetic:
416 *
417 * t->tree is a binary search tree in an array; each node corresponds to a key
418 * in one cacheline in t->set (BSET_CACHELINE bytes).
419 *
420 * This means we don't have to store the full index of the key that a node in
421 * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
422 * then bkey_float->m gives us the offset within that cacheline, in units of 8
423 * bytes.
424 *
425 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
426 * make this work.
427 *
428 * To construct the bfloat for an arbitrary key we need to know what the key
429 * immediately preceding it is: we have to check if the two keys differ in the
430 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
431 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
432 */
433
434static inline void *bset_cacheline(const struct btree *b,
435				   const struct bset_tree *t,
436				   unsigned cacheline)
437{
438	return (void *) round_down((unsigned long) btree_bkey_first(b, t),
439				   L1_CACHE_BYTES) +
440		cacheline * BSET_CACHELINE;
441}
442
443static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
444					     const struct bset_tree *t,
445					     unsigned cacheline,
446					     unsigned offset)
447{
448	return bset_cacheline(b, t, cacheline) + offset * 8;
449}
450
451static unsigned bkey_to_cacheline(const struct btree *b,
452				  const struct bset_tree *t,
453				  const struct bkey_packed *k)
454{
455	return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
456}
457
458static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
459					  const struct bset_tree *t,
460					  unsigned cacheline,
461					  const struct bkey_packed *k)
462{
463	return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
464}
465
466static unsigned bkey_to_cacheline_offset(const struct btree *b,
467					 const struct bset_tree *t,
468					 unsigned cacheline,
469					 const struct bkey_packed *k)
470{
471	size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
472
473	EBUG_ON(m > U8_MAX);
474	return m;
475}
476
477static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
478					       const struct bset_tree *t,
479					       unsigned j)
480{
481	return cacheline_to_bkey(b, t,
482			__eytzinger1_to_inorder(j, t->size - 1, t->extra),
483			bkey_float(b, t, j)->key_offset);
484}
485
486static struct bkey_packed *tree_to_prev_bkey(const struct btree *b,
487					     const struct bset_tree *t,
488					     unsigned j)
489{
490	unsigned prev_u64s = ro_aux_tree_prev(b, t)[j];
491
492	return (void *) ((u64 *) tree_to_bkey(b, t, j)->_data - prev_u64s);
493}
494
495static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
496				       const struct bset_tree *t)
497{
498	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
499
500	return __aux_tree_base(b, t);
501}
502
503/*
504 * For the write set - the one we're currently inserting keys into - we don't
505 * maintain a full search tree, we just keep a simple lookup table in t->prev.
506 */
507static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
508					  struct bset_tree *t,
509					  unsigned j)
510{
511	return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
512}
513
514static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
515			    unsigned j, struct bkey_packed *k)
516{
517	EBUG_ON(k >= btree_bkey_last(b, t));
518
519	rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
520		.offset	= __btree_node_key_to_offset(b, k),
521		.k	= bkey_unpack_pos(b, k),
522	};
523}
524
525static void bch2_bset_verify_rw_aux_tree(struct btree *b,
526					struct bset_tree *t)
527{
528	struct bkey_packed *k = btree_bkey_first(b, t);
529	unsigned j = 0;
530
531	if (!bch2_expensive_debug_checks)
532		return;
533
534	BUG_ON(bset_has_ro_aux_tree(t));
535
536	if (!bset_has_rw_aux_tree(t))
537		return;
538
539	BUG_ON(t->size < 1);
540	BUG_ON(rw_aux_to_bkey(b, t, j) != k);
541
542	goto start;
543	while (1) {
544		if (rw_aux_to_bkey(b, t, j) == k) {
545			BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k,
546					bkey_unpack_pos(b, k)));
547start:
548			if (++j == t->size)
549				break;
550
551			BUG_ON(rw_aux_tree(b, t)[j].offset <=
552			       rw_aux_tree(b, t)[j - 1].offset);
553		}
554
555		k = bkey_p_next(k);
556		BUG_ON(k >= btree_bkey_last(b, t));
557	}
558}
559
560/* returns idx of first entry >= offset: */
561static unsigned rw_aux_tree_bsearch(struct btree *b,
562				    struct bset_tree *t,
563				    unsigned offset)
564{
565	unsigned bset_offs = offset - btree_bkey_first_offset(t);
566	unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t);
567	unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0;
568
569	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
570	EBUG_ON(!t->size);
571	EBUG_ON(idx > t->size);
572
573	while (idx < t->size &&
574	       rw_aux_tree(b, t)[idx].offset < offset)
575		idx++;
576
577	while (idx &&
578	       rw_aux_tree(b, t)[idx - 1].offset >= offset)
579		idx--;
580
581	EBUG_ON(idx < t->size &&
582		rw_aux_tree(b, t)[idx].offset < offset);
583	EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset);
584	EBUG_ON(idx + 1 < t->size &&
585		rw_aux_tree(b, t)[idx].offset ==
586		rw_aux_tree(b, t)[idx + 1].offset);
587
588	return idx;
589}
590
591static inline unsigned bkey_mantissa(const struct bkey_packed *k,
592				     const struct bkey_float *f,
593				     unsigned idx)
594{
595	u64 v;
596
597	EBUG_ON(!bkey_packed(k));
598
599	v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
600
601	/*
602	 * In little endian, we're shifting off low bits (and then the bits we
603	 * want are at the low end), in big endian we're shifting off high bits
604	 * (and then the bits we want are at the high end, so we shift them
605	 * back down):
606	 */
607#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
608	v >>= f->exponent & 7;
609#else
610	v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS;
611#endif
612	return (u16) v;
613}
614
615static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t,
616					unsigned j,
617					struct bkey_packed *min_key,
618					struct bkey_packed *max_key)
619{
620	struct bkey_float *f = bkey_float(b, t, j);
621	struct bkey_packed *m = tree_to_bkey(b, t, j);
622	struct bkey_packed *l = is_power_of_2(j)
623		? min_key
624		: tree_to_prev_bkey(b, t, j >> ffs(j));
625	struct bkey_packed *r = is_power_of_2(j + 1)
626		? max_key
627		: tree_to_bkey(b, t, j >> (ffz(j) + 1));
628	unsigned mantissa;
629	int shift, exponent, high_bit;
630
631	/*
632	 * for failed bfloats, the lookup code falls back to comparing against
633	 * the original key.
634	 */
635
636	if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) ||
637	    !b->nr_key_bits) {
638		f->exponent = BFLOAT_FAILED_UNPACKED;
639		return;
640	}
641
642	/*
643	 * The greatest differing bit of l and r is the first bit we must
644	 * include in the bfloat mantissa we're creating in order to do
645	 * comparisons - that bit always becomes the high bit of
646	 * bfloat->mantissa, and thus the exponent we're calculating here is
647	 * the position of what will become the low bit in bfloat->mantissa:
648	 *
649	 * Note that this may be negative - we may be running off the low end
650	 * of the key: we handle this later:
651	 */
652	high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
653		       min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1);
654	exponent = high_bit - (BKEY_MANTISSA_BITS - 1);
655
656	/*
657	 * Then we calculate the actual shift value, from the start of the key
658	 * (k->_data), to get the key bits starting at exponent:
659	 */
660#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
661	shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
662
663	EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64);
664#else
665	shift = high_bit_offset +
666		b->nr_key_bits -
667		exponent -
668		BKEY_MANTISSA_BITS;
669
670	EBUG_ON(shift < KEY_PACKED_BITS_START);
671#endif
672	EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
673
674	f->exponent = shift;
675	mantissa = bkey_mantissa(m, f, j);
676
677	/*
678	 * If we've got garbage bits, set them to all 1s - it's legal for the
679	 * bfloat to compare larger than the original key, but not smaller:
680	 */
681	if (exponent < 0)
682		mantissa |= ~(~0U << -exponent);
683
684	f->mantissa = mantissa;
685}
686
687/* bytes remaining - only valid for last bset: */
688static unsigned __bset_tree_capacity(const struct btree *b, const struct bset_tree *t)
689{
690	bset_aux_tree_verify(b);
691
692	return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
693}
694
695static unsigned bset_ro_tree_capacity(const struct btree *b, const struct bset_tree *t)
696{
697	return __bset_tree_capacity(b, t) /
698		(sizeof(struct bkey_float) + sizeof(u8));
699}
700
701static unsigned bset_rw_tree_capacity(const struct btree *b, const struct bset_tree *t)
702{
703	return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
704}
705
706static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
707{
708	struct bkey_packed *k;
709
710	t->size = 1;
711	t->extra = BSET_RW_AUX_TREE_VAL;
712	rw_aux_tree(b, t)[0].offset =
713		__btree_node_key_to_offset(b, btree_bkey_first(b, t));
714
715	bset_tree_for_each_key(b, t, k) {
716		if (t->size == bset_rw_tree_capacity(b, t))
717			break;
718
719		if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
720		    L1_CACHE_BYTES)
721			rw_aux_tree_set(b, t, t->size++, k);
722	}
723}
724
725static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
726{
727	struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t);
728	struct bkey_i min_key, max_key;
729	unsigned cacheline = 1;
730
731	t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
732		      bset_ro_tree_capacity(b, t));
733retry:
734	if (t->size < 2) {
735		t->size = 0;
736		t->extra = BSET_NO_AUX_TREE_VAL;
737		return;
738	}
739
740	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
741
742	/* First we figure out where the first key in each cacheline is */
743	eytzinger1_for_each(j, t->size - 1) {
744		while (bkey_to_cacheline(b, t, k) < cacheline)
745			prev = k, k = bkey_p_next(k);
746
747		if (k >= btree_bkey_last(b, t)) {
748			/* XXX: this path sucks */
749			t->size--;
750			goto retry;
751		}
752
753		ro_aux_tree_prev(b, t)[j] = prev->u64s;
754		bkey_float(b, t, j)->key_offset =
755			bkey_to_cacheline_offset(b, t, cacheline++, k);
756
757		EBUG_ON(tree_to_prev_bkey(b, t, j) != prev);
758		EBUG_ON(tree_to_bkey(b, t, j) != k);
759	}
760
761	while (k != btree_bkey_last(b, t))
762		prev = k, k = bkey_p_next(k);
763
764	if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) {
765		bkey_init(&min_key.k);
766		min_key.k.p = b->data->min_key;
767	}
768
769	if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) {
770		bkey_init(&max_key.k);
771		max_key.k.p = b->data->max_key;
772	}
773
774	/* Then we build the tree */
775	eytzinger1_for_each(j, t->size - 1)
776		make_bfloat(b, t, j,
777			    bkey_to_packed(&min_key),
778			    bkey_to_packed(&max_key));
779}
780
781static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
782{
783	struct bset_tree *i;
784
785	for (i = b->set; i != t; i++)
786		BUG_ON(bset_has_rw_aux_tree(i));
787
788	bch2_bset_set_no_aux_tree(b, t);
789
790	/* round up to next cacheline: */
791	t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
792				      SMP_CACHE_BYTES / sizeof(u64));
793
794	bset_aux_tree_verify(b);
795}
796
797void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
798			     bool writeable)
799{
800	if (writeable
801	    ? bset_has_rw_aux_tree(t)
802	    : bset_has_ro_aux_tree(t))
803		return;
804
805	bset_alloc_tree(b, t);
806
807	if (!__bset_tree_capacity(b, t))
808		return;
809
810	if (writeable)
811		__build_rw_aux_tree(b, t);
812	else
813		__build_ro_aux_tree(b, t);
814
815	bset_aux_tree_verify(b);
816}
817
818void bch2_bset_init_first(struct btree *b, struct bset *i)
819{
820	struct bset_tree *t;
821
822	BUG_ON(b->nsets);
823
824	memset(i, 0, sizeof(*i));
825	get_random_bytes(&i->seq, sizeof(i->seq));
826	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
827
828	t = &b->set[b->nsets++];
829	set_btree_bset(b, t, i);
830}
831
832void bch2_bset_init_next(struct btree *b, struct btree_node_entry *bne)
833{
834	struct bset *i = &bne->keys;
835	struct bset_tree *t;
836
837	BUG_ON(bset_byte_offset(b, bne) >= btree_buf_bytes(b));
838	BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
839	BUG_ON(b->nsets >= MAX_BSETS);
840
841	memset(i, 0, sizeof(*i));
842	i->seq = btree_bset_first(b)->seq;
843	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
844
845	t = &b->set[b->nsets++];
846	set_btree_bset(b, t, i);
847}
848
849/*
850 * find _some_ key in the same bset as @k that precedes @k - not necessarily the
851 * immediate predecessor:
852 */
853static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
854				       struct bkey_packed *k)
855{
856	struct bkey_packed *p;
857	unsigned offset;
858	int j;
859
860	EBUG_ON(k < btree_bkey_first(b, t) ||
861		k > btree_bkey_last(b, t));
862
863	if (k == btree_bkey_first(b, t))
864		return NULL;
865
866	switch (bset_aux_tree_type(t)) {
867	case BSET_NO_AUX_TREE:
868		p = btree_bkey_first(b, t);
869		break;
870	case BSET_RO_AUX_TREE:
871		j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
872
873		do {
874			p = j ? tree_to_bkey(b, t,
875					__inorder_to_eytzinger1(j--,
876							t->size - 1, t->extra))
877			      : btree_bkey_first(b, t);
878		} while (p >= k);
879		break;
880	case BSET_RW_AUX_TREE:
881		offset = __btree_node_key_to_offset(b, k);
882		j = rw_aux_tree_bsearch(b, t, offset);
883		p = j ? rw_aux_to_bkey(b, t, j - 1)
884		      : btree_bkey_first(b, t);
885		break;
886	}
887
888	return p;
889}
890
891struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
892					  struct bset_tree *t,
893					  struct bkey_packed *k,
894					  unsigned min_key_type)
895{
896	struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
897
898	while ((p = __bkey_prev(b, t, k)) && !ret) {
899		for (i = p; i != k; i = bkey_p_next(i))
900			if (i->type >= min_key_type)
901				ret = i;
902
903		k = p;
904	}
905
906	if (bch2_expensive_debug_checks) {
907		BUG_ON(ret >= orig_k);
908
909		for (i = ret
910			? bkey_p_next(ret)
911			: btree_bkey_first(b, t);
912		     i != orig_k;
913		     i = bkey_p_next(i))
914			BUG_ON(i->type >= min_key_type);
915	}
916
917	return ret;
918}
919
920/* Insert */
921
922static void bch2_bset_fix_lookup_table(struct btree *b,
923				       struct bset_tree *t,
924				       struct bkey_packed *_where,
925				       unsigned clobber_u64s,
926				       unsigned new_u64s)
927{
928	int shift = new_u64s - clobber_u64s;
929	unsigned l, j, where = __btree_node_key_to_offset(b, _where);
930
931	EBUG_ON(bset_has_ro_aux_tree(t));
932
933	if (!bset_has_rw_aux_tree(t))
934		return;
935
936	/* returns first entry >= where */
937	l = rw_aux_tree_bsearch(b, t, where);
938
939	if (!l) /* never delete first entry */
940		l++;
941	else if (l < t->size &&
942		 where < t->end_offset &&
943		 rw_aux_tree(b, t)[l].offset == where)
944		rw_aux_tree_set(b, t, l++, _where);
945
946	/* l now > where */
947
948	for (j = l;
949	     j < t->size &&
950	     rw_aux_tree(b, t)[j].offset < where + clobber_u64s;
951	     j++)
952		;
953
954	if (j < t->size &&
955	    rw_aux_tree(b, t)[j].offset + shift ==
956	    rw_aux_tree(b, t)[l - 1].offset)
957		j++;
958
959	memmove(&rw_aux_tree(b, t)[l],
960		&rw_aux_tree(b, t)[j],
961		(void *) &rw_aux_tree(b, t)[t->size] -
962		(void *) &rw_aux_tree(b, t)[j]);
963	t->size -= j - l;
964
965	for (j = l; j < t->size; j++)
966		rw_aux_tree(b, t)[j].offset += shift;
967
968	EBUG_ON(l < t->size &&
969		rw_aux_tree(b, t)[l].offset ==
970		rw_aux_tree(b, t)[l - 1].offset);
971
972	if (t->size < bset_rw_tree_capacity(b, t) &&
973	    (l < t->size
974	     ? rw_aux_tree(b, t)[l].offset
975	     : t->end_offset) -
976	    rw_aux_tree(b, t)[l - 1].offset >
977	    L1_CACHE_BYTES / sizeof(u64)) {
978		struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1);
979		struct bkey_packed *end = l < t->size
980			? rw_aux_to_bkey(b, t, l)
981			: btree_bkey_last(b, t);
982		struct bkey_packed *k = start;
983
984		while (1) {
985			k = bkey_p_next(k);
986			if (k == end)
987				break;
988
989			if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
990				memmove(&rw_aux_tree(b, t)[l + 1],
991					&rw_aux_tree(b, t)[l],
992					(void *) &rw_aux_tree(b, t)[t->size] -
993					(void *) &rw_aux_tree(b, t)[l]);
994				t->size++;
995				rw_aux_tree_set(b, t, l, k);
996				break;
997			}
998		}
999	}
1000
1001	bch2_bset_verify_rw_aux_tree(b, t);
1002	bset_aux_tree_verify(b);
1003}
1004
1005void bch2_bset_insert(struct btree *b,
1006		      struct btree_node_iter *iter,
1007		      struct bkey_packed *where,
1008		      struct bkey_i *insert,
1009		      unsigned clobber_u64s)
1010{
1011	struct bkey_format *f = &b->format;
1012	struct bset_tree *t = bset_tree_last(b);
1013	struct bkey_packed packed, *src = bkey_to_packed(insert);
1014
1015	bch2_bset_verify_rw_aux_tree(b, t);
1016	bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s);
1017
1018	if (bch2_bkey_pack_key(&packed, &insert->k, f))
1019		src = &packed;
1020
1021	if (!bkey_deleted(&insert->k))
1022		btree_keys_account_key_add(&b->nr, t - b->set, src);
1023
1024	if (src->u64s != clobber_u64s) {
1025		u64 *src_p = (u64 *) where->_data + clobber_u64s;
1026		u64 *dst_p = (u64 *) where->_data + src->u64s;
1027
1028		EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
1029			(int) clobber_u64s - src->u64s);
1030
1031		memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1032		le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
1033		set_btree_bset_end(b, t);
1034	}
1035
1036	memcpy_u64s_small(where, src,
1037		    bkeyp_key_u64s(f, src));
1038	memcpy_u64s(bkeyp_val(f, where), &insert->v,
1039		    bkeyp_val_u64s(f, src));
1040
1041	if (src->u64s != clobber_u64s)
1042		bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
1043
1044	bch2_verify_btree_nr_keys(b);
1045}
1046
1047void bch2_bset_delete(struct btree *b,
1048		      struct bkey_packed *where,
1049		      unsigned clobber_u64s)
1050{
1051	struct bset_tree *t = bset_tree_last(b);
1052	u64 *src_p = (u64 *) where->_data + clobber_u64s;
1053	u64 *dst_p = where->_data;
1054
1055	bch2_bset_verify_rw_aux_tree(b, t);
1056
1057	EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
1058
1059	memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1060	le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
1061	set_btree_bset_end(b, t);
1062
1063	bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
1064}
1065
1066/* Lookup */
1067
1068__flatten
1069static struct bkey_packed *bset_search_write_set(const struct btree *b,
1070				struct bset_tree *t,
1071				struct bpos *search)
1072{
1073	unsigned l = 0, r = t->size;
1074
1075	while (l + 1 != r) {
1076		unsigned m = (l + r) >> 1;
1077
1078		if (bpos_lt(rw_aux_tree(b, t)[m].k, *search))
1079			l = m;
1080		else
1081			r = m;
1082	}
1083
1084	return rw_aux_to_bkey(b, t, l);
1085}
1086
1087static inline void prefetch_four_cachelines(void *p)
1088{
1089#ifdef CONFIG_X86_64
1090	asm("prefetcht0 (-127 + 64 * 0)(%0);"
1091	    "prefetcht0 (-127 + 64 * 1)(%0);"
1092	    "prefetcht0 (-127 + 64 * 2)(%0);"
1093	    "prefetcht0 (-127 + 64 * 3)(%0);"
1094	    :
1095	    : "r" (p + 127));
1096#else
1097	prefetch(p + L1_CACHE_BYTES * 0);
1098	prefetch(p + L1_CACHE_BYTES * 1);
1099	prefetch(p + L1_CACHE_BYTES * 2);
1100	prefetch(p + L1_CACHE_BYTES * 3);
1101#endif
1102}
1103
1104static inline bool bkey_mantissa_bits_dropped(const struct btree *b,
1105					      const struct bkey_float *f,
1106					      unsigned idx)
1107{
1108#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1109	unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits;
1110
1111	return f->exponent > key_bits_start;
1112#else
1113	unsigned key_bits_end = high_bit_offset + b->nr_key_bits;
1114
1115	return f->exponent + BKEY_MANTISSA_BITS < key_bits_end;
1116#endif
1117}
1118
1119__flatten
1120static struct bkey_packed *bset_search_tree(const struct btree *b,
1121				const struct bset_tree *t,
1122				const struct bpos *search,
1123				const struct bkey_packed *packed_search)
1124{
1125	struct ro_aux_tree *base = ro_aux_tree_base(b, t);
1126	struct bkey_float *f;
1127	struct bkey_packed *k;
1128	unsigned inorder, n = 1, l, r;
1129	int cmp;
1130
1131	do {
1132		if (likely(n << 4 < t->size))
1133			prefetch(&base->f[n << 4]);
1134
1135		f = &base->f[n];
1136		if (unlikely(f->exponent >= BFLOAT_FAILED))
1137			goto slowpath;
1138
1139		l = f->mantissa;
1140		r = bkey_mantissa(packed_search, f, n);
1141
1142		if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n))
1143			goto slowpath;
1144
1145		n = n * 2 + (l < r);
1146		continue;
1147slowpath:
1148		k = tree_to_bkey(b, t, n);
1149		cmp = bkey_cmp_p_or_unp(b, k, packed_search, search);
1150		if (!cmp)
1151			return k;
1152
1153		n = n * 2 + (cmp < 0);
1154	} while (n < t->size);
1155
1156	inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra);
1157
1158	/*
1159	 * n would have been the node we recursed to - the low bit tells us if
1160	 * we recursed left or recursed right.
1161	 */
1162	if (likely(!(n & 1))) {
1163		--inorder;
1164		if (unlikely(!inorder))
1165			return btree_bkey_first(b, t);
1166
1167		f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)];
1168	}
1169
1170	return cacheline_to_bkey(b, t, inorder, f->key_offset);
1171}
1172
1173static __always_inline __flatten
1174struct bkey_packed *__bch2_bset_search(struct btree *b,
1175				struct bset_tree *t,
1176				struct bpos *search,
1177				const struct bkey_packed *lossy_packed_search)
1178{
1179
1180	/*
1181	 * First, we search for a cacheline, then lastly we do a linear search
1182	 * within that cacheline.
1183	 *
1184	 * To search for the cacheline, there's three different possibilities:
1185	 *  * The set is too small to have a search tree, so we just do a linear
1186	 *    search over the whole set.
1187	 *  * The set is the one we're currently inserting into; keeping a full
1188	 *    auxiliary search tree up to date would be too expensive, so we
1189	 *    use a much simpler lookup table to do a binary search -
1190	 *    bset_search_write_set().
1191	 *  * Or we use the auxiliary search tree we constructed earlier -
1192	 *    bset_search_tree()
1193	 */
1194
1195	switch (bset_aux_tree_type(t)) {
1196	case BSET_NO_AUX_TREE:
1197		return btree_bkey_first(b, t);
1198	case BSET_RW_AUX_TREE:
1199		return bset_search_write_set(b, t, search);
1200	case BSET_RO_AUX_TREE:
1201		return bset_search_tree(b, t, search, lossy_packed_search);
1202	default:
1203		BUG();
1204	}
1205}
1206
1207static __always_inline __flatten
1208struct bkey_packed *bch2_bset_search_linear(struct btree *b,
1209				struct bset_tree *t,
1210				struct bpos *search,
1211				struct bkey_packed *packed_search,
1212				const struct bkey_packed *lossy_packed_search,
1213				struct bkey_packed *m)
1214{
1215	if (lossy_packed_search)
1216		while (m != btree_bkey_last(b, t) &&
1217		       bkey_iter_cmp_p_or_unp(b, m,
1218					lossy_packed_search, search) < 0)
1219			m = bkey_p_next(m);
1220
1221	if (!packed_search)
1222		while (m != btree_bkey_last(b, t) &&
1223		       bkey_iter_pos_cmp(b, m, search) < 0)
1224			m = bkey_p_next(m);
1225
1226	if (bch2_expensive_debug_checks) {
1227		struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1228
1229		BUG_ON(prev &&
1230		       bkey_iter_cmp_p_or_unp(b, prev,
1231					packed_search, search) >= 0);
1232	}
1233
1234	return m;
1235}
1236
1237/* Btree node iterator */
1238
1239static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter,
1240			      struct btree *b,
1241			      const struct bkey_packed *k,
1242			      const struct bkey_packed *end)
1243{
1244	if (k != end) {
1245		struct btree_node_iter_set *pos;
1246
1247		btree_node_iter_for_each(iter, pos)
1248			;
1249
1250		BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data));
1251		*pos = (struct btree_node_iter_set) {
1252			__btree_node_key_to_offset(b, k),
1253			__btree_node_key_to_offset(b, end)
1254		};
1255	}
1256}
1257
1258void bch2_btree_node_iter_push(struct btree_node_iter *iter,
1259			       struct btree *b,
1260			       const struct bkey_packed *k,
1261			       const struct bkey_packed *end)
1262{
1263	__bch2_btree_node_iter_push(iter, b, k, end);
1264	bch2_btree_node_iter_sort(iter, b);
1265}
1266
1267noinline __flatten __cold
1268static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
1269			      struct btree *b, struct bpos *search)
1270{
1271	struct bkey_packed *k;
1272
1273	trace_bkey_pack_pos_fail(search);
1274
1275	bch2_btree_node_iter_init_from_start(iter, b);
1276
1277	while ((k = bch2_btree_node_iter_peek(iter, b)) &&
1278	       bkey_iter_pos_cmp(b, k, search) < 0)
1279		bch2_btree_node_iter_advance(iter, b);
1280}
1281
1282/**
1283 * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a
1284 * given position
1285 *
1286 * @iter:	iterator to initialize
1287 * @b:		btree node to search
1288 * @search:	search key
1289 *
1290 * Main entry point to the lookup code for individual btree nodes:
1291 *
1292 * NOTE:
1293 *
1294 * When you don't filter out deleted keys, btree nodes _do_ contain duplicate
1295 * keys. This doesn't matter for most code, but it does matter for lookups.
1296 *
1297 * Some adjacent keys with a string of equal keys:
1298 *	i j k k k k l m
1299 *
1300 * If you search for k, the lookup code isn't guaranteed to return you any
1301 * specific k. The lookup code is conceptually doing a binary search and
1302 * iterating backwards is very expensive so if the pivot happens to land at the
1303 * last k that's what you'll get.
1304 *
1305 * This works out ok, but it's something to be aware of:
1306 *
1307 *  - For non extents, we guarantee that the live key comes last - see
1308 *    btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
1309 *    see will only be deleted keys you don't care about.
1310 *
1311 *  - For extents, deleted keys sort last (see the comment at the top of this
1312 *    file). But when you're searching for extents, you actually want the first
1313 *    key strictly greater than your search key - an extent that compares equal
1314 *    to the search key is going to have 0 sectors after the search key.
1315 *
1316 *    But this does mean that we can't just search for
1317 *    bpos_successor(start_of_range) to get the first extent that overlaps with
1318 *    the range we want - if we're unlucky and there's an extent that ends
1319 *    exactly where we searched, then there could be a deleted key at the same
1320 *    position and we'd get that when we search instead of the preceding extent
1321 *    we needed.
1322 *
1323 *    So we've got to search for start_of_range, then after the lookup iterate
1324 *    past any extents that compare equal to the position we searched for.
1325 */
1326__flatten
1327void bch2_btree_node_iter_init(struct btree_node_iter *iter,
1328			       struct btree *b, struct bpos *search)
1329{
1330	struct bkey_packed p, *packed_search = NULL;
1331	struct btree_node_iter_set *pos = iter->data;
1332	struct bkey_packed *k[MAX_BSETS];
1333	unsigned i;
1334
1335	EBUG_ON(bpos_lt(*search, b->data->min_key));
1336	EBUG_ON(bpos_gt(*search, b->data->max_key));
1337	bset_aux_tree_verify(b);
1338
1339	memset(iter, 0, sizeof(*iter));
1340
1341	switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) {
1342	case BKEY_PACK_POS_EXACT:
1343		packed_search = &p;
1344		break;
1345	case BKEY_PACK_POS_SMALLER:
1346		packed_search = NULL;
1347		break;
1348	case BKEY_PACK_POS_FAIL:
1349		btree_node_iter_init_pack_failed(iter, b, search);
1350		return;
1351	}
1352
1353	for (i = 0; i < b->nsets; i++) {
1354		k[i] = __bch2_bset_search(b, b->set + i, search, &p);
1355		prefetch_four_cachelines(k[i]);
1356	}
1357
1358	for (i = 0; i < b->nsets; i++) {
1359		struct bset_tree *t = b->set + i;
1360		struct bkey_packed *end = btree_bkey_last(b, t);
1361
1362		k[i] = bch2_bset_search_linear(b, t, search,
1363					       packed_search, &p, k[i]);
1364		if (k[i] != end)
1365			*pos++ = (struct btree_node_iter_set) {
1366				__btree_node_key_to_offset(b, k[i]),
1367				__btree_node_key_to_offset(b, end)
1368			};
1369	}
1370
1371	bch2_btree_node_iter_sort(iter, b);
1372}
1373
1374void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
1375					  struct btree *b)
1376{
1377	struct bset_tree *t;
1378
1379	memset(iter, 0, sizeof(*iter));
1380
1381	for_each_bset(b, t)
1382		__bch2_btree_node_iter_push(iter, b,
1383					   btree_bkey_first(b, t),
1384					   btree_bkey_last(b, t));
1385	bch2_btree_node_iter_sort(iter, b);
1386}
1387
1388struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
1389						  struct btree *b,
1390						  struct bset_tree *t)
1391{
1392	struct btree_node_iter_set *set;
1393
1394	btree_node_iter_for_each(iter, set)
1395		if (set->end == t->end_offset)
1396			return __btree_node_offset_to_key(b, set->k);
1397
1398	return btree_bkey_last(b, t);
1399}
1400
1401static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
1402					    struct btree *b,
1403					    unsigned first)
1404{
1405	bool ret;
1406
1407	if ((ret = (btree_node_iter_cmp(b,
1408					iter->data[first],
1409					iter->data[first + 1]) > 0)))
1410		swap(iter->data[first], iter->data[first + 1]);
1411	return ret;
1412}
1413
1414void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
1415			       struct btree *b)
1416{
1417	/* unrolled bubble sort: */
1418
1419	if (!__btree_node_iter_set_end(iter, 2)) {
1420		btree_node_iter_sort_two(iter, b, 0);
1421		btree_node_iter_sort_two(iter, b, 1);
1422	}
1423
1424	if (!__btree_node_iter_set_end(iter, 1))
1425		btree_node_iter_sort_two(iter, b, 0);
1426}
1427
1428void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
1429				   struct btree_node_iter_set *set)
1430{
1431	struct btree_node_iter_set *last =
1432		iter->data + ARRAY_SIZE(iter->data) - 1;
1433
1434	memmove(&set[0], &set[1], (void *) last - (void *) set);
1435	*last = (struct btree_node_iter_set) { 0, 0 };
1436}
1437
1438static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1439						  struct btree *b)
1440{
1441	iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
1442
1443	EBUG_ON(iter->data->k > iter->data->end);
1444
1445	if (unlikely(__btree_node_iter_set_end(iter, 0))) {
1446		/* avoid an expensive memmove call: */
1447		iter->data[0] = iter->data[1];
1448		iter->data[1] = iter->data[2];
1449		iter->data[2] = (struct btree_node_iter_set) { 0, 0 };
1450		return;
1451	}
1452
1453	if (__btree_node_iter_set_end(iter, 1))
1454		return;
1455
1456	if (!btree_node_iter_sort_two(iter, b, 0))
1457		return;
1458
1459	if (__btree_node_iter_set_end(iter, 2))
1460		return;
1461
1462	btree_node_iter_sort_two(iter, b, 1);
1463}
1464
1465void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1466				  struct btree *b)
1467{
1468	if (bch2_expensive_debug_checks) {
1469		bch2_btree_node_iter_verify(iter, b);
1470		bch2_btree_node_iter_next_check(iter, b);
1471	}
1472
1473	__bch2_btree_node_iter_advance(iter, b);
1474}
1475
1476/*
1477 * Expensive:
1478 */
1479struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter,
1480						  struct btree *b)
1481{
1482	struct bkey_packed *k, *prev = NULL;
1483	struct btree_node_iter_set *set;
1484	struct bset_tree *t;
1485	unsigned end = 0;
1486
1487	if (bch2_expensive_debug_checks)
1488		bch2_btree_node_iter_verify(iter, b);
1489
1490	for_each_bset(b, t) {
1491		k = bch2_bkey_prev_all(b, t,
1492			bch2_btree_node_iter_bset_pos(iter, b, t));
1493		if (k &&
1494		    (!prev || bkey_iter_cmp(b, k, prev) > 0)) {
1495			prev = k;
1496			end = t->end_offset;
1497		}
1498	}
1499
1500	if (!prev)
1501		return NULL;
1502
1503	/*
1504	 * We're manually memmoving instead of just calling sort() to ensure the
1505	 * prev we picked ends up in slot 0 - sort won't necessarily put it
1506	 * there because of duplicate deleted keys:
1507	 */
1508	btree_node_iter_for_each(iter, set)
1509		if (set->end == end)
1510			goto found;
1511
1512	BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
1513found:
1514	BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
1515
1516	memmove(&iter->data[1],
1517		&iter->data[0],
1518		(void *) set - (void *) &iter->data[0]);
1519
1520	iter->data[0].k = __btree_node_key_to_offset(b, prev);
1521	iter->data[0].end = end;
1522
1523	if (bch2_expensive_debug_checks)
1524		bch2_btree_node_iter_verify(iter, b);
1525	return prev;
1526}
1527
1528struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter,
1529					      struct btree *b)
1530{
1531	struct bkey_packed *prev;
1532
1533	do {
1534		prev = bch2_btree_node_iter_prev_all(iter, b);
1535	} while (prev && bkey_deleted(prev));
1536
1537	return prev;
1538}
1539
1540struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
1541						 struct btree *b,
1542						 struct bkey *u)
1543{
1544	struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
1545
1546	return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
1547}
1548
1549/* Mergesort */
1550
1551void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats)
1552{
1553	const struct bset_tree *t;
1554
1555	for_each_bset(b, t) {
1556		enum bset_aux_tree_type type = bset_aux_tree_type(t);
1557		size_t j;
1558
1559		stats->sets[type].nr++;
1560		stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
1561			sizeof(u64);
1562
1563		if (bset_has_ro_aux_tree(t)) {
1564			stats->floats += t->size - 1;
1565
1566			for (j = 1; j < t->size; j++)
1567				stats->failed +=
1568					bkey_float(b, t, j)->exponent ==
1569					BFLOAT_FAILED;
1570		}
1571	}
1572}
1573
1574void bch2_bfloat_to_text(struct printbuf *out, struct btree *b,
1575			 struct bkey_packed *k)
1576{
1577	struct bset_tree *t = bch2_bkey_to_bset(b, k);
1578	struct bkey uk;
1579	unsigned j, inorder;
1580
1581	if (!bset_has_ro_aux_tree(t))
1582		return;
1583
1584	inorder = bkey_to_cacheline(b, t, k);
1585	if (!inorder || inorder >= t->size)
1586		return;
1587
1588	j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra);
1589	if (k != tree_to_bkey(b, t, j))
1590		return;
1591
1592	switch (bkey_float(b, t, j)->exponent) {
1593	case BFLOAT_FAILED:
1594		uk = bkey_unpack_key(b, k);
1595		prt_printf(out,
1596		       "    failed unpacked at depth %u\n"
1597		       "\t",
1598		       ilog2(j));
1599		bch2_bpos_to_text(out, uk.p);
1600		prt_printf(out, "\n");
1601		break;
1602	}
1603}
1604