1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 */
5
6/**
7 * DOC: Enclave lifetime management driver for Nitro Enclaves (NE).
8 * Nitro is a hypervisor that has been developed by Amazon.
9 */
10
11#include <linux/anon_inodes.h>
12#include <linux/capability.h>
13#include <linux/cpu.h>
14#include <linux/device.h>
15#include <linux/file.h>
16#include <linux/hugetlb.h>
17#include <linux/limits.h>
18#include <linux/list.h>
19#include <linux/miscdevice.h>
20#include <linux/mm.h>
21#include <linux/mman.h>
22#include <linux/module.h>
23#include <linux/mutex.h>
24#include <linux/nitro_enclaves.h>
25#include <linux/pci.h>
26#include <linux/poll.h>
27#include <linux/range.h>
28#include <linux/slab.h>
29#include <linux/types.h>
30#include <uapi/linux/vm_sockets.h>
31
32#include "ne_misc_dev.h"
33#include "ne_pci_dev.h"
34
35/**
36 * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma
37 *		  separated. The NE CPU pool includes CPUs from a single NUMA
38 *		  node.
39 */
40#define NE_CPUS_SIZE		(512)
41
42/**
43 * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF)
44 *			image in enclave memory.
45 */
46#define NE_EIF_LOAD_OFFSET	(8 * 1024UL * 1024UL)
47
48/**
49 * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched
50 *			     with.
51 */
52#define NE_MIN_ENCLAVE_MEM_SIZE	(64 * 1024UL * 1024UL)
53
54/**
55 * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region.
56 */
57#define NE_MIN_MEM_REGION_SIZE	(2 * 1024UL * 1024UL)
58
59/**
60 * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM.
61 */
62#define NE_PARENT_VM_CID	(3)
63
64static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
65
66static const struct file_operations ne_fops = {
67	.owner		= THIS_MODULE,
68	.llseek		= noop_llseek,
69	.unlocked_ioctl	= ne_ioctl,
70};
71
72static struct miscdevice ne_misc_dev = {
73	.minor	= MISC_DYNAMIC_MINOR,
74	.name	= "nitro_enclaves",
75	.fops	= &ne_fops,
76	.mode	= 0660,
77};
78
79struct ne_devs ne_devs = {
80	.ne_misc_dev	= &ne_misc_dev,
81};
82
83/*
84 * TODO: Update logic to create new sysfs entries instead of using
85 * a kernel parameter e.g. if multiple sysfs files needed.
86 */
87static int ne_set_kernel_param(const char *val, const struct kernel_param *kp);
88
89static const struct kernel_param_ops ne_cpu_pool_ops = {
90	.get	= param_get_string,
91	.set	= ne_set_kernel_param,
92};
93
94static char ne_cpus[NE_CPUS_SIZE];
95static struct kparam_string ne_cpus_arg = {
96	.maxlen	= sizeof(ne_cpus),
97	.string	= ne_cpus,
98};
99
100module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644);
101/* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */
102MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves");
103
104/**
105 * struct ne_cpu_pool - CPU pool used for Nitro Enclaves.
106 * @avail_threads_per_core:	Available full CPU cores to be dedicated to
107 *				enclave(s). The cpumasks from the array, indexed
108 *				by core id, contain all the threads from the
109 *				available cores, that are not set for created
110 *				enclave(s). The full CPU cores are part of the
111 *				NE CPU pool.
112 * @mutex:			Mutex for the access to the NE CPU pool.
113 * @nr_parent_vm_cores :	The size of the available threads per core array.
114 *				The total number of CPU cores available on the
115 *				primary / parent VM.
116 * @nr_threads_per_core:	The number of threads that a full CPU core has.
117 * @numa_node:			NUMA node of the CPUs in the pool.
118 */
119struct ne_cpu_pool {
120	cpumask_var_t	*avail_threads_per_core;
121	struct mutex	mutex;
122	unsigned int	nr_parent_vm_cores;
123	unsigned int	nr_threads_per_core;
124	int		numa_node;
125};
126
127static struct ne_cpu_pool ne_cpu_pool;
128
129/**
130 * struct ne_phys_contig_mem_regions - Contiguous physical memory regions.
131 * @num:	The number of regions that currently has.
132 * @regions:	The array of physical memory regions.
133 */
134struct ne_phys_contig_mem_regions {
135	unsigned long num;
136	struct range  *regions;
137};
138
139/**
140 * ne_check_enclaves_created() - Verify if at least one enclave has been created.
141 * @void:	No parameters provided.
142 *
143 * Context: Process context.
144 * Return:
145 * * True if at least one enclave is created.
146 * * False otherwise.
147 */
148static bool ne_check_enclaves_created(void)
149{
150	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
151	bool ret = false;
152
153	if (!ne_pci_dev)
154		return ret;
155
156	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
157
158	if (!list_empty(&ne_pci_dev->enclaves_list))
159		ret = true;
160
161	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
162
163	return ret;
164}
165
166/**
167 * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such
168 *			 as not sharing CPU cores with the primary / parent VM
169 *			 or not using CPU 0, which should remain available for
170 *			 the primary / parent VM. Offline the CPUs from the
171 *			 pool after the checks passed.
172 * @ne_cpu_list:	The CPU list used for setting NE CPU pool.
173 *
174 * Context: Process context.
175 * Return:
176 * * 0 on success.
177 * * Negative return value on failure.
178 */
179static int ne_setup_cpu_pool(const char *ne_cpu_list)
180{
181	int core_id = -1;
182	unsigned int cpu = 0;
183	cpumask_var_t cpu_pool;
184	unsigned int cpu_sibling = 0;
185	unsigned int i = 0;
186	int numa_node = -1;
187	int rc = -EINVAL;
188
189	if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL))
190		return -ENOMEM;
191
192	mutex_lock(&ne_cpu_pool.mutex);
193
194	rc = cpulist_parse(ne_cpu_list, cpu_pool);
195	if (rc < 0) {
196		pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc);
197
198		goto free_pool_cpumask;
199	}
200
201	cpu = cpumask_any(cpu_pool);
202	if (cpu >= nr_cpu_ids) {
203		pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name);
204
205		rc = -EINVAL;
206
207		goto free_pool_cpumask;
208	}
209
210	/*
211	 * Check if the CPUs are online, to further get info about them
212	 * e.g. numa node, core id, siblings.
213	 */
214	for_each_cpu(cpu, cpu_pool)
215		if (cpu_is_offline(cpu)) {
216			pr_err("%s: CPU %d is offline, has to be online to get its metadata\n",
217			       ne_misc_dev.name, cpu);
218
219			rc = -EINVAL;
220
221			goto free_pool_cpumask;
222		}
223
224	/*
225	 * Check if the CPUs from the NE CPU pool are from the same NUMA node.
226	 */
227	for_each_cpu(cpu, cpu_pool)
228		if (numa_node < 0) {
229			numa_node = cpu_to_node(cpu);
230			if (numa_node < 0) {
231				pr_err("%s: Invalid NUMA node %d\n",
232				       ne_misc_dev.name, numa_node);
233
234				rc = -EINVAL;
235
236				goto free_pool_cpumask;
237			}
238		} else {
239			if (numa_node != cpu_to_node(cpu)) {
240				pr_err("%s: CPUs with different NUMA nodes\n",
241				       ne_misc_dev.name);
242
243				rc = -EINVAL;
244
245				goto free_pool_cpumask;
246			}
247		}
248
249	/*
250	 * Check if CPU 0 and its siblings are included in the provided CPU pool
251	 * They should remain available for the primary / parent VM.
252	 */
253	if (cpumask_test_cpu(0, cpu_pool)) {
254		pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name);
255
256		rc = -EINVAL;
257
258		goto free_pool_cpumask;
259	}
260
261	for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) {
262		if (cpumask_test_cpu(cpu_sibling, cpu_pool)) {
263			pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n",
264			       ne_misc_dev.name, cpu_sibling);
265
266			rc = -EINVAL;
267
268			goto free_pool_cpumask;
269		}
270	}
271
272	/*
273	 * Check if CPU siblings are included in the provided CPU pool. The
274	 * expectation is that full CPU cores are made available in the CPU pool
275	 * for enclaves.
276	 */
277	for_each_cpu(cpu, cpu_pool) {
278		for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) {
279			if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) {
280				pr_err("%s: CPU %d is not in CPU pool\n",
281				       ne_misc_dev.name, cpu_sibling);
282
283				rc = -EINVAL;
284
285				goto free_pool_cpumask;
286			}
287		}
288	}
289
290	/* Calculate the number of threads from a full CPU core. */
291	cpu = cpumask_any(cpu_pool);
292	for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu))
293		ne_cpu_pool.nr_threads_per_core++;
294
295	ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core;
296
297	ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores,
298						     sizeof(*ne_cpu_pool.avail_threads_per_core),
299						     GFP_KERNEL);
300	if (!ne_cpu_pool.avail_threads_per_core) {
301		rc = -ENOMEM;
302
303		goto free_pool_cpumask;
304	}
305
306	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
307		if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) {
308			rc = -ENOMEM;
309
310			goto free_cores_cpumask;
311		}
312
313	/*
314	 * Split the NE CPU pool in threads per core to keep the CPU topology
315	 * after offlining the CPUs.
316	 */
317	for_each_cpu(cpu, cpu_pool) {
318		core_id = topology_core_id(cpu);
319		if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) {
320			pr_err("%s: Invalid core id  %d for CPU %d\n",
321			       ne_misc_dev.name, core_id, cpu);
322
323			rc = -EINVAL;
324
325			goto clear_cpumask;
326		}
327
328		cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]);
329	}
330
331	/*
332	 * CPUs that are given to enclave(s) should not be considered online
333	 * by Linux anymore, as the hypervisor will degrade them to floating.
334	 * The physical CPUs (full cores) are carved out of the primary / parent
335	 * VM and given to the enclave VM. The same number of vCPUs would run
336	 * on less pCPUs for the primary / parent VM.
337	 *
338	 * We offline them here, to not degrade performance and expose correct
339	 * topology to Linux and user space.
340	 */
341	for_each_cpu(cpu, cpu_pool) {
342		rc = remove_cpu(cpu);
343		if (rc != 0) {
344			pr_err("%s: CPU %d is not offlined [rc=%d]\n",
345			       ne_misc_dev.name, cpu, rc);
346
347			goto online_cpus;
348		}
349	}
350
351	free_cpumask_var(cpu_pool);
352
353	ne_cpu_pool.numa_node = numa_node;
354
355	mutex_unlock(&ne_cpu_pool.mutex);
356
357	return 0;
358
359online_cpus:
360	for_each_cpu(cpu, cpu_pool)
361		add_cpu(cpu);
362clear_cpumask:
363	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
364		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
365free_cores_cpumask:
366	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
367		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
368	kfree(ne_cpu_pool.avail_threads_per_core);
369free_pool_cpumask:
370	free_cpumask_var(cpu_pool);
371	ne_cpu_pool.nr_parent_vm_cores = 0;
372	ne_cpu_pool.nr_threads_per_core = 0;
373	ne_cpu_pool.numa_node = -1;
374	mutex_unlock(&ne_cpu_pool.mutex);
375
376	return rc;
377}
378
379/**
380 * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the
381 *			    CPU pool.
382 * @void:	No parameters provided.
383 *
384 * Context: Process context.
385 */
386static void ne_teardown_cpu_pool(void)
387{
388	unsigned int cpu = 0;
389	unsigned int i = 0;
390	int rc = -EINVAL;
391
392	mutex_lock(&ne_cpu_pool.mutex);
393
394	if (!ne_cpu_pool.nr_parent_vm_cores) {
395		mutex_unlock(&ne_cpu_pool.mutex);
396
397		return;
398	}
399
400	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) {
401		for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) {
402			rc = add_cpu(cpu);
403			if (rc != 0)
404				pr_err("%s: CPU %d is not onlined [rc=%d]\n",
405				       ne_misc_dev.name, cpu, rc);
406		}
407
408		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
409
410		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
411	}
412
413	kfree(ne_cpu_pool.avail_threads_per_core);
414	ne_cpu_pool.nr_parent_vm_cores = 0;
415	ne_cpu_pool.nr_threads_per_core = 0;
416	ne_cpu_pool.numa_node = -1;
417
418	mutex_unlock(&ne_cpu_pool.mutex);
419}
420
421/**
422 * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter.
423 * @val:	NE CPU pool string value.
424 * @kp :	NE kernel parameter associated with the NE CPU pool.
425 *
426 * Context: Process context.
427 * Return:
428 * * 0 on success.
429 * * Negative return value on failure.
430 */
431static int ne_set_kernel_param(const char *val, const struct kernel_param *kp)
432{
433	char error_val[] = "";
434	int rc = -EINVAL;
435
436	if (!capable(CAP_SYS_ADMIN))
437		return -EPERM;
438
439	if (ne_check_enclaves_created()) {
440		pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name);
441
442		return -EPERM;
443	}
444
445	ne_teardown_cpu_pool();
446
447	rc = ne_setup_cpu_pool(val);
448	if (rc < 0) {
449		pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc);
450
451		param_set_copystring(error_val, kp);
452
453		return rc;
454	}
455
456	rc = param_set_copystring(val, kp);
457	if (rc < 0) {
458		pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc);
459
460		ne_teardown_cpu_pool();
461
462		param_set_copystring(error_val, kp);
463
464		return rc;
465	}
466
467	return 0;
468}
469
470/**
471 * ne_donated_cpu() - Check if the provided CPU is already used by the enclave.
472 * @ne_enclave :	Private data associated with the current enclave.
473 * @cpu:		CPU to check if already used.
474 *
475 * Context: Process context. This function is called with the ne_enclave mutex held.
476 * Return:
477 * * True if the provided CPU is already used by the enclave.
478 * * False otherwise.
479 */
480static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu)
481{
482	if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids))
483		return true;
484
485	return false;
486}
487
488/**
489 * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the
490 *					NE CPU pool.
491 * @void:	No parameters provided.
492 *
493 * Context: Process context. This function is called with the ne_enclave and
494 *	    ne_cpu_pool mutexes held.
495 * Return:
496 * * Core id.
497 * * -1 if no CPU core available in the pool.
498 */
499static int ne_get_unused_core_from_cpu_pool(void)
500{
501	int core_id = -1;
502	unsigned int i = 0;
503
504	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
505		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) {
506			core_id = i;
507
508			break;
509		}
510
511	return core_id;
512}
513
514/**
515 * ne_set_enclave_threads_per_core() - Set the threads of the provided core in
516 *				       the enclave data structure.
517 * @ne_enclave :	Private data associated with the current enclave.
518 * @core_id:		Core id to get its threads from the NE CPU pool.
519 * @vcpu_id:		vCPU id part of the provided core.
520 *
521 * Context: Process context. This function is called with the ne_enclave and
522 *	    ne_cpu_pool mutexes held.
523 * Return:
524 * * 0 on success.
525 * * Negative return value on failure.
526 */
527static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave,
528					   int core_id, u32 vcpu_id)
529{
530	unsigned int cpu = 0;
531
532	if (core_id < 0 && vcpu_id == 0) {
533		dev_err_ratelimited(ne_misc_dev.this_device,
534				    "No CPUs available in NE CPU pool\n");
535
536		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
537	}
538
539	if (core_id < 0) {
540		dev_err_ratelimited(ne_misc_dev.this_device,
541				    "CPU %d is not in NE CPU pool\n", vcpu_id);
542
543		return -NE_ERR_VCPU_NOT_IN_CPU_POOL;
544	}
545
546	if (core_id >= ne_enclave->nr_parent_vm_cores) {
547		dev_err_ratelimited(ne_misc_dev.this_device,
548				    "Invalid core id %d - ne_enclave\n", core_id);
549
550		return -NE_ERR_VCPU_INVALID_CPU_CORE;
551	}
552
553	for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id])
554		cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]);
555
556	cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]);
557
558	return 0;
559}
560
561/**
562 * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the
563 *				remaining sibling(s) of a CPU core or the first
564 *				sibling of a new CPU core.
565 * @ne_enclave :	Private data associated with the current enclave.
566 * @vcpu_id:		vCPU to get from the NE CPU pool.
567 *
568 * Context: Process context. This function is called with the ne_enclave mutex held.
569 * Return:
570 * * 0 on success.
571 * * Negative return value on failure.
572 */
573static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id)
574{
575	int core_id = -1;
576	unsigned int cpu = 0;
577	unsigned int i = 0;
578	int rc = -EINVAL;
579
580	/*
581	 * If previously allocated a thread of a core to this enclave, first
582	 * check remaining sibling(s) for new CPU allocations, so that full
583	 * CPU cores are used for the enclave.
584	 */
585	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
586		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
587			if (!ne_donated_cpu(ne_enclave, cpu)) {
588				*vcpu_id = cpu;
589
590				return 0;
591			}
592
593	mutex_lock(&ne_cpu_pool.mutex);
594
595	/*
596	 * If no remaining siblings, get a core from the NE CPU pool and keep
597	 * track of all the threads in the enclave threads per core data structure.
598	 */
599	core_id = ne_get_unused_core_from_cpu_pool();
600
601	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id);
602	if (rc < 0)
603		goto unlock_mutex;
604
605	*vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]);
606
607	rc = 0;
608
609unlock_mutex:
610	mutex_unlock(&ne_cpu_pool.mutex);
611
612	return rc;
613}
614
615/**
616 * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the
617 *				      core associated with the provided vCPU.
618 * @vcpu_id:	Provided vCPU id to get its associated core id.
619 *
620 * Context: Process context. This function is called with the ne_enclave and
621 *	    ne_cpu_pool mutexes held.
622 * Return:
623 * * Core id.
624 * * -1 if the provided vCPU is not in the pool.
625 */
626static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)
627{
628	int core_id = -1;
629	unsigned int i = 0;
630
631	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
632		if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) {
633			core_id = i;
634
635			break;
636	}
637
638	return core_id;
639}
640
641/**
642 * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs
643 *				from the pool.
644 * @ne_enclave :	Private data associated with the current enclave.
645 * @vcpu_id:		ID of the vCPU to check if available in the NE CPU pool.
646 *
647 * Context: Process context. This function is called with the ne_enclave mutex held.
648 * Return:
649 * * 0 on success.
650 * * Negative return value on failure.
651 */
652static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id)
653{
654	int core_id = -1;
655	unsigned int i = 0;
656	int rc = -EINVAL;
657
658	if (ne_donated_cpu(ne_enclave, vcpu_id)) {
659		dev_err_ratelimited(ne_misc_dev.this_device,
660				    "CPU %d already used\n", vcpu_id);
661
662		return -NE_ERR_VCPU_ALREADY_USED;
663	}
664
665	/*
666	 * If previously allocated a thread of a core to this enclave, but not
667	 * the full core, first check remaining sibling(s).
668	 */
669	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
670		if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i]))
671			return 0;
672
673	mutex_lock(&ne_cpu_pool.mutex);
674
675	/*
676	 * If no remaining siblings, get from the NE CPU pool the core
677	 * associated with the vCPU and keep track of all the threads in the
678	 * enclave threads per core data structure.
679	 */
680	core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id);
681
682	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id);
683	if (rc < 0)
684		goto unlock_mutex;
685
686	rc = 0;
687
688unlock_mutex:
689	mutex_unlock(&ne_cpu_pool.mutex);
690
691	return rc;
692}
693
694/**
695 * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current
696 *			 enclave.
697 * @ne_enclave :	Private data associated with the current enclave.
698 * @vcpu_id:		ID of the CPU to be associated with the given slot,
699 *			apic id on x86.
700 *
701 * Context: Process context. This function is called with the ne_enclave mutex held.
702 * Return:
703 * * 0 on success.
704 * * Negative return value on failure.
705 */
706static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id)
707{
708	struct ne_pci_dev_cmd_reply cmd_reply = {};
709	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
710	int rc = -EINVAL;
711	struct slot_add_vcpu_req slot_add_vcpu_req = {};
712
713	if (ne_enclave->mm != current->mm)
714		return -EIO;
715
716	slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid;
717	slot_add_vcpu_req.vcpu_id = vcpu_id;
718
719	rc = ne_do_request(pdev, SLOT_ADD_VCPU,
720			   &slot_add_vcpu_req, sizeof(slot_add_vcpu_req),
721			   &cmd_reply, sizeof(cmd_reply));
722	if (rc < 0) {
723		dev_err_ratelimited(ne_misc_dev.this_device,
724				    "Error in slot add vCPU [rc=%d]\n", rc);
725
726		return rc;
727	}
728
729	cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids);
730
731	ne_enclave->nr_vcpus++;
732
733	return 0;
734}
735
736/**
737 * ne_sanity_check_user_mem_region() - Sanity check the user space memory
738 *				       region received during the set user
739 *				       memory region ioctl call.
740 * @ne_enclave :	Private data associated with the current enclave.
741 * @mem_region :	User space memory region to be sanity checked.
742 *
743 * Context: Process context. This function is called with the ne_enclave mutex held.
744 * Return:
745 * * 0 on success.
746 * * Negative return value on failure.
747 */
748static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave,
749					   struct ne_user_memory_region mem_region)
750{
751	struct ne_mem_region *ne_mem_region = NULL;
752
753	if (ne_enclave->mm != current->mm)
754		return -EIO;
755
756	if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
757		dev_err_ratelimited(ne_misc_dev.this_device,
758				    "User space memory size is not multiple of 2 MiB\n");
759
760		return -NE_ERR_INVALID_MEM_REGION_SIZE;
761	}
762
763	if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) {
764		dev_err_ratelimited(ne_misc_dev.this_device,
765				    "User space address is not 2 MiB aligned\n");
766
767		return -NE_ERR_UNALIGNED_MEM_REGION_ADDR;
768	}
769
770	if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) ||
771	    !access_ok((void __user *)(unsigned long)mem_region.userspace_addr,
772		       mem_region.memory_size)) {
773		dev_err_ratelimited(ne_misc_dev.this_device,
774				    "Invalid user space address range\n");
775
776		return -NE_ERR_INVALID_MEM_REGION_ADDR;
777	}
778
779	list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list,
780			    mem_region_list_entry) {
781		u64 memory_size = ne_mem_region->memory_size;
782		u64 userspace_addr = ne_mem_region->userspace_addr;
783
784		if ((userspace_addr <= mem_region.userspace_addr &&
785		     mem_region.userspace_addr < (userspace_addr + memory_size)) ||
786		    (mem_region.userspace_addr <= userspace_addr &&
787		    (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) {
788			dev_err_ratelimited(ne_misc_dev.this_device,
789					    "User space memory region already used\n");
790
791			return -NE_ERR_MEM_REGION_ALREADY_USED;
792		}
793	}
794
795	return 0;
796}
797
798/**
799 * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space
800 *					    memory region received during the set
801 *					    user memory region ioctl call.
802 * @ne_enclave :	Private data associated with the current enclave.
803 * @mem_region_page:	Page from the user space memory region to be sanity checked.
804 *
805 * Context: Process context. This function is called with the ne_enclave mutex held.
806 * Return:
807 * * 0 on success.
808 * * Negative return value on failure.
809 */
810static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave,
811						struct page *mem_region_page)
812{
813	if (!PageHuge(mem_region_page)) {
814		dev_err_ratelimited(ne_misc_dev.this_device,
815				    "Not a hugetlbfs page\n");
816
817		return -NE_ERR_MEM_NOT_HUGE_PAGE;
818	}
819
820	if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) {
821		dev_err_ratelimited(ne_misc_dev.this_device,
822				    "Page size not multiple of 2 MiB\n");
823
824		return -NE_ERR_INVALID_PAGE_SIZE;
825	}
826
827	if (ne_enclave->numa_node != page_to_nid(mem_region_page)) {
828		dev_err_ratelimited(ne_misc_dev.this_device,
829				    "Page is not from NUMA node %d\n",
830				    ne_enclave->numa_node);
831
832		return -NE_ERR_MEM_DIFFERENT_NUMA_NODE;
833	}
834
835	return 0;
836}
837
838/**
839 * ne_sanity_check_phys_mem_region() - Sanity check the start address and the size
840 *                                     of a physical memory region.
841 * @phys_mem_region_paddr : Physical start address of the region to be sanity checked.
842 * @phys_mem_region_size  : Length of the region to be sanity checked.
843 *
844 * Context: Process context. This function is called with the ne_enclave mutex held.
845 * Return:
846 * * 0 on success.
847 * * Negative return value on failure.
848 */
849static int ne_sanity_check_phys_mem_region(u64 phys_mem_region_paddr,
850					   u64 phys_mem_region_size)
851{
852	if (phys_mem_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
853		dev_err_ratelimited(ne_misc_dev.this_device,
854				    "Physical mem region size is not multiple of 2 MiB\n");
855
856		return -EINVAL;
857	}
858
859	if (!IS_ALIGNED(phys_mem_region_paddr, NE_MIN_MEM_REGION_SIZE)) {
860		dev_err_ratelimited(ne_misc_dev.this_device,
861				    "Physical mem region address is not 2 MiB aligned\n");
862
863		return -EINVAL;
864	}
865
866	return 0;
867}
868
869/**
870 * ne_merge_phys_contig_memory_regions() - Add a memory region and merge the adjacent
871 *                                         regions if they are physically contiguous.
872 * @phys_contig_regions : Private data associated with the contiguous physical memory regions.
873 * @page_paddr :          Physical start address of the region to be added.
874 * @page_size :           Length of the region to be added.
875 *
876 * Context: Process context. This function is called with the ne_enclave mutex held.
877 * Return:
878 * * 0 on success.
879 * * Negative return value on failure.
880 */
881static int
882ne_merge_phys_contig_memory_regions(struct ne_phys_contig_mem_regions *phys_contig_regions,
883				    u64 page_paddr, u64 page_size)
884{
885	unsigned long num = phys_contig_regions->num;
886	int rc = 0;
887
888	rc = ne_sanity_check_phys_mem_region(page_paddr, page_size);
889	if (rc < 0)
890		return rc;
891
892	/* Physically contiguous, just merge */
893	if (num && (phys_contig_regions->regions[num - 1].end + 1) == page_paddr) {
894		phys_contig_regions->regions[num - 1].end += page_size;
895	} else {
896		phys_contig_regions->regions[num].start = page_paddr;
897		phys_contig_regions->regions[num].end = page_paddr + page_size - 1;
898		phys_contig_regions->num++;
899	}
900
901	return 0;
902}
903
904/**
905 * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot
906 *				       associated with the current enclave.
907 * @ne_enclave :	Private data associated with the current enclave.
908 * @mem_region :	User space memory region to be associated with the given slot.
909 *
910 * Context: Process context. This function is called with the ne_enclave mutex held.
911 * Return:
912 * * 0 on success.
913 * * Negative return value on failure.
914 */
915static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave,
916					   struct ne_user_memory_region mem_region)
917{
918	long gup_rc = 0;
919	unsigned long i = 0;
920	unsigned long max_nr_pages = 0;
921	unsigned long memory_size = 0;
922	struct ne_mem_region *ne_mem_region = NULL;
923	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
924	struct ne_phys_contig_mem_regions phys_contig_mem_regions = {};
925	int rc = -EINVAL;
926
927	rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region);
928	if (rc < 0)
929		return rc;
930
931	ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL);
932	if (!ne_mem_region)
933		return -ENOMEM;
934
935	max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE;
936
937	ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages),
938				       GFP_KERNEL);
939	if (!ne_mem_region->pages) {
940		rc = -ENOMEM;
941
942		goto free_mem_region;
943	}
944
945	phys_contig_mem_regions.regions = kcalloc(max_nr_pages,
946						  sizeof(*phys_contig_mem_regions.regions),
947						  GFP_KERNEL);
948	if (!phys_contig_mem_regions.regions) {
949		rc = -ENOMEM;
950
951		goto free_mem_region;
952	}
953
954	do {
955		i = ne_mem_region->nr_pages;
956
957		if (i == max_nr_pages) {
958			dev_err_ratelimited(ne_misc_dev.this_device,
959					    "Reached max nr of pages in the pages data struct\n");
960
961			rc = -ENOMEM;
962
963			goto put_pages;
964		}
965
966		gup_rc = get_user_pages_unlocked(mem_region.userspace_addr + memory_size, 1,
967						 ne_mem_region->pages + i, FOLL_GET);
968
969		if (gup_rc < 0) {
970			rc = gup_rc;
971
972			dev_err_ratelimited(ne_misc_dev.this_device,
973					    "Error in get user pages [rc=%d]\n", rc);
974
975			goto put_pages;
976		}
977
978		rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]);
979		if (rc < 0)
980			goto put_pages;
981
982		rc = ne_merge_phys_contig_memory_regions(&phys_contig_mem_regions,
983							 page_to_phys(ne_mem_region->pages[i]),
984							 page_size(ne_mem_region->pages[i]));
985		if (rc < 0)
986			goto put_pages;
987
988		memory_size += page_size(ne_mem_region->pages[i]);
989
990		ne_mem_region->nr_pages++;
991	} while (memory_size < mem_region.memory_size);
992
993	if ((ne_enclave->nr_mem_regions + phys_contig_mem_regions.num) >
994	    ne_enclave->max_mem_regions) {
995		dev_err_ratelimited(ne_misc_dev.this_device,
996				    "Reached max memory regions %lld\n",
997				    ne_enclave->max_mem_regions);
998
999		rc = -NE_ERR_MEM_MAX_REGIONS;
1000
1001		goto put_pages;
1002	}
1003
1004	for (i = 0; i < phys_contig_mem_regions.num; i++) {
1005		u64 phys_region_addr = phys_contig_mem_regions.regions[i].start;
1006		u64 phys_region_size = range_len(&phys_contig_mem_regions.regions[i]);
1007
1008		rc = ne_sanity_check_phys_mem_region(phys_region_addr, phys_region_size);
1009		if (rc < 0)
1010			goto put_pages;
1011	}
1012
1013	ne_mem_region->memory_size = mem_region.memory_size;
1014	ne_mem_region->userspace_addr = mem_region.userspace_addr;
1015
1016	list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list);
1017
1018	for (i = 0; i < phys_contig_mem_regions.num; i++) {
1019		struct ne_pci_dev_cmd_reply cmd_reply = {};
1020		struct slot_add_mem_req slot_add_mem_req = {};
1021
1022		slot_add_mem_req.slot_uid = ne_enclave->slot_uid;
1023		slot_add_mem_req.paddr = phys_contig_mem_regions.regions[i].start;
1024		slot_add_mem_req.size = range_len(&phys_contig_mem_regions.regions[i]);
1025
1026		rc = ne_do_request(pdev, SLOT_ADD_MEM,
1027				   &slot_add_mem_req, sizeof(slot_add_mem_req),
1028				   &cmd_reply, sizeof(cmd_reply));
1029		if (rc < 0) {
1030			dev_err_ratelimited(ne_misc_dev.this_device,
1031					    "Error in slot add mem [rc=%d]\n", rc);
1032
1033			kfree(phys_contig_mem_regions.regions);
1034
1035			/*
1036			 * Exit here without put pages as memory regions may
1037			 * already been added.
1038			 */
1039			return rc;
1040		}
1041
1042		ne_enclave->mem_size += slot_add_mem_req.size;
1043		ne_enclave->nr_mem_regions++;
1044	}
1045
1046	kfree(phys_contig_mem_regions.regions);
1047
1048	return 0;
1049
1050put_pages:
1051	for (i = 0; i < ne_mem_region->nr_pages; i++)
1052		put_page(ne_mem_region->pages[i]);
1053free_mem_region:
1054	kfree(phys_contig_mem_regions.regions);
1055	kfree(ne_mem_region->pages);
1056	kfree(ne_mem_region);
1057
1058	return rc;
1059}
1060
1061/**
1062 * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources,
1063 *			      such as memory and CPU, have been set.
1064 * @ne_enclave :		Private data associated with the current enclave.
1065 * @enclave_start_info :	Enclave info that includes enclave cid and flags.
1066 *
1067 * Context: Process context. This function is called with the ne_enclave mutex held.
1068 * Return:
1069 * * 0 on success.
1070 * * Negative return value on failure.
1071 */
1072static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave,
1073				  struct ne_enclave_start_info *enclave_start_info)
1074{
1075	struct ne_pci_dev_cmd_reply cmd_reply = {};
1076	unsigned int cpu = 0;
1077	struct enclave_start_req enclave_start_req = {};
1078	unsigned int i = 0;
1079	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
1080	int rc = -EINVAL;
1081
1082	if (!ne_enclave->nr_mem_regions) {
1083		dev_err_ratelimited(ne_misc_dev.this_device,
1084				    "Enclave has no mem regions\n");
1085
1086		return -NE_ERR_NO_MEM_REGIONS_ADDED;
1087	}
1088
1089	if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) {
1090		dev_err_ratelimited(ne_misc_dev.this_device,
1091				    "Enclave memory is less than %ld\n",
1092				    NE_MIN_ENCLAVE_MEM_SIZE);
1093
1094		return -NE_ERR_ENCLAVE_MEM_MIN_SIZE;
1095	}
1096
1097	if (!ne_enclave->nr_vcpus) {
1098		dev_err_ratelimited(ne_misc_dev.this_device,
1099				    "Enclave has no vCPUs\n");
1100
1101		return -NE_ERR_NO_VCPUS_ADDED;
1102	}
1103
1104	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1105		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1106			if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) {
1107				dev_err_ratelimited(ne_misc_dev.this_device,
1108						    "Full CPU cores not used\n");
1109
1110				return -NE_ERR_FULL_CORES_NOT_USED;
1111			}
1112
1113	enclave_start_req.enclave_cid = enclave_start_info->enclave_cid;
1114	enclave_start_req.flags = enclave_start_info->flags;
1115	enclave_start_req.slot_uid = ne_enclave->slot_uid;
1116
1117	rc = ne_do_request(pdev, ENCLAVE_START,
1118			   &enclave_start_req, sizeof(enclave_start_req),
1119			   &cmd_reply, sizeof(cmd_reply));
1120	if (rc < 0) {
1121		dev_err_ratelimited(ne_misc_dev.this_device,
1122				    "Error in enclave start [rc=%d]\n", rc);
1123
1124		return rc;
1125	}
1126
1127	ne_enclave->state = NE_STATE_RUNNING;
1128
1129	enclave_start_info->enclave_cid = cmd_reply.enclave_cid;
1130
1131	return 0;
1132}
1133
1134/**
1135 * ne_enclave_ioctl() - Ioctl function provided by the enclave file.
1136 * @file:	File associated with this ioctl function.
1137 * @cmd:	The command that is set for the ioctl call.
1138 * @arg:	The argument that is provided for the ioctl call.
1139 *
1140 * Context: Process context.
1141 * Return:
1142 * * 0 on success.
1143 * * Negative return value on failure.
1144 */
1145static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1146{
1147	struct ne_enclave *ne_enclave = file->private_data;
1148
1149	switch (cmd) {
1150	case NE_ADD_VCPU: {
1151		int rc = -EINVAL;
1152		u32 vcpu_id = 0;
1153
1154		if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id)))
1155			return -EFAULT;
1156
1157		mutex_lock(&ne_enclave->enclave_info_mutex);
1158
1159		if (ne_enclave->state != NE_STATE_INIT) {
1160			dev_err_ratelimited(ne_misc_dev.this_device,
1161					    "Enclave is not in init state\n");
1162
1163			mutex_unlock(&ne_enclave->enclave_info_mutex);
1164
1165			return -NE_ERR_NOT_IN_INIT_STATE;
1166		}
1167
1168		if (vcpu_id >= (ne_enclave->nr_parent_vm_cores *
1169		    ne_enclave->nr_threads_per_core)) {
1170			dev_err_ratelimited(ne_misc_dev.this_device,
1171					    "vCPU id higher than max CPU id\n");
1172
1173			mutex_unlock(&ne_enclave->enclave_info_mutex);
1174
1175			return -NE_ERR_INVALID_VCPU;
1176		}
1177
1178		if (!vcpu_id) {
1179			/* Use the CPU pool for choosing a CPU for the enclave. */
1180			rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id);
1181			if (rc < 0) {
1182				dev_err_ratelimited(ne_misc_dev.this_device,
1183						    "Error in get CPU from pool [rc=%d]\n",
1184						    rc);
1185
1186				mutex_unlock(&ne_enclave->enclave_info_mutex);
1187
1188				return rc;
1189			}
1190		} else {
1191			/* Check if the provided vCPU is available in the NE CPU pool. */
1192			rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id);
1193			if (rc < 0) {
1194				dev_err_ratelimited(ne_misc_dev.this_device,
1195						    "Error in check CPU %d in pool [rc=%d]\n",
1196						    vcpu_id, rc);
1197
1198				mutex_unlock(&ne_enclave->enclave_info_mutex);
1199
1200				return rc;
1201			}
1202		}
1203
1204		rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id);
1205		if (rc < 0) {
1206			mutex_unlock(&ne_enclave->enclave_info_mutex);
1207
1208			return rc;
1209		}
1210
1211		mutex_unlock(&ne_enclave->enclave_info_mutex);
1212
1213		if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id)))
1214			return -EFAULT;
1215
1216		return 0;
1217	}
1218
1219	case NE_GET_IMAGE_LOAD_INFO: {
1220		struct ne_image_load_info image_load_info = {};
1221
1222		if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info)))
1223			return -EFAULT;
1224
1225		mutex_lock(&ne_enclave->enclave_info_mutex);
1226
1227		if (ne_enclave->state != NE_STATE_INIT) {
1228			dev_err_ratelimited(ne_misc_dev.this_device,
1229					    "Enclave is not in init state\n");
1230
1231			mutex_unlock(&ne_enclave->enclave_info_mutex);
1232
1233			return -NE_ERR_NOT_IN_INIT_STATE;
1234		}
1235
1236		mutex_unlock(&ne_enclave->enclave_info_mutex);
1237
1238		if (!image_load_info.flags ||
1239		    image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) {
1240			dev_err_ratelimited(ne_misc_dev.this_device,
1241					    "Incorrect flag in enclave image load info\n");
1242
1243			return -NE_ERR_INVALID_FLAG_VALUE;
1244		}
1245
1246		if (image_load_info.flags == NE_EIF_IMAGE)
1247			image_load_info.memory_offset = NE_EIF_LOAD_OFFSET;
1248
1249		if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info)))
1250			return -EFAULT;
1251
1252		return 0;
1253	}
1254
1255	case NE_SET_USER_MEMORY_REGION: {
1256		struct ne_user_memory_region mem_region = {};
1257		int rc = -EINVAL;
1258
1259		if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region)))
1260			return -EFAULT;
1261
1262		if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) {
1263			dev_err_ratelimited(ne_misc_dev.this_device,
1264					    "Incorrect flag for user memory region\n");
1265
1266			return -NE_ERR_INVALID_FLAG_VALUE;
1267		}
1268
1269		mutex_lock(&ne_enclave->enclave_info_mutex);
1270
1271		if (ne_enclave->state != NE_STATE_INIT) {
1272			dev_err_ratelimited(ne_misc_dev.this_device,
1273					    "Enclave is not in init state\n");
1274
1275			mutex_unlock(&ne_enclave->enclave_info_mutex);
1276
1277			return -NE_ERR_NOT_IN_INIT_STATE;
1278		}
1279
1280		rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region);
1281		if (rc < 0) {
1282			mutex_unlock(&ne_enclave->enclave_info_mutex);
1283
1284			return rc;
1285		}
1286
1287		mutex_unlock(&ne_enclave->enclave_info_mutex);
1288
1289		return 0;
1290	}
1291
1292	case NE_START_ENCLAVE: {
1293		struct ne_enclave_start_info enclave_start_info = {};
1294		int rc = -EINVAL;
1295
1296		if (copy_from_user(&enclave_start_info, (void __user *)arg,
1297				   sizeof(enclave_start_info)))
1298			return -EFAULT;
1299
1300		if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) {
1301			dev_err_ratelimited(ne_misc_dev.this_device,
1302					    "Incorrect flag in enclave start info\n");
1303
1304			return -NE_ERR_INVALID_FLAG_VALUE;
1305		}
1306
1307		/*
1308		 * Do not use well-known CIDs - 0, 1, 2 - for enclaves.
1309		 * VMADDR_CID_ANY = -1U
1310		 * VMADDR_CID_HYPERVISOR = 0
1311		 * VMADDR_CID_LOCAL = 1
1312		 * VMADDR_CID_HOST = 2
1313		 * Note: 0 is used as a placeholder to auto-generate an enclave CID.
1314		 * http://man7.org/linux/man-pages/man7/vsock.7.html
1315		 */
1316		if (enclave_start_info.enclave_cid > 0 &&
1317		    enclave_start_info.enclave_cid <= VMADDR_CID_HOST) {
1318			dev_err_ratelimited(ne_misc_dev.this_device,
1319					    "Well-known CID value, not to be used for enclaves\n");
1320
1321			return -NE_ERR_INVALID_ENCLAVE_CID;
1322		}
1323
1324		if (enclave_start_info.enclave_cid == U32_MAX) {
1325			dev_err_ratelimited(ne_misc_dev.this_device,
1326					    "Well-known CID value, not to be used for enclaves\n");
1327
1328			return -NE_ERR_INVALID_ENCLAVE_CID;
1329		}
1330
1331		/*
1332		 * Do not use the CID of the primary / parent VM for enclaves.
1333		 */
1334		if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) {
1335			dev_err_ratelimited(ne_misc_dev.this_device,
1336					    "CID of the parent VM, not to be used for enclaves\n");
1337
1338			return -NE_ERR_INVALID_ENCLAVE_CID;
1339		}
1340
1341		/* 64-bit CIDs are not yet supported for the vsock device. */
1342		if (enclave_start_info.enclave_cid > U32_MAX) {
1343			dev_err_ratelimited(ne_misc_dev.this_device,
1344					    "64-bit CIDs not yet supported for the vsock device\n");
1345
1346			return -NE_ERR_INVALID_ENCLAVE_CID;
1347		}
1348
1349		mutex_lock(&ne_enclave->enclave_info_mutex);
1350
1351		if (ne_enclave->state != NE_STATE_INIT) {
1352			dev_err_ratelimited(ne_misc_dev.this_device,
1353					    "Enclave is not in init state\n");
1354
1355			mutex_unlock(&ne_enclave->enclave_info_mutex);
1356
1357			return -NE_ERR_NOT_IN_INIT_STATE;
1358		}
1359
1360		rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info);
1361		if (rc < 0) {
1362			mutex_unlock(&ne_enclave->enclave_info_mutex);
1363
1364			return rc;
1365		}
1366
1367		mutex_unlock(&ne_enclave->enclave_info_mutex);
1368
1369		if (copy_to_user((void __user *)arg, &enclave_start_info,
1370				 sizeof(enclave_start_info)))
1371			return -EFAULT;
1372
1373		return 0;
1374	}
1375
1376	default:
1377		return -ENOTTY;
1378	}
1379
1380	return 0;
1381}
1382
1383/**
1384 * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries
1385 *						from the enclave data structure.
1386 * @ne_enclave :	Private data associated with the current enclave.
1387 *
1388 * Context: Process context. This function is called with the ne_enclave mutex held.
1389 */
1390static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave)
1391{
1392	unsigned long i = 0;
1393	struct ne_mem_region *ne_mem_region = NULL;
1394	struct ne_mem_region *ne_mem_region_tmp = NULL;
1395
1396	list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp,
1397				 &ne_enclave->mem_regions_list,
1398				 mem_region_list_entry) {
1399		list_del(&ne_mem_region->mem_region_list_entry);
1400
1401		for (i = 0; i < ne_mem_region->nr_pages; i++)
1402			put_page(ne_mem_region->pages[i]);
1403
1404		kfree(ne_mem_region->pages);
1405
1406		kfree(ne_mem_region);
1407	}
1408}
1409
1410/**
1411 * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from
1412 *					     the enclave data structure.
1413 * @ne_enclave :	Private data associated with the current enclave.
1414 *
1415 * Context: Process context. This function is called with the ne_enclave mutex held.
1416 */
1417static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave)
1418{
1419	unsigned int cpu = 0;
1420	unsigned int i = 0;
1421
1422	mutex_lock(&ne_cpu_pool.mutex);
1423
1424	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) {
1425		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1426			/* Update the available NE CPU pool. */
1427			cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]);
1428
1429		free_cpumask_var(ne_enclave->threads_per_core[i]);
1430	}
1431
1432	mutex_unlock(&ne_cpu_pool.mutex);
1433
1434	kfree(ne_enclave->threads_per_core);
1435
1436	free_cpumask_var(ne_enclave->vcpu_ids);
1437}
1438
1439/**
1440 * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data
1441 *				       structure that is part of the NE PCI
1442 *				       device private data.
1443 * @ne_enclave :	Private data associated with the current enclave.
1444 * @ne_pci_dev :	Private data associated with the PCI device.
1445 *
1446 * Context: Process context. This function is called with the ne_pci_dev enclave
1447 *	    mutex held.
1448 */
1449static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave,
1450					    struct ne_pci_dev *ne_pci_dev)
1451{
1452	struct ne_enclave *ne_enclave_entry = NULL;
1453	struct ne_enclave *ne_enclave_entry_tmp = NULL;
1454
1455	list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp,
1456				 &ne_pci_dev->enclaves_list, enclave_list_entry) {
1457		if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) {
1458			list_del(&ne_enclave_entry->enclave_list_entry);
1459
1460			break;
1461		}
1462	}
1463}
1464
1465/**
1466 * ne_enclave_release() - Release function provided by the enclave file.
1467 * @inode:	Inode associated with this file release function.
1468 * @file:	File associated with this release function.
1469 *
1470 * Context: Process context.
1471 * Return:
1472 * * 0 on success.
1473 * * Negative return value on failure.
1474 */
1475static int ne_enclave_release(struct inode *inode, struct file *file)
1476{
1477	struct ne_pci_dev_cmd_reply cmd_reply = {};
1478	struct enclave_stop_req enclave_stop_request = {};
1479	struct ne_enclave *ne_enclave = file->private_data;
1480	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1481	struct pci_dev *pdev = ne_pci_dev->pdev;
1482	int rc = -EINVAL;
1483	struct slot_free_req slot_free_req = {};
1484
1485	if (!ne_enclave)
1486		return 0;
1487
1488	/*
1489	 * Early exit in case there is an error in the enclave creation logic
1490	 * and fput() is called on the cleanup path.
1491	 */
1492	if (!ne_enclave->slot_uid)
1493		return 0;
1494
1495	/*
1496	 * Acquire the enclave list mutex before the enclave mutex
1497	 * in order to avoid deadlocks with @ref ne_event_work_handler.
1498	 */
1499	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1500	mutex_lock(&ne_enclave->enclave_info_mutex);
1501
1502	if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) {
1503		enclave_stop_request.slot_uid = ne_enclave->slot_uid;
1504
1505		rc = ne_do_request(pdev, ENCLAVE_STOP,
1506				   &enclave_stop_request, sizeof(enclave_stop_request),
1507				   &cmd_reply, sizeof(cmd_reply));
1508		if (rc < 0) {
1509			dev_err_ratelimited(ne_misc_dev.this_device,
1510					    "Error in enclave stop [rc=%d]\n", rc);
1511
1512			goto unlock_mutex;
1513		}
1514
1515		memset(&cmd_reply, 0, sizeof(cmd_reply));
1516	}
1517
1518	slot_free_req.slot_uid = ne_enclave->slot_uid;
1519
1520	rc = ne_do_request(pdev, SLOT_FREE,
1521			   &slot_free_req, sizeof(slot_free_req),
1522			   &cmd_reply, sizeof(cmd_reply));
1523	if (rc < 0) {
1524		dev_err_ratelimited(ne_misc_dev.this_device,
1525				    "Error in slot free [rc=%d]\n", rc);
1526
1527		goto unlock_mutex;
1528	}
1529
1530	ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev);
1531	ne_enclave_remove_all_mem_region_entries(ne_enclave);
1532	ne_enclave_remove_all_vcpu_id_entries(ne_enclave);
1533
1534	mutex_unlock(&ne_enclave->enclave_info_mutex);
1535	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1536
1537	kfree(ne_enclave);
1538
1539	return 0;
1540
1541unlock_mutex:
1542	mutex_unlock(&ne_enclave->enclave_info_mutex);
1543	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1544
1545	return rc;
1546}
1547
1548/**
1549 * ne_enclave_poll() - Poll functionality used for enclave out-of-band events.
1550 * @file:	File associated with this poll function.
1551 * @wait:	Poll table data structure.
1552 *
1553 * Context: Process context.
1554 * Return:
1555 * * Poll mask.
1556 */
1557static __poll_t ne_enclave_poll(struct file *file, poll_table *wait)
1558{
1559	__poll_t mask = 0;
1560	struct ne_enclave *ne_enclave = file->private_data;
1561
1562	poll_wait(file, &ne_enclave->eventq, wait);
1563
1564	if (ne_enclave->has_event)
1565		mask |= EPOLLHUP;
1566
1567	return mask;
1568}
1569
1570static const struct file_operations ne_enclave_fops = {
1571	.owner		= THIS_MODULE,
1572	.llseek		= noop_llseek,
1573	.poll		= ne_enclave_poll,
1574	.unlocked_ioctl	= ne_enclave_ioctl,
1575	.release	= ne_enclave_release,
1576};
1577
1578/**
1579 * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create
1580 *			  enclave file descriptor to be further used for enclave
1581 *			  resources handling e.g. memory regions and CPUs.
1582 * @ne_pci_dev :	Private data associated with the PCI device.
1583 * @slot_uid:		User pointer to store the generated unique slot id
1584 *			associated with an enclave to.
1585 *
1586 * Context: Process context. This function is called with the ne_pci_dev enclave
1587 *	    mutex held.
1588 * Return:
1589 * * Enclave fd on success.
1590 * * Negative return value on failure.
1591 */
1592static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid)
1593{
1594	struct ne_pci_dev_cmd_reply cmd_reply = {};
1595	int enclave_fd = -1;
1596	struct file *enclave_file = NULL;
1597	unsigned int i = 0;
1598	struct ne_enclave *ne_enclave = NULL;
1599	struct pci_dev *pdev = ne_pci_dev->pdev;
1600	int rc = -EINVAL;
1601	struct slot_alloc_req slot_alloc_req = {};
1602
1603	mutex_lock(&ne_cpu_pool.mutex);
1604
1605	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
1606		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i]))
1607			break;
1608
1609	if (i == ne_cpu_pool.nr_parent_vm_cores) {
1610		dev_err_ratelimited(ne_misc_dev.this_device,
1611				    "No CPUs available in CPU pool\n");
1612
1613		mutex_unlock(&ne_cpu_pool.mutex);
1614
1615		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
1616	}
1617
1618	mutex_unlock(&ne_cpu_pool.mutex);
1619
1620	ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL);
1621	if (!ne_enclave)
1622		return -ENOMEM;
1623
1624	mutex_lock(&ne_cpu_pool.mutex);
1625
1626	ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores;
1627	ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core;
1628	ne_enclave->numa_node = ne_cpu_pool.numa_node;
1629
1630	mutex_unlock(&ne_cpu_pool.mutex);
1631
1632	ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores,
1633					       sizeof(*ne_enclave->threads_per_core),
1634					       GFP_KERNEL);
1635	if (!ne_enclave->threads_per_core) {
1636		rc = -ENOMEM;
1637
1638		goto free_ne_enclave;
1639	}
1640
1641	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1642		if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) {
1643			rc = -ENOMEM;
1644
1645			goto free_cpumask;
1646		}
1647
1648	if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) {
1649		rc = -ENOMEM;
1650
1651		goto free_cpumask;
1652	}
1653
1654	enclave_fd = get_unused_fd_flags(O_CLOEXEC);
1655	if (enclave_fd < 0) {
1656		rc = enclave_fd;
1657
1658		dev_err_ratelimited(ne_misc_dev.this_device,
1659				    "Error in getting unused fd [rc=%d]\n", rc);
1660
1661		goto free_cpumask;
1662	}
1663
1664	enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR);
1665	if (IS_ERR(enclave_file)) {
1666		rc = PTR_ERR(enclave_file);
1667
1668		dev_err_ratelimited(ne_misc_dev.this_device,
1669				    "Error in anon inode get file [rc=%d]\n", rc);
1670
1671		goto put_fd;
1672	}
1673
1674	rc = ne_do_request(pdev, SLOT_ALLOC,
1675			   &slot_alloc_req, sizeof(slot_alloc_req),
1676			   &cmd_reply, sizeof(cmd_reply));
1677	if (rc < 0) {
1678		dev_err_ratelimited(ne_misc_dev.this_device,
1679				    "Error in slot alloc [rc=%d]\n", rc);
1680
1681		goto put_file;
1682	}
1683
1684	init_waitqueue_head(&ne_enclave->eventq);
1685	ne_enclave->has_event = false;
1686	mutex_init(&ne_enclave->enclave_info_mutex);
1687	ne_enclave->max_mem_regions = cmd_reply.mem_regions;
1688	INIT_LIST_HEAD(&ne_enclave->mem_regions_list);
1689	ne_enclave->mm = current->mm;
1690	ne_enclave->slot_uid = cmd_reply.slot_uid;
1691	ne_enclave->state = NE_STATE_INIT;
1692
1693	list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list);
1694
1695	if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) {
1696		/*
1697		 * As we're holding the only reference to 'enclave_file', fput()
1698		 * will call ne_enclave_release() which will do a proper cleanup
1699		 * of all so far allocated resources, leaving only the unused fd
1700		 * for us to free.
1701		 */
1702		fput(enclave_file);
1703		put_unused_fd(enclave_fd);
1704
1705		return -EFAULT;
1706	}
1707
1708	fd_install(enclave_fd, enclave_file);
1709
1710	return enclave_fd;
1711
1712put_file:
1713	fput(enclave_file);
1714put_fd:
1715	put_unused_fd(enclave_fd);
1716free_cpumask:
1717	free_cpumask_var(ne_enclave->vcpu_ids);
1718	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1719		free_cpumask_var(ne_enclave->threads_per_core[i]);
1720	kfree(ne_enclave->threads_per_core);
1721free_ne_enclave:
1722	kfree(ne_enclave);
1723
1724	return rc;
1725}
1726
1727/**
1728 * ne_ioctl() - Ioctl function provided by the NE misc device.
1729 * @file:	File associated with this ioctl function.
1730 * @cmd:	The command that is set for the ioctl call.
1731 * @arg:	The argument that is provided for the ioctl call.
1732 *
1733 * Context: Process context.
1734 * Return:
1735 * * Ioctl result (e.g. enclave file descriptor) on success.
1736 * * Negative return value on failure.
1737 */
1738static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1739{
1740	switch (cmd) {
1741	case NE_CREATE_VM: {
1742		int enclave_fd = -1;
1743		struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1744		u64 __user *slot_uid = (void __user *)arg;
1745
1746		mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1747		enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid);
1748		mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1749
1750		return enclave_fd;
1751	}
1752
1753	default:
1754		return -ENOTTY;
1755	}
1756
1757	return 0;
1758}
1759
1760#if defined(CONFIG_NITRO_ENCLAVES_MISC_DEV_TEST)
1761#include "ne_misc_dev_test.c"
1762#endif
1763
1764static int __init ne_init(void)
1765{
1766	mutex_init(&ne_cpu_pool.mutex);
1767
1768	return pci_register_driver(&ne_pci_driver);
1769}
1770
1771static void __exit ne_exit(void)
1772{
1773	pci_unregister_driver(&ne_pci_driver);
1774
1775	ne_teardown_cpu_pool();
1776}
1777
1778module_init(ne_init);
1779module_exit(ne_exit);
1780
1781MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
1782MODULE_DESCRIPTION("Nitro Enclaves Driver");
1783MODULE_LICENSE("GPL v2");
1784