1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _BCACHEFS_H
3#define _BCACHEFS_H
4
5/*
6 * SOME HIGH LEVEL CODE DOCUMENTATION:
7 *
8 * Bcache mostly works with cache sets, cache devices, and backing devices.
9 *
10 * Support for multiple cache devices hasn't quite been finished off yet, but
11 * it's about 95% plumbed through. A cache set and its cache devices is sort of
12 * like a md raid array and its component devices. Most of the code doesn't care
13 * about individual cache devices, the main abstraction is the cache set.
14 *
15 * Multiple cache devices is intended to give us the ability to mirror dirty
16 * cached data and metadata, without mirroring clean cached data.
17 *
18 * Backing devices are different, in that they have a lifetime independent of a
19 * cache set. When you register a newly formatted backing device it'll come up
20 * in passthrough mode, and then you can attach and detach a backing device from
21 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
22 * invalidates any cached data for that backing device.
23 *
24 * A cache set can have multiple (many) backing devices attached to it.
25 *
26 * There's also flash only volumes - this is the reason for the distinction
27 * between struct cached_dev and struct bcache_device. A flash only volume
28 * works much like a bcache device that has a backing device, except the
29 * "cached" data is always dirty. The end result is that we get thin
30 * provisioning with very little additional code.
31 *
32 * Flash only volumes work but they're not production ready because the moving
33 * garbage collector needs more work. More on that later.
34 *
35 * BUCKETS/ALLOCATION:
36 *
37 * Bcache is primarily designed for caching, which means that in normal
38 * operation all of our available space will be allocated. Thus, we need an
39 * efficient way of deleting things from the cache so we can write new things to
40 * it.
41 *
42 * To do this, we first divide the cache device up into buckets. A bucket is the
43 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
44 * works efficiently.
45 *
46 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
47 * it. The gens and priorities for all the buckets are stored contiguously and
48 * packed on disk (in a linked list of buckets - aside from the superblock, all
49 * of bcache's metadata is stored in buckets).
50 *
51 * The priority is used to implement an LRU. We reset a bucket's priority when
52 * we allocate it or on cache it, and every so often we decrement the priority
53 * of each bucket. It could be used to implement something more sophisticated,
54 * if anyone ever gets around to it.
55 *
56 * The generation is used for invalidating buckets. Each pointer also has an 8
57 * bit generation embedded in it; for a pointer to be considered valid, its gen
58 * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
59 * we have to do is increment its gen (and write its new gen to disk; we batch
60 * this up).
61 *
62 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
63 * contain metadata (including btree nodes).
64 *
65 * THE BTREE:
66 *
67 * Bcache is in large part design around the btree.
68 *
69 * At a high level, the btree is just an index of key -> ptr tuples.
70 *
71 * Keys represent extents, and thus have a size field. Keys also have a variable
72 * number of pointers attached to them (potentially zero, which is handy for
73 * invalidating the cache).
74 *
75 * The key itself is an inode:offset pair. The inode number corresponds to a
76 * backing device or a flash only volume. The offset is the ending offset of the
77 * extent within the inode - not the starting offset; this makes lookups
78 * slightly more convenient.
79 *
80 * Pointers contain the cache device id, the offset on that device, and an 8 bit
81 * generation number. More on the gen later.
82 *
83 * Index lookups are not fully abstracted - cache lookups in particular are
84 * still somewhat mixed in with the btree code, but things are headed in that
85 * direction.
86 *
87 * Updates are fairly well abstracted, though. There are two different ways of
88 * updating the btree; insert and replace.
89 *
90 * BTREE_INSERT will just take a list of keys and insert them into the btree -
91 * overwriting (possibly only partially) any extents they overlap with. This is
92 * used to update the index after a write.
93 *
94 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
95 * overwriting a key that matches another given key. This is used for inserting
96 * data into the cache after a cache miss, and for background writeback, and for
97 * the moving garbage collector.
98 *
99 * There is no "delete" operation; deleting things from the index is
100 * accomplished by either by invalidating pointers (by incrementing a bucket's
101 * gen) or by inserting a key with 0 pointers - which will overwrite anything
102 * previously present at that location in the index.
103 *
104 * This means that there are always stale/invalid keys in the btree. They're
105 * filtered out by the code that iterates through a btree node, and removed when
106 * a btree node is rewritten.
107 *
108 * BTREE NODES:
109 *
110 * Our unit of allocation is a bucket, and we can't arbitrarily allocate and
111 * free smaller than a bucket - so, that's how big our btree nodes are.
112 *
113 * (If buckets are really big we'll only use part of the bucket for a btree node
114 * - no less than 1/4th - but a bucket still contains no more than a single
115 * btree node. I'd actually like to change this, but for now we rely on the
116 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
117 *
118 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
119 * btree implementation.
120 *
121 * The way this is solved is that btree nodes are internally log structured; we
122 * can append new keys to an existing btree node without rewriting it. This
123 * means each set of keys we write is sorted, but the node is not.
124 *
125 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
126 * be expensive, and we have to distinguish between the keys we have written and
127 * the keys we haven't. So to do a lookup in a btree node, we have to search
128 * each sorted set. But we do merge written sets together lazily, so the cost of
129 * these extra searches is quite low (normally most of the keys in a btree node
130 * will be in one big set, and then there'll be one or two sets that are much
131 * smaller).
132 *
133 * This log structure makes bcache's btree more of a hybrid between a
134 * conventional btree and a compacting data structure, with some of the
135 * advantages of both.
136 *
137 * GARBAGE COLLECTION:
138 *
139 * We can't just invalidate any bucket - it might contain dirty data or
140 * metadata. If it once contained dirty data, other writes might overwrite it
141 * later, leaving no valid pointers into that bucket in the index.
142 *
143 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
144 * It also counts how much valid data it each bucket currently contains, so that
145 * allocation can reuse buckets sooner when they've been mostly overwritten.
146 *
147 * It also does some things that are really internal to the btree
148 * implementation. If a btree node contains pointers that are stale by more than
149 * some threshold, it rewrites the btree node to avoid the bucket's generation
150 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
151 *
152 * THE JOURNAL:
153 *
154 * Bcache's journal is not necessary for consistency; we always strictly
155 * order metadata writes so that the btree and everything else is consistent on
156 * disk in the event of an unclean shutdown, and in fact bcache had writeback
157 * caching (with recovery from unclean shutdown) before journalling was
158 * implemented.
159 *
160 * Rather, the journal is purely a performance optimization; we can't complete a
161 * write until we've updated the index on disk, otherwise the cache would be
162 * inconsistent in the event of an unclean shutdown. This means that without the
163 * journal, on random write workloads we constantly have to update all the leaf
164 * nodes in the btree, and those writes will be mostly empty (appending at most
165 * a few keys each) - highly inefficient in terms of amount of metadata writes,
166 * and it puts more strain on the various btree resorting/compacting code.
167 *
168 * The journal is just a log of keys we've inserted; on startup we just reinsert
169 * all the keys in the open journal entries. That means that when we're updating
170 * a node in the btree, we can wait until a 4k block of keys fills up before
171 * writing them out.
172 *
173 * For simplicity, we only journal updates to leaf nodes; updates to parent
174 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
175 * the complexity to deal with journalling them (in particular, journal replay)
176 * - updates to non leaf nodes just happen synchronously (see btree_split()).
177 */
178
179#undef pr_fmt
180#ifdef __KERNEL__
181#define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__
182#else
183#define pr_fmt(fmt) "%s() " fmt "\n", __func__
184#endif
185
186#include <linux/backing-dev-defs.h>
187#include <linux/bug.h>
188#include <linux/bio.h>
189#include <linux/closure.h>
190#include <linux/kobject.h>
191#include <linux/list.h>
192#include <linux/math64.h>
193#include <linux/mutex.h>
194#include <linux/percpu-refcount.h>
195#include <linux/percpu-rwsem.h>
196#include <linux/refcount.h>
197#include <linux/rhashtable.h>
198#include <linux/rwsem.h>
199#include <linux/semaphore.h>
200#include <linux/seqlock.h>
201#include <linux/shrinker.h>
202#include <linux/srcu.h>
203#include <linux/types.h>
204#include <linux/workqueue.h>
205#include <linux/zstd.h>
206
207#include "bcachefs_format.h"
208#include "errcode.h"
209#include "fifo.h"
210#include "nocow_locking_types.h"
211#include "opts.h"
212#include "recovery_passes_types.h"
213#include "sb-errors_types.h"
214#include "seqmutex.h"
215#include "time_stats.h"
216#include "util.h"
217
218#ifdef CONFIG_BCACHEFS_DEBUG
219#define BCH_WRITE_REF_DEBUG
220#endif
221
222#ifndef dynamic_fault
223#define dynamic_fault(...)		0
224#endif
225
226#define race_fault(...)			dynamic_fault("bcachefs:race")
227
228#define count_event(_c, _name)	this_cpu_inc((_c)->counters[BCH_COUNTER_##_name])
229
230#define trace_and_count(_c, _name, ...)					\
231do {									\
232	count_event(_c, _name);						\
233	trace_##_name(__VA_ARGS__);					\
234} while (0)
235
236#define bch2_fs_init_fault(name)					\
237	dynamic_fault("bcachefs:bch_fs_init:" name)
238#define bch2_meta_read_fault(name)					\
239	 dynamic_fault("bcachefs:meta:read:" name)
240#define bch2_meta_write_fault(name)					\
241	 dynamic_fault("bcachefs:meta:write:" name)
242
243#ifdef __KERNEL__
244#define BCACHEFS_LOG_PREFIX
245#endif
246
247#ifdef BCACHEFS_LOG_PREFIX
248
249#define bch2_log_msg(_c, fmt)			"bcachefs (%s): " fmt, ((_c)->name)
250#define bch2_fmt_dev(_ca, fmt)			"bcachefs (%s): " fmt "\n", ((_ca)->name)
251#define bch2_fmt_dev_offset(_ca, _offset, fmt)	"bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset)
252#define bch2_fmt_inum(_c, _inum, fmt)		"bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum)
253#define bch2_fmt_inum_offset(_c, _inum, _offset, fmt)			\
254	 "bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset)
255
256#else
257
258#define bch2_log_msg(_c, fmt)			fmt
259#define bch2_fmt_dev(_ca, fmt)			"%s: " fmt "\n", ((_ca)->name)
260#define bch2_fmt_dev_offset(_ca, _offset, fmt)	"%s sector %llu: " fmt "\n", ((_ca)->name), (_offset)
261#define bch2_fmt_inum(_c, _inum, fmt)		"inum %llu: " fmt "\n", (_inum)
262#define bch2_fmt_inum_offset(_c, _inum, _offset, fmt)				\
263	 "inum %llu offset %llu: " fmt "\n", (_inum), (_offset)
264
265#endif
266
267#define bch2_fmt(_c, fmt)		bch2_log_msg(_c, fmt "\n")
268
269__printf(2, 3)
270void bch2_print_opts(struct bch_opts *, const char *, ...);
271
272__printf(2, 3)
273void __bch2_print(struct bch_fs *c, const char *fmt, ...);
274
275#define maybe_dev_to_fs(_c)	_Generic((_c),				\
276	struct bch_dev *:	((struct bch_dev *) (_c))->fs,		\
277	struct bch_fs *:	(_c))
278
279#define bch2_print(_c, ...) __bch2_print(maybe_dev_to_fs(_c), __VA_ARGS__)
280
281#define bch2_print_ratelimited(_c, ...)					\
282do {									\
283	static DEFINE_RATELIMIT_STATE(_rs,				\
284				      DEFAULT_RATELIMIT_INTERVAL,	\
285				      DEFAULT_RATELIMIT_BURST);		\
286									\
287	if (__ratelimit(&_rs))						\
288		bch2_print(_c, __VA_ARGS__);				\
289} while (0)
290
291#define bch_info(c, fmt, ...) \
292	bch2_print(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__)
293#define bch_notice(c, fmt, ...) \
294	bch2_print(c, KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__)
295#define bch_warn(c, fmt, ...) \
296	bch2_print(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
297#define bch_warn_ratelimited(c, fmt, ...) \
298	bch2_print_ratelimited(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
299
300#define bch_err(c, fmt, ...) \
301	bch2_print(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
302#define bch_err_dev(ca, fmt, ...) \
303	bch2_print(c, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
304#define bch_err_dev_offset(ca, _offset, fmt, ...) \
305	bch2_print(c, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
306#define bch_err_inum(c, _inum, fmt, ...) \
307	bch2_print(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
308#define bch_err_inum_offset(c, _inum, _offset, fmt, ...) \
309	bch2_print(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
310
311#define bch_err_ratelimited(c, fmt, ...) \
312	bch2_print_ratelimited(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
313#define bch_err_dev_ratelimited(ca, fmt, ...) \
314	bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
315#define bch_err_dev_offset_ratelimited(ca, _offset, fmt, ...) \
316	bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
317#define bch_err_inum_ratelimited(c, _inum, fmt, ...) \
318	bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
319#define bch_err_inum_offset_ratelimited(c, _inum, _offset, fmt, ...) \
320	bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
321
322static inline bool should_print_err(int err)
323{
324	return err && !bch2_err_matches(err, BCH_ERR_transaction_restart);
325}
326
327#define bch_err_fn(_c, _ret)						\
328do {									\
329	if (should_print_err(_ret))					\
330		bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
331} while (0)
332
333#define bch_err_fn_ratelimited(_c, _ret)				\
334do {									\
335	if (should_print_err(_ret))					\
336		bch_err_ratelimited(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
337} while (0)
338
339#define bch_err_msg(_c, _ret, _msg, ...)				\
340do {									\
341	if (should_print_err(_ret))					\
342		bch_err(_c, "%s(): error " _msg " %s", __func__,	\
343			##__VA_ARGS__, bch2_err_str(_ret));		\
344} while (0)
345
346#define bch_verbose(c, fmt, ...)					\
347do {									\
348	if ((c)->opts.verbose)						\
349		bch_info(c, fmt, ##__VA_ARGS__);			\
350} while (0)
351
352#define pr_verbose_init(opts, fmt, ...)					\
353do {									\
354	if (opt_get(opts, verbose))					\
355		pr_info(fmt, ##__VA_ARGS__);				\
356} while (0)
357
358/* Parameters that are useful for debugging, but should always be compiled in: */
359#define BCH_DEBUG_PARAMS_ALWAYS()					\
360	BCH_DEBUG_PARAM(key_merging_disabled,				\
361		"Disables merging of extents")				\
362	BCH_DEBUG_PARAM(btree_gc_always_rewrite,			\
363		"Causes mark and sweep to compact and rewrite every "	\
364		"btree node it traverses")				\
365	BCH_DEBUG_PARAM(btree_gc_rewrite_disabled,			\
366		"Disables rewriting of btree nodes during mark and sweep")\
367	BCH_DEBUG_PARAM(btree_shrinker_disabled,			\
368		"Disables the shrinker callback for the btree node cache")\
369	BCH_DEBUG_PARAM(verify_btree_ondisk,				\
370		"Reread btree nodes at various points to verify the "	\
371		"mergesort in the read path against modifications "	\
372		"done in memory")					\
373	BCH_DEBUG_PARAM(verify_all_btree_replicas,			\
374		"When reading btree nodes, read all replicas and "	\
375		"compare them")						\
376	BCH_DEBUG_PARAM(backpointers_no_use_write_buffer,		\
377		"Don't use the write buffer for backpointers, enabling "\
378		"extra runtime checks")
379
380/* Parameters that should only be compiled in debug mode: */
381#define BCH_DEBUG_PARAMS_DEBUG()					\
382	BCH_DEBUG_PARAM(expensive_debug_checks,				\
383		"Enables various runtime debugging checks that "	\
384		"significantly affect performance")			\
385	BCH_DEBUG_PARAM(debug_check_iterators,				\
386		"Enables extra verification for btree iterators")	\
387	BCH_DEBUG_PARAM(debug_check_btree_accounting,			\
388		"Verify btree accounting for keys within a node")	\
389	BCH_DEBUG_PARAM(journal_seq_verify,				\
390		"Store the journal sequence number in the version "	\
391		"number of every btree key, and verify that btree "	\
392		"update ordering is preserved during recovery")		\
393	BCH_DEBUG_PARAM(inject_invalid_keys,				\
394		"Store the journal sequence number in the version "	\
395		"number of every btree key, and verify that btree "	\
396		"update ordering is preserved during recovery")		\
397	BCH_DEBUG_PARAM(test_alloc_startup,				\
398		"Force allocator startup to use the slowpath where it"	\
399		"can't find enough free buckets without invalidating"	\
400		"cached data")						\
401	BCH_DEBUG_PARAM(force_reconstruct_read,				\
402		"Force reads to use the reconstruct path, when reading"	\
403		"from erasure coded extents")				\
404	BCH_DEBUG_PARAM(test_restart_gc,				\
405		"Test restarting mark and sweep gc when bucket gens change")
406
407#define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG()
408
409#ifdef CONFIG_BCACHEFS_DEBUG
410#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL()
411#else
412#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS()
413#endif
414
415#define BCH_DEBUG_PARAM(name, description) extern bool bch2_##name;
416BCH_DEBUG_PARAMS()
417#undef BCH_DEBUG_PARAM
418
419#ifndef CONFIG_BCACHEFS_DEBUG
420#define BCH_DEBUG_PARAM(name, description) static const __maybe_unused bool bch2_##name;
421BCH_DEBUG_PARAMS_DEBUG()
422#undef BCH_DEBUG_PARAM
423#endif
424
425#define BCH_TIME_STATS()			\
426	x(btree_node_mem_alloc)			\
427	x(btree_node_split)			\
428	x(btree_node_compact)			\
429	x(btree_node_merge)			\
430	x(btree_node_sort)			\
431	x(btree_node_read)			\
432	x(btree_node_read_done)			\
433	x(btree_interior_update_foreground)	\
434	x(btree_interior_update_total)		\
435	x(btree_gc)				\
436	x(data_write)				\
437	x(data_read)				\
438	x(data_promote)				\
439	x(journal_flush_write)			\
440	x(journal_noflush_write)		\
441	x(journal_flush_seq)			\
442	x(blocked_journal_low_on_space)		\
443	x(blocked_journal_low_on_pin)		\
444	x(blocked_journal_max_in_flight)	\
445	x(blocked_allocate)			\
446	x(blocked_allocate_open_bucket)		\
447	x(blocked_write_buffer_full)		\
448	x(nocow_lock_contended)
449
450enum bch_time_stats {
451#define x(name) BCH_TIME_##name,
452	BCH_TIME_STATS()
453#undef x
454	BCH_TIME_STAT_NR
455};
456
457#include "alloc_types.h"
458#include "btree_types.h"
459#include "btree_node_scan_types.h"
460#include "btree_write_buffer_types.h"
461#include "buckets_types.h"
462#include "buckets_waiting_for_journal_types.h"
463#include "clock_types.h"
464#include "disk_groups_types.h"
465#include "ec_types.h"
466#include "journal_types.h"
467#include "keylist_types.h"
468#include "quota_types.h"
469#include "rebalance_types.h"
470#include "replicas_types.h"
471#include "subvolume_types.h"
472#include "super_types.h"
473#include "thread_with_file_types.h"
474
475/* Number of nodes btree coalesce will try to coalesce at once */
476#define GC_MERGE_NODES		4U
477
478/* Maximum number of nodes we might need to allocate atomically: */
479#define BTREE_RESERVE_MAX	(BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1))
480
481/* Size of the freelist we allocate btree nodes from: */
482#define BTREE_NODE_RESERVE	(BTREE_RESERVE_MAX * 4)
483
484#define BTREE_NODE_OPEN_BUCKET_RESERVE	(BTREE_RESERVE_MAX * BCH_REPLICAS_MAX)
485
486struct btree;
487
488enum gc_phase {
489	GC_PHASE_NOT_RUNNING,
490	GC_PHASE_START,
491	GC_PHASE_SB,
492
493	GC_PHASE_BTREE_stripes,
494	GC_PHASE_BTREE_extents,
495	GC_PHASE_BTREE_inodes,
496	GC_PHASE_BTREE_dirents,
497	GC_PHASE_BTREE_xattrs,
498	GC_PHASE_BTREE_alloc,
499	GC_PHASE_BTREE_quotas,
500	GC_PHASE_BTREE_reflink,
501	GC_PHASE_BTREE_subvolumes,
502	GC_PHASE_BTREE_snapshots,
503	GC_PHASE_BTREE_lru,
504	GC_PHASE_BTREE_freespace,
505	GC_PHASE_BTREE_need_discard,
506	GC_PHASE_BTREE_backpointers,
507	GC_PHASE_BTREE_bucket_gens,
508	GC_PHASE_BTREE_snapshot_trees,
509	GC_PHASE_BTREE_deleted_inodes,
510	GC_PHASE_BTREE_logged_ops,
511	GC_PHASE_BTREE_rebalance_work,
512	GC_PHASE_BTREE_subvolume_children,
513
514	GC_PHASE_PENDING_DELETE,
515};
516
517struct gc_pos {
518	enum gc_phase		phase;
519	struct bpos		pos;
520	unsigned		level;
521};
522
523struct reflink_gc {
524	u64		offset;
525	u32		size;
526	u32		refcount;
527};
528
529typedef GENRADIX(struct reflink_gc) reflink_gc_table;
530
531struct io_count {
532	u64			sectors[2][BCH_DATA_NR];
533};
534
535struct bch_dev {
536	struct kobject		kobj;
537	struct percpu_ref	ref;
538	struct completion	ref_completion;
539	struct percpu_ref	io_ref;
540	struct completion	io_ref_completion;
541
542	struct bch_fs		*fs;
543
544	u8			dev_idx;
545	/*
546	 * Cached version of this device's member info from superblock
547	 * Committed by bch2_write_super() -> bch_fs_mi_update()
548	 */
549	struct bch_member_cpu	mi;
550	atomic64_t		errors[BCH_MEMBER_ERROR_NR];
551
552	__uuid_t		uuid;
553	char			name[BDEVNAME_SIZE];
554
555	struct bch_sb_handle	disk_sb;
556	struct bch_sb		*sb_read_scratch;
557	int			sb_write_error;
558	dev_t			dev;
559	atomic_t		flush_seq;
560
561	struct bch_devs_mask	self;
562
563	/* biosets used in cloned bios for writing multiple replicas */
564	struct bio_set		replica_set;
565
566	/*
567	 * Buckets:
568	 * Per-bucket arrays are protected by c->mark_lock, bucket_lock and
569	 * gc_lock, for device resize - holding any is sufficient for access:
570	 * Or rcu_read_lock(), but only for ptr_stale():
571	 */
572	struct bucket_array __rcu *buckets_gc;
573	struct bucket_gens __rcu *bucket_gens;
574	u8			*oldest_gen;
575	unsigned long		*buckets_nouse;
576	struct rw_semaphore	bucket_lock;
577
578	struct bch_dev_usage		*usage_base;
579	struct bch_dev_usage __percpu	*usage[JOURNAL_BUF_NR];
580	struct bch_dev_usage __percpu	*usage_gc;
581
582	/* Allocator: */
583	u64			new_fs_bucket_idx;
584	u64			alloc_cursor;
585
586	unsigned		nr_open_buckets;
587	unsigned		nr_btree_reserve;
588
589	size_t			inc_gen_needs_gc;
590	size_t			inc_gen_really_needs_gc;
591	size_t			buckets_waiting_on_journal;
592
593	atomic64_t		rebalance_work;
594
595	struct journal_device	journal;
596	u64			prev_journal_sector;
597
598	struct work_struct	io_error_work;
599
600	/* The rest of this all shows up in sysfs */
601	atomic64_t		cur_latency[2];
602	struct bch2_time_stats_quantiles io_latency[2];
603
604#define CONGESTED_MAX		1024
605	atomic_t		congested;
606	u64			congested_last;
607
608	struct io_count __percpu *io_done;
609};
610
611/*
612 * initial_gc_unfixed
613 * error
614 * topology error
615 */
616
617#define BCH_FS_FLAGS()			\
618	x(new_fs)			\
619	x(started)			\
620	x(may_go_rw)			\
621	x(rw)				\
622	x(was_rw)			\
623	x(stopping)			\
624	x(emergency_ro)			\
625	x(going_ro)			\
626	x(write_disable_complete)	\
627	x(clean_shutdown)		\
628	x(fsck_running)			\
629	x(initial_gc_unfixed)		\
630	x(need_another_gc)		\
631	x(need_delete_dead_snapshots)	\
632	x(error)			\
633	x(topology_error)		\
634	x(errors_fixed)			\
635	x(errors_not_fixed)
636
637enum bch_fs_flags {
638#define x(n)		BCH_FS_##n,
639	BCH_FS_FLAGS()
640#undef x
641};
642
643struct btree_debug {
644	unsigned		id;
645};
646
647#define BCH_TRANSACTIONS_NR 128
648
649struct btree_transaction_stats {
650	struct bch2_time_stats	duration;
651	struct bch2_time_stats	lock_hold_times;
652	struct mutex		lock;
653	unsigned		nr_max_paths;
654	unsigned		journal_entries_size;
655	unsigned		max_mem;
656	char			*max_paths_text;
657};
658
659struct bch_fs_pcpu {
660	u64			sectors_available;
661};
662
663struct journal_seq_blacklist_table {
664	size_t			nr;
665	struct journal_seq_blacklist_table_entry {
666		u64		start;
667		u64		end;
668		bool		dirty;
669	}			entries[];
670};
671
672struct journal_keys {
673	/* must match layout in darray_types.h */
674	size_t			nr, size;
675	struct journal_key {
676		u64		journal_seq;
677		u32		journal_offset;
678		enum btree_id	btree_id:8;
679		unsigned	level:8;
680		bool		allocated;
681		bool		overwritten;
682		struct bkey_i	*k;
683	}			*data;
684	/*
685	 * Gap buffer: instead of all the empty space in the array being at the
686	 * end of the buffer - from @nr to @size - the empty space is at @gap.
687	 * This means that sequential insertions are O(n) instead of O(n^2).
688	 */
689	size_t			gap;
690	atomic_t		ref;
691	bool			initial_ref_held;
692};
693
694struct btree_trans_buf {
695	struct btree_trans	*trans;
696};
697
698#define REPLICAS_DELTA_LIST_MAX	(1U << 16)
699
700#define BCACHEFS_ROOT_SUBVOL_INUM					\
701	((subvol_inum) { BCACHEFS_ROOT_SUBVOL,	BCACHEFS_ROOT_INO })
702
703#define BCH_WRITE_REFS()						\
704	x(trans)							\
705	x(write)							\
706	x(promote)							\
707	x(node_rewrite)							\
708	x(stripe_create)						\
709	x(stripe_delete)						\
710	x(reflink)							\
711	x(fallocate)							\
712	x(fsync)							\
713	x(dio_write)							\
714	x(discard)							\
715	x(discard_fast)							\
716	x(invalidate)							\
717	x(delete_dead_snapshots)					\
718	x(snapshot_delete_pagecache)					\
719	x(sysfs)							\
720	x(btree_write_buffer)
721
722enum bch_write_ref {
723#define x(n) BCH_WRITE_REF_##n,
724	BCH_WRITE_REFS()
725#undef x
726	BCH_WRITE_REF_NR,
727};
728
729struct bch_fs {
730	struct closure		cl;
731
732	struct list_head	list;
733	struct kobject		kobj;
734	struct kobject		counters_kobj;
735	struct kobject		internal;
736	struct kobject		opts_dir;
737	struct kobject		time_stats;
738	unsigned long		flags;
739
740	int			minor;
741	struct device		*chardev;
742	struct super_block	*vfs_sb;
743	dev_t			dev;
744	char			name[40];
745	struct stdio_redirect	*stdio;
746	struct task_struct	*stdio_filter;
747
748	/* ro/rw, add/remove/resize devices: */
749	struct rw_semaphore	state_lock;
750
751	/* Counts outstanding writes, for clean transition to read-only */
752#ifdef BCH_WRITE_REF_DEBUG
753	atomic_long_t		writes[BCH_WRITE_REF_NR];
754#else
755	struct percpu_ref	writes;
756#endif
757	/*
758	 * Analagous to c->writes, for asynchronous ops that don't necessarily
759	 * need fs to be read-write
760	 */
761	refcount_t		ro_ref;
762	wait_queue_head_t	ro_ref_wait;
763
764	struct work_struct	read_only_work;
765
766	struct bch_dev __rcu	*devs[BCH_SB_MEMBERS_MAX];
767
768	struct bch_replicas_cpu replicas;
769	struct bch_replicas_cpu replicas_gc;
770	struct mutex		replicas_gc_lock;
771	mempool_t		replicas_delta_pool;
772
773	struct journal_entry_res btree_root_journal_res;
774	struct journal_entry_res replicas_journal_res;
775	struct journal_entry_res clock_journal_res;
776	struct journal_entry_res dev_usage_journal_res;
777
778	struct bch_disk_groups_cpu __rcu *disk_groups;
779
780	struct bch_opts		opts;
781
782	/* Updated by bch2_sb_update():*/
783	struct {
784		__uuid_t	uuid;
785		__uuid_t	user_uuid;
786
787		u16		version;
788		u16		version_min;
789		u16		version_upgrade_complete;
790
791		u8		nr_devices;
792		u8		clean;
793
794		u8		encryption_type;
795
796		u64		time_base_lo;
797		u32		time_base_hi;
798		unsigned	time_units_per_sec;
799		unsigned	nsec_per_time_unit;
800		u64		features;
801		u64		compat;
802		unsigned long	errors_silent[BITS_TO_LONGS(BCH_SB_ERR_MAX)];
803		u64		btrees_lost_data;
804	}			sb;
805
806
807	struct bch_sb_handle	disk_sb;
808
809	unsigned short		block_bits;	/* ilog2(block_size) */
810
811	u16			btree_foreground_merge_threshold;
812
813	struct closure		sb_write;
814	struct mutex		sb_lock;
815
816	/* snapshot.c: */
817	struct snapshot_table __rcu *snapshots;
818	struct mutex		snapshot_table_lock;
819	struct rw_semaphore	snapshot_create_lock;
820
821	struct work_struct	snapshot_delete_work;
822	struct work_struct	snapshot_wait_for_pagecache_and_delete_work;
823	snapshot_id_list	snapshots_unlinked;
824	struct mutex		snapshots_unlinked_lock;
825
826	/* BTREE CACHE */
827	struct bio_set		btree_bio;
828	struct workqueue_struct	*io_complete_wq;
829
830	struct btree_root	btree_roots_known[BTREE_ID_NR];
831	DARRAY(struct btree_root) btree_roots_extra;
832	struct mutex		btree_root_lock;
833
834	struct btree_cache	btree_cache;
835
836	/*
837	 * Cache of allocated btree nodes - if we allocate a btree node and
838	 * don't use it, if we free it that space can't be reused until going
839	 * _all_ the way through the allocator (which exposes us to a livelock
840	 * when allocating btree reserves fail halfway through) - instead, we
841	 * can stick them here:
842	 */
843	struct btree_alloc	btree_reserve_cache[BTREE_NODE_RESERVE * 2];
844	unsigned		btree_reserve_cache_nr;
845	struct mutex		btree_reserve_cache_lock;
846
847	mempool_t		btree_interior_update_pool;
848	struct list_head	btree_interior_update_list;
849	struct list_head	btree_interior_updates_unwritten;
850	struct mutex		btree_interior_update_lock;
851	struct closure_waitlist	btree_interior_update_wait;
852
853	struct workqueue_struct	*btree_interior_update_worker;
854	struct work_struct	btree_interior_update_work;
855
856	struct workqueue_struct	*btree_node_rewrite_worker;
857
858	struct list_head	pending_node_rewrites;
859	struct mutex		pending_node_rewrites_lock;
860
861	/* btree_io.c: */
862	spinlock_t		btree_write_error_lock;
863	struct btree_write_stats {
864		atomic64_t	nr;
865		atomic64_t	bytes;
866	}			btree_write_stats[BTREE_WRITE_TYPE_NR];
867
868	/* btree_iter.c: */
869	struct seqmutex		btree_trans_lock;
870	struct list_head	btree_trans_list;
871	mempool_t		btree_trans_pool;
872	mempool_t		btree_trans_mem_pool;
873	struct btree_trans_buf  __percpu	*btree_trans_bufs;
874
875	struct srcu_struct	btree_trans_barrier;
876	bool			btree_trans_barrier_initialized;
877
878	struct btree_key_cache	btree_key_cache;
879	unsigned		btree_key_cache_btrees;
880
881	struct btree_write_buffer btree_write_buffer;
882
883	struct workqueue_struct	*btree_update_wq;
884	struct workqueue_struct	*btree_io_complete_wq;
885	/* copygc needs its own workqueue for index updates.. */
886	struct workqueue_struct	*copygc_wq;
887	/*
888	 * Use a dedicated wq for write ref holder tasks. Required to avoid
889	 * dependency problems with other wq tasks that can block on ref
890	 * draining, such as read-only transition.
891	 */
892	struct workqueue_struct *write_ref_wq;
893
894	/* ALLOCATION */
895	struct bch_devs_mask	rw_devs[BCH_DATA_NR];
896
897	u64			capacity; /* sectors */
898
899	/*
900	 * When capacity _decreases_ (due to a disk being removed), we
901	 * increment capacity_gen - this invalidates outstanding reservations
902	 * and forces them to be revalidated
903	 */
904	u32			capacity_gen;
905	unsigned		bucket_size_max;
906
907	atomic64_t		sectors_available;
908	struct mutex		sectors_available_lock;
909
910	struct bch_fs_pcpu __percpu	*pcpu;
911
912	struct percpu_rw_semaphore	mark_lock;
913
914	seqcount_t			usage_lock;
915	struct bch_fs_usage		*usage_base;
916	struct bch_fs_usage __percpu	*usage[JOURNAL_BUF_NR];
917	struct bch_fs_usage __percpu	*usage_gc;
918	u64 __percpu		*online_reserved;
919
920	/* single element mempool: */
921	struct mutex		usage_scratch_lock;
922	struct bch_fs_usage_online *usage_scratch;
923
924	struct io_clock		io_clock[2];
925
926	/* JOURNAL SEQ BLACKLIST */
927	struct journal_seq_blacklist_table *
928				journal_seq_blacklist_table;
929	struct work_struct	journal_seq_blacklist_gc_work;
930
931	/* ALLOCATOR */
932	spinlock_t		freelist_lock;
933	struct closure_waitlist	freelist_wait;
934
935	open_bucket_idx_t	open_buckets_freelist;
936	open_bucket_idx_t	open_buckets_nr_free;
937	struct closure_waitlist	open_buckets_wait;
938	struct open_bucket	open_buckets[OPEN_BUCKETS_COUNT];
939	open_bucket_idx_t	open_buckets_hash[OPEN_BUCKETS_COUNT];
940
941	open_bucket_idx_t	open_buckets_partial[OPEN_BUCKETS_COUNT];
942	open_bucket_idx_t	open_buckets_partial_nr;
943
944	struct write_point	btree_write_point;
945	struct write_point	rebalance_write_point;
946
947	struct write_point	write_points[WRITE_POINT_MAX];
948	struct hlist_head	write_points_hash[WRITE_POINT_HASH_NR];
949	struct mutex		write_points_hash_lock;
950	unsigned		write_points_nr;
951
952	struct buckets_waiting_for_journal buckets_waiting_for_journal;
953	struct work_struct	invalidate_work;
954	struct work_struct	discard_work;
955	struct mutex		discard_buckets_in_flight_lock;
956	DARRAY(struct bpos)	discard_buckets_in_flight;
957	struct work_struct	discard_fast_work;
958
959	/* GARBAGE COLLECTION */
960	struct task_struct	*gc_thread;
961	atomic_t		kick_gc;
962	unsigned long		gc_count;
963
964	enum btree_id		gc_gens_btree;
965	struct bpos		gc_gens_pos;
966
967	/*
968	 * Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos]
969	 * has been marked by GC.
970	 *
971	 * gc_cur_phase is a superset of btree_ids (BTREE_ID_extents etc.)
972	 *
973	 * Protected by gc_pos_lock. Only written to by GC thread, so GC thread
974	 * can read without a lock.
975	 */
976	seqcount_t		gc_pos_lock;
977	struct gc_pos		gc_pos;
978
979	/*
980	 * The allocation code needs gc_mark in struct bucket to be correct, but
981	 * it's not while a gc is in progress.
982	 */
983	struct rw_semaphore	gc_lock;
984	struct mutex		gc_gens_lock;
985
986	/* IO PATH */
987	struct semaphore	io_in_flight;
988	struct bio_set		bio_read;
989	struct bio_set		bio_read_split;
990	struct bio_set		bio_write;
991	struct mutex		bio_bounce_pages_lock;
992	mempool_t		bio_bounce_pages;
993	struct bucket_nocow_lock_table
994				nocow_locks;
995	struct rhashtable	promote_table;
996
997	mempool_t		compression_bounce[2];
998	mempool_t		compress_workspace[BCH_COMPRESSION_TYPE_NR];
999	mempool_t		decompress_workspace;
1000	size_t			zstd_workspace_size;
1001
1002	struct crypto_shash	*sha256;
1003	struct crypto_sync_skcipher *chacha20;
1004	struct crypto_shash	*poly1305;
1005
1006	atomic64_t		key_version;
1007
1008	mempool_t		large_bkey_pool;
1009
1010	/* MOVE.C */
1011	struct list_head	moving_context_list;
1012	struct mutex		moving_context_lock;
1013
1014	/* REBALANCE */
1015	struct bch_fs_rebalance	rebalance;
1016
1017	/* COPYGC */
1018	struct task_struct	*copygc_thread;
1019	struct write_point	copygc_write_point;
1020	s64			copygc_wait_at;
1021	s64			copygc_wait;
1022	bool			copygc_running;
1023	wait_queue_head_t	copygc_running_wq;
1024
1025	/* STRIPES: */
1026	GENRADIX(struct stripe) stripes;
1027	GENRADIX(struct gc_stripe) gc_stripes;
1028
1029	struct hlist_head	ec_stripes_new[32];
1030	spinlock_t		ec_stripes_new_lock;
1031
1032	ec_stripes_heap		ec_stripes_heap;
1033	struct mutex		ec_stripes_heap_lock;
1034
1035	/* ERASURE CODING */
1036	struct list_head	ec_stripe_head_list;
1037	struct mutex		ec_stripe_head_lock;
1038
1039	struct list_head	ec_stripe_new_list;
1040	struct mutex		ec_stripe_new_lock;
1041	wait_queue_head_t	ec_stripe_new_wait;
1042
1043	struct work_struct	ec_stripe_create_work;
1044	u64			ec_stripe_hint;
1045
1046	struct work_struct	ec_stripe_delete_work;
1047
1048	struct bio_set		ec_bioset;
1049
1050	/* REFLINK */
1051	reflink_gc_table	reflink_gc_table;
1052	size_t			reflink_gc_nr;
1053
1054	/* fs.c */
1055	struct list_head	vfs_inodes_list;
1056	struct mutex		vfs_inodes_lock;
1057
1058	/* VFS IO PATH - fs-io.c */
1059	struct bio_set		writepage_bioset;
1060	struct bio_set		dio_write_bioset;
1061	struct bio_set		dio_read_bioset;
1062	struct bio_set		nocow_flush_bioset;
1063
1064	/* QUOTAS */
1065	struct bch_memquota_type quotas[QTYP_NR];
1066
1067	/* RECOVERY */
1068	u64			journal_replay_seq_start;
1069	u64			journal_replay_seq_end;
1070	/*
1071	 * Two different uses:
1072	 * "Has this fsck pass?" - i.e. should this type of error be an
1073	 * emergency read-only
1074	 * And, in certain situations fsck will rewind to an earlier pass: used
1075	 * for signaling to the toplevel code which pass we want to run now.
1076	 */
1077	enum bch_recovery_pass	curr_recovery_pass;
1078	/* bitmap of explicitly enabled recovery passes: */
1079	u64			recovery_passes_explicit;
1080	/* bitmask of recovery passes that we actually ran */
1081	u64			recovery_passes_complete;
1082	/* never rewinds version of curr_recovery_pass */
1083	enum bch_recovery_pass	recovery_pass_done;
1084	struct semaphore	online_fsck_mutex;
1085
1086	/* DEBUG JUNK */
1087	struct dentry		*fs_debug_dir;
1088	struct dentry		*btree_debug_dir;
1089	struct btree_debug	btree_debug[BTREE_ID_NR];
1090	struct btree		*verify_data;
1091	struct btree_node	*verify_ondisk;
1092	struct mutex		verify_lock;
1093
1094	u64			*unused_inode_hints;
1095	unsigned		inode_shard_bits;
1096
1097	/*
1098	 * A btree node on disk could have too many bsets for an iterator to fit
1099	 * on the stack - have to dynamically allocate them
1100	 */
1101	mempool_t		fill_iter;
1102
1103	mempool_t		btree_bounce_pool;
1104
1105	struct journal		journal;
1106	GENRADIX(struct journal_replay *) journal_entries;
1107	u64			journal_entries_base_seq;
1108	struct journal_keys	journal_keys;
1109	struct list_head	journal_iters;
1110
1111	struct find_btree_nodes	found_btree_nodes;
1112
1113	u64			last_bucket_seq_cleanup;
1114
1115	u64			counters_on_mount[BCH_COUNTER_NR];
1116	u64 __percpu		*counters;
1117
1118	unsigned		btree_gc_periodic:1;
1119	unsigned		copy_gc_enabled:1;
1120	bool			promote_whole_extents;
1121
1122	struct bch2_time_stats	times[BCH_TIME_STAT_NR];
1123
1124	struct btree_transaction_stats btree_transaction_stats[BCH_TRANSACTIONS_NR];
1125
1126	/* ERRORS */
1127	struct list_head	fsck_error_msgs;
1128	struct mutex		fsck_error_msgs_lock;
1129	bool			fsck_alloc_msgs_err;
1130
1131	bch_sb_errors_cpu	fsck_error_counts;
1132	struct mutex		fsck_error_counts_lock;
1133};
1134
1135extern struct wait_queue_head bch2_read_only_wait;
1136
1137static inline void bch2_write_ref_get(struct bch_fs *c, enum bch_write_ref ref)
1138{
1139#ifdef BCH_WRITE_REF_DEBUG
1140	atomic_long_inc(&c->writes[ref]);
1141#else
1142	percpu_ref_get(&c->writes);
1143#endif
1144}
1145
1146static inline bool __bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref)
1147{
1148#ifdef BCH_WRITE_REF_DEBUG
1149	return !test_bit(BCH_FS_going_ro, &c->flags) &&
1150		atomic_long_inc_not_zero(&c->writes[ref]);
1151#else
1152	return percpu_ref_tryget(&c->writes);
1153#endif
1154}
1155
1156static inline bool bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref)
1157{
1158#ifdef BCH_WRITE_REF_DEBUG
1159	return !test_bit(BCH_FS_going_ro, &c->flags) &&
1160		atomic_long_inc_not_zero(&c->writes[ref]);
1161#else
1162	return percpu_ref_tryget_live(&c->writes);
1163#endif
1164}
1165
1166static inline void bch2_write_ref_put(struct bch_fs *c, enum bch_write_ref ref)
1167{
1168#ifdef BCH_WRITE_REF_DEBUG
1169	long v = atomic_long_dec_return(&c->writes[ref]);
1170
1171	BUG_ON(v < 0);
1172	if (v)
1173		return;
1174	for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
1175		if (atomic_long_read(&c->writes[i]))
1176			return;
1177
1178	set_bit(BCH_FS_write_disable_complete, &c->flags);
1179	wake_up(&bch2_read_only_wait);
1180#else
1181	percpu_ref_put(&c->writes);
1182#endif
1183}
1184
1185static inline bool bch2_ro_ref_tryget(struct bch_fs *c)
1186{
1187	if (test_bit(BCH_FS_stopping, &c->flags))
1188		return false;
1189
1190	return refcount_inc_not_zero(&c->ro_ref);
1191}
1192
1193static inline void bch2_ro_ref_put(struct bch_fs *c)
1194{
1195	if (refcount_dec_and_test(&c->ro_ref))
1196		wake_up(&c->ro_ref_wait);
1197}
1198
1199static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages)
1200{
1201#ifndef NO_BCACHEFS_FS
1202	if (c->vfs_sb)
1203		c->vfs_sb->s_bdi->ra_pages = ra_pages;
1204#endif
1205}
1206
1207static inline unsigned bucket_bytes(const struct bch_dev *ca)
1208{
1209	return ca->mi.bucket_size << 9;
1210}
1211
1212static inline unsigned block_bytes(const struct bch_fs *c)
1213{
1214	return c->opts.block_size;
1215}
1216
1217static inline unsigned block_sectors(const struct bch_fs *c)
1218{
1219	return c->opts.block_size >> 9;
1220}
1221
1222static inline bool btree_id_cached(const struct bch_fs *c, enum btree_id btree)
1223{
1224	return c->btree_key_cache_btrees & (1U << btree);
1225}
1226
1227static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time)
1228{
1229	struct timespec64 t;
1230	s32 rem;
1231
1232	time += c->sb.time_base_lo;
1233
1234	t.tv_sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem);
1235	t.tv_nsec = rem * c->sb.nsec_per_time_unit;
1236	return t;
1237}
1238
1239static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts)
1240{
1241	return (ts.tv_sec * c->sb.time_units_per_sec +
1242		(int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo;
1243}
1244
1245static inline s64 bch2_current_time(const struct bch_fs *c)
1246{
1247	struct timespec64 now;
1248
1249	ktime_get_coarse_real_ts64(&now);
1250	return timespec_to_bch2_time(c, now);
1251}
1252
1253static inline bool bch2_dev_exists2(const struct bch_fs *c, unsigned dev)
1254{
1255	return dev < c->sb.nr_devices && c->devs[dev];
1256}
1257
1258static inline struct stdio_redirect *bch2_fs_stdio_redirect(struct bch_fs *c)
1259{
1260	struct stdio_redirect *stdio = c->stdio;
1261
1262	if (c->stdio_filter && c->stdio_filter != current)
1263		stdio = NULL;
1264	return stdio;
1265}
1266
1267static inline unsigned metadata_replicas_required(struct bch_fs *c)
1268{
1269	return min(c->opts.metadata_replicas,
1270		   c->opts.metadata_replicas_required);
1271}
1272
1273static inline unsigned data_replicas_required(struct bch_fs *c)
1274{
1275	return min(c->opts.data_replicas,
1276		   c->opts.data_replicas_required);
1277}
1278
1279#define BKEY_PADDED_ONSTACK(key, pad)				\
1280	struct { struct bkey_i key; __u64 key ## _pad[pad]; }
1281
1282#endif /* _BCACHEFS_H */
1283