1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4 *
5 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6 *     Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 *
12 * We arbitrarily define a Type1 IOMMU as one matching the below code.
13 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14 * VT-d, but that makes it harder to re-use as theoretically anyone
15 * implementing a similar IOMMU could make use of this.  We expect the
16 * IOMMU to support the IOMMU API and have few to no restrictions around
17 * the IOVA range that can be mapped.  The Type1 IOMMU is currently
18 * optimized for relatively static mappings of a userspace process with
19 * userspace pages pinned into memory.  We also assume devices and IOMMU
20 * domains are PCI based as the IOMMU API is still centered around a
21 * device/bus interface rather than a group interface.
22 */
23
24#include <linux/compat.h>
25#include <linux/device.h>
26#include <linux/fs.h>
27#include <linux/highmem.h>
28#include <linux/iommu.h>
29#include <linux/module.h>
30#include <linux/mm.h>
31#include <linux/kthread.h>
32#include <linux/rbtree.h>
33#include <linux/sched/signal.h>
34#include <linux/sched/mm.h>
35#include <linux/slab.h>
36#include <linux/uaccess.h>
37#include <linux/vfio.h>
38#include <linux/workqueue.h>
39#include <linux/notifier.h>
40#include "vfio.h"
41
42#define DRIVER_VERSION  "0.2"
43#define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
44#define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
45
46static bool allow_unsafe_interrupts;
47module_param_named(allow_unsafe_interrupts,
48		   allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
49MODULE_PARM_DESC(allow_unsafe_interrupts,
50		 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
51
52static bool disable_hugepages;
53module_param_named(disable_hugepages,
54		   disable_hugepages, bool, S_IRUGO | S_IWUSR);
55MODULE_PARM_DESC(disable_hugepages,
56		 "Disable VFIO IOMMU support for IOMMU hugepages.");
57
58static unsigned int dma_entry_limit __read_mostly = U16_MAX;
59module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
60MODULE_PARM_DESC(dma_entry_limit,
61		 "Maximum number of user DMA mappings per container (65535).");
62
63struct vfio_iommu {
64	struct list_head	domain_list;
65	struct list_head	iova_list;
66	struct mutex		lock;
67	struct rb_root		dma_list;
68	struct list_head	device_list;
69	struct mutex		device_list_lock;
70	unsigned int		dma_avail;
71	unsigned int		vaddr_invalid_count;
72	uint64_t		pgsize_bitmap;
73	uint64_t		num_non_pinned_groups;
74	bool			v2;
75	bool			nesting;
76	bool			dirty_page_tracking;
77	struct list_head	emulated_iommu_groups;
78};
79
80struct vfio_domain {
81	struct iommu_domain	*domain;
82	struct list_head	next;
83	struct list_head	group_list;
84	bool			fgsp : 1;	/* Fine-grained super pages */
85	bool			enforce_cache_coherency : 1;
86};
87
88struct vfio_dma {
89	struct rb_node		node;
90	dma_addr_t		iova;		/* Device address */
91	unsigned long		vaddr;		/* Process virtual addr */
92	size_t			size;		/* Map size (bytes) */
93	int			prot;		/* IOMMU_READ/WRITE */
94	bool			iommu_mapped;
95	bool			lock_cap;	/* capable(CAP_IPC_LOCK) */
96	bool			vaddr_invalid;
97	struct task_struct	*task;
98	struct rb_root		pfn_list;	/* Ex-user pinned pfn list */
99	unsigned long		*bitmap;
100	struct mm_struct	*mm;
101	size_t			locked_vm;
102};
103
104struct vfio_batch {
105	struct page		**pages;	/* for pin_user_pages_remote */
106	struct page		*fallback_page; /* if pages alloc fails */
107	int			capacity;	/* length of pages array */
108	int			size;		/* of batch currently */
109	int			offset;		/* of next entry in pages */
110};
111
112struct vfio_iommu_group {
113	struct iommu_group	*iommu_group;
114	struct list_head	next;
115	bool			pinned_page_dirty_scope;
116};
117
118struct vfio_iova {
119	struct list_head	list;
120	dma_addr_t		start;
121	dma_addr_t		end;
122};
123
124/*
125 * Guest RAM pinning working set or DMA target
126 */
127struct vfio_pfn {
128	struct rb_node		node;
129	dma_addr_t		iova;		/* Device address */
130	unsigned long		pfn;		/* Host pfn */
131	unsigned int		ref_count;
132};
133
134struct vfio_regions {
135	struct list_head list;
136	dma_addr_t iova;
137	phys_addr_t phys;
138	size_t len;
139};
140
141#define DIRTY_BITMAP_BYTES(n)	(ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
142
143/*
144 * Input argument of number of bits to bitmap_set() is unsigned integer, which
145 * further casts to signed integer for unaligned multi-bit operation,
146 * __bitmap_set().
147 * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
148 * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
149 * system.
150 */
151#define DIRTY_BITMAP_PAGES_MAX	 ((u64)INT_MAX)
152#define DIRTY_BITMAP_SIZE_MAX	 DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
153
154static int put_pfn(unsigned long pfn, int prot);
155
156static struct vfio_iommu_group*
157vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
158			    struct iommu_group *iommu_group);
159
160/*
161 * This code handles mapping and unmapping of user data buffers
162 * into DMA'ble space using the IOMMU
163 */
164
165static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
166				      dma_addr_t start, size_t size)
167{
168	struct rb_node *node = iommu->dma_list.rb_node;
169
170	while (node) {
171		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
172
173		if (start + size <= dma->iova)
174			node = node->rb_left;
175		else if (start >= dma->iova + dma->size)
176			node = node->rb_right;
177		else
178			return dma;
179	}
180
181	return NULL;
182}
183
184static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
185						dma_addr_t start, u64 size)
186{
187	struct rb_node *res = NULL;
188	struct rb_node *node = iommu->dma_list.rb_node;
189	struct vfio_dma *dma_res = NULL;
190
191	while (node) {
192		struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
193
194		if (start < dma->iova + dma->size) {
195			res = node;
196			dma_res = dma;
197			if (start >= dma->iova)
198				break;
199			node = node->rb_left;
200		} else {
201			node = node->rb_right;
202		}
203	}
204	if (res && size && dma_res->iova >= start + size)
205		res = NULL;
206	return res;
207}
208
209static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
210{
211	struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
212	struct vfio_dma *dma;
213
214	while (*link) {
215		parent = *link;
216		dma = rb_entry(parent, struct vfio_dma, node);
217
218		if (new->iova + new->size <= dma->iova)
219			link = &(*link)->rb_left;
220		else
221			link = &(*link)->rb_right;
222	}
223
224	rb_link_node(&new->node, parent, link);
225	rb_insert_color(&new->node, &iommu->dma_list);
226}
227
228static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
229{
230	rb_erase(&old->node, &iommu->dma_list);
231}
232
233
234static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
235{
236	uint64_t npages = dma->size / pgsize;
237
238	if (npages > DIRTY_BITMAP_PAGES_MAX)
239		return -EINVAL;
240
241	/*
242	 * Allocate extra 64 bits that are used to calculate shift required for
243	 * bitmap_shift_left() to manipulate and club unaligned number of pages
244	 * in adjacent vfio_dma ranges.
245	 */
246	dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
247			       GFP_KERNEL);
248	if (!dma->bitmap)
249		return -ENOMEM;
250
251	return 0;
252}
253
254static void vfio_dma_bitmap_free(struct vfio_dma *dma)
255{
256	kvfree(dma->bitmap);
257	dma->bitmap = NULL;
258}
259
260static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
261{
262	struct rb_node *p;
263	unsigned long pgshift = __ffs(pgsize);
264
265	for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
266		struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
267
268		bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
269	}
270}
271
272static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
273{
274	struct rb_node *n;
275	unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
276
277	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
278		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
279
280		bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
281	}
282}
283
284static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
285{
286	struct rb_node *n;
287
288	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
289		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
290		int ret;
291
292		ret = vfio_dma_bitmap_alloc(dma, pgsize);
293		if (ret) {
294			struct rb_node *p;
295
296			for (p = rb_prev(n); p; p = rb_prev(p)) {
297				struct vfio_dma *dma = rb_entry(n,
298							struct vfio_dma, node);
299
300				vfio_dma_bitmap_free(dma);
301			}
302			return ret;
303		}
304		vfio_dma_populate_bitmap(dma, pgsize);
305	}
306	return 0;
307}
308
309static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
310{
311	struct rb_node *n;
312
313	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
314		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
315
316		vfio_dma_bitmap_free(dma);
317	}
318}
319
320/*
321 * Helper Functions for host iova-pfn list
322 */
323static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
324{
325	struct vfio_pfn *vpfn;
326	struct rb_node *node = dma->pfn_list.rb_node;
327
328	while (node) {
329		vpfn = rb_entry(node, struct vfio_pfn, node);
330
331		if (iova < vpfn->iova)
332			node = node->rb_left;
333		else if (iova > vpfn->iova)
334			node = node->rb_right;
335		else
336			return vpfn;
337	}
338	return NULL;
339}
340
341static void vfio_link_pfn(struct vfio_dma *dma,
342			  struct vfio_pfn *new)
343{
344	struct rb_node **link, *parent = NULL;
345	struct vfio_pfn *vpfn;
346
347	link = &dma->pfn_list.rb_node;
348	while (*link) {
349		parent = *link;
350		vpfn = rb_entry(parent, struct vfio_pfn, node);
351
352		if (new->iova < vpfn->iova)
353			link = &(*link)->rb_left;
354		else
355			link = &(*link)->rb_right;
356	}
357
358	rb_link_node(&new->node, parent, link);
359	rb_insert_color(&new->node, &dma->pfn_list);
360}
361
362static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
363{
364	rb_erase(&old->node, &dma->pfn_list);
365}
366
367static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
368				unsigned long pfn)
369{
370	struct vfio_pfn *vpfn;
371
372	vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
373	if (!vpfn)
374		return -ENOMEM;
375
376	vpfn->iova = iova;
377	vpfn->pfn = pfn;
378	vpfn->ref_count = 1;
379	vfio_link_pfn(dma, vpfn);
380	return 0;
381}
382
383static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
384				      struct vfio_pfn *vpfn)
385{
386	vfio_unlink_pfn(dma, vpfn);
387	kfree(vpfn);
388}
389
390static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
391					       unsigned long iova)
392{
393	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
394
395	if (vpfn)
396		vpfn->ref_count++;
397	return vpfn;
398}
399
400static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
401{
402	int ret = 0;
403
404	vpfn->ref_count--;
405	if (!vpfn->ref_count) {
406		ret = put_pfn(vpfn->pfn, dma->prot);
407		vfio_remove_from_pfn_list(dma, vpfn);
408	}
409	return ret;
410}
411
412static int mm_lock_acct(struct task_struct *task, struct mm_struct *mm,
413			bool lock_cap, long npage)
414{
415	int ret = mmap_write_lock_killable(mm);
416
417	if (ret)
418		return ret;
419
420	ret = __account_locked_vm(mm, abs(npage), npage > 0, task, lock_cap);
421	mmap_write_unlock(mm);
422	return ret;
423}
424
425static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
426{
427	struct mm_struct *mm;
428	int ret;
429
430	if (!npage)
431		return 0;
432
433	mm = dma->mm;
434	if (async && !mmget_not_zero(mm))
435		return -ESRCH; /* process exited */
436
437	ret = mm_lock_acct(dma->task, mm, dma->lock_cap, npage);
438	if (!ret)
439		dma->locked_vm += npage;
440
441	if (async)
442		mmput(mm);
443
444	return ret;
445}
446
447/*
448 * Some mappings aren't backed by a struct page, for example an mmap'd
449 * MMIO range for our own or another device.  These use a different
450 * pfn conversion and shouldn't be tracked as locked pages.
451 * For compound pages, any driver that sets the reserved bit in head
452 * page needs to set the reserved bit in all subpages to be safe.
453 */
454static bool is_invalid_reserved_pfn(unsigned long pfn)
455{
456	if (pfn_valid(pfn))
457		return PageReserved(pfn_to_page(pfn));
458
459	return true;
460}
461
462static int put_pfn(unsigned long pfn, int prot)
463{
464	if (!is_invalid_reserved_pfn(pfn)) {
465		struct page *page = pfn_to_page(pfn);
466
467		unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
468		return 1;
469	}
470	return 0;
471}
472
473#define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
474
475static void vfio_batch_init(struct vfio_batch *batch)
476{
477	batch->size = 0;
478	batch->offset = 0;
479
480	if (unlikely(disable_hugepages))
481		goto fallback;
482
483	batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
484	if (!batch->pages)
485		goto fallback;
486
487	batch->capacity = VFIO_BATCH_MAX_CAPACITY;
488	return;
489
490fallback:
491	batch->pages = &batch->fallback_page;
492	batch->capacity = 1;
493}
494
495static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
496{
497	while (batch->size) {
498		unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
499
500		put_pfn(pfn, dma->prot);
501		batch->offset++;
502		batch->size--;
503	}
504}
505
506static void vfio_batch_fini(struct vfio_batch *batch)
507{
508	if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
509		free_page((unsigned long)batch->pages);
510}
511
512static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
513			    unsigned long vaddr, unsigned long *pfn,
514			    bool write_fault)
515{
516	pte_t *ptep;
517	pte_t pte;
518	spinlock_t *ptl;
519	int ret;
520
521	ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
522	if (ret) {
523		bool unlocked = false;
524
525		ret = fixup_user_fault(mm, vaddr,
526				       FAULT_FLAG_REMOTE |
527				       (write_fault ?  FAULT_FLAG_WRITE : 0),
528				       &unlocked);
529		if (unlocked)
530			return -EAGAIN;
531
532		if (ret)
533			return ret;
534
535		ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
536		if (ret)
537			return ret;
538	}
539
540	pte = ptep_get(ptep);
541
542	if (write_fault && !pte_write(pte))
543		ret = -EFAULT;
544	else
545		*pfn = pte_pfn(pte);
546
547	pte_unmap_unlock(ptep, ptl);
548	return ret;
549}
550
551/*
552 * Returns the positive number of pfns successfully obtained or a negative
553 * error code.
554 */
555static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
556			  long npages, int prot, unsigned long *pfn,
557			  struct page **pages)
558{
559	struct vm_area_struct *vma;
560	unsigned int flags = 0;
561	int ret;
562
563	if (prot & IOMMU_WRITE)
564		flags |= FOLL_WRITE;
565
566	mmap_read_lock(mm);
567	ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM,
568				    pages, NULL);
569	if (ret > 0) {
570		*pfn = page_to_pfn(pages[0]);
571		goto done;
572	}
573
574	vaddr = untagged_addr_remote(mm, vaddr);
575
576retry:
577	vma = vma_lookup(mm, vaddr);
578
579	if (vma && vma->vm_flags & VM_PFNMAP) {
580		ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
581		if (ret == -EAGAIN)
582			goto retry;
583
584		if (!ret) {
585			if (is_invalid_reserved_pfn(*pfn))
586				ret = 1;
587			else
588				ret = -EFAULT;
589		}
590	}
591done:
592	mmap_read_unlock(mm);
593	return ret;
594}
595
596/*
597 * Attempt to pin pages.  We really don't want to track all the pfns and
598 * the iommu can only map chunks of consecutive pfns anyway, so get the
599 * first page and all consecutive pages with the same locking.
600 */
601static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
602				  long npage, unsigned long *pfn_base,
603				  unsigned long limit, struct vfio_batch *batch)
604{
605	unsigned long pfn;
606	struct mm_struct *mm = current->mm;
607	long ret, pinned = 0, lock_acct = 0;
608	bool rsvd;
609	dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
610
611	/* This code path is only user initiated */
612	if (!mm)
613		return -ENODEV;
614
615	if (batch->size) {
616		/* Leftover pages in batch from an earlier call. */
617		*pfn_base = page_to_pfn(batch->pages[batch->offset]);
618		pfn = *pfn_base;
619		rsvd = is_invalid_reserved_pfn(*pfn_base);
620	} else {
621		*pfn_base = 0;
622	}
623
624	while (npage) {
625		if (!batch->size) {
626			/* Empty batch, so refill it. */
627			long req_pages = min_t(long, npage, batch->capacity);
628
629			ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot,
630					     &pfn, batch->pages);
631			if (ret < 0)
632				goto unpin_out;
633
634			batch->size = ret;
635			batch->offset = 0;
636
637			if (!*pfn_base) {
638				*pfn_base = pfn;
639				rsvd = is_invalid_reserved_pfn(*pfn_base);
640			}
641		}
642
643		/*
644		 * pfn is preset for the first iteration of this inner loop and
645		 * updated at the end to handle a VM_PFNMAP pfn.  In that case,
646		 * batch->pages isn't valid (there's no struct page), so allow
647		 * batch->pages to be touched only when there's more than one
648		 * pfn to check, which guarantees the pfns are from a
649		 * !VM_PFNMAP vma.
650		 */
651		while (true) {
652			if (pfn != *pfn_base + pinned ||
653			    rsvd != is_invalid_reserved_pfn(pfn))
654				goto out;
655
656			/*
657			 * Reserved pages aren't counted against the user,
658			 * externally pinned pages are already counted against
659			 * the user.
660			 */
661			if (!rsvd && !vfio_find_vpfn(dma, iova)) {
662				if (!dma->lock_cap &&
663				    mm->locked_vm + lock_acct + 1 > limit) {
664					pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
665						__func__, limit << PAGE_SHIFT);
666					ret = -ENOMEM;
667					goto unpin_out;
668				}
669				lock_acct++;
670			}
671
672			pinned++;
673			npage--;
674			vaddr += PAGE_SIZE;
675			iova += PAGE_SIZE;
676			batch->offset++;
677			batch->size--;
678
679			if (!batch->size)
680				break;
681
682			pfn = page_to_pfn(batch->pages[batch->offset]);
683		}
684
685		if (unlikely(disable_hugepages))
686			break;
687	}
688
689out:
690	ret = vfio_lock_acct(dma, lock_acct, false);
691
692unpin_out:
693	if (batch->size == 1 && !batch->offset) {
694		/* May be a VM_PFNMAP pfn, which the batch can't remember. */
695		put_pfn(pfn, dma->prot);
696		batch->size = 0;
697	}
698
699	if (ret < 0) {
700		if (pinned && !rsvd) {
701			for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
702				put_pfn(pfn, dma->prot);
703		}
704		vfio_batch_unpin(batch, dma);
705
706		return ret;
707	}
708
709	return pinned;
710}
711
712static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
713				    unsigned long pfn, long npage,
714				    bool do_accounting)
715{
716	long unlocked = 0, locked = 0;
717	long i;
718
719	for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
720		if (put_pfn(pfn++, dma->prot)) {
721			unlocked++;
722			if (vfio_find_vpfn(dma, iova))
723				locked++;
724		}
725	}
726
727	if (do_accounting)
728		vfio_lock_acct(dma, locked - unlocked, true);
729
730	return unlocked;
731}
732
733static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
734				  unsigned long *pfn_base, bool do_accounting)
735{
736	struct page *pages[1];
737	struct mm_struct *mm;
738	int ret;
739
740	mm = dma->mm;
741	if (!mmget_not_zero(mm))
742		return -ENODEV;
743
744	ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages);
745	if (ret != 1)
746		goto out;
747
748	ret = 0;
749
750	if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
751		ret = vfio_lock_acct(dma, 1, false);
752		if (ret) {
753			put_pfn(*pfn_base, dma->prot);
754			if (ret == -ENOMEM)
755				pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
756					"(%ld) exceeded\n", __func__,
757					dma->task->comm, task_pid_nr(dma->task),
758					task_rlimit(dma->task, RLIMIT_MEMLOCK));
759		}
760	}
761
762out:
763	mmput(mm);
764	return ret;
765}
766
767static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
768				    bool do_accounting)
769{
770	int unlocked;
771	struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
772
773	if (!vpfn)
774		return 0;
775
776	unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
777
778	if (do_accounting)
779		vfio_lock_acct(dma, -unlocked, true);
780
781	return unlocked;
782}
783
784static int vfio_iommu_type1_pin_pages(void *iommu_data,
785				      struct iommu_group *iommu_group,
786				      dma_addr_t user_iova,
787				      int npage, int prot,
788				      struct page **pages)
789{
790	struct vfio_iommu *iommu = iommu_data;
791	struct vfio_iommu_group *group;
792	int i, j, ret;
793	unsigned long remote_vaddr;
794	struct vfio_dma *dma;
795	bool do_accounting;
796
797	if (!iommu || !pages)
798		return -EINVAL;
799
800	/* Supported for v2 version only */
801	if (!iommu->v2)
802		return -EACCES;
803
804	mutex_lock(&iommu->lock);
805
806	if (WARN_ONCE(iommu->vaddr_invalid_count,
807		      "vfio_pin_pages not allowed with VFIO_UPDATE_VADDR\n")) {
808		ret = -EBUSY;
809		goto pin_done;
810	}
811
812	/* Fail if no dma_umap notifier is registered */
813	if (list_empty(&iommu->device_list)) {
814		ret = -EINVAL;
815		goto pin_done;
816	}
817
818	/*
819	 * If iommu capable domain exist in the container then all pages are
820	 * already pinned and accounted. Accounting should be done if there is no
821	 * iommu capable domain in the container.
822	 */
823	do_accounting = list_empty(&iommu->domain_list);
824
825	for (i = 0; i < npage; i++) {
826		unsigned long phys_pfn;
827		dma_addr_t iova;
828		struct vfio_pfn *vpfn;
829
830		iova = user_iova + PAGE_SIZE * i;
831		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
832		if (!dma) {
833			ret = -EINVAL;
834			goto pin_unwind;
835		}
836
837		if ((dma->prot & prot) != prot) {
838			ret = -EPERM;
839			goto pin_unwind;
840		}
841
842		vpfn = vfio_iova_get_vfio_pfn(dma, iova);
843		if (vpfn) {
844			pages[i] = pfn_to_page(vpfn->pfn);
845			continue;
846		}
847
848		remote_vaddr = dma->vaddr + (iova - dma->iova);
849		ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn,
850					     do_accounting);
851		if (ret)
852			goto pin_unwind;
853
854		if (!pfn_valid(phys_pfn)) {
855			ret = -EINVAL;
856			goto pin_unwind;
857		}
858
859		ret = vfio_add_to_pfn_list(dma, iova, phys_pfn);
860		if (ret) {
861			if (put_pfn(phys_pfn, dma->prot) && do_accounting)
862				vfio_lock_acct(dma, -1, true);
863			goto pin_unwind;
864		}
865
866		pages[i] = pfn_to_page(phys_pfn);
867
868		if (iommu->dirty_page_tracking) {
869			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
870
871			/*
872			 * Bitmap populated with the smallest supported page
873			 * size
874			 */
875			bitmap_set(dma->bitmap,
876				   (iova - dma->iova) >> pgshift, 1);
877		}
878	}
879	ret = i;
880
881	group = vfio_iommu_find_iommu_group(iommu, iommu_group);
882	if (!group->pinned_page_dirty_scope) {
883		group->pinned_page_dirty_scope = true;
884		iommu->num_non_pinned_groups--;
885	}
886
887	goto pin_done;
888
889pin_unwind:
890	pages[i] = NULL;
891	for (j = 0; j < i; j++) {
892		dma_addr_t iova;
893
894		iova = user_iova + PAGE_SIZE * j;
895		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
896		vfio_unpin_page_external(dma, iova, do_accounting);
897		pages[j] = NULL;
898	}
899pin_done:
900	mutex_unlock(&iommu->lock);
901	return ret;
902}
903
904static void vfio_iommu_type1_unpin_pages(void *iommu_data,
905					 dma_addr_t user_iova, int npage)
906{
907	struct vfio_iommu *iommu = iommu_data;
908	bool do_accounting;
909	int i;
910
911	/* Supported for v2 version only */
912	if (WARN_ON(!iommu->v2))
913		return;
914
915	mutex_lock(&iommu->lock);
916
917	do_accounting = list_empty(&iommu->domain_list);
918	for (i = 0; i < npage; i++) {
919		dma_addr_t iova = user_iova + PAGE_SIZE * i;
920		struct vfio_dma *dma;
921
922		dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
923		if (!dma)
924			break;
925
926		vfio_unpin_page_external(dma, iova, do_accounting);
927	}
928
929	mutex_unlock(&iommu->lock);
930
931	WARN_ON(i != npage);
932}
933
934static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
935			    struct list_head *regions,
936			    struct iommu_iotlb_gather *iotlb_gather)
937{
938	long unlocked = 0;
939	struct vfio_regions *entry, *next;
940
941	iommu_iotlb_sync(domain->domain, iotlb_gather);
942
943	list_for_each_entry_safe(entry, next, regions, list) {
944		unlocked += vfio_unpin_pages_remote(dma,
945						    entry->iova,
946						    entry->phys >> PAGE_SHIFT,
947						    entry->len >> PAGE_SHIFT,
948						    false);
949		list_del(&entry->list);
950		kfree(entry);
951	}
952
953	cond_resched();
954
955	return unlocked;
956}
957
958/*
959 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
960 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
961 * of these regions (currently using a list).
962 *
963 * This value specifies maximum number of regions for each IOTLB flush sync.
964 */
965#define VFIO_IOMMU_TLB_SYNC_MAX		512
966
967static size_t unmap_unpin_fast(struct vfio_domain *domain,
968			       struct vfio_dma *dma, dma_addr_t *iova,
969			       size_t len, phys_addr_t phys, long *unlocked,
970			       struct list_head *unmapped_list,
971			       int *unmapped_cnt,
972			       struct iommu_iotlb_gather *iotlb_gather)
973{
974	size_t unmapped = 0;
975	struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
976
977	if (entry) {
978		unmapped = iommu_unmap_fast(domain->domain, *iova, len,
979					    iotlb_gather);
980
981		if (!unmapped) {
982			kfree(entry);
983		} else {
984			entry->iova = *iova;
985			entry->phys = phys;
986			entry->len  = unmapped;
987			list_add_tail(&entry->list, unmapped_list);
988
989			*iova += unmapped;
990			(*unmapped_cnt)++;
991		}
992	}
993
994	/*
995	 * Sync if the number of fast-unmap regions hits the limit
996	 * or in case of errors.
997	 */
998	if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
999		*unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1000					     iotlb_gather);
1001		*unmapped_cnt = 0;
1002	}
1003
1004	return unmapped;
1005}
1006
1007static size_t unmap_unpin_slow(struct vfio_domain *domain,
1008			       struct vfio_dma *dma, dma_addr_t *iova,
1009			       size_t len, phys_addr_t phys,
1010			       long *unlocked)
1011{
1012	size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1013
1014	if (unmapped) {
1015		*unlocked += vfio_unpin_pages_remote(dma, *iova,
1016						     phys >> PAGE_SHIFT,
1017						     unmapped >> PAGE_SHIFT,
1018						     false);
1019		*iova += unmapped;
1020		cond_resched();
1021	}
1022	return unmapped;
1023}
1024
1025static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1026			     bool do_accounting)
1027{
1028	dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1029	struct vfio_domain *domain, *d;
1030	LIST_HEAD(unmapped_region_list);
1031	struct iommu_iotlb_gather iotlb_gather;
1032	int unmapped_region_cnt = 0;
1033	long unlocked = 0;
1034
1035	if (!dma->size)
1036		return 0;
1037
1038	if (list_empty(&iommu->domain_list))
1039		return 0;
1040
1041	/*
1042	 * We use the IOMMU to track the physical addresses, otherwise we'd
1043	 * need a much more complicated tracking system.  Unfortunately that
1044	 * means we need to use one of the iommu domains to figure out the
1045	 * pfns to unpin.  The rest need to be unmapped in advance so we have
1046	 * no iommu translations remaining when the pages are unpinned.
1047	 */
1048	domain = d = list_first_entry(&iommu->domain_list,
1049				      struct vfio_domain, next);
1050
1051	list_for_each_entry_continue(d, &iommu->domain_list, next) {
1052		iommu_unmap(d->domain, dma->iova, dma->size);
1053		cond_resched();
1054	}
1055
1056	iommu_iotlb_gather_init(&iotlb_gather);
1057	while (iova < end) {
1058		size_t unmapped, len;
1059		phys_addr_t phys, next;
1060
1061		phys = iommu_iova_to_phys(domain->domain, iova);
1062		if (WARN_ON(!phys)) {
1063			iova += PAGE_SIZE;
1064			continue;
1065		}
1066
1067		/*
1068		 * To optimize for fewer iommu_unmap() calls, each of which
1069		 * may require hardware cache flushing, try to find the
1070		 * largest contiguous physical memory chunk to unmap.
1071		 */
1072		for (len = PAGE_SIZE;
1073		     !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1074			next = iommu_iova_to_phys(domain->domain, iova + len);
1075			if (next != phys + len)
1076				break;
1077		}
1078
1079		/*
1080		 * First, try to use fast unmap/unpin. In case of failure,
1081		 * switch to slow unmap/unpin path.
1082		 */
1083		unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1084					    &unlocked, &unmapped_region_list,
1085					    &unmapped_region_cnt,
1086					    &iotlb_gather);
1087		if (!unmapped) {
1088			unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1089						    phys, &unlocked);
1090			if (WARN_ON(!unmapped))
1091				break;
1092		}
1093	}
1094
1095	dma->iommu_mapped = false;
1096
1097	if (unmapped_region_cnt) {
1098		unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1099					    &iotlb_gather);
1100	}
1101
1102	if (do_accounting) {
1103		vfio_lock_acct(dma, -unlocked, true);
1104		return 0;
1105	}
1106	return unlocked;
1107}
1108
1109static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1110{
1111	WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1112	vfio_unmap_unpin(iommu, dma, true);
1113	vfio_unlink_dma(iommu, dma);
1114	put_task_struct(dma->task);
1115	mmdrop(dma->mm);
1116	vfio_dma_bitmap_free(dma);
1117	if (dma->vaddr_invalid)
1118		iommu->vaddr_invalid_count--;
1119	kfree(dma);
1120	iommu->dma_avail++;
1121}
1122
1123static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1124{
1125	struct vfio_domain *domain;
1126
1127	iommu->pgsize_bitmap = ULONG_MAX;
1128
1129	list_for_each_entry(domain, &iommu->domain_list, next)
1130		iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1131
1132	/*
1133	 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1134	 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1135	 * That way the user will be able to map/unmap buffers whose size/
1136	 * start address is aligned with PAGE_SIZE. Pinning code uses that
1137	 * granularity while iommu driver can use the sub-PAGE_SIZE size
1138	 * to map the buffer.
1139	 */
1140	if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1141		iommu->pgsize_bitmap &= PAGE_MASK;
1142		iommu->pgsize_bitmap |= PAGE_SIZE;
1143	}
1144}
1145
1146static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1147			      struct vfio_dma *dma, dma_addr_t base_iova,
1148			      size_t pgsize)
1149{
1150	unsigned long pgshift = __ffs(pgsize);
1151	unsigned long nbits = dma->size >> pgshift;
1152	unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1153	unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1154	unsigned long shift = bit_offset % BITS_PER_LONG;
1155	unsigned long leftover;
1156
1157	/*
1158	 * mark all pages dirty if any IOMMU capable device is not able
1159	 * to report dirty pages and all pages are pinned and mapped.
1160	 */
1161	if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1162		bitmap_set(dma->bitmap, 0, nbits);
1163
1164	if (shift) {
1165		bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1166				  nbits + shift);
1167
1168		if (copy_from_user(&leftover,
1169				   (void __user *)(bitmap + copy_offset),
1170				   sizeof(leftover)))
1171			return -EFAULT;
1172
1173		bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1174	}
1175
1176	if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1177			 DIRTY_BITMAP_BYTES(nbits + shift)))
1178		return -EFAULT;
1179
1180	return 0;
1181}
1182
1183static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1184				  dma_addr_t iova, size_t size, size_t pgsize)
1185{
1186	struct vfio_dma *dma;
1187	struct rb_node *n;
1188	unsigned long pgshift = __ffs(pgsize);
1189	int ret;
1190
1191	/*
1192	 * GET_BITMAP request must fully cover vfio_dma mappings.  Multiple
1193	 * vfio_dma mappings may be clubbed by specifying large ranges, but
1194	 * there must not be any previous mappings bisected by the range.
1195	 * An error will be returned if these conditions are not met.
1196	 */
1197	dma = vfio_find_dma(iommu, iova, 1);
1198	if (dma && dma->iova != iova)
1199		return -EINVAL;
1200
1201	dma = vfio_find_dma(iommu, iova + size - 1, 0);
1202	if (dma && dma->iova + dma->size != iova + size)
1203		return -EINVAL;
1204
1205	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1206		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1207
1208		if (dma->iova < iova)
1209			continue;
1210
1211		if (dma->iova > iova + size - 1)
1212			break;
1213
1214		ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1215		if (ret)
1216			return ret;
1217
1218		/*
1219		 * Re-populate bitmap to include all pinned pages which are
1220		 * considered as dirty but exclude pages which are unpinned and
1221		 * pages which are marked dirty by vfio_dma_rw()
1222		 */
1223		bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1224		vfio_dma_populate_bitmap(dma, pgsize);
1225	}
1226	return 0;
1227}
1228
1229static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1230{
1231	if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1232	    (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1233		return -EINVAL;
1234
1235	return 0;
1236}
1237
1238/*
1239 * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1240 * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1241 * pages in response to an invalidation.
1242 */
1243static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1244				  struct vfio_dma *dma)
1245{
1246	struct vfio_device *device;
1247
1248	if (list_empty(&iommu->device_list))
1249		return;
1250
1251	/*
1252	 * The device is expected to call vfio_unpin_pages() for any IOVA it has
1253	 * pinned within the range. Since vfio_unpin_pages() will eventually
1254	 * call back down to this code and try to obtain the iommu->lock we must
1255	 * drop it.
1256	 */
1257	mutex_lock(&iommu->device_list_lock);
1258	mutex_unlock(&iommu->lock);
1259
1260	list_for_each_entry(device, &iommu->device_list, iommu_entry)
1261		device->ops->dma_unmap(device, dma->iova, dma->size);
1262
1263	mutex_unlock(&iommu->device_list_lock);
1264	mutex_lock(&iommu->lock);
1265}
1266
1267static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1268			     struct vfio_iommu_type1_dma_unmap *unmap,
1269			     struct vfio_bitmap *bitmap)
1270{
1271	struct vfio_dma *dma, *dma_last = NULL;
1272	size_t unmapped = 0, pgsize;
1273	int ret = -EINVAL, retries = 0;
1274	unsigned long pgshift;
1275	dma_addr_t iova = unmap->iova;
1276	u64 size = unmap->size;
1277	bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1278	bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1279	struct rb_node *n, *first_n;
1280
1281	mutex_lock(&iommu->lock);
1282
1283	/* Cannot update vaddr if mdev is present. */
1284	if (invalidate_vaddr && !list_empty(&iommu->emulated_iommu_groups)) {
1285		ret = -EBUSY;
1286		goto unlock;
1287	}
1288
1289	pgshift = __ffs(iommu->pgsize_bitmap);
1290	pgsize = (size_t)1 << pgshift;
1291
1292	if (iova & (pgsize - 1))
1293		goto unlock;
1294
1295	if (unmap_all) {
1296		if (iova || size)
1297			goto unlock;
1298		size = U64_MAX;
1299	} else if (!size || size & (pgsize - 1) ||
1300		   iova + size - 1 < iova || size > SIZE_MAX) {
1301		goto unlock;
1302	}
1303
1304	/* When dirty tracking is enabled, allow only min supported pgsize */
1305	if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1306	    (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1307		goto unlock;
1308	}
1309
1310	WARN_ON((pgsize - 1) & PAGE_MASK);
1311again:
1312	/*
1313	 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1314	 * avoid tracking individual mappings.  This means that the granularity
1315	 * of the original mapping was lost and the user was allowed to attempt
1316	 * to unmap any range.  Depending on the contiguousness of physical
1317	 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1318	 * or may not have worked.  We only guaranteed unmap granularity
1319	 * matching the original mapping; even though it was untracked here,
1320	 * the original mappings are reflected in IOMMU mappings.  This
1321	 * resulted in a couple unusual behaviors.  First, if a range is not
1322	 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1323	 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1324	 * a zero sized unmap.  Also, if an unmap request overlaps the first
1325	 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1326	 * This also returns success and the returned unmap size reflects the
1327	 * actual size unmapped.
1328	 *
1329	 * We attempt to maintain compatibility with this "v1" interface, but
1330	 * we take control out of the hands of the IOMMU.  Therefore, an unmap
1331	 * request offset from the beginning of the original mapping will
1332	 * return success with zero sized unmap.  And an unmap request covering
1333	 * the first iova of mapping will unmap the entire range.
1334	 *
1335	 * The v2 version of this interface intends to be more deterministic.
1336	 * Unmap requests must fully cover previous mappings.  Multiple
1337	 * mappings may still be unmaped by specifying large ranges, but there
1338	 * must not be any previous mappings bisected by the range.  An error
1339	 * will be returned if these conditions are not met.  The v2 interface
1340	 * will only return success and a size of zero if there were no
1341	 * mappings within the range.
1342	 */
1343	if (iommu->v2 && !unmap_all) {
1344		dma = vfio_find_dma(iommu, iova, 1);
1345		if (dma && dma->iova != iova)
1346			goto unlock;
1347
1348		dma = vfio_find_dma(iommu, iova + size - 1, 0);
1349		if (dma && dma->iova + dma->size != iova + size)
1350			goto unlock;
1351	}
1352
1353	ret = 0;
1354	n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1355
1356	while (n) {
1357		dma = rb_entry(n, struct vfio_dma, node);
1358		if (dma->iova >= iova + size)
1359			break;
1360
1361		if (!iommu->v2 && iova > dma->iova)
1362			break;
1363
1364		if (invalidate_vaddr) {
1365			if (dma->vaddr_invalid) {
1366				struct rb_node *last_n = n;
1367
1368				for (n = first_n; n != last_n; n = rb_next(n)) {
1369					dma = rb_entry(n,
1370						       struct vfio_dma, node);
1371					dma->vaddr_invalid = false;
1372					iommu->vaddr_invalid_count--;
1373				}
1374				ret = -EINVAL;
1375				unmapped = 0;
1376				break;
1377			}
1378			dma->vaddr_invalid = true;
1379			iommu->vaddr_invalid_count++;
1380			unmapped += dma->size;
1381			n = rb_next(n);
1382			continue;
1383		}
1384
1385		if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1386			if (dma_last == dma) {
1387				BUG_ON(++retries > 10);
1388			} else {
1389				dma_last = dma;
1390				retries = 0;
1391			}
1392
1393			vfio_notify_dma_unmap(iommu, dma);
1394			goto again;
1395		}
1396
1397		if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1398			ret = update_user_bitmap(bitmap->data, iommu, dma,
1399						 iova, pgsize);
1400			if (ret)
1401				break;
1402		}
1403
1404		unmapped += dma->size;
1405		n = rb_next(n);
1406		vfio_remove_dma(iommu, dma);
1407	}
1408
1409unlock:
1410	mutex_unlock(&iommu->lock);
1411
1412	/* Report how much was unmapped */
1413	unmap->size = unmapped;
1414
1415	return ret;
1416}
1417
1418static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1419			  unsigned long pfn, long npage, int prot)
1420{
1421	struct vfio_domain *d;
1422	int ret;
1423
1424	list_for_each_entry(d, &iommu->domain_list, next) {
1425		ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1426				npage << PAGE_SHIFT, prot | IOMMU_CACHE,
1427				GFP_KERNEL_ACCOUNT);
1428		if (ret)
1429			goto unwind;
1430
1431		cond_resched();
1432	}
1433
1434	return 0;
1435
1436unwind:
1437	list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1438		iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1439		cond_resched();
1440	}
1441
1442	return ret;
1443}
1444
1445static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1446			    size_t map_size)
1447{
1448	dma_addr_t iova = dma->iova;
1449	unsigned long vaddr = dma->vaddr;
1450	struct vfio_batch batch;
1451	size_t size = map_size;
1452	long npage;
1453	unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1454	int ret = 0;
1455
1456	vfio_batch_init(&batch);
1457
1458	while (size) {
1459		/* Pin a contiguous chunk of memory */
1460		npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1461					      size >> PAGE_SHIFT, &pfn, limit,
1462					      &batch);
1463		if (npage <= 0) {
1464			WARN_ON(!npage);
1465			ret = (int)npage;
1466			break;
1467		}
1468
1469		/* Map it! */
1470		ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1471				     dma->prot);
1472		if (ret) {
1473			vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1474						npage, true);
1475			vfio_batch_unpin(&batch, dma);
1476			break;
1477		}
1478
1479		size -= npage << PAGE_SHIFT;
1480		dma->size += npage << PAGE_SHIFT;
1481	}
1482
1483	vfio_batch_fini(&batch);
1484	dma->iommu_mapped = true;
1485
1486	if (ret)
1487		vfio_remove_dma(iommu, dma);
1488
1489	return ret;
1490}
1491
1492/*
1493 * Check dma map request is within a valid iova range
1494 */
1495static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1496				      dma_addr_t start, dma_addr_t end)
1497{
1498	struct list_head *iova = &iommu->iova_list;
1499	struct vfio_iova *node;
1500
1501	list_for_each_entry(node, iova, list) {
1502		if (start >= node->start && end <= node->end)
1503			return true;
1504	}
1505
1506	/*
1507	 * Check for list_empty() as well since a container with
1508	 * a single mdev device will have an empty list.
1509	 */
1510	return list_empty(iova);
1511}
1512
1513static int vfio_change_dma_owner(struct vfio_dma *dma)
1514{
1515	struct task_struct *task = current->group_leader;
1516	struct mm_struct *mm = current->mm;
1517	long npage = dma->locked_vm;
1518	bool lock_cap;
1519	int ret;
1520
1521	if (mm == dma->mm)
1522		return 0;
1523
1524	lock_cap = capable(CAP_IPC_LOCK);
1525	ret = mm_lock_acct(task, mm, lock_cap, npage);
1526	if (ret)
1527		return ret;
1528
1529	if (mmget_not_zero(dma->mm)) {
1530		mm_lock_acct(dma->task, dma->mm, dma->lock_cap, -npage);
1531		mmput(dma->mm);
1532	}
1533
1534	if (dma->task != task) {
1535		put_task_struct(dma->task);
1536		dma->task = get_task_struct(task);
1537	}
1538	mmdrop(dma->mm);
1539	dma->mm = mm;
1540	mmgrab(dma->mm);
1541	dma->lock_cap = lock_cap;
1542	return 0;
1543}
1544
1545static int vfio_dma_do_map(struct vfio_iommu *iommu,
1546			   struct vfio_iommu_type1_dma_map *map)
1547{
1548	bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1549	dma_addr_t iova = map->iova;
1550	unsigned long vaddr = map->vaddr;
1551	size_t size = map->size;
1552	int ret = 0, prot = 0;
1553	size_t pgsize;
1554	struct vfio_dma *dma;
1555
1556	/* Verify that none of our __u64 fields overflow */
1557	if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1558		return -EINVAL;
1559
1560	/* READ/WRITE from device perspective */
1561	if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1562		prot |= IOMMU_WRITE;
1563	if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1564		prot |= IOMMU_READ;
1565
1566	if ((prot && set_vaddr) || (!prot && !set_vaddr))
1567		return -EINVAL;
1568
1569	mutex_lock(&iommu->lock);
1570
1571	pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1572
1573	WARN_ON((pgsize - 1) & PAGE_MASK);
1574
1575	if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1576		ret = -EINVAL;
1577		goto out_unlock;
1578	}
1579
1580	/* Don't allow IOVA or virtual address wrap */
1581	if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1582		ret = -EINVAL;
1583		goto out_unlock;
1584	}
1585
1586	dma = vfio_find_dma(iommu, iova, size);
1587	if (set_vaddr) {
1588		if (!dma) {
1589			ret = -ENOENT;
1590		} else if (!dma->vaddr_invalid || dma->iova != iova ||
1591			   dma->size != size) {
1592			ret = -EINVAL;
1593		} else {
1594			ret = vfio_change_dma_owner(dma);
1595			if (ret)
1596				goto out_unlock;
1597			dma->vaddr = vaddr;
1598			dma->vaddr_invalid = false;
1599			iommu->vaddr_invalid_count--;
1600		}
1601		goto out_unlock;
1602	} else if (dma) {
1603		ret = -EEXIST;
1604		goto out_unlock;
1605	}
1606
1607	if (!iommu->dma_avail) {
1608		ret = -ENOSPC;
1609		goto out_unlock;
1610	}
1611
1612	if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1613		ret = -EINVAL;
1614		goto out_unlock;
1615	}
1616
1617	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1618	if (!dma) {
1619		ret = -ENOMEM;
1620		goto out_unlock;
1621	}
1622
1623	iommu->dma_avail--;
1624	dma->iova = iova;
1625	dma->vaddr = vaddr;
1626	dma->prot = prot;
1627
1628	/*
1629	 * We need to be able to both add to a task's locked memory and test
1630	 * against the locked memory limit and we need to be able to do both
1631	 * outside of this call path as pinning can be asynchronous via the
1632	 * external interfaces for mdev devices.  RLIMIT_MEMLOCK requires a
1633	 * task_struct. Save the group_leader so that all DMA tracking uses
1634	 * the same task, to make debugging easier.  VM locked pages requires
1635	 * an mm_struct, so grab the mm in case the task dies.
1636	 */
1637	get_task_struct(current->group_leader);
1638	dma->task = current->group_leader;
1639	dma->lock_cap = capable(CAP_IPC_LOCK);
1640	dma->mm = current->mm;
1641	mmgrab(dma->mm);
1642
1643	dma->pfn_list = RB_ROOT;
1644
1645	/* Insert zero-sized and grow as we map chunks of it */
1646	vfio_link_dma(iommu, dma);
1647
1648	/* Don't pin and map if container doesn't contain IOMMU capable domain*/
1649	if (list_empty(&iommu->domain_list))
1650		dma->size = size;
1651	else
1652		ret = vfio_pin_map_dma(iommu, dma, size);
1653
1654	if (!ret && iommu->dirty_page_tracking) {
1655		ret = vfio_dma_bitmap_alloc(dma, pgsize);
1656		if (ret)
1657			vfio_remove_dma(iommu, dma);
1658	}
1659
1660out_unlock:
1661	mutex_unlock(&iommu->lock);
1662	return ret;
1663}
1664
1665static int vfio_iommu_replay(struct vfio_iommu *iommu,
1666			     struct vfio_domain *domain)
1667{
1668	struct vfio_batch batch;
1669	struct vfio_domain *d = NULL;
1670	struct rb_node *n;
1671	unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1672	int ret;
1673
1674	/* Arbitrarily pick the first domain in the list for lookups */
1675	if (!list_empty(&iommu->domain_list))
1676		d = list_first_entry(&iommu->domain_list,
1677				     struct vfio_domain, next);
1678
1679	vfio_batch_init(&batch);
1680
1681	n = rb_first(&iommu->dma_list);
1682
1683	for (; n; n = rb_next(n)) {
1684		struct vfio_dma *dma;
1685		dma_addr_t iova;
1686
1687		dma = rb_entry(n, struct vfio_dma, node);
1688		iova = dma->iova;
1689
1690		while (iova < dma->iova + dma->size) {
1691			phys_addr_t phys;
1692			size_t size;
1693
1694			if (dma->iommu_mapped) {
1695				phys_addr_t p;
1696				dma_addr_t i;
1697
1698				if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1699					ret = -EINVAL;
1700					goto unwind;
1701				}
1702
1703				phys = iommu_iova_to_phys(d->domain, iova);
1704
1705				if (WARN_ON(!phys)) {
1706					iova += PAGE_SIZE;
1707					continue;
1708				}
1709
1710				size = PAGE_SIZE;
1711				p = phys + size;
1712				i = iova + size;
1713				while (i < dma->iova + dma->size &&
1714				       p == iommu_iova_to_phys(d->domain, i)) {
1715					size += PAGE_SIZE;
1716					p += PAGE_SIZE;
1717					i += PAGE_SIZE;
1718				}
1719			} else {
1720				unsigned long pfn;
1721				unsigned long vaddr = dma->vaddr +
1722						     (iova - dma->iova);
1723				size_t n = dma->iova + dma->size - iova;
1724				long npage;
1725
1726				npage = vfio_pin_pages_remote(dma, vaddr,
1727							      n >> PAGE_SHIFT,
1728							      &pfn, limit,
1729							      &batch);
1730				if (npage <= 0) {
1731					WARN_ON(!npage);
1732					ret = (int)npage;
1733					goto unwind;
1734				}
1735
1736				phys = pfn << PAGE_SHIFT;
1737				size = npage << PAGE_SHIFT;
1738			}
1739
1740			ret = iommu_map(domain->domain, iova, phys, size,
1741					dma->prot | IOMMU_CACHE,
1742					GFP_KERNEL_ACCOUNT);
1743			if (ret) {
1744				if (!dma->iommu_mapped) {
1745					vfio_unpin_pages_remote(dma, iova,
1746							phys >> PAGE_SHIFT,
1747							size >> PAGE_SHIFT,
1748							true);
1749					vfio_batch_unpin(&batch, dma);
1750				}
1751				goto unwind;
1752			}
1753
1754			iova += size;
1755		}
1756	}
1757
1758	/* All dmas are now mapped, defer to second tree walk for unwind */
1759	for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1760		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1761
1762		dma->iommu_mapped = true;
1763	}
1764
1765	vfio_batch_fini(&batch);
1766	return 0;
1767
1768unwind:
1769	for (; n; n = rb_prev(n)) {
1770		struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1771		dma_addr_t iova;
1772
1773		if (dma->iommu_mapped) {
1774			iommu_unmap(domain->domain, dma->iova, dma->size);
1775			continue;
1776		}
1777
1778		iova = dma->iova;
1779		while (iova < dma->iova + dma->size) {
1780			phys_addr_t phys, p;
1781			size_t size;
1782			dma_addr_t i;
1783
1784			phys = iommu_iova_to_phys(domain->domain, iova);
1785			if (!phys) {
1786				iova += PAGE_SIZE;
1787				continue;
1788			}
1789
1790			size = PAGE_SIZE;
1791			p = phys + size;
1792			i = iova + size;
1793			while (i < dma->iova + dma->size &&
1794			       p == iommu_iova_to_phys(domain->domain, i)) {
1795				size += PAGE_SIZE;
1796				p += PAGE_SIZE;
1797				i += PAGE_SIZE;
1798			}
1799
1800			iommu_unmap(domain->domain, iova, size);
1801			vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1802						size >> PAGE_SHIFT, true);
1803		}
1804	}
1805
1806	vfio_batch_fini(&batch);
1807	return ret;
1808}
1809
1810/*
1811 * We change our unmap behavior slightly depending on whether the IOMMU
1812 * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
1813 * for practically any contiguous power-of-two mapping we give it.  This means
1814 * we don't need to look for contiguous chunks ourselves to make unmapping
1815 * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
1816 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1817 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1818 * hugetlbfs is in use.
1819 */
1820static void vfio_test_domain_fgsp(struct vfio_domain *domain, struct list_head *regions)
1821{
1822	int ret, order = get_order(PAGE_SIZE * 2);
1823	struct vfio_iova *region;
1824	struct page *pages;
1825	dma_addr_t start;
1826
1827	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1828	if (!pages)
1829		return;
1830
1831	list_for_each_entry(region, regions, list) {
1832		start = ALIGN(region->start, PAGE_SIZE * 2);
1833		if (start >= region->end || (region->end - start < PAGE_SIZE * 2))
1834			continue;
1835
1836		ret = iommu_map(domain->domain, start, page_to_phys(pages), PAGE_SIZE * 2,
1837				IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE,
1838				GFP_KERNEL_ACCOUNT);
1839		if (!ret) {
1840			size_t unmapped = iommu_unmap(domain->domain, start, PAGE_SIZE);
1841
1842			if (unmapped == PAGE_SIZE)
1843				iommu_unmap(domain->domain, start + PAGE_SIZE, PAGE_SIZE);
1844			else
1845				domain->fgsp = true;
1846		}
1847		break;
1848	}
1849
1850	__free_pages(pages, order);
1851}
1852
1853static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1854						 struct iommu_group *iommu_group)
1855{
1856	struct vfio_iommu_group *g;
1857
1858	list_for_each_entry(g, &domain->group_list, next) {
1859		if (g->iommu_group == iommu_group)
1860			return g;
1861	}
1862
1863	return NULL;
1864}
1865
1866static struct vfio_iommu_group*
1867vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1868			    struct iommu_group *iommu_group)
1869{
1870	struct vfio_iommu_group *group;
1871	struct vfio_domain *domain;
1872
1873	list_for_each_entry(domain, &iommu->domain_list, next) {
1874		group = find_iommu_group(domain, iommu_group);
1875		if (group)
1876			return group;
1877	}
1878
1879	list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1880		if (group->iommu_group == iommu_group)
1881			return group;
1882	return NULL;
1883}
1884
1885static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1886				  phys_addr_t *base)
1887{
1888	struct iommu_resv_region *region;
1889	bool ret = false;
1890
1891	list_for_each_entry(region, group_resv_regions, list) {
1892		/*
1893		 * The presence of any 'real' MSI regions should take
1894		 * precedence over the software-managed one if the
1895		 * IOMMU driver happens to advertise both types.
1896		 */
1897		if (region->type == IOMMU_RESV_MSI) {
1898			ret = false;
1899			break;
1900		}
1901
1902		if (region->type == IOMMU_RESV_SW_MSI) {
1903			*base = region->start;
1904			ret = true;
1905		}
1906	}
1907
1908	return ret;
1909}
1910
1911/*
1912 * This is a helper function to insert an address range to iova list.
1913 * The list is initially created with a single entry corresponding to
1914 * the IOMMU domain geometry to which the device group is attached.
1915 * The list aperture gets modified when a new domain is added to the
1916 * container if the new aperture doesn't conflict with the current one
1917 * or with any existing dma mappings. The list is also modified to
1918 * exclude any reserved regions associated with the device group.
1919 */
1920static int vfio_iommu_iova_insert(struct list_head *head,
1921				  dma_addr_t start, dma_addr_t end)
1922{
1923	struct vfio_iova *region;
1924
1925	region = kmalloc(sizeof(*region), GFP_KERNEL);
1926	if (!region)
1927		return -ENOMEM;
1928
1929	INIT_LIST_HEAD(&region->list);
1930	region->start = start;
1931	region->end = end;
1932
1933	list_add_tail(&region->list, head);
1934	return 0;
1935}
1936
1937/*
1938 * Check the new iommu aperture conflicts with existing aper or with any
1939 * existing dma mappings.
1940 */
1941static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1942				     dma_addr_t start, dma_addr_t end)
1943{
1944	struct vfio_iova *first, *last;
1945	struct list_head *iova = &iommu->iova_list;
1946
1947	if (list_empty(iova))
1948		return false;
1949
1950	/* Disjoint sets, return conflict */
1951	first = list_first_entry(iova, struct vfio_iova, list);
1952	last = list_last_entry(iova, struct vfio_iova, list);
1953	if (start > last->end || end < first->start)
1954		return true;
1955
1956	/* Check for any existing dma mappings below the new start */
1957	if (start > first->start) {
1958		if (vfio_find_dma(iommu, first->start, start - first->start))
1959			return true;
1960	}
1961
1962	/* Check for any existing dma mappings beyond the new end */
1963	if (end < last->end) {
1964		if (vfio_find_dma(iommu, end + 1, last->end - end))
1965			return true;
1966	}
1967
1968	return false;
1969}
1970
1971/*
1972 * Resize iommu iova aperture window. This is called only if the new
1973 * aperture has no conflict with existing aperture and dma mappings.
1974 */
1975static int vfio_iommu_aper_resize(struct list_head *iova,
1976				  dma_addr_t start, dma_addr_t end)
1977{
1978	struct vfio_iova *node, *next;
1979
1980	if (list_empty(iova))
1981		return vfio_iommu_iova_insert(iova, start, end);
1982
1983	/* Adjust iova list start */
1984	list_for_each_entry_safe(node, next, iova, list) {
1985		if (start < node->start)
1986			break;
1987		if (start >= node->start && start < node->end) {
1988			node->start = start;
1989			break;
1990		}
1991		/* Delete nodes before new start */
1992		list_del(&node->list);
1993		kfree(node);
1994	}
1995
1996	/* Adjust iova list end */
1997	list_for_each_entry_safe(node, next, iova, list) {
1998		if (end > node->end)
1999			continue;
2000		if (end > node->start && end <= node->end) {
2001			node->end = end;
2002			continue;
2003		}
2004		/* Delete nodes after new end */
2005		list_del(&node->list);
2006		kfree(node);
2007	}
2008
2009	return 0;
2010}
2011
2012/*
2013 * Check reserved region conflicts with existing dma mappings
2014 */
2015static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2016				     struct list_head *resv_regions)
2017{
2018	struct iommu_resv_region *region;
2019
2020	/* Check for conflict with existing dma mappings */
2021	list_for_each_entry(region, resv_regions, list) {
2022		if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2023			continue;
2024
2025		if (vfio_find_dma(iommu, region->start, region->length))
2026			return true;
2027	}
2028
2029	return false;
2030}
2031
2032/*
2033 * Check iova region overlap with  reserved regions and
2034 * exclude them from the iommu iova range
2035 */
2036static int vfio_iommu_resv_exclude(struct list_head *iova,
2037				   struct list_head *resv_regions)
2038{
2039	struct iommu_resv_region *resv;
2040	struct vfio_iova *n, *next;
2041
2042	list_for_each_entry(resv, resv_regions, list) {
2043		phys_addr_t start, end;
2044
2045		if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2046			continue;
2047
2048		start = resv->start;
2049		end = resv->start + resv->length - 1;
2050
2051		list_for_each_entry_safe(n, next, iova, list) {
2052			int ret = 0;
2053
2054			/* No overlap */
2055			if (start > n->end || end < n->start)
2056				continue;
2057			/*
2058			 * Insert a new node if current node overlaps with the
2059			 * reserve region to exclude that from valid iova range.
2060			 * Note that, new node is inserted before the current
2061			 * node and finally the current node is deleted keeping
2062			 * the list updated and sorted.
2063			 */
2064			if (start > n->start)
2065				ret = vfio_iommu_iova_insert(&n->list, n->start,
2066							     start - 1);
2067			if (!ret && end < n->end)
2068				ret = vfio_iommu_iova_insert(&n->list, end + 1,
2069							     n->end);
2070			if (ret)
2071				return ret;
2072
2073			list_del(&n->list);
2074			kfree(n);
2075		}
2076	}
2077
2078	if (list_empty(iova))
2079		return -EINVAL;
2080
2081	return 0;
2082}
2083
2084static void vfio_iommu_resv_free(struct list_head *resv_regions)
2085{
2086	struct iommu_resv_region *n, *next;
2087
2088	list_for_each_entry_safe(n, next, resv_regions, list) {
2089		list_del(&n->list);
2090		kfree(n);
2091	}
2092}
2093
2094static void vfio_iommu_iova_free(struct list_head *iova)
2095{
2096	struct vfio_iova *n, *next;
2097
2098	list_for_each_entry_safe(n, next, iova, list) {
2099		list_del(&n->list);
2100		kfree(n);
2101	}
2102}
2103
2104static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2105				    struct list_head *iova_copy)
2106{
2107	struct list_head *iova = &iommu->iova_list;
2108	struct vfio_iova *n;
2109	int ret;
2110
2111	list_for_each_entry(n, iova, list) {
2112		ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2113		if (ret)
2114			goto out_free;
2115	}
2116
2117	return 0;
2118
2119out_free:
2120	vfio_iommu_iova_free(iova_copy);
2121	return ret;
2122}
2123
2124static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2125					struct list_head *iova_copy)
2126{
2127	struct list_head *iova = &iommu->iova_list;
2128
2129	vfio_iommu_iova_free(iova);
2130
2131	list_splice_tail(iova_copy, iova);
2132}
2133
2134static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2135{
2136	struct iommu_domain **domain = data;
2137
2138	*domain = iommu_domain_alloc(dev->bus);
2139	return 1; /* Don't iterate */
2140}
2141
2142static int vfio_iommu_type1_attach_group(void *iommu_data,
2143		struct iommu_group *iommu_group, enum vfio_group_type type)
2144{
2145	struct vfio_iommu *iommu = iommu_data;
2146	struct vfio_iommu_group *group;
2147	struct vfio_domain *domain, *d;
2148	bool resv_msi;
2149	phys_addr_t resv_msi_base = 0;
2150	struct iommu_domain_geometry *geo;
2151	LIST_HEAD(iova_copy);
2152	LIST_HEAD(group_resv_regions);
2153	int ret = -EBUSY;
2154
2155	mutex_lock(&iommu->lock);
2156
2157	/* Attach could require pinning, so disallow while vaddr is invalid. */
2158	if (iommu->vaddr_invalid_count)
2159		goto out_unlock;
2160
2161	/* Check for duplicates */
2162	ret = -EINVAL;
2163	if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2164		goto out_unlock;
2165
2166	ret = -ENOMEM;
2167	group = kzalloc(sizeof(*group), GFP_KERNEL);
2168	if (!group)
2169		goto out_unlock;
2170	group->iommu_group = iommu_group;
2171
2172	if (type == VFIO_EMULATED_IOMMU) {
2173		list_add(&group->next, &iommu->emulated_iommu_groups);
2174		/*
2175		 * An emulated IOMMU group cannot dirty memory directly, it can
2176		 * only use interfaces that provide dirty tracking.
2177		 * The iommu scope can only be promoted with the addition of a
2178		 * dirty tracking group.
2179		 */
2180		group->pinned_page_dirty_scope = true;
2181		ret = 0;
2182		goto out_unlock;
2183	}
2184
2185	ret = -ENOMEM;
2186	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2187	if (!domain)
2188		goto out_free_group;
2189
2190	/*
2191	 * Going via the iommu_group iterator avoids races, and trivially gives
2192	 * us a representative device for the IOMMU API call. We don't actually
2193	 * want to iterate beyond the first device (if any).
2194	 */
2195	ret = -EIO;
2196	iommu_group_for_each_dev(iommu_group, &domain->domain,
2197				 vfio_iommu_domain_alloc);
2198	if (!domain->domain)
2199		goto out_free_domain;
2200
2201	if (iommu->nesting) {
2202		ret = iommu_enable_nesting(domain->domain);
2203		if (ret)
2204			goto out_domain;
2205	}
2206
2207	ret = iommu_attach_group(domain->domain, group->iommu_group);
2208	if (ret)
2209		goto out_domain;
2210
2211	/* Get aperture info */
2212	geo = &domain->domain->geometry;
2213	if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2214				     geo->aperture_end)) {
2215		ret = -EINVAL;
2216		goto out_detach;
2217	}
2218
2219	ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2220	if (ret)
2221		goto out_detach;
2222
2223	if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2224		ret = -EINVAL;
2225		goto out_detach;
2226	}
2227
2228	/*
2229	 * We don't want to work on the original iova list as the list
2230	 * gets modified and in case of failure we have to retain the
2231	 * original list. Get a copy here.
2232	 */
2233	ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2234	if (ret)
2235		goto out_detach;
2236
2237	ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2238				     geo->aperture_end);
2239	if (ret)
2240		goto out_detach;
2241
2242	ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2243	if (ret)
2244		goto out_detach;
2245
2246	resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2247
2248	INIT_LIST_HEAD(&domain->group_list);
2249	list_add(&group->next, &domain->group_list);
2250
2251	if (!allow_unsafe_interrupts &&
2252	    !iommu_group_has_isolated_msi(iommu_group)) {
2253		pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2254		       __func__);
2255		ret = -EPERM;
2256		goto out_detach;
2257	}
2258
2259	/*
2260	 * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2261	 * no-snoop set) then VFIO always turns this feature on because on Intel
2262	 * platforms it optimizes KVM to disable wbinvd emulation.
2263	 */
2264	if (domain->domain->ops->enforce_cache_coherency)
2265		domain->enforce_cache_coherency =
2266			domain->domain->ops->enforce_cache_coherency(
2267				domain->domain);
2268
2269	/*
2270	 * Try to match an existing compatible domain.  We don't want to
2271	 * preclude an IOMMU driver supporting multiple bus_types and being
2272	 * able to include different bus_types in the same IOMMU domain, so
2273	 * we test whether the domains use the same iommu_ops rather than
2274	 * testing if they're on the same bus_type.
2275	 */
2276	list_for_each_entry(d, &iommu->domain_list, next) {
2277		if (d->domain->ops == domain->domain->ops &&
2278		    d->enforce_cache_coherency ==
2279			    domain->enforce_cache_coherency) {
2280			iommu_detach_group(domain->domain, group->iommu_group);
2281			if (!iommu_attach_group(d->domain,
2282						group->iommu_group)) {
2283				list_add(&group->next, &d->group_list);
2284				iommu_domain_free(domain->domain);
2285				kfree(domain);
2286				goto done;
2287			}
2288
2289			ret = iommu_attach_group(domain->domain,
2290						 group->iommu_group);
2291			if (ret)
2292				goto out_domain;
2293		}
2294	}
2295
2296	vfio_test_domain_fgsp(domain, &iova_copy);
2297
2298	/* replay mappings on new domains */
2299	ret = vfio_iommu_replay(iommu, domain);
2300	if (ret)
2301		goto out_detach;
2302
2303	if (resv_msi) {
2304		ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2305		if (ret && ret != -ENODEV)
2306			goto out_detach;
2307	}
2308
2309	list_add(&domain->next, &iommu->domain_list);
2310	vfio_update_pgsize_bitmap(iommu);
2311done:
2312	/* Delete the old one and insert new iova list */
2313	vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2314
2315	/*
2316	 * An iommu backed group can dirty memory directly and therefore
2317	 * demotes the iommu scope until it declares itself dirty tracking
2318	 * capable via the page pinning interface.
2319	 */
2320	iommu->num_non_pinned_groups++;
2321	mutex_unlock(&iommu->lock);
2322	vfio_iommu_resv_free(&group_resv_regions);
2323
2324	return 0;
2325
2326out_detach:
2327	iommu_detach_group(domain->domain, group->iommu_group);
2328out_domain:
2329	iommu_domain_free(domain->domain);
2330	vfio_iommu_iova_free(&iova_copy);
2331	vfio_iommu_resv_free(&group_resv_regions);
2332out_free_domain:
2333	kfree(domain);
2334out_free_group:
2335	kfree(group);
2336out_unlock:
2337	mutex_unlock(&iommu->lock);
2338	return ret;
2339}
2340
2341static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2342{
2343	struct rb_node *node;
2344
2345	while ((node = rb_first(&iommu->dma_list)))
2346		vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2347}
2348
2349static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2350{
2351	struct rb_node *n, *p;
2352
2353	n = rb_first(&iommu->dma_list);
2354	for (; n; n = rb_next(n)) {
2355		struct vfio_dma *dma;
2356		long locked = 0, unlocked = 0;
2357
2358		dma = rb_entry(n, struct vfio_dma, node);
2359		unlocked += vfio_unmap_unpin(iommu, dma, false);
2360		p = rb_first(&dma->pfn_list);
2361		for (; p; p = rb_next(p)) {
2362			struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2363							 node);
2364
2365			if (!is_invalid_reserved_pfn(vpfn->pfn))
2366				locked++;
2367		}
2368		vfio_lock_acct(dma, locked - unlocked, true);
2369	}
2370}
2371
2372/*
2373 * Called when a domain is removed in detach. It is possible that
2374 * the removed domain decided the iova aperture window. Modify the
2375 * iova aperture with the smallest window among existing domains.
2376 */
2377static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2378				   struct list_head *iova_copy)
2379{
2380	struct vfio_domain *domain;
2381	struct vfio_iova *node;
2382	dma_addr_t start = 0;
2383	dma_addr_t end = (dma_addr_t)~0;
2384
2385	if (list_empty(iova_copy))
2386		return;
2387
2388	list_for_each_entry(domain, &iommu->domain_list, next) {
2389		struct iommu_domain_geometry *geo = &domain->domain->geometry;
2390
2391		if (geo->aperture_start > start)
2392			start = geo->aperture_start;
2393		if (geo->aperture_end < end)
2394			end = geo->aperture_end;
2395	}
2396
2397	/* Modify aperture limits. The new aper is either same or bigger */
2398	node = list_first_entry(iova_copy, struct vfio_iova, list);
2399	node->start = start;
2400	node = list_last_entry(iova_copy, struct vfio_iova, list);
2401	node->end = end;
2402}
2403
2404/*
2405 * Called when a group is detached. The reserved regions for that
2406 * group can be part of valid iova now. But since reserved regions
2407 * may be duplicated among groups, populate the iova valid regions
2408 * list again.
2409 */
2410static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2411				   struct list_head *iova_copy)
2412{
2413	struct vfio_domain *d;
2414	struct vfio_iommu_group *g;
2415	struct vfio_iova *node;
2416	dma_addr_t start, end;
2417	LIST_HEAD(resv_regions);
2418	int ret;
2419
2420	if (list_empty(iova_copy))
2421		return -EINVAL;
2422
2423	list_for_each_entry(d, &iommu->domain_list, next) {
2424		list_for_each_entry(g, &d->group_list, next) {
2425			ret = iommu_get_group_resv_regions(g->iommu_group,
2426							   &resv_regions);
2427			if (ret)
2428				goto done;
2429		}
2430	}
2431
2432	node = list_first_entry(iova_copy, struct vfio_iova, list);
2433	start = node->start;
2434	node = list_last_entry(iova_copy, struct vfio_iova, list);
2435	end = node->end;
2436
2437	/* purge the iova list and create new one */
2438	vfio_iommu_iova_free(iova_copy);
2439
2440	ret = vfio_iommu_aper_resize(iova_copy, start, end);
2441	if (ret)
2442		goto done;
2443
2444	/* Exclude current reserved regions from iova ranges */
2445	ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2446done:
2447	vfio_iommu_resv_free(&resv_regions);
2448	return ret;
2449}
2450
2451static void vfio_iommu_type1_detach_group(void *iommu_data,
2452					  struct iommu_group *iommu_group)
2453{
2454	struct vfio_iommu *iommu = iommu_data;
2455	struct vfio_domain *domain;
2456	struct vfio_iommu_group *group;
2457	bool update_dirty_scope = false;
2458	LIST_HEAD(iova_copy);
2459
2460	mutex_lock(&iommu->lock);
2461	list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2462		if (group->iommu_group != iommu_group)
2463			continue;
2464		update_dirty_scope = !group->pinned_page_dirty_scope;
2465		list_del(&group->next);
2466		kfree(group);
2467
2468		if (list_empty(&iommu->emulated_iommu_groups) &&
2469		    list_empty(&iommu->domain_list)) {
2470			WARN_ON(!list_empty(&iommu->device_list));
2471			vfio_iommu_unmap_unpin_all(iommu);
2472		}
2473		goto detach_group_done;
2474	}
2475
2476	/*
2477	 * Get a copy of iova list. This will be used to update
2478	 * and to replace the current one later. Please note that
2479	 * we will leave the original list as it is if update fails.
2480	 */
2481	vfio_iommu_iova_get_copy(iommu, &iova_copy);
2482
2483	list_for_each_entry(domain, &iommu->domain_list, next) {
2484		group = find_iommu_group(domain, iommu_group);
2485		if (!group)
2486			continue;
2487
2488		iommu_detach_group(domain->domain, group->iommu_group);
2489		update_dirty_scope = !group->pinned_page_dirty_scope;
2490		list_del(&group->next);
2491		kfree(group);
2492		/*
2493		 * Group ownership provides privilege, if the group list is
2494		 * empty, the domain goes away. If it's the last domain with
2495		 * iommu and external domain doesn't exist, then all the
2496		 * mappings go away too. If it's the last domain with iommu and
2497		 * external domain exist, update accounting
2498		 */
2499		if (list_empty(&domain->group_list)) {
2500			if (list_is_singular(&iommu->domain_list)) {
2501				if (list_empty(&iommu->emulated_iommu_groups)) {
2502					WARN_ON(!list_empty(
2503						&iommu->device_list));
2504					vfio_iommu_unmap_unpin_all(iommu);
2505				} else {
2506					vfio_iommu_unmap_unpin_reaccount(iommu);
2507				}
2508			}
2509			iommu_domain_free(domain->domain);
2510			list_del(&domain->next);
2511			kfree(domain);
2512			vfio_iommu_aper_expand(iommu, &iova_copy);
2513			vfio_update_pgsize_bitmap(iommu);
2514		}
2515		break;
2516	}
2517
2518	if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2519		vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2520	else
2521		vfio_iommu_iova_free(&iova_copy);
2522
2523detach_group_done:
2524	/*
2525	 * Removal of a group without dirty tracking may allow the iommu scope
2526	 * to be promoted.
2527	 */
2528	if (update_dirty_scope) {
2529		iommu->num_non_pinned_groups--;
2530		if (iommu->dirty_page_tracking)
2531			vfio_iommu_populate_bitmap_full(iommu);
2532	}
2533	mutex_unlock(&iommu->lock);
2534}
2535
2536static void *vfio_iommu_type1_open(unsigned long arg)
2537{
2538	struct vfio_iommu *iommu;
2539
2540	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2541	if (!iommu)
2542		return ERR_PTR(-ENOMEM);
2543
2544	switch (arg) {
2545	case VFIO_TYPE1_IOMMU:
2546		break;
2547	case VFIO_TYPE1_NESTING_IOMMU:
2548		iommu->nesting = true;
2549		fallthrough;
2550	case VFIO_TYPE1v2_IOMMU:
2551		iommu->v2 = true;
2552		break;
2553	default:
2554		kfree(iommu);
2555		return ERR_PTR(-EINVAL);
2556	}
2557
2558	INIT_LIST_HEAD(&iommu->domain_list);
2559	INIT_LIST_HEAD(&iommu->iova_list);
2560	iommu->dma_list = RB_ROOT;
2561	iommu->dma_avail = dma_entry_limit;
2562	mutex_init(&iommu->lock);
2563	mutex_init(&iommu->device_list_lock);
2564	INIT_LIST_HEAD(&iommu->device_list);
2565	iommu->pgsize_bitmap = PAGE_MASK;
2566	INIT_LIST_HEAD(&iommu->emulated_iommu_groups);
2567
2568	return iommu;
2569}
2570
2571static void vfio_release_domain(struct vfio_domain *domain)
2572{
2573	struct vfio_iommu_group *group, *group_tmp;
2574
2575	list_for_each_entry_safe(group, group_tmp,
2576				 &domain->group_list, next) {
2577		iommu_detach_group(domain->domain, group->iommu_group);
2578		list_del(&group->next);
2579		kfree(group);
2580	}
2581
2582	iommu_domain_free(domain->domain);
2583}
2584
2585static void vfio_iommu_type1_release(void *iommu_data)
2586{
2587	struct vfio_iommu *iommu = iommu_data;
2588	struct vfio_domain *domain, *domain_tmp;
2589	struct vfio_iommu_group *group, *next_group;
2590
2591	list_for_each_entry_safe(group, next_group,
2592			&iommu->emulated_iommu_groups, next) {
2593		list_del(&group->next);
2594		kfree(group);
2595	}
2596
2597	vfio_iommu_unmap_unpin_all(iommu);
2598
2599	list_for_each_entry_safe(domain, domain_tmp,
2600				 &iommu->domain_list, next) {
2601		vfio_release_domain(domain);
2602		list_del(&domain->next);
2603		kfree(domain);
2604	}
2605
2606	vfio_iommu_iova_free(&iommu->iova_list);
2607
2608	kfree(iommu);
2609}
2610
2611static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2612{
2613	struct vfio_domain *domain;
2614	int ret = 1;
2615
2616	mutex_lock(&iommu->lock);
2617	list_for_each_entry(domain, &iommu->domain_list, next) {
2618		if (!(domain->enforce_cache_coherency)) {
2619			ret = 0;
2620			break;
2621		}
2622	}
2623	mutex_unlock(&iommu->lock);
2624
2625	return ret;
2626}
2627
2628static bool vfio_iommu_has_emulated(struct vfio_iommu *iommu)
2629{
2630	bool ret;
2631
2632	mutex_lock(&iommu->lock);
2633	ret = !list_empty(&iommu->emulated_iommu_groups);
2634	mutex_unlock(&iommu->lock);
2635	return ret;
2636}
2637
2638static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2639					    unsigned long arg)
2640{
2641	switch (arg) {
2642	case VFIO_TYPE1_IOMMU:
2643	case VFIO_TYPE1v2_IOMMU:
2644	case VFIO_TYPE1_NESTING_IOMMU:
2645	case VFIO_UNMAP_ALL:
2646		return 1;
2647	case VFIO_UPDATE_VADDR:
2648		/*
2649		 * Disable this feature if mdevs are present.  They cannot
2650		 * safely pin/unpin/rw while vaddrs are being updated.
2651		 */
2652		return iommu && !vfio_iommu_has_emulated(iommu);
2653	case VFIO_DMA_CC_IOMMU:
2654		if (!iommu)
2655			return 0;
2656		return vfio_domains_have_enforce_cache_coherency(iommu);
2657	default:
2658		return 0;
2659	}
2660}
2661
2662static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2663		 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2664		 size_t size)
2665{
2666	struct vfio_info_cap_header *header;
2667	struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2668
2669	header = vfio_info_cap_add(caps, size,
2670				   VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2671	if (IS_ERR(header))
2672		return PTR_ERR(header);
2673
2674	iova_cap = container_of(header,
2675				struct vfio_iommu_type1_info_cap_iova_range,
2676				header);
2677	iova_cap->nr_iovas = cap_iovas->nr_iovas;
2678	memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2679	       cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2680	return 0;
2681}
2682
2683static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2684				      struct vfio_info_cap *caps)
2685{
2686	struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2687	struct vfio_iova *iova;
2688	size_t size;
2689	int iovas = 0, i = 0, ret;
2690
2691	list_for_each_entry(iova, &iommu->iova_list, list)
2692		iovas++;
2693
2694	if (!iovas) {
2695		/*
2696		 * Return 0 as a container with a single mdev device
2697		 * will have an empty list
2698		 */
2699		return 0;
2700	}
2701
2702	size = struct_size(cap_iovas, iova_ranges, iovas);
2703
2704	cap_iovas = kzalloc(size, GFP_KERNEL);
2705	if (!cap_iovas)
2706		return -ENOMEM;
2707
2708	cap_iovas->nr_iovas = iovas;
2709
2710	list_for_each_entry(iova, &iommu->iova_list, list) {
2711		cap_iovas->iova_ranges[i].start = iova->start;
2712		cap_iovas->iova_ranges[i].end = iova->end;
2713		i++;
2714	}
2715
2716	ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2717
2718	kfree(cap_iovas);
2719	return ret;
2720}
2721
2722static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2723					   struct vfio_info_cap *caps)
2724{
2725	struct vfio_iommu_type1_info_cap_migration cap_mig = {};
2726
2727	cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2728	cap_mig.header.version = 1;
2729
2730	cap_mig.flags = 0;
2731	/* support minimum pgsize */
2732	cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2733	cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2734
2735	return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2736}
2737
2738static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2739					   struct vfio_info_cap *caps)
2740{
2741	struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2742
2743	cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2744	cap_dma_avail.header.version = 1;
2745
2746	cap_dma_avail.avail = iommu->dma_avail;
2747
2748	return vfio_info_add_capability(caps, &cap_dma_avail.header,
2749					sizeof(cap_dma_avail));
2750}
2751
2752static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2753				     unsigned long arg)
2754{
2755	struct vfio_iommu_type1_info info = {};
2756	unsigned long minsz;
2757	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2758	int ret;
2759
2760	minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2761
2762	if (copy_from_user(&info, (void __user *)arg, minsz))
2763		return -EFAULT;
2764
2765	if (info.argsz < minsz)
2766		return -EINVAL;
2767
2768	minsz = min_t(size_t, info.argsz, sizeof(info));
2769
2770	mutex_lock(&iommu->lock);
2771	info.flags = VFIO_IOMMU_INFO_PGSIZES;
2772
2773	info.iova_pgsizes = iommu->pgsize_bitmap;
2774
2775	ret = vfio_iommu_migration_build_caps(iommu, &caps);
2776
2777	if (!ret)
2778		ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2779
2780	if (!ret)
2781		ret = vfio_iommu_iova_build_caps(iommu, &caps);
2782
2783	mutex_unlock(&iommu->lock);
2784
2785	if (ret)
2786		return ret;
2787
2788	if (caps.size) {
2789		info.flags |= VFIO_IOMMU_INFO_CAPS;
2790
2791		if (info.argsz < sizeof(info) + caps.size) {
2792			info.argsz = sizeof(info) + caps.size;
2793		} else {
2794			vfio_info_cap_shift(&caps, sizeof(info));
2795			if (copy_to_user((void __user *)arg +
2796					sizeof(info), caps.buf,
2797					caps.size)) {
2798				kfree(caps.buf);
2799				return -EFAULT;
2800			}
2801			info.cap_offset = sizeof(info);
2802		}
2803
2804		kfree(caps.buf);
2805	}
2806
2807	return copy_to_user((void __user *)arg, &info, minsz) ?
2808			-EFAULT : 0;
2809}
2810
2811static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2812				    unsigned long arg)
2813{
2814	struct vfio_iommu_type1_dma_map map;
2815	unsigned long minsz;
2816	uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2817			VFIO_DMA_MAP_FLAG_VADDR;
2818
2819	minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2820
2821	if (copy_from_user(&map, (void __user *)arg, minsz))
2822		return -EFAULT;
2823
2824	if (map.argsz < minsz || map.flags & ~mask)
2825		return -EINVAL;
2826
2827	return vfio_dma_do_map(iommu, &map);
2828}
2829
2830static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2831				      unsigned long arg)
2832{
2833	struct vfio_iommu_type1_dma_unmap unmap;
2834	struct vfio_bitmap bitmap = { 0 };
2835	uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2836			VFIO_DMA_UNMAP_FLAG_VADDR |
2837			VFIO_DMA_UNMAP_FLAG_ALL;
2838	unsigned long minsz;
2839	int ret;
2840
2841	minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2842
2843	if (copy_from_user(&unmap, (void __user *)arg, minsz))
2844		return -EFAULT;
2845
2846	if (unmap.argsz < minsz || unmap.flags & ~mask)
2847		return -EINVAL;
2848
2849	if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2850	    (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2851			    VFIO_DMA_UNMAP_FLAG_VADDR)))
2852		return -EINVAL;
2853
2854	if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2855		unsigned long pgshift;
2856
2857		if (unmap.argsz < (minsz + sizeof(bitmap)))
2858			return -EINVAL;
2859
2860		if (copy_from_user(&bitmap,
2861				   (void __user *)(arg + minsz),
2862				   sizeof(bitmap)))
2863			return -EFAULT;
2864
2865		if (!access_ok((void __user *)bitmap.data, bitmap.size))
2866			return -EINVAL;
2867
2868		pgshift = __ffs(bitmap.pgsize);
2869		ret = verify_bitmap_size(unmap.size >> pgshift,
2870					 bitmap.size);
2871		if (ret)
2872			return ret;
2873	}
2874
2875	ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2876	if (ret)
2877		return ret;
2878
2879	return copy_to_user((void __user *)arg, &unmap, minsz) ?
2880			-EFAULT : 0;
2881}
2882
2883static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2884					unsigned long arg)
2885{
2886	struct vfio_iommu_type1_dirty_bitmap dirty;
2887	uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2888			VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2889			VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2890	unsigned long minsz;
2891	int ret = 0;
2892
2893	if (!iommu->v2)
2894		return -EACCES;
2895
2896	minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2897
2898	if (copy_from_user(&dirty, (void __user *)arg, minsz))
2899		return -EFAULT;
2900
2901	if (dirty.argsz < minsz || dirty.flags & ~mask)
2902		return -EINVAL;
2903
2904	/* only one flag should be set at a time */
2905	if (__ffs(dirty.flags) != __fls(dirty.flags))
2906		return -EINVAL;
2907
2908	if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2909		size_t pgsize;
2910
2911		mutex_lock(&iommu->lock);
2912		pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2913		if (!iommu->dirty_page_tracking) {
2914			ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2915			if (!ret)
2916				iommu->dirty_page_tracking = true;
2917		}
2918		mutex_unlock(&iommu->lock);
2919		return ret;
2920	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2921		mutex_lock(&iommu->lock);
2922		if (iommu->dirty_page_tracking) {
2923			iommu->dirty_page_tracking = false;
2924			vfio_dma_bitmap_free_all(iommu);
2925		}
2926		mutex_unlock(&iommu->lock);
2927		return 0;
2928	} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2929		struct vfio_iommu_type1_dirty_bitmap_get range;
2930		unsigned long pgshift;
2931		size_t data_size = dirty.argsz - minsz;
2932		size_t iommu_pgsize;
2933
2934		if (!data_size || data_size < sizeof(range))
2935			return -EINVAL;
2936
2937		if (copy_from_user(&range, (void __user *)(arg + minsz),
2938				   sizeof(range)))
2939			return -EFAULT;
2940
2941		if (range.iova + range.size < range.iova)
2942			return -EINVAL;
2943		if (!access_ok((void __user *)range.bitmap.data,
2944			       range.bitmap.size))
2945			return -EINVAL;
2946
2947		pgshift = __ffs(range.bitmap.pgsize);
2948		ret = verify_bitmap_size(range.size >> pgshift,
2949					 range.bitmap.size);
2950		if (ret)
2951			return ret;
2952
2953		mutex_lock(&iommu->lock);
2954
2955		iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2956
2957		/* allow only smallest supported pgsize */
2958		if (range.bitmap.pgsize != iommu_pgsize) {
2959			ret = -EINVAL;
2960			goto out_unlock;
2961		}
2962		if (range.iova & (iommu_pgsize - 1)) {
2963			ret = -EINVAL;
2964			goto out_unlock;
2965		}
2966		if (!range.size || range.size & (iommu_pgsize - 1)) {
2967			ret = -EINVAL;
2968			goto out_unlock;
2969		}
2970
2971		if (iommu->dirty_page_tracking)
2972			ret = vfio_iova_dirty_bitmap(range.bitmap.data,
2973						     iommu, range.iova,
2974						     range.size,
2975						     range.bitmap.pgsize);
2976		else
2977			ret = -EINVAL;
2978out_unlock:
2979		mutex_unlock(&iommu->lock);
2980
2981		return ret;
2982	}
2983
2984	return -EINVAL;
2985}
2986
2987static long vfio_iommu_type1_ioctl(void *iommu_data,
2988				   unsigned int cmd, unsigned long arg)
2989{
2990	struct vfio_iommu *iommu = iommu_data;
2991
2992	switch (cmd) {
2993	case VFIO_CHECK_EXTENSION:
2994		return vfio_iommu_type1_check_extension(iommu, arg);
2995	case VFIO_IOMMU_GET_INFO:
2996		return vfio_iommu_type1_get_info(iommu, arg);
2997	case VFIO_IOMMU_MAP_DMA:
2998		return vfio_iommu_type1_map_dma(iommu, arg);
2999	case VFIO_IOMMU_UNMAP_DMA:
3000		return vfio_iommu_type1_unmap_dma(iommu, arg);
3001	case VFIO_IOMMU_DIRTY_PAGES:
3002		return vfio_iommu_type1_dirty_pages(iommu, arg);
3003	default:
3004		return -ENOTTY;
3005	}
3006}
3007
3008static void vfio_iommu_type1_register_device(void *iommu_data,
3009					     struct vfio_device *vdev)
3010{
3011	struct vfio_iommu *iommu = iommu_data;
3012
3013	if (!vdev->ops->dma_unmap)
3014		return;
3015
3016	/*
3017	 * list_empty(&iommu->device_list) is tested under the iommu->lock while
3018	 * iteration for dma_unmap must be done under the device_list_lock.
3019	 * Holding both locks here allows avoiding the device_list_lock in
3020	 * several fast paths. See vfio_notify_dma_unmap()
3021	 */
3022	mutex_lock(&iommu->lock);
3023	mutex_lock(&iommu->device_list_lock);
3024	list_add(&vdev->iommu_entry, &iommu->device_list);
3025	mutex_unlock(&iommu->device_list_lock);
3026	mutex_unlock(&iommu->lock);
3027}
3028
3029static void vfio_iommu_type1_unregister_device(void *iommu_data,
3030					       struct vfio_device *vdev)
3031{
3032	struct vfio_iommu *iommu = iommu_data;
3033
3034	if (!vdev->ops->dma_unmap)
3035		return;
3036
3037	mutex_lock(&iommu->lock);
3038	mutex_lock(&iommu->device_list_lock);
3039	list_del(&vdev->iommu_entry);
3040	mutex_unlock(&iommu->device_list_lock);
3041	mutex_unlock(&iommu->lock);
3042}
3043
3044static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3045					 dma_addr_t user_iova, void *data,
3046					 size_t count, bool write,
3047					 size_t *copied)
3048{
3049	struct mm_struct *mm;
3050	unsigned long vaddr;
3051	struct vfio_dma *dma;
3052	bool kthread = current->mm == NULL;
3053	size_t offset;
3054
3055	*copied = 0;
3056
3057	dma = vfio_find_dma(iommu, user_iova, 1);
3058	if (!dma)
3059		return -EINVAL;
3060
3061	if ((write && !(dma->prot & IOMMU_WRITE)) ||
3062			!(dma->prot & IOMMU_READ))
3063		return -EPERM;
3064
3065	mm = dma->mm;
3066	if (!mmget_not_zero(mm))
3067		return -EPERM;
3068
3069	if (kthread)
3070		kthread_use_mm(mm);
3071	else if (current->mm != mm)
3072		goto out;
3073
3074	offset = user_iova - dma->iova;
3075
3076	if (count > dma->size - offset)
3077		count = dma->size - offset;
3078
3079	vaddr = dma->vaddr + offset;
3080
3081	if (write) {
3082		*copied = copy_to_user((void __user *)vaddr, data,
3083					 count) ? 0 : count;
3084		if (*copied && iommu->dirty_page_tracking) {
3085			unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3086			/*
3087			 * Bitmap populated with the smallest supported page
3088			 * size
3089			 */
3090			bitmap_set(dma->bitmap, offset >> pgshift,
3091				   ((offset + *copied - 1) >> pgshift) -
3092				   (offset >> pgshift) + 1);
3093		}
3094	} else
3095		*copied = copy_from_user(data, (void __user *)vaddr,
3096					   count) ? 0 : count;
3097	if (kthread)
3098		kthread_unuse_mm(mm);
3099out:
3100	mmput(mm);
3101	return *copied ? 0 : -EFAULT;
3102}
3103
3104static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3105				   void *data, size_t count, bool write)
3106{
3107	struct vfio_iommu *iommu = iommu_data;
3108	int ret = 0;
3109	size_t done;
3110
3111	mutex_lock(&iommu->lock);
3112
3113	if (WARN_ONCE(iommu->vaddr_invalid_count,
3114		      "vfio_dma_rw not allowed with VFIO_UPDATE_VADDR\n")) {
3115		ret = -EBUSY;
3116		goto out;
3117	}
3118
3119	while (count > 0) {
3120		ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3121						    count, write, &done);
3122		if (ret)
3123			break;
3124
3125		count -= done;
3126		data += done;
3127		user_iova += done;
3128	}
3129
3130out:
3131	mutex_unlock(&iommu->lock);
3132	return ret;
3133}
3134
3135static struct iommu_domain *
3136vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3137				    struct iommu_group *iommu_group)
3138{
3139	struct iommu_domain *domain = ERR_PTR(-ENODEV);
3140	struct vfio_iommu *iommu = iommu_data;
3141	struct vfio_domain *d;
3142
3143	if (!iommu || !iommu_group)
3144		return ERR_PTR(-EINVAL);
3145
3146	mutex_lock(&iommu->lock);
3147	list_for_each_entry(d, &iommu->domain_list, next) {
3148		if (find_iommu_group(d, iommu_group)) {
3149			domain = d->domain;
3150			break;
3151		}
3152	}
3153	mutex_unlock(&iommu->lock);
3154
3155	return domain;
3156}
3157
3158static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3159	.name			= "vfio-iommu-type1",
3160	.owner			= THIS_MODULE,
3161	.open			= vfio_iommu_type1_open,
3162	.release		= vfio_iommu_type1_release,
3163	.ioctl			= vfio_iommu_type1_ioctl,
3164	.attach_group		= vfio_iommu_type1_attach_group,
3165	.detach_group		= vfio_iommu_type1_detach_group,
3166	.pin_pages		= vfio_iommu_type1_pin_pages,
3167	.unpin_pages		= vfio_iommu_type1_unpin_pages,
3168	.register_device	= vfio_iommu_type1_register_device,
3169	.unregister_device	= vfio_iommu_type1_unregister_device,
3170	.dma_rw			= vfio_iommu_type1_dma_rw,
3171	.group_iommu_domain	= vfio_iommu_type1_group_iommu_domain,
3172};
3173
3174static int __init vfio_iommu_type1_init(void)
3175{
3176	return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3177}
3178
3179static void __exit vfio_iommu_type1_cleanup(void)
3180{
3181	vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3182}
3183
3184module_init(vfio_iommu_type1_init);
3185module_exit(vfio_iommu_type1_cleanup);
3186
3187MODULE_VERSION(DRIVER_VERSION);
3188MODULE_LICENSE("GPL v2");
3189MODULE_AUTHOR(DRIVER_AUTHOR);
3190MODULE_DESCRIPTION(DRIVER_DESC);
3191