1/*
2 *  linux/drivers/video/sa1100fb.c
3 *
4 *  Copyright (C) 1999 Eric A. Thomas
5 *   Based on acornfb.c Copyright (C) Russell King.
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License.  See the file COPYING in the main directory of this archive for
9 * more details.
10 *
11 *	        StrongARM 1100 LCD Controller Frame Buffer Driver
12 *
13 * Please direct your questions and comments on this driver to the following
14 * email address:
15 *
16 *	linux-arm-kernel@lists.arm.linux.org.uk
17 *
18 * Clean patches should be sent to the ARM Linux Patch System.  Please see the
19 * following web page for more information:
20 *
21 *	https://www.arm.linux.org.uk/developer/patches/info.shtml
22 *
23 * Thank you.
24 *
25 * Known problems:
26 *	- With the Neponset plugged into an Assabet, LCD powerdown
27 *	  doesn't work (LCD stays powered up).  Therefore we shouldn't
28 *	  blank the screen.
29 *	- We don't limit the CPU clock rate nor the mode selection
30 *	  according to the available SDRAM bandwidth.
31 *
32 * Other notes:
33 *	- Linear grayscale palettes and the kernel.
34 *	  Such code does not belong in the kernel.  The kernel frame buffer
35 *	  drivers do not expect a linear colourmap, but a colourmap based on
36 *	  the VT100 standard mapping.
37 *
38 *	  If your _userspace_ requires a linear colourmap, then the setup of
39 *	  such a colourmap belongs _in userspace_, not in the kernel.  Code
40 *	  to set the colourmap correctly from user space has been sent to
41 *	  David Neuer.  It's around 8 lines of C code, plus another 4 to
42 *	  detect if we are using grayscale.
43 *
44 *	- The following must never be specified in a panel definition:
45 *	     LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46 *
47 *	- The following should be specified:
48 *	     either LCCR0_Color or LCCR0_Mono
49 *	     either LCCR0_Sngl or LCCR0_Dual
50 *	     either LCCR0_Act or LCCR0_Pas
51 *	     either LCCR3_OutEnH or LCCD3_OutEnL
52 *	     either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 *	     either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54 *
55 * Code Status:
56 * 1999/04/01:
57 *	- Driver appears to be working for Brutus 320x200x8bpp mode.  Other
58 *	  resolutions are working, but only the 8bpp mode is supported.
59 *	  Changes need to be made to the palette encode and decode routines
60 *	  to support 4 and 16 bpp modes.
61 *	  Driver is not designed to be a module.  The FrameBuffer is statically
62 *	  allocated since dynamic allocation of a 300k buffer cannot be
63 *	  guaranteed.
64 *
65 * 1999/06/17:
66 *	- FrameBuffer memory is now allocated at run-time when the
67 *	  driver is initialized.
68 *
69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70 *	- Big cleanup for dynamic selection of machine type at run time.
71 *
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 *	- Support for Bitsy aka Compaq iPAQ H3600 added.
74 *
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 *	       Jeff Sutherland <jsutherland@accelent.com>
77 *	- Resolved an issue caused by a change made to the Assabet's PLD
78 *	  earlier this year which broke the framebuffer driver for newer
79 *	  Phase 4 Assabets.  Some other parameters were changed to optimize
80 *	  for the Sharp display.
81 *
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 *	- XP860 support added
84 *
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 *	- Allows standard options to be passed on the kernel command line
87 *	  for most common passive displays.
88 *
89 * 2000/08/29:
90 *	- s/save_flags_cli/local_irq_save/
91 *	- remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92 *
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 *	- Updated LART stuff. Fixed some minor bugs.
95 *
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 *	- Pangolin support added
98 *
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 *	- Huw Webpanel support added
101 *
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103 *	- Freebird add
104 *
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 *	       Cliff Brake <cbrake@accelent.com>
107 *	- Added PM callback
108 *
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 *	- Fix 16bpp so that (a) we use the right colours rather than some
111 *	  totally random colour depending on what was in page 0, and (b)
112 *	  we don't de-reference a NULL pointer.
113 *	- remove duplicated implementation of consistent_alloc()
114 *	- convert dma address types to dma_addr_t
115 *	- remove unused 'montype' stuff
116 *	- remove redundant zero inits of init_var after the initial
117 *	  memset.
118 *	- remove allow_modeset (acornfb idea does not belong here)
119 *
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 *	- massive cleanup - move machine dependent data into structures
122 *	- I've left various #warnings in - if you see one, and know
123 *	  the hardware concerned, please get in contact with me.
124 *
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 *	- Fix LCCR1 HSW value, fix all machine type specifications to
127 *	  keep values in line.  (Please check your machine type specs)
128 *
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 *	- Fiddle with the LCD controller from task context only; mainly
131 *	  so that we can run with interrupts on, and sleep.
132 *	- Convert #warnings into #errors.  No pain, no gain. ;)
133 *
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 *	- Make the palette BPS value for 12bpp come out correctly.
136 *	- Take notice of "greyscale" on any colour depth.
137 *	- Make truecolor visuals use the RGB channel encoding information.
138 *
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 *	- Fix colourmap problems.
141 *
142 * 2001/07/13: <abraham@2d3d.co.za>
143 *	- Added support for the ICP LCD-Kit01 on LART. This LCD is
144 *	  manufactured by Prime View, model no V16C6448AB
145 *
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 *	- Hand merge version from handhelds.org CVS tree.  See patch
148 *	  notes for 595/1 for more information.
149 *	- Drop 12bpp (it's 16bpp with different colour register mappings).
150 *	- This hardware can not do direct colour.  Therefore we don't
151 *	  support it.
152 *
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 *	- Halve YRES on dual scan LCDs.
155 *
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 *	- Add b/w iPAQ pixclock value.
158 *
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 *	- Add patch 681/1 and clean up stork definitions.
161 */
162
163#include <linux/module.h>
164#include <linux/kernel.h>
165#include <linux/sched.h>
166#include <linux/errno.h>
167#include <linux/string.h>
168#include <linux/interrupt.h>
169#include <linux/slab.h>
170#include <linux/mm.h>
171#include <linux/fb.h>
172#include <linux/delay.h>
173#include <linux/init.h>
174#include <linux/ioport.h>
175#include <linux/cpufreq.h>
176#include <linux/gpio/consumer.h>
177#include <linux/platform_device.h>
178#include <linux/dma-mapping.h>
179#include <linux/mutex.h>
180#include <linux/io.h>
181#include <linux/clk.h>
182
183#include <video/sa1100fb.h>
184
185#include <mach/hardware.h>
186#include <asm/mach-types.h>
187
188/*
189 * Complain if VAR is out of range.
190 */
191#define DEBUG_VAR 1
192
193#include "sa1100fb.h"
194
195static const struct sa1100fb_rgb rgb_4 = {
196	.red	= { .offset = 0,  .length = 4, },
197	.green	= { .offset = 0,  .length = 4, },
198	.blue	= { .offset = 0,  .length = 4, },
199	.transp	= { .offset = 0,  .length = 0, },
200};
201
202static const struct sa1100fb_rgb rgb_8 = {
203	.red	= { .offset = 0,  .length = 8, },
204	.green	= { .offset = 0,  .length = 8, },
205	.blue	= { .offset = 0,  .length = 8, },
206	.transp	= { .offset = 0,  .length = 0, },
207};
208
209static const struct sa1100fb_rgb def_rgb_16 = {
210	.red	= { .offset = 11, .length = 5, },
211	.green	= { .offset = 5,  .length = 6, },
212	.blue	= { .offset = 0,  .length = 5, },
213	.transp	= { .offset = 0,  .length = 0, },
214};
215
216
217
218static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
219static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
220
221static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
222{
223	unsigned long flags;
224
225	local_irq_save(flags);
226	/*
227	 * We need to handle two requests being made at the same time.
228	 * There are two important cases:
229	 *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
230	 *     We must perform the unblanking, which will do our REENABLE for us.
231	 *  2. When we are blanking, but immediately unblank before we have
232	 *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
233	 */
234	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
235		state = (u_int) -1;
236	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
237		state = C_REENABLE;
238
239	if (state != (u_int)-1) {
240		fbi->task_state = state;
241		schedule_work(&fbi->task);
242	}
243	local_irq_restore(flags);
244}
245
246static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
247{
248	chan &= 0xffff;
249	chan >>= 16 - bf->length;
250	return chan << bf->offset;
251}
252
253/*
254 * Convert bits-per-pixel to a hardware palette PBS value.
255 */
256static inline u_int palette_pbs(struct fb_var_screeninfo *var)
257{
258	int ret = 0;
259	switch (var->bits_per_pixel) {
260	case 4:  ret = 0 << 12;	break;
261	case 8:  ret = 1 << 12; break;
262	case 16: ret = 2 << 12; break;
263	}
264	return ret;
265}
266
267static int
268sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
269		       u_int trans, struct fb_info *info)
270{
271	struct sa1100fb_info *fbi =
272		container_of(info, struct sa1100fb_info, fb);
273	u_int val, ret = 1;
274
275	if (regno < fbi->palette_size) {
276		val = ((red >> 4) & 0xf00);
277		val |= ((green >> 8) & 0x0f0);
278		val |= ((blue >> 12) & 0x00f);
279
280		if (regno == 0)
281			val |= palette_pbs(&fbi->fb.var);
282
283		fbi->palette_cpu[regno] = val;
284		ret = 0;
285	}
286	return ret;
287}
288
289static int
290sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
291		   u_int trans, struct fb_info *info)
292{
293	struct sa1100fb_info *fbi =
294		container_of(info, struct sa1100fb_info, fb);
295	unsigned int val;
296	int ret = 1;
297
298	/*
299	 * If inverse mode was selected, invert all the colours
300	 * rather than the register number.  The register number
301	 * is what you poke into the framebuffer to produce the
302	 * colour you requested.
303	 */
304	if (fbi->inf->cmap_inverse) {
305		red   = 0xffff - red;
306		green = 0xffff - green;
307		blue  = 0xffff - blue;
308	}
309
310	/*
311	 * If greyscale is true, then we convert the RGB value
312	 * to greyscale no mater what visual we are using.
313	 */
314	if (fbi->fb.var.grayscale)
315		red = green = blue = (19595 * red + 38470 * green +
316					7471 * blue) >> 16;
317
318	switch (fbi->fb.fix.visual) {
319	case FB_VISUAL_TRUECOLOR:
320		/*
321		 * 12 or 16-bit True Colour.  We encode the RGB value
322		 * according to the RGB bitfield information.
323		 */
324		if (regno < 16) {
325			val  = chan_to_field(red, &fbi->fb.var.red);
326			val |= chan_to_field(green, &fbi->fb.var.green);
327			val |= chan_to_field(blue, &fbi->fb.var.blue);
328
329			fbi->pseudo_palette[regno] = val;
330			ret = 0;
331		}
332		break;
333
334	case FB_VISUAL_STATIC_PSEUDOCOLOR:
335	case FB_VISUAL_PSEUDOCOLOR:
336		ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
337		break;
338	}
339
340	return ret;
341}
342
343#ifdef CONFIG_CPU_FREQ
344/*
345 *  sa1100fb_display_dma_period()
346 *    Calculate the minimum period (in picoseconds) between two DMA
347 *    requests for the LCD controller.  If we hit this, it means we're
348 *    doing nothing but LCD DMA.
349 */
350static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
351{
352	/*
353	 * Period = pixclock * bits_per_byte * bytes_per_transfer
354	 *		/ memory_bits_per_pixel;
355	 */
356	return var->pixclock * 8 * 16 / var->bits_per_pixel;
357}
358#endif
359
360/*
361 *  sa1100fb_check_var():
362 *    Round up in the following order: bits_per_pixel, xres,
363 *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
364 *    bitfields, horizontal timing, vertical timing.
365 */
366static int
367sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
368{
369	struct sa1100fb_info *fbi =
370		container_of(info, struct sa1100fb_info, fb);
371	int rgbidx;
372
373	if (var->xres < MIN_XRES)
374		var->xres = MIN_XRES;
375	if (var->yres < MIN_YRES)
376		var->yres = MIN_YRES;
377	if (var->xres > fbi->inf->xres)
378		var->xres = fbi->inf->xres;
379	if (var->yres > fbi->inf->yres)
380		var->yres = fbi->inf->yres;
381	var->xres_virtual = max(var->xres_virtual, var->xres);
382	var->yres_virtual = max(var->yres_virtual, var->yres);
383
384	dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
385	switch (var->bits_per_pixel) {
386	case 4:
387		rgbidx = RGB_4;
388		break;
389	case 8:
390		rgbidx = RGB_8;
391		break;
392	case 16:
393		rgbidx = RGB_16;
394		break;
395	default:
396		return -EINVAL;
397	}
398
399	/*
400	 * Copy the RGB parameters for this display
401	 * from the machine specific parameters.
402	 */
403	var->red    = fbi->rgb[rgbidx]->red;
404	var->green  = fbi->rgb[rgbidx]->green;
405	var->blue   = fbi->rgb[rgbidx]->blue;
406	var->transp = fbi->rgb[rgbidx]->transp;
407
408	dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
409		var->red.length, var->green.length, var->blue.length,
410		var->transp.length);
411
412	dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
413		var->red.offset, var->green.offset, var->blue.offset,
414		var->transp.offset);
415
416#ifdef CONFIG_CPU_FREQ
417	dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n",
418		sa1100fb_display_dma_period(var),
419		clk_get_rate(fbi->clk) / 1000);
420#endif
421
422	return 0;
423}
424
425static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
426{
427	if (fbi->inf->set_visual)
428		fbi->inf->set_visual(visual);
429}
430
431/*
432 * sa1100fb_set_par():
433 *	Set the user defined part of the display for the specified console
434 */
435static int sa1100fb_set_par(struct fb_info *info)
436{
437	struct sa1100fb_info *fbi =
438		container_of(info, struct sa1100fb_info, fb);
439	struct fb_var_screeninfo *var = &info->var;
440	unsigned long palette_mem_size;
441
442	dev_dbg(fbi->dev, "set_par\n");
443
444	if (var->bits_per_pixel == 16)
445		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
446	else if (!fbi->inf->cmap_static)
447		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
448	else {
449		/*
450		 * Some people have weird ideas about wanting static
451		 * pseudocolor maps.  I suspect their user space
452		 * applications are broken.
453		 */
454		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
455	}
456
457	fbi->fb.fix.line_length = var->xres_virtual *
458				  var->bits_per_pixel / 8;
459	fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
460
461	palette_mem_size = fbi->palette_size * sizeof(u16);
462
463	dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
464
465	fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
466	fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
467
468	/*
469	 * Set (any) board control register to handle new color depth
470	 */
471	sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
472	sa1100fb_activate_var(var, fbi);
473
474	return 0;
475}
476
477#if 0
478static int
479sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
480		  struct fb_info *info)
481{
482	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
483
484	/*
485	 * Make sure the user isn't doing something stupid.
486	 */
487	if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
488		return -EINVAL;
489
490	return gen_set_cmap(cmap, kspc, con, info);
491}
492#endif
493
494/*
495 * Formal definition of the VESA spec:
496 *  On
497 *  	This refers to the state of the display when it is in full operation
498 *  Stand-By
499 *  	This defines an optional operating state of minimal power reduction with
500 *  	the shortest recovery time
501 *  Suspend
502 *  	This refers to a level of power management in which substantial power
503 *  	reduction is achieved by the display.  The display can have a longer
504 *  	recovery time from this state than from the Stand-by state
505 *  Off
506 *  	This indicates that the display is consuming the lowest level of power
507 *  	and is non-operational. Recovery from this state may optionally require
508 *  	the user to manually power on the monitor
509 *
510 *  Now, the fbdev driver adds an additional state, (blank), where they
511 *  turn off the video (maybe by colormap tricks), but don't mess with the
512 *  video itself: think of it semantically between on and Stand-By.
513 *
514 *  So here's what we should do in our fbdev blank routine:
515 *
516 *  	VESA_NO_BLANKING (mode 0)	Video on,  front/back light on
517 *  	VESA_VSYNC_SUSPEND (mode 1)  	Video on,  front/back light off
518 *  	VESA_HSYNC_SUSPEND (mode 2)  	Video on,  front/back light off
519 *  	VESA_POWERDOWN (mode 3)		Video off, front/back light off
520 *
521 *  This will match the matrox implementation.
522 */
523/*
524 * sa1100fb_blank():
525 *	Blank the display by setting all palette values to zero.  Note, the
526 * 	12 and 16 bpp modes don't really use the palette, so this will not
527 *      blank the display in all modes.
528 */
529static int sa1100fb_blank(int blank, struct fb_info *info)
530{
531	struct sa1100fb_info *fbi =
532		container_of(info, struct sa1100fb_info, fb);
533	int i;
534
535	dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
536
537	switch (blank) {
538	case FB_BLANK_POWERDOWN:
539	case FB_BLANK_VSYNC_SUSPEND:
540	case FB_BLANK_HSYNC_SUSPEND:
541	case FB_BLANK_NORMAL:
542		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
543		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
544			for (i = 0; i < fbi->palette_size; i++)
545				sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
546		sa1100fb_schedule_work(fbi, C_DISABLE);
547		break;
548
549	case FB_BLANK_UNBLANK:
550		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
551		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
552			fb_set_cmap(&fbi->fb.cmap, info);
553		sa1100fb_schedule_work(fbi, C_ENABLE);
554	}
555	return 0;
556}
557
558static int sa1100fb_mmap(struct fb_info *info,
559			 struct vm_area_struct *vma)
560{
561	struct sa1100fb_info *fbi =
562		container_of(info, struct sa1100fb_info, fb);
563	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
564
565	vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
566
567	if (off < info->fix.smem_len) {
568		vma->vm_pgoff += 1; /* skip over the palette */
569		return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma,
570				   fbi->map_size);
571	}
572
573	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
574
575	return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
576}
577
578static const struct fb_ops sa1100fb_ops = {
579	.owner		= THIS_MODULE,
580	__FB_DEFAULT_IOMEM_OPS_RDWR,
581	.fb_check_var	= sa1100fb_check_var,
582	.fb_set_par	= sa1100fb_set_par,
583//	.fb_set_cmap	= sa1100fb_set_cmap,
584	.fb_setcolreg	= sa1100fb_setcolreg,
585	.fb_blank	= sa1100fb_blank,
586	__FB_DEFAULT_IOMEM_OPS_DRAW,
587	.fb_mmap	= sa1100fb_mmap,
588};
589
590/*
591 * Calculate the PCD value from the clock rate (in picoseconds).
592 * We take account of the PPCR clock setting.
593 */
594static inline unsigned int get_pcd(struct sa1100fb_info *fbi,
595		unsigned int pixclock)
596{
597	unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000;
598
599	pcd *= pixclock;
600	pcd /= 10000000;
601
602	return pcd + 1;	/* make up for integer math truncations */
603}
604
605/*
606 * sa1100fb_activate_var():
607 *	Configures LCD Controller based on entries in var parameter.  Settings are
608 *	only written to the controller if changes were made.
609 */
610static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
611{
612	struct sa1100fb_lcd_reg new_regs;
613	u_int half_screen_size, yres, pcd;
614	u_long flags;
615
616	dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
617
618	dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
619		var->xres, var->hsync_len,
620		var->left_margin, var->right_margin);
621	dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
622		var->yres, var->vsync_len,
623		var->upper_margin, var->lower_margin);
624
625#if DEBUG_VAR
626	if (var->xres < 16        || var->xres > 1024)
627		dev_err(fbi->dev, "%s: invalid xres %d\n",
628			fbi->fb.fix.id, var->xres);
629	if (var->hsync_len < 1    || var->hsync_len > 64)
630		dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
631			fbi->fb.fix.id, var->hsync_len);
632	if (var->left_margin < 1  || var->left_margin > 255)
633		dev_err(fbi->dev, "%s: invalid left_margin %d\n",
634			fbi->fb.fix.id, var->left_margin);
635	if (var->right_margin < 1 || var->right_margin > 255)
636		dev_err(fbi->dev, "%s: invalid right_margin %d\n",
637			fbi->fb.fix.id, var->right_margin);
638	if (var->yres < 1         || var->yres > 1024)
639		dev_err(fbi->dev, "%s: invalid yres %d\n",
640			fbi->fb.fix.id, var->yres);
641	if (var->vsync_len < 1    || var->vsync_len > 64)
642		dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
643			fbi->fb.fix.id, var->vsync_len);
644	if (var->upper_margin < 0 || var->upper_margin > 255)
645		dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
646			fbi->fb.fix.id, var->upper_margin);
647	if (var->lower_margin < 0 || var->lower_margin > 255)
648		dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
649			fbi->fb.fix.id, var->lower_margin);
650#endif
651
652	new_regs.lccr0 = fbi->inf->lccr0 |
653		LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
654		LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
655
656	new_regs.lccr1 =
657		LCCR1_DisWdth(var->xres) +
658		LCCR1_HorSnchWdth(var->hsync_len) +
659		LCCR1_BegLnDel(var->left_margin) +
660		LCCR1_EndLnDel(var->right_margin);
661
662	/*
663	 * If we have a dual scan LCD, then we need to halve
664	 * the YRES parameter.
665	 */
666	yres = var->yres;
667	if (fbi->inf->lccr0 & LCCR0_Dual)
668		yres /= 2;
669
670	new_regs.lccr2 =
671		LCCR2_DisHght(yres) +
672		LCCR2_VrtSnchWdth(var->vsync_len) +
673		LCCR2_BegFrmDel(var->upper_margin) +
674		LCCR2_EndFrmDel(var->lower_margin);
675
676	pcd = get_pcd(fbi, var->pixclock);
677	new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
678		(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
679		(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
680
681	dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
682	dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
683	dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
684	dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
685
686	half_screen_size = var->bits_per_pixel;
687	half_screen_size = half_screen_size * var->xres * var->yres / 16;
688
689	/* Update shadow copy atomically */
690	local_irq_save(flags);
691	fbi->dbar1 = fbi->palette_dma;
692	fbi->dbar2 = fbi->screen_dma + half_screen_size;
693
694	fbi->reg_lccr0 = new_regs.lccr0;
695	fbi->reg_lccr1 = new_regs.lccr1;
696	fbi->reg_lccr2 = new_regs.lccr2;
697	fbi->reg_lccr3 = new_regs.lccr3;
698	local_irq_restore(flags);
699
700	/*
701	 * Only update the registers if the controller is enabled
702	 * and something has changed.
703	 */
704	if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
705	    readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
706	    readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
707	    readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
708	    readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
709	    readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
710		sa1100fb_schedule_work(fbi, C_REENABLE);
711
712	return 0;
713}
714
715/*
716 * NOTE!  The following functions are purely helpers for set_ctrlr_state.
717 * Do not call them directly; set_ctrlr_state does the correct serialisation
718 * to ensure that things happen in the right way 100% of time time.
719 *	-- rmk
720 */
721static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
722{
723	dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
724
725	if (fbi->inf->backlight_power)
726		fbi->inf->backlight_power(on);
727}
728
729static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
730{
731	dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
732
733	if (fbi->inf->lcd_power)
734		fbi->inf->lcd_power(on);
735}
736
737static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
738{
739	u_int mask = 0;
740
741	/*
742	 * Enable GPIO<9:2> for LCD use if:
743	 *  1. Active display, or
744	 *  2. Color Dual Passive display
745	 *
746	 * see table 11.8 on page 11-27 in the SA1100 manual
747	 *   -- Erik.
748	 *
749	 * SA1110 spec update nr. 25 says we can and should
750	 * clear LDD15 to 12 for 4 or 8bpp modes with active
751	 * panels.
752	 */
753	if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
754	    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
755		mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
756
757		if (fbi->fb.var.bits_per_pixel > 8 ||
758		    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
759			mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
760
761	}
762
763	if (mask) {
764		unsigned long flags;
765
766		/*
767		 * SA-1100 requires the GPIO direction register set
768		 * appropriately for the alternate function.  Hence
769		 * we set it here via bitmask rather than excessive
770		 * fiddling via the GPIO subsystem - and even then
771		 * we'll still have to deal with GAFR.
772		 */
773		local_irq_save(flags);
774		GPDR |= mask;
775		GAFR |= mask;
776		local_irq_restore(flags);
777	}
778}
779
780static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
781{
782	dev_dbg(fbi->dev, "Enabling LCD controller\n");
783
784	/*
785	 * Make sure the mode bits are present in the first palette entry
786	 */
787	fbi->palette_cpu[0] &= 0xcfff;
788	fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
789
790	/* enable LCD controller clock */
791	clk_prepare_enable(fbi->clk);
792
793	/* Sequence from 11.7.10 */
794	writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
795	writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
796	writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
797	writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
798	writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
799	writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
800	writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
801
802	if (fbi->shannon_lcden)
803		gpiod_set_value(fbi->shannon_lcden, 1);
804
805	dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
806	dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
807	dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
808	dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
809	dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
810	dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
811}
812
813static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
814{
815	DECLARE_WAITQUEUE(wait, current);
816	u32 lccr0;
817
818	dev_dbg(fbi->dev, "Disabling LCD controller\n");
819
820	if (fbi->shannon_lcden)
821		gpiod_set_value(fbi->shannon_lcden, 0);
822
823	set_current_state(TASK_UNINTERRUPTIBLE);
824	add_wait_queue(&fbi->ctrlr_wait, &wait);
825
826	/* Clear LCD Status Register */
827	writel_relaxed(~0, fbi->base + LCSR);
828
829	lccr0 = readl_relaxed(fbi->base + LCCR0);
830	lccr0 &= ~LCCR0_LDM;	/* Enable LCD Disable Done Interrupt */
831	writel_relaxed(lccr0, fbi->base + LCCR0);
832	lccr0 &= ~LCCR0_LEN;	/* Disable LCD Controller */
833	writel_relaxed(lccr0, fbi->base + LCCR0);
834
835	schedule_timeout(20 * HZ / 1000);
836	remove_wait_queue(&fbi->ctrlr_wait, &wait);
837
838	/* disable LCD controller clock */
839	clk_disable_unprepare(fbi->clk);
840}
841
842/*
843 *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
844 */
845static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
846{
847	struct sa1100fb_info *fbi = dev_id;
848	unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
849
850	if (lcsr & LCSR_LDD) {
851		u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
852		writel_relaxed(lccr0, fbi->base + LCCR0);
853		wake_up(&fbi->ctrlr_wait);
854	}
855
856	writel_relaxed(lcsr, fbi->base + LCSR);
857	return IRQ_HANDLED;
858}
859
860/*
861 * This function must be called from task context only, since it will
862 * sleep when disabling the LCD controller, or if we get two contending
863 * processes trying to alter state.
864 */
865static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
866{
867	u_int old_state;
868
869	mutex_lock(&fbi->ctrlr_lock);
870
871	old_state = fbi->state;
872
873	/*
874	 * Hack around fbcon initialisation.
875	 */
876	if (old_state == C_STARTUP && state == C_REENABLE)
877		state = C_ENABLE;
878
879	switch (state) {
880	case C_DISABLE_CLKCHANGE:
881		/*
882		 * Disable controller for clock change.  If the
883		 * controller is already disabled, then do nothing.
884		 */
885		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
886			fbi->state = state;
887			sa1100fb_disable_controller(fbi);
888		}
889		break;
890
891	case C_DISABLE_PM:
892	case C_DISABLE:
893		/*
894		 * Disable controller
895		 */
896		if (old_state != C_DISABLE) {
897			fbi->state = state;
898
899			__sa1100fb_backlight_power(fbi, 0);
900			if (old_state != C_DISABLE_CLKCHANGE)
901				sa1100fb_disable_controller(fbi);
902			__sa1100fb_lcd_power(fbi, 0);
903		}
904		break;
905
906	case C_ENABLE_CLKCHANGE:
907		/*
908		 * Enable the controller after clock change.  Only
909		 * do this if we were disabled for the clock change.
910		 */
911		if (old_state == C_DISABLE_CLKCHANGE) {
912			fbi->state = C_ENABLE;
913			sa1100fb_enable_controller(fbi);
914		}
915		break;
916
917	case C_REENABLE:
918		/*
919		 * Re-enable the controller only if it was already
920		 * enabled.  This is so we reprogram the control
921		 * registers.
922		 */
923		if (old_state == C_ENABLE) {
924			sa1100fb_disable_controller(fbi);
925			sa1100fb_setup_gpio(fbi);
926			sa1100fb_enable_controller(fbi);
927		}
928		break;
929
930	case C_ENABLE_PM:
931		/*
932		 * Re-enable the controller after PM.  This is not
933		 * perfect - think about the case where we were doing
934		 * a clock change, and we suspended half-way through.
935		 */
936		if (old_state != C_DISABLE_PM)
937			break;
938		fallthrough;
939
940	case C_ENABLE:
941		/*
942		 * Power up the LCD screen, enable controller, and
943		 * turn on the backlight.
944		 */
945		if (old_state != C_ENABLE) {
946			fbi->state = C_ENABLE;
947			sa1100fb_setup_gpio(fbi);
948			__sa1100fb_lcd_power(fbi, 1);
949			sa1100fb_enable_controller(fbi);
950			__sa1100fb_backlight_power(fbi, 1);
951		}
952		break;
953	}
954	mutex_unlock(&fbi->ctrlr_lock);
955}
956
957/*
958 * Our LCD controller task (which is called when we blank or unblank)
959 * via keventd.
960 */
961static void sa1100fb_task(struct work_struct *w)
962{
963	struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
964	u_int state = xchg(&fbi->task_state, -1);
965
966	set_ctrlr_state(fbi, state);
967}
968
969#ifdef CONFIG_CPU_FREQ
970/*
971 * CPU clock speed change handler.  We need to adjust the LCD timing
972 * parameters when the CPU clock is adjusted by the power management
973 * subsystem.
974 */
975static int
976sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
977			 void *data)
978{
979	struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
980	u_int pcd;
981
982	switch (val) {
983	case CPUFREQ_PRECHANGE:
984		set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
985		break;
986
987	case CPUFREQ_POSTCHANGE:
988		pcd = get_pcd(fbi, fbi->fb.var.pixclock);
989		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
990		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
991		break;
992	}
993	return 0;
994}
995#endif
996
997#ifdef CONFIG_PM
998/*
999 * Power management hooks.  Note that we won't be called from IRQ context,
1000 * unlike the blank functions above, so we may sleep.
1001 */
1002static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1003{
1004	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1005
1006	set_ctrlr_state(fbi, C_DISABLE_PM);
1007	return 0;
1008}
1009
1010static int sa1100fb_resume(struct platform_device *dev)
1011{
1012	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1013
1014	set_ctrlr_state(fbi, C_ENABLE_PM);
1015	return 0;
1016}
1017#else
1018#define sa1100fb_suspend	NULL
1019#define sa1100fb_resume		NULL
1020#endif
1021
1022/*
1023 * sa1100fb_map_video_memory():
1024 *      Allocates the DRAM memory for the frame buffer.  This buffer is
1025 *	remapped into a non-cached, non-buffered, memory region to
1026 *      allow palette and pixel writes to occur without flushing the
1027 *      cache.  Once this area is remapped, all virtual memory
1028 *      access to the video memory should occur at the new region.
1029 */
1030static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1031{
1032	/*
1033	 * We reserve one page for the palette, plus the size
1034	 * of the framebuffer.
1035	 */
1036	fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1037	fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma,
1038				    GFP_KERNEL);
1039
1040	if (fbi->map_cpu) {
1041		fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1042		fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1043		/*
1044		 * FIXME: this is actually the wrong thing to place in
1045		 * smem_start.  But fbdev suffers from the problem that
1046		 * it needs an API which doesn't exist (in this case,
1047		 * dma_writecombine_mmap)
1048		 */
1049		fbi->fb.fix.smem_start = fbi->screen_dma;
1050	}
1051
1052	return fbi->map_cpu ? 0 : -ENOMEM;
1053}
1054
1055/* Fake monspecs to fill in fbinfo structure */
1056static const struct fb_monspecs monspecs = {
1057	.hfmin	= 30000,
1058	.hfmax	= 70000,
1059	.vfmin	= 50,
1060	.vfmax	= 65,
1061};
1062
1063
1064static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1065{
1066	struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1067	struct sa1100fb_info *fbi;
1068	unsigned i;
1069
1070	fbi = devm_kzalloc(dev, sizeof(struct sa1100fb_info), GFP_KERNEL);
1071	if (!fbi)
1072		return NULL;
1073
1074	fbi->dev = dev;
1075
1076	strcpy(fbi->fb.fix.id, SA1100_NAME);
1077
1078	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1079	fbi->fb.fix.type_aux	= 0;
1080	fbi->fb.fix.xpanstep	= 0;
1081	fbi->fb.fix.ypanstep	= 0;
1082	fbi->fb.fix.ywrapstep	= 0;
1083	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1084
1085	fbi->fb.var.nonstd	= 0;
1086	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1087	fbi->fb.var.height	= -1;
1088	fbi->fb.var.width	= -1;
1089	fbi->fb.var.accel_flags	= 0;
1090	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1091
1092	fbi->fb.fbops		= &sa1100fb_ops;
1093	fbi->fb.monspecs	= monspecs;
1094	fbi->fb.pseudo_palette	= fbi->pseudo_palette;
1095
1096	fbi->rgb[RGB_4]		= &rgb_4;
1097	fbi->rgb[RGB_8]		= &rgb_8;
1098	fbi->rgb[RGB_16]	= &def_rgb_16;
1099
1100	/*
1101	 * People just don't seem to get this.  We don't support
1102	 * anything but correct entries now, so panic if someone
1103	 * does something stupid.
1104	 */
1105	if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1106	    inf->pixclock == 0)
1107		panic("sa1100fb error: invalid LCCR3 fields set or zero "
1108			"pixclock.");
1109
1110	fbi->fb.var.xres		= inf->xres;
1111	fbi->fb.var.xres_virtual	= inf->xres;
1112	fbi->fb.var.yres		= inf->yres;
1113	fbi->fb.var.yres_virtual	= inf->yres;
1114	fbi->fb.var.bits_per_pixel	= inf->bpp;
1115	fbi->fb.var.pixclock		= inf->pixclock;
1116	fbi->fb.var.hsync_len		= inf->hsync_len;
1117	fbi->fb.var.left_margin		= inf->left_margin;
1118	fbi->fb.var.right_margin	= inf->right_margin;
1119	fbi->fb.var.vsync_len		= inf->vsync_len;
1120	fbi->fb.var.upper_margin	= inf->upper_margin;
1121	fbi->fb.var.lower_margin	= inf->lower_margin;
1122	fbi->fb.var.sync		= inf->sync;
1123	fbi->fb.var.grayscale		= inf->cmap_greyscale;
1124	fbi->state			= C_STARTUP;
1125	fbi->task_state			= (u_char)-1;
1126	fbi->fb.fix.smem_len		= inf->xres * inf->yres *
1127					  inf->bpp / 8;
1128	fbi->inf			= inf;
1129
1130	/* Copy the RGB bitfield overrides */
1131	for (i = 0; i < NR_RGB; i++)
1132		if (inf->rgb[i])
1133			fbi->rgb[i] = inf->rgb[i];
1134
1135	init_waitqueue_head(&fbi->ctrlr_wait);
1136	INIT_WORK(&fbi->task, sa1100fb_task);
1137	mutex_init(&fbi->ctrlr_lock);
1138
1139	return fbi;
1140}
1141
1142static int sa1100fb_probe(struct platform_device *pdev)
1143{
1144	struct sa1100fb_info *fbi;
1145	int ret, irq;
1146
1147	if (!dev_get_platdata(&pdev->dev)) {
1148		dev_err(&pdev->dev, "no platform LCD data\n");
1149		return -EINVAL;
1150	}
1151
1152	irq = platform_get_irq(pdev, 0);
1153	if (irq < 0)
1154		return -EINVAL;
1155
1156	fbi = sa1100fb_init_fbinfo(&pdev->dev);
1157	if (!fbi)
1158		return -ENOMEM;
1159
1160	fbi->base = devm_platform_ioremap_resource(pdev, 0);
1161	if (IS_ERR(fbi->base))
1162		return PTR_ERR(fbi->base);
1163
1164	fbi->clk = devm_clk_get(&pdev->dev, NULL);
1165	if (IS_ERR(fbi->clk))
1166		return PTR_ERR(fbi->clk);
1167
1168	ret = devm_request_irq(&pdev->dev, irq, sa1100fb_handle_irq, 0,
1169			       "LCD", fbi);
1170	if (ret) {
1171		dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1172		return ret;
1173	}
1174
1175	fbi->shannon_lcden = gpiod_get_optional(&pdev->dev, "shannon-lcden",
1176						GPIOD_OUT_LOW);
1177	if (IS_ERR(fbi->shannon_lcden))
1178		return PTR_ERR(fbi->shannon_lcden);
1179
1180	/* Initialize video memory */
1181	ret = sa1100fb_map_video_memory(fbi);
1182	if (ret)
1183		return ret;
1184
1185	/*
1186	 * This makes sure that our colour bitfield
1187	 * descriptors are correctly initialised.
1188	 */
1189	sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1190
1191	platform_set_drvdata(pdev, fbi);
1192
1193	ret = register_framebuffer(&fbi->fb);
1194	if (ret < 0) {
1195		dma_free_wc(fbi->dev, fbi->map_size, fbi->map_cpu,
1196			    fbi->map_dma);
1197		return ret;
1198	}
1199
1200#ifdef CONFIG_CPU_FREQ
1201	fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1202	cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1203#endif
1204
1205	/* This driver cannot be unloaded at the moment */
1206	return 0;
1207}
1208
1209static struct platform_driver sa1100fb_driver = {
1210	.probe		= sa1100fb_probe,
1211	.suspend	= sa1100fb_suspend,
1212	.resume		= sa1100fb_resume,
1213	.driver		= {
1214		.name	= "sa11x0-fb",
1215	},
1216};
1217
1218static int __init sa1100fb_init(void)
1219{
1220	if (fb_get_options("sa1100fb", NULL))
1221		return -ENODEV;
1222
1223	return platform_driver_register(&sa1100fb_driver);
1224}
1225
1226module_init(sa1100fb_init);
1227MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1228MODULE_LICENSE("GPL");
1229